Material Flow Analysis: An Analytical Tool for Strategic Planning Towards a Zero-Waste Solution for End-of-Life Ballast Flows on a Track and Ballast Renewal Site (French Conventional Line)
Abstract
:1. Introduction
- Global context of TBR management in France
- b.
- Research plan strategy
- c.
- Ballast recycling
- d.
- The quality of recycled ballast
- e.
- Mechanical behaviour of a mixture of recycled and new ballast
- f.
- How can used ballast be recycled efficiently?
- g.
- Track Ballast Renewal worksites
- h.
- Logistical flows of a TBR construction site
- i.
- Literature on MFA models
- j.
- Selection of a relevant MFA model: Brunner and Rechberger (2004)
2. Materials and Methods
- Flows and processes of a TBR supply chain
- b.
- Material flows in processes (see Figure 3)—example of data from work site 1.
- c.
- Reliability of MFA data
- d.
- Flows and indicators
3. Results and Discussion
3.1. From the Supply Chain to the Material Flow Diagram Using Software (STAN) to Generate Scenarios
- Generic MFA diagram for TBR worksites
- b.
- Scenario comparisons of the main MFA ballast flows
- c.
- Analysis of the main MFA ballast flows in scenarios 1 and 2
3.2. Scenario I
3.3. Scenario 2
- d.
- Diagnostic Table of Transport Processes and TRT Utilisation Rate for Input and Output Flows for Scenarios 1 and 2
- e.
- Impact of the recycled ballast rate (F6) on the main flows
- f.
- g.
- Proposal of a SWOT analysis to orientate decision
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
C&DW | Construction and Demolition Waste |
CO2 | Carbon Dioxide |
ETC/WMGE | European Topic Centre on Waste and Materials in a Green Economy |
EWC-Stat category | Explanation of Waste Catégories |
EFFRA | European Factories of the Future Research Association |
EWWR | European Week for Waste Reduction |
GHG | A greenhouse gas (GHG or GhG) |
UIC | International Union of Railways |
IRP | International Resource Panel |
MFA | Material Flow Analysis |
OECD | Organisation for Economic Cooperation and Development |
SFA | Substance Flow Analysis |
SETRA | Service étude sur les transports, les routes et leurs aménagements, (service for studies on transport, roads, and their development) |
SNCF | Société Nationale des Chemins de Fer Français: French national railway company |
SNCF Réseau | The French railway infrastructure manager. A public limited company and subsidiary of the SNCF, it is responsible for the operation, maintenance, and development of rail infrastructure in France. |
STAN | Short for subSTance flow ANalysis |
SWOT | Strengths, Weaknesses, Opportunities, and Threats |
TC | Transfer coefficient |
TBR | Track and Ballast Renewal |
TRT | Track Renewal Train |
UNEP | United Nations Environment Program |
UN | United Nations (United Nations Summit on Sustainable Development) |
Appendix A
Appendix A.1. IUR Classification of Railway Lines
Group IUR | Characteristic Value Tf |
Group 1 | Tf ≥ 120,000 |
Group 2 | 120,000 ≥ Tf ≥ 85,000 |
Group 3 | 85,000 ≥ Tf ≥ 50,000 |
Group 4 | 50,000 ≥ Tf ≥ 28,000 |
Group 5 | 28,000 ≥ Tf ≥ 14,000 |
Group 6 | 14,000 ≥ Tf ≥ 7000 |
Group 7 | 7000 ≥ Tf ≥ 3500 |
Group 8 | 3500 ≥ Tf ≥ 1500 |
Group 9 | 1500 ≥ Tf |
Source: SNCF RESEAU/Directions Techniques Réseau/DGOP PI SRMN: Directions Générale des Opérations et de Production DPI—Département Suites Rapides et Marchés Nationaux. |
References
- OECD. Global Material Resources Outlook to 2060 Economic Drivers and Environmental Consequences. 2018. Available online: https://www.oecd.org/environment/waste/highlights-global-material-resources-outlook-to-2060.pdf (accessed on 6 March 2023).
