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Abstract—The last wave of AI developments sparked a global
surge in computing resources allocated to neural network models.
Even though such models solve complex problems, their math-
ematical foundations are simple, with the multiply-accumulate
(MAC) operation standing out as one of the most important.
However, improvements in traditional CMOS technologies fail
to match the ever-increasing performance requirements of AI
applications, therefore new technologies, as well as disruptive
computing architectures must be explored. In this paper, we
propose a novel in-memory implementation of a MAC operator
based on stochastic computing and optical phase-change memo-
ries (oPCMs), leveraging their proven non-volatility and multi-
level capabilities to achieve convolution. We show that resorting
to the stochastic computing paradigm allows one to exploit the
dynamic mechanisms of oPCMs to naturally compute and store
MAC results with less noise sensitivity. Under similar conditions,
we demonstrate an improvement of up to 64× and 10× in the
applications that we evaluated.

Index Terms—photonic computing, phase-change memories,
stochastic computing, in-memory computing

I. INTRODUCTION

We are experiencing a significant shift in computer resource
allocation, with more and more hardware being dedicated to AI
applications. As convolutional neural networks with billions of
parameters are used to solve a growing set of problems [1], it
becomes necessary to optimize their implementations. In these
networks, convolution has the largest energy overhead [2],
requiring intensive use of multiply-accumulate (MAC) op-
erations. While the energy efficiency, density, and speed of
MACs have significantly improved over the last decades,
further developments face two fundamental limits: i) the
slowdown of Dennard’s scaling makes it increasingly difficult
to fabricate small and efficient electronic devices, ii) traditional
architectures are affected by the Von-Neumann bottleneck, as
large amounts of energy are spent transferring data between
processing and memory units.

In this context, new in-memory computing (IMC) architec-
tures are interesting alternatives, with key operations such as
MACs being performed within memory banks. Electronic IMC
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Fig. 1. (a) Scalar multiplication with amplitude-oPCM. Inset: PCM trans-
mission characteristic based on its state, noted as the corresponding 6-bit
value encoded on it, (b) multiplication in stochastic computing with digital
components, (c) cell for stochastic-oPCM multiplication, (d) PCM state
evolution during stochastic-oPCM operation.

implementations typically use non-volatile memories such
as resistive RAM (ReRAM), ferroelectric devices (FeFET),
NAND Flash, or phase-change memories (PCMs). Among
these, PCMs are the only ones that can also be manipulated
optically, enabling implementation of IMC circuits also in the
photonic domain. Compared to their electronic counterpart,
optical phase-change memories (oPCMs) have a longer life-
time [3], coupled with improved multi-state behavior, such
that devices with up to 64 different states (6 bits) were
demonstrated [4], versus 8 states for electrical PCMs [5]. A



PCM state is defined by the distribution of amorphous and
crystalline phases inside the material, which directly affects
its optical transmission. Changing the value stored in a PCM
involves controlling its temperature in one of two specific
ways: i) melting it with high intensity and quenching it as fast
as possible, resulting in amorphization, and ii) annealing it by
applying specific temperature profiles to recrystallize it [6].

In photonics, the interaction between the non-volatile state
stored as the PCM transmission and the amplitude of an optical
signal is naturally multiplicative, as illustrated in Fig. 1a.
Therefore, such devices have been investigated to perform
convolutions by encoding a constant multiplier into the PCM,
while other operands are sent as the amplitude of light
pulses with different wavelengths, simultaneously traveling
in a waveguide [7–10]. This approach, which we refer to as
amplitude-oPCM, performs the mathematical operation while
reading the non-volatile memory and has been demonstrated
to be highly sensitive to output perturbations in scalar multi-
plication [11]. Also in [11], a new cell that performs MACs
while writing the memory (stochastic-oPCM) is proposed as
a robust alternative to such perturbations.