- UNEP. Global Material Flows and Resource Productivity. An Assessment Study of the UNEP International Resource Panel; Schandl, H., Fischer-Kowalski, M., West, J., Giljum, S., Dittrich, M., Eisenmenger, N., Geschke, A., Lieber, M., Wieland, H.P., Schaffartzik, A., et al., Eds.; United Nations Environment Programme: Paris, France, 2016. [Google Scholar]
- Lorang, E. Ressources, déchets et climat: Essais sur l’économie du recyclage. INRAE Sci. Soc. 2021, 2021, 1–2. [Google Scholar]
- OECD. Policy Guidance on Resource Efficiency; OECD Publishing: Paris, France, 2016. [Google Scholar] [CrossRef]
- UN. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Resolution adopted by the General Assembly on 25 September 2015. [Google Scholar]
- Gould, O.; Colwill, J. A framework for material flow assessment in manufacturingsystems. J. Ind. Prod. Eng. 2015, 32, 55–66. [Google Scholar] [CrossRef]
- Mudd, G.M. The “Limits to Growth” and ‘Finite’ Mineral Resources: Re-Visiting the Assumptions and Drinking from That Half-Capacity Glass. In Proceedings of the 4th International Conference on Sustainability Engineering & Science: Transitions to Sustainability, Auckland, New Zealand, 30 November–3 December 2010; Available online: https://www.thesustainabilitysociety.org.nz/conference/2010/papers/Mudd.pdf (accessed on 2 January 2023).
- Brundtland. Report of the World Commission on Environment and Development: Our Common Future; présidée par Gro Harlem Brundtland; 1987. Available online: https://www.are.admin.ch/dam/are/en/dokumente/nachhaltige_entwicklung/dokumente/bericht/our_common_futurebrundtlandreport1987.pdf.download.pdf/our_common_futurebrundtlandreport1987.pdf (accessed on 2 January 2023).
- Delgado, B.G.; da Fonseca, A.V.; Fortunato, E.; Paixão, A.; Alves, R. Geomechanical assessment of an inert steel slag aggregate as analternative ballast material for heavy haul rail tracks. Constr. Build. Mater. 2021, 279, 122438. [Google Scholar] [CrossRef]
- Khong, S.C.; Yee, J.J.; Doh, S.I.; Chin, S.C. A review of agro-potential waste as a constituent in railway sleepers. Phys. Chem. Earth Parts A/B/C 2022, 128, 103238. [Google Scholar] [CrossRef]
- Doğan-Sağlamtimur, N.; Bilgil, A.; Öztürk, B. Reusability of ashes for the building sector to strengthen the sustainability of waste management. In Handbook of Research on Supply Chain Management for Sustainable Development; IGI Global: Hershey, PA, USA, 2018; pp. 265–281. [Google Scholar] [CrossRef]
- Directive 2008/98/C, Législation Européenne Sur la Gestion des Déchets. Available online: https://eur-lex.europa.eu/FR/legal-content/summary/eu-waste-management-law.html (accessed on 21 December 2022).
- Eionet Report—ETC/WMGE 2020/1. Construction and Demolition Waste: Challenges and Opportunities in a Circular Economy. Available online: https://www.eionet.europa.eu/etcs/etc-wmge/products/etc-wmge-reports/construction-and-demolition-waste-challenges-and-opportunities-in-a-circular-economy/@@download/file/Clean%20Version_CDW%20and%20CE%20Report%20version%20January%2010%202020_final.pdf (accessed on 8 March 2023).
- Reporting on Material Recovery of C&D Waste: Guidance for the Reporting of the Data According to Commission Decision 2011/753/EU and Commission Implementing Decision (EU) 2019/1004 Version of May 2022. Available online: https://ec.europa.eu/eurostat/documents/342366/351811/C%26D+-+Guidance+on+Construction+and+Demolition+waste+reporting.pdf/6063625b-e9f0-8d24-be25-c3fa88aed0f1?t=1622469335376 (accessed on 7 March 2023).
- Pásztai, Z.; Branner, F.; Hübner, K.; Apostol, T.; Stan, C.; Cocârță, D.M. A Romanian Zero Waste Strategy: Salacea and Cociuba Mare Case Study. In Proceedings of the 2019 International Conference on Energy and Environment (CIEM), Timisoara, Romania, 17–18 October 2019. [Google Scholar] [CrossRef]
- Iqbal, M.W.; Kang, Y.; Jeon, H.W. Zero waste strategy for green supply chain management with minimization of energy consumption. J. Clean. Prod. 2020, 245, 118827. [Google Scholar] [CrossRef]
- Gao, Q.; Li, X.-g.; Jiang, S.-q.; Lyu, X.-j.; Gao, X.; Zhu, X.-n.; Zhang, Y.-q. Review on zero waste strategy for urban construction and demolition waste: Full component resource utilization approach for sustainable and low-carbon. Constr. Build. Mater. 2023, 395, 132354. [Google Scholar] [CrossRef]
- Allesch, A.; Brunner, P.H. Material Flow Analysis as a Decision Support Tool for Waste Management: A Literature Review. J. Ind. Ecol. 2015, 19, 753–764. [Google Scholar] [CrossRef]
- Lederer, J.; Gassner, A.; Fellner, J.; Mollay, U.; Schremmer, C. Raw materials consumption and demolition waste generation of the urban building sector 2016e2050: A scenario-based material flow analysis of Vienna. J. Clean. Prod. 2020, 288, 125566. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, P. Practical Handbook of Material Flow Analysis; Lewis Publisher: Boca Raton, FL, USA, 2004. [Google Scholar]
- Cochran, K.M.; Townsend, T.G. Estimating construction and demolition debris generation using a materials flow analysis approach. Waste Manag. 2010, 30, 2247–2254. [Google Scholar] [CrossRef]
- Sañudo, R.; Goswami, R.R.; Ricci, S.; Miranda, M. Efficient Reuse of Railway Track Waste Materials. Sustainability 2022, 14, 11721. [Google Scholar] [CrossRef]
- Jain, K.P.; Pruyn, J.F.J.; Hopman, J.J. Material flow analysis (MFA) as a tool to improve ship recycling. Ocean. Eng. 2017, 130, 674–683. [Google Scholar] [CrossRef]
- Software STAN (Short for subSTance Flow ANalysis) Is a Freeware That Helps to Perform Material Flow Analysis According to the Austrian Standard ÖNorm S 2096 (Material Flow Analysis—Application in Waste Management) The Latest Version is 2.7.101; Released 2022-02-01. Available online: https://www.stan2web.net/ (accessed on 21 December 2022).
- Cencic, O.; Rechberger, H. Material Flow Analysis with Software STAN. J. Environ. Eng. Manag. 2008, 18, 3–7. Available online: https://sswm.info/sites/default/files/reference_attachments/CENCIC%20and%20RECHBERGER%202008%20Material%20Flow%20Analysis%20with%20Software%20STAN.pdf (accessed on 20 October 2020).