In this work, we propose a novel optical convolution circuit
based on stochastic-oPCM cells. In such cells the accumulation
results are continuously updated as the PCM state, illustrated
in Fig. 1c-d. To achieve multiplication, we implement the
stochastic computing paradigm, in which inputs are encoded
as streams of digital optical pulses. Only the combined energy
of two simultaneous pulses triggers a change of the PCM
state, thus it behaves as a logical AND. Therefore a single
cell is capable of both the multiply and accumulate operations
shown in Fig. 1b. To evaluate this approach, we propose
a behavioral modelling scheme based on extrapolation from
finite-difference time-domain (FDTD) simulations, and we use
it to compare our solution with state of the art optical MACs
over two applications: i) denoising with a convolutional filter
and ii) RGB-grayscale conversion of an image, both in the
presence of photodetector noise. Our results show that our
approach improves upon amplitude-oPCM up to 10× and 64×
in each respective application in terms of precision.

This paper is organized as follows: section II presents the-
oretical background for this work, as well as related research
in the literature. In section III we describe our PCM modeling
scheme, as well as the proposed convolution circuit based on
stochastic-oPCM cells. In section IV we discuss the simulation
results for the target applications, and section V brings the
conclusions and perspectives to this work.

II. BACKGROUND

In this section, we present key concepts of stochastic
computing and phase-change memories in optics. Then, we
discuss works that perform computing with oPCMs.

A. Stochastic Computing

Stochastic computing (SC) is a paradigm that operates on
data encoded as densities of high states (’1’) in bitstreams.

Since most conventional computing paradigms rely on binary-
encoded data (rather than stochastic), conversion to stochastic
bitstreams is needed. This is achieved by a Stochastic Number
Generator (SNG) comprised of a pseudo-Random Number
Generator (RNG) and a comparator [12]. In this work, we
consider maximal linear-feedback shift registers (LFSRs) as
RNGs, which require as many registers as there are bits in the
input data. With this, any nb-bit value can be mapped to a
high state probability with bitstream length (BSL) of 2nb − 1.

To perform stochastic multiplication, let us consider two
bitstreams A and B as independent, i.e., generated by two
different LFSRs. Then, pA and pB are the probabilities of
a high state appearing in each of these bitstreams. When
they are applied as inputs of an AND gate, the probability
of a high state at the output is calculated as pQ = P (A =
1 ∩ B = 1) = P (A = 1) × P (B = 1) = pApB . Finally,
the output can either be used as-is, or converted to binary for
storage or communication. The conversion is performed using
a counter (accumulator). Fig. 1b illustrates this concept for
0.5× 0.75 = 0.375 with 3-bit encoding. An important caveat
of SC is that the output will often contain error, and while there
are techniques that perform exact stochastic multiplication,
their BSL is squared [13], rendering them impracticable for
this work.

B. oPCMs

Phase-change memories are tipically based on chalcogenide
glasses such as GeTe, Sb2Te3, or Ge2Sb2Te5 (GST). This fam-
ily of materials has been widely used in the rewritable optical
storage industry since the late 90s, as they display distinct
optical properties between their amorphous and crystalline
phases [14]. This results in a state-dependent variation of the
amount of light transmitted through a device, as shown in
Fig. 1a. Furthermore, by progressively switching sub-regions
of the PCM cell from crystalline to amorphous, many inter-
mediate states can be accessed, with the most recent demon-
stration showcasing 64 distinct levels [4]. Assuming that the
memory is initially 100% crystalline, partial amorphization can
be achieved with a short, high power optical pulse that brings
an inner region of the PCM above its melting point, resulting
in an amorphized area [6]. Repetition of such pulses leads
to the nonlinear accumulation characteristic represented in the
inset of Fig. 1a, in which each discrete state corresponds to the
number of amorphization events caused by input pulses [15].

C. PCM-based Optical Storage and Computing Devices

Given the possibility to optically switch PCMs and their
large storage capacity, these devices have already been used as
integrated optical memory cells [16, 17] allowing efficient non-
volatile memory banks. The non-volatility of phase-change
materials also opens up the path to in-memory computing
applications, in particular for multiply-accumulate operators.
The existing method for oPCM MAC involves encoding the
multiplier as the state of the PCM cell and other operands as
amplitudes of light pulses (amplitude-oPCM). The multiplica-
tion result is carried by the amplitudes at the output [18], and



these can in turn be summed by a photodetector. This strategy
has already been used to perform matrix multiplication [7,
8] and convolution [9], with other works investigating the
inclusion of negative operands [9, 10] at the cost of increased
post-processing. When implementing such operators using
GST-based photonic devices, there is always light loss due
to absorption in the material. With the goal of allowing
the construction of larger systems, different low-loss PCM
materials, such as Sb2S3, are being investigated [19].