- Cencic, O. Nonlinear data reconciliation in material flow analysis with software STAN. Sustain. Environ. Res. 2016, 26, 291–298. [Google Scholar] [CrossRef]
- Abadi, T.; Madhusudhan, B.N.; Li, H.; Le Pen, L. Reusing Life-Expired Railway Ballast: Laboratory Testing, Shape Analysis, and Petrographic Evaluation. J. Geotech. Geoenvironmental Eng. 2023, 149, 1. [Google Scholar] [CrossRef]
- Trinh, V.-N.; Tang, A.-M.; Cui, Y.-J.; Canou, J.; Dupla, J.-C.; Calon, N.; Lambert, L.; Robinet, A.; Schoen, O. Caractérisation des matériaux constitutifs de plate-forme ferroviaire ancienne. Rev. Française Géotechnique 2011, 134–135, 65–74. [Google Scholar] [CrossRef]
- Cescon, J.T.A.M.; Silva, B.-H.d.A.e.; Marques, M.E.S.; Santos, R.P.d. Evaluation of the viability of recycling railroad ballast for reusing in railroads. Res. Soc. Dev. 2021, 10, e277101321231. [Google Scholar] [CrossRef]
- Ciotlaus, M.; Kollo, G. Ballast bed cleaning and recycling—Influence on stability of continuously welded rail track. Procedia Manuf. 2018, 22, 294–300. [Google Scholar] [CrossRef]
- Jia, W.; Markine, V.; Guo, Y.; Jing, G. Experimental and numerical investigations on the shear behaviour of recycled railway ballast. Constr. Build. Mater. 2019, 217, 310–320. [Google Scholar] [CrossRef]
- Leus, O.; Pidal, I.M.; Kolos, A.; Klishch, S. Strength properties of ballast layer, created from new and recycled crushed stone ballast. IOP Conf. Ser. Earth Environ. Sci. 2021, 942, 012026. [Google Scholar] [CrossRef]
- Binaree, T.; Kwunjai, S.; Jitsangiam, P.; Azéma, E.; Jing, G. Assessment of macro and micro mechanical properties of fresh and deteriorated ballast combining laboratory tests and 2D-discrete element methods. Constr. Build. Mater. 2024, 420, 135525. [Google Scholar] [CrossRef]
- Kwunjai, S.; Somsri, T.; Jitsangiam, P.; Binaree, T.; Qian, Y.; Jing, G. Characterization of deteriorated railway ballast morphological changes using 3D scanning and supervised machine learning data analytics. Constr. Build. Mater. 2023, 398, 132445. [Google Scholar] [CrossRef]
- Varuntanya, K.; Kwunjai, S.; Binaree, T.; Jitsangiam, P.; Jing, G.; Aela, P. Laboratory investigation of railway-used ballast morphology using 3D imaging data analyses. Case Stud. Constr. Mater. 2023, 19, e02272. [Google Scholar] [CrossRef]
- Sadeghi, J.; Motieyan Najar, M.E.; Zakeri, J.A.; Kuttelwascher, C. Development of railway ballast geometry index using automated measurement system. Measurement 2019, 138, 132–142. [Google Scholar] [CrossRef]
- Yunlong, G.; Xie, J.; Fan, Z.; Markine, V.; Connolly, D.P.; Jing, G. Railway ballast material selection and evaluation: A review. Constr. Build. Mater. 2022, 344, 128218. [Google Scholar] [CrossRef]
- Saico, J.H.; Castro, G.B.; Motta, R.; de Moura, E.; Bernucci, L.B.; Oliveira, L. Evaluation of the Behavior of Recycled Ballast Waste Applied in Subballast Railway Track Layer Rehabilitation. 2023. Available online: https://www.researchgate.net/publication/375594178 (accessed on 14 May 2024).
- Castro, G.; Saico, J.; deMoura, E.; Motta, R.; Bernucci, L.; Paixão, A.; Fortunato, E.; Oliveira, L. Evaluating Different Track Sub-Ballast Solutions Considering Traffic Loads and Sustainability. Infrastructures 2024, 9, 54. [Google Scholar] [CrossRef]
- Blard, C. Sncf Réseau. Réutilisation du ballast de dépose des Voies Ferries. OPTIGEDE-Ademe: Resource Centre Circular Economy and Waste. 2016. Available online: https://optigede.ademe.fr/fiche/reutilisation-du-ballast-de-depose-des-voies-ferrees (accessed on 12 October 2020).