A major limitation of amplitude-oPCM is the non-uniform
mapping between the photodectector output and its equivalent
operation result [11]. This hinders result recovery after scalar
multiplication, leading to heavy data corruption in the presence
of electronic noise in the readout circuit. This corruption
intensifies as more intermediate states are used, restricting this
approach to operations with binary (0, 1) or ternary (−1, 0, 1)
states under realistic conditions. For this reason, instead of
using PCMs as static devices, we perform computations by
changing the PCM state itself, such that the result recovery can
be performed by a pulse with a fixed known amplitude. This
simplifies the readout and leads to noise-resiliency, allowing
reliable operation at higher bit counts. To our knowledge,
only one work actively uses the dynamic properties of oPCMs
to perform arithmetic functions [20]. Additionally, only two
works apply stochastic computing in photonics [21, 22],
without including phase-change memories.

III. PROPOSED APPROACH

As demonstrated in [20], a waveguide crossing with a
PCM deposited on its top can function as an AND gate for
amorphization. We use this effect, associated with the fact
that each amorphization step accumulates over the previous,
to implement the stochastic-oPCM multiply-accumulate cell.
To simulate each cell in the context of a bigger convolution
circuit, we developed a behavioral model described in the
following.

A. oPCM Behavioral Model

Here we consider that a PCM device can be modeled purely
through its transmission characteristic, i.e. we neglect temporal
effects. This assumption is only valid if we respect the time
trest to thermodynamic equilibrium between optical pulses,
which is in the order of nanoseconds [19]. Thus, for each
discrete state of amorphization, the PCM will have a dif-
ferent transmission, calculated from device-level simulations
as shown in Fig. 2. Furthermore, for stochastic-oPCM, it is
necessary to know how much energy must be injected in
the waveguides to amorphize the PCM at the initial (fully
crystalline) state. This energy is also calculated from device-
level simulations.

For the device-level simulations, we used Ansys™ Lumeri-
cal HEAT and FDTD solutions. We employ FDTD simulations
to obtain the PCM transmission in both fully crystalline (T0)
and fully amorphous (Tk) states. As we only simulate the
optical characteristics at those two edge cases, we apply curve-
fitting to map to produce a curve with the desired number of
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Fig. 2. Flow of necessary device simulations to construct the behavioral
model used in this work.

intermediate amorphization states (k). In this step we assume
the following function for transmission:

TPCM = T0 + (Tk − T0)× tanh
(
3× State

k

)
, (1)

which represents the nonlinearity of the PCM transmission as
it amorphizes [4, 15]. Although the specific shape of curve is
highly dependent on the device’s geometry, we verified that the
specific shape only marginally affects the circuit-level behavior
investigated in this work.

As the phase-transition depends on thermal characteristics,
we perform HEAT simulations based on the spatial profile
of absorbed optical power with a determined pulse duration.
From this, we find the minimum input power that will raise
the temperature of a region inside the PCM above its melting
point. Since we operate with nanosecond pulses and integrated
devices, the melted region quickly cools down and becomes
amorphous [6].

Knowing the threshold amorphization energy Eam, our
behavioral model for the PCM dynamics works as follows:
i) the energy of both input pulses is summed; ii) if the total
input energy EIN is equal or higher than Eam, the PCM
amorphizes by one step incrementing its State variable; iii)
a new optical transmission, dependent on State, is assigned
to the device. During actual implementation, the total energy
must be slightly above Eam, otherwise the PCM would stop
amorphizing after the first pulse due to reduced absorptions.
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B. Convolution with stochastic-oPCM

Given the importance and generality of convolution at the
core of many algorithms for data processing, we implement
it with stochastic-oPCM cells. To make use of structural
parallelism, we evaluate all output coefficients concurrently,
while the kernel elements are time-multiplexed as shown in
Fig. 3.