- Lidén, T. Railway infrastructure maintenance—A survey of planning problems and conducted research. Transp. Res. Procedia 2015, 10, 574–583. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Khakiev, Z.; Yavna, V. Dynamic behavior and stability of soil foundation in heavy haul railway tracks: A review. Constr. Build. Mater. 2019, 205, 111–136. [Google Scholar] [CrossRef]
- de Abreu Corrêa, L.; Quezada, J.C.; Cottereau, R.; d’Aguiar, S.C.; Voivret, C. Randomly fluctuating heterogeneous continuum model of a ballasted railway track. Comput. Mech. 2017, 60, 845–861. [Google Scholar] [CrossRef]
- de Bortoli, A.; Bouhaya, L.; Feraille, A. Roadways and Infrastructure: A life cycle model for high-speed rail infrastructure: Environmental inventories and assessment of the T ours-Bordeaux railway in France. Int. J. Life Cycle Assess. 2020, 25, 814–830. [Google Scholar] [CrossRef]
- Huang, J.; Yin, Y.; Zheng, L.; Zhang, S.; Zhao, Q.; Chen, H. Life Cycle Assessment of Construction and Demolition Waste from Railway Engineering Projects. Comput. Intell. Neurosci. 2022, 2022, 6145755. [Google Scholar] [CrossRef]
- Quintanilla, I.D. Multi-Scale Study of the Degradation of Railway Ballast. Doctoral Thesis, Université Grenoble Alpes. 2018. Available online: https://tel.archives-ouvertes.fr/tel-01858650 (accessed on 6 November 2018).
- Bassey, D.; Ngene, B.; Akinwumi, I.; Akpan, V.; Bamigboye, G. Ballast Contamination Mechanisms: A Criterial Review of Characterisation and Performance Indicators. Infrastructures 2020, 5, 94. [Google Scholar] [CrossRef]
- Han, J.; Thakur, J.K. Sustainable roadway construction using recycled aggregates with geosynthetics. Sustain. Cities Soc. 2015, 14, 342–350. [Google Scholar] [CrossRef]
- Ramos, M.; Martinho, G. Relation between construction company size and the use of recycled materials. J. Build. Eng. 2021, 45, 103523. [Google Scholar] [CrossRef]
- Samarska, A.; Zelenko, Y.; Kovrov, O. Investigation of Heavy Metal Sources on Railways: Ballast Layer and Herbicides. J. Ecol. Eng. 2020, 21, 32–46. [Google Scholar] [CrossRef]
- Rak, A.; Klosok-Bazan, I.; Zimoch, I.; Machnik-Slomka, J. Analysis of railway ballast contamination in terms of its potential reuse. J. Clean. Prod. 2021, 378, 134440. [Google Scholar] [CrossRef]
- Mutha, N.H.; Patel, M.; Premnath, V. Plastics materials flow analysis for India. Resour. Conserv. Recycl. 2005, 47, 222–244. [Google Scholar] [CrossRef]
- Nacef, T.; Rachida, I.; AmorBen, F. Sustainable reverse logistic of construction and demolition wastes in French regions: Towards sustainable practices. Procedia CIRP 2020, 90, 712–717. [Google Scholar] [CrossRef]
- Baccini, P.; Brunner, H.P. Metabolism of the Anthroposphere; Springer: Berlin, Germany, 1991; 157p. [Google Scholar]
- Hendriks, C.; Obernosterer, R.; Müller, D.; Kytzia, S.; Baccini, P.; Brunner, P.H. Material Flow Analysis: A tool to support environmental policy decision making. Case studies on the city of Vienna and the Swiss lowlands. Local Environ. 2000, 5, 311–328. [Google Scholar] [CrossRef]
- Woodward, R.; Duffy, N. Cement and concrete flow analysis in a rapidly expanding economy: Ireland as a case study. Resour. Conserv. Recycl. 2010, 55, 448–455. [Google Scholar] [CrossRef]
- Naohiro, G.; Tachibana, J.; Fujie, K. Environmental Management System Based on Material Flow Analaysis to Etablish and Maintain Eco Town. J. Ind. Eng. Chem. 2005, 11, 818–825. [Google Scholar]
- Sendra, C.; Gabarrell, X.; Vicent, T. Material flow analysis adapted to an industrial area. J. Clean. Prod. 2007, 15, 1706–1715. [Google Scholar] [CrossRef]
- Manderson, E.; Considine, T. An Economic Perspective on Industrial Ecology. Rev. Environ. Econ. Policy 2018, 12, 304–323. [Google Scholar] [CrossRef]
- Arena, U.; Di Gregorio, F. A waste management planning based on substance flow analysis. Resour. Conserv. Recycl. 2014, 85, 54–66. [Google Scholar] [CrossRef]
- Brunner, P.H.; Rechberger, H. Waste to energy—Key element for sustainable waste management. Waste Manag. 2015, 37, 3–12. [Google Scholar] [CrossRef]
- Tang, J.; Brunner, P.H. Globalising MFA—Decision Support for Waste Management in Cities Based on the Software STAN; International Solid Waste Association (ISWA): Rotterdam, The Netherlands, 2013; Available online: http://hdl.handle.net/20.500.12708/38012 (accessed on 6 November 2023).