In Fig. 4 we illustrate the proposed circuit for performing
convolution with stochastic-oPCM. At each step, we send
the converted stochastic bitstream for a kernel coefficient b,
as well as all corresponding coefficients of the input matrix
A, yielding a N × N PCM matrix. An appropriate power
distribution must be guaranteed when routing input B such
that a total energy of Eam/2 arrives in each PCM from this
channel. Therefore, the first splitter must divide the pulses in
N equal parts, while the directional couplers along each row
must be sized to equally distribute the power, i.e., the nth

cross/through ratio is 1/(N + 1− n).
Under these assumptions, the proposed circuit can perform

a sum of S successive convolutions such that the output is

CN×N =

S∑
i=1

Ai
(N+M−1)×(N+M−1) ∗B

i
M×M , (2)

where N is the number of rows/columns of the layout in Fig. 4
and M is the kernel dimension. The summing of successive
convolutions is a consequence of the PCMs’ non-volatility,
which store the result of previous operations until reset.

Regarding the stochastic computing paradigm, only two
LFSRs are necessary for convolutions of any size: one shared
by all A channels, and one for B. Indeed, the PCMs do
not interact with each other, and only the PCM inputs must
be statistically independent from each other. Furthermore, as
the accumulation of time-multiplexed inputs is not stochastic,
there is no need for statistical independence between different
time steps.

If we consider that the duration of operation top depends
only on the optical components, we can evaluate it as scaling
with the size of the operands in (2) as

top = SM2(2nb − 1)× trest, (3)

AB

time
b11 b12...bMM

photodiode

grating coupler
(optical I/O)

Fig. 4. Circuit for convolutions with stochastic-oPCM cells.

where S is the number of successive convolutions, , 2nb − 1
is the bitstream length of the stochastic operands and trest is
the thermal relaxation time that must be respected between
pulses. Additionally, the energy cost also depends on the size
of the circuit such that, disregarding losses and considering
the worst-case bitstream (all 1s), it is evaluated as

Eop = SM2N2(2nb − 1)× Eam. (4)

At the end of the operation, the output matrix is written
as PCM states. Output recovery is performed by reading the
PCMs with a known optical power sent through input B, that
spreads it to all PCMs and their photodiodes. Each photodiode
generates an electrical current that carries information about
the PCM state, which can be decoded and used elsewhere.
To avoid corrupting the final states, the readout power Pr

must be of any value smaller than the amorphization power
Pam. In this work, we consider Pr = 10%Pam. Although
this percentage could be larger, higher powers through the
PCM may heat it up enough to cause thermo-optical effects,
impacting readout resolution.

IV. SIMULATION RESULTS

In this section we evaluate the proposed method, stochastic-
oPCM, compared to amplitude-oPCM [9] in two applications
compatible with the convolution circuit. The first is denoising
through a standard averaging filter, and the second is the
conversion to grayscale of an RGB image. The simulation



of stochastic-oPCM was carried out using the PCM model
described in Fig. 2. In amplitude-oPCM, we assume that each
nonvolatile input is correctly encoded using the same state-
transmission characteristic from Fig. 1a.

A. PCM Model and Simulation Environment

We applied the proposed modelling flow on a GST patch
with dimensions of 100 nm×250 nm×20 nm deposited on a
400 nm × 180 nm silicon waveguide. Using 500 ps pulses at
λ = 1550 nm, this PCM was found to amorphize at powers
above Pam = 13.6 mW, and so Eam = 6.8 pJ. For the curve-
fitting step we assume that 64 levels are available (nb = 6
bits), in line with the best achieved by the literature [4]. The
obtained state-transmission characteristic is illustrated in the
inset of Fig. 1a, with T0 = 0.86 and Tk = 0.99. Based on these
results, we determine that in stochastic-oPCM the readout
step is performed with Pr = 10% × 13.6 mW = 1.36 mW.
In amplitude-oPCM, the amplitude equivalent to the highest
operand (63) is encoded with Pr. This readout power is low
enough to not accidentally melt the PCM, while high enough
to provide up to 32 dB of signal-to-noise ratio at the output.

Then, we implemented simulated versions of the circuit in
a Python environment, assuming no optical losses or phase
mismatches, and output photodiodes with responsivity of
1 A/W. The only source of error was an added gaussian white
noise to photodiode current, with standard deviation of 0.7 µA,
equivalent to readout noise at approximately 1 GHz. In both
methods, we avoid any post-processing effects by resorting to
a look-up table that maps each output current during readout
to the numerical operation result.