- Makarichi, L.; Techato, K.-a.; Jutidamrongphan, W. Material flow analysis as a support tool for multi-criteria analysis in solid waste management decision-making. Resour. Conserv. Recycl. 2018, 139, 351–365. [Google Scholar] [CrossRef]
- Allen, F.W.; Halloran, P.A.; Leith, A.H.; Lindsay, M.C. Using Material Flow Analysis for Sustainable Materials Management. J. Ind. Ecol. 2009, 13, 662–665. [Google Scholar] [CrossRef]
- Hashimoto, S.; Tanikawa, H.; Moriguchi, Y. Where will large amounts of materials accumulated within the economy go?—A material flow analysis of construction minerals for Japan. Waste Manag. 2007, 27, 1725–1738. [Google Scholar] [CrossRef]
- Economy-Wide Material Flow Accounts and Derived Indicators. A Methodological Guide. Eurostat. 2001. Available online: https://ec.europa.eu/eurostat/documents/3859598/5855193/KS-34-00-536-EN.PDF.pdf/411cd453-6d11-40a0-b65a-a33805327616?t=1414780409000 (accessed on 21 December 2022).
- UNEP. The Use of Natural Resources in the Economy: A Global Manual on Economy Wide Material Flow Accounting. 2021. Available online: https://wedocs.unep.org/20.500.11822/36253 (accessed on 20 November 2023).
- Allwood, J.M.; Ashby, M.F.; Gutowski, T.G.; Worrell, E. Material efficiency: A white paper. Resour. Conserv. Recycl. 2011, 55, 362–381. [Google Scholar] [CrossRef]
- Fleischmann, M.; Bloemhof-Ruwaard, J.M.; Dekker, R.; van der Laan, E.; van Nunen, J.A.E.E.; Van Wassenhove, L.N. Quantitative models for reverse logistics: A review. Eur. J. Oper. Res. 1997, 103, 1–17. [Google Scholar] [CrossRef]
- Laner, D.; Rechberger, H.; Astrup, T. Systematic Evaluation of Uncertainty in Material Flow Analysis. J. Ind. Ecol. 2014, 18, 859–870. [Google Scholar] [CrossRef]
- Bourbonnais, R.; Usunier, J.C. Prévision des Ventes, 4th ed.; Economica: Paris, France, 2007; p. 35. [Google Scholar]
- Sol-Sánchez, M.; D’Angelo, G. Review of the design and maintenance technologies used to decelerate the deterioration of ballasted railway tracks. Constr. Build. Mater. 2017, 157, 402–415. [Google Scholar] [CrossRef]
- D’Angelo, G.; Thom, N.; Lo Presti, D. Bitumen stabilized ballast: A potential solution for railway track-bed. Constr. Build. Mater. 2016, 124, 118–126. [Google Scholar] [CrossRef]
- D’Angelo, G.; Bressi, S.; Giunta, M.; Lo Presti, D.; Thom, D. Novel performance-based technique for predicting maintenance strategy of bitumen stabilised ballast. Constr. Build. Mater. 2018, 161, 1–8. [Google Scholar] [CrossRef]
- Giunta, M.; Bressi, S.; D’Angelo, G. Life cycle cost assessment of bitumen-stabilised ballast: A novel maintenance strategy for railway track-bed. Constr. Build. Mater. 2018, 172, 751–759. [Google Scholar] [CrossRef]
- Bressi, S.; D’Angelo, G.; Santo, J.; Giunta, M. Environmental performance analysis of bitumen stabilized ballast for railway track-bed using life-cycle assessment. Constr. Build. Mater. 2018, 188, 1050–1064. [Google Scholar] [CrossRef]