B. Denoising

In this evaluation, we consider an input grayscale image
with dimensions 128× 128 that was previously corrupted by
gaussian noise, as seen in Fig. 5a. In this case, stochastic-
oPCM had S = 1. The integer coefficients b of an averaging
kernel are all equal and depend on its size M , such that

b = round
(
2nb − 1

M2

)
. (5)

For M = 2, we display the results for both methods in
Fig. 5b, along with the output of an ideal digital convolution.
It is noticeable that stochastic-oPCM gets similar results with
respect to the ideal case, but amplitude-oPCM produces a
noisier image. We also performed a sweep in the kernel size
M , recording the peak signal-to-noise ratio (PNSR) achieved
by all methods, as shown in Fig. 5c. In all cases, amplitude-
oPCM fails to denoise the image, while stochastic-oPCM
is close to the ideal filter until M = 3, with a PSNR
18.11 dB above the amplitude-oPCM (64.7× improvement).
After M = 3, its behavior degrades, as more precision is
needed to encode the kernel than achieved with 64 levels.

C. RGB-Grayscale Conversion

Standard RGB to grayscale conversion based on luminance
requires that, for each pixel, we apply
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gray = 0.2989R+ 0.5870G+ 0.1140B, (6)

where R, G, and B are the color values of that pixel.
In this case, we convert the constants to 6-bit values and,

for amplitude-oPCM, encode each in a PCM so one pixel is
processed in a single step. Meanwhile, stochastic-oPCM has
S = 3 and M = 1, such that the full matrix of each color is
processed at a time and the grayscale pixels are accumulated
at each PCM. We convert the same input RGB image seen in
Fig. 6a, achieving the results from Fig. 6b-d.

Once again amplitude-oPCM is more affected by the output
noise than stochastic-oPCM, such that our method achieves 9.8
more dB of PSNR, corresponding to an improvement of almost
10×. In Fig. 6e-f we plot the absolute error of both methods
with respect to the ideal case as heatmaps. It is possible to
visualize that many features of the original image are corrupted
by amplitude-oPCM, showing high error values, while they are
better preserved by stochastic-oPCM.

D. Discussion

Our results show that, given the same conditions of oper-
ation, stochastic-oPCM leads to a more precise convolution
when compared to amplitude-oPCM. The reason for it is that
our method is less affected by output perturbations as verified
in [11]. As the main source of error in stochastic-oPCM is the
SC paradigm itself, it is expected to improve with higher bit
counts, although other noise sources may become dominant.
Additionally, our method uses sequences of high power pulses
to perform each multiplication, thus it is expected to have a
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larger energy overhead when compared to amplitude-oPCM.
Nevertheless, at the end of every convolution operation, the
resulting images are already stored in PCM memory. This fact
allows the construction of different computing architectures in
which it is not necessary to move data to memory after the
operation, leading to potential advantages. In terms of speed, to
avoid corrupting the written PCM state, the amplitude-oPCM
method also has to wait for the thermal relaxation of the cell,
expected to be on the order of nanoseconds [19], particularly
if high input powers are involved. In our approach, the resting
time must be respected between each pulse in a stochastic
bitstream (2nb − 1 times). Therefore, implementations that
leverage parallelization of stochastic-oPCM must be investi-
gated.

V. CONCLUSIONS

This paper presents a novel photonic multiply-accumulate
(MAC) operator using phase-change materials (PCMs). To the
best of our knowledge, the proposed approach is the first
to perform convolution combining the stochastic computing
paradigm with optical PCMs. The synergy between the two
allows the result of the operation to be stored directly in
memory, and the non-volatility of the PCM allows one to read
or reuse the results without timing constraints. This represents
a new paradigm, in which the convolution is performed

as a memory write instead of a memory read, common in
other crossbar architectures. Results from denoising and RGB-
grayscale conversion show that, despite the errors introduced
by using stochastic computing, the proposed MAC operator
still shows 64× improvement in denoising and almost 10×
improvement in RGB-grayscale conversion in terms of PSNR.
The perspectives of this work are numerous and include: ex-
perimental validation of the behavioral model, parallelization
of the operator to improve its speed, and expansion of the
proposed circuit to allow for signed operations.
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