- Pons, J.J.; Villalba Sanchis, I.; Francoa, R.I.; Yepes, V. Life cycle assessment of a railway tracks substructures: Comparison of ballast and ballastless rail tracks. Environ. Impact Assess. Rev. 2020, 85, 106444. [Google Scholar] [CrossRef]
- Ngamkhanong, C.; Kaewunruen, S.; Baniotopoulos, C. Influences of ballast degradation on railway track buckling. Eng. Fail. Anal. 2021, 122, 105252. [Google Scholar] [CrossRef]
- Sainz-Aja, J.; Carrascal, I.; Polanco, J.A.; Thomas, C.; Sosa, I.; Casado, J.; Diego, S. Self-compacting recycled aggregate concrete using out-of-service railway superstructure wastes. J. Clean. Prod. 2019, 230, 945–955. [Google Scholar] [CrossRef]
- Département Fédéral de l’Environnement, des Transports et de l’énergie et de la Communication (DETEC); Office Federal des Tranports (OFT). Directive sur les Déblais de Voie. Planification de Travaux d’Excavation, évaluation et élimination des Déblais de Voie. Réfé-rence: BAV-522.450-2/3/23/4/10. 2023; (Unpublished reference). Available online: https://www.bav.admin.ch/dam/bav/fr/dokumente/richtlinien/eisenbahn/gleisaushubrichtlinie.pdf.download.pdf/directive_sur_lesdeblaisdevoie.pdf (accessed on 12 July 2024).
Flow | Nature of Flow |
---|---|
F1 | Worksite of Track and Ballast Renewal (TBR), Railway Ballasted Complex |
F2 | Worksite (TBR), End-of-Life (EOL) of Toxic Ballast and Soils |
F2.1 | Evacuation of End of Life of Toxic Ballast and Soils from the Worksite (TBR) to a Hazardous Waste Facility (HWF) by lorry or train |
F2.2 | Evacuation of EOL of Toxic Ballast and Soil from Worksite (TBR) to the Rear Base of the Worksite (RBW) by Track Renewal Train |
F2.3 | Evacuation of the EOL of Toxic Ballast and Soil from the Rear Base of the Worksite to a Hazardous Waste Facility by lorry or train |
F3 | Worksite (TBR), End-of-Life of Non-Toxic Ballast and Soil |
F4 | Worksite (TBR), End-of-Life of Non-Toxic Ballast |
F4.1 | Evacuation of End-of-Life of Non-Toxic Ballast from Worksite (TBR) to Material Recovery by lorry or train |
F4.2 | Evacuation of End-of-Life of Non-Toxic Ballast from Worksite (TBR) by TRT to the Rear Site Base of Worksite by TRT |
F4.3 | Evacuation of End-of-Life of Non-Toxic Ballast from the Rear Base of the Worksite to a Material Recovery by lorry or train |
F4.4 | Evacuation of End-of-Life of Non-Toxic Ballast from the Rear Base of the Worksite to a Material Recovery Platform by lorry or train |
F5 | Worksite (TBR), End-of-Life of Non-Toxic Soils |
F5.1 | Evacuation of End-of-Life of Non-Toxic Soils from Worksite (TBR) to an Inert Waste Storage Facility 1 by lorry or train |
F5.2 | Evacuation of End-of-Life of Non-Toxic Soils from Worksite (TBR) to the Rear Base of the Worksite by Track Renewal Train |
F5.3 | Evacuation of End-of-Life of Non-Toxic Soils from the Rear Base of Worksite to an Inert Waste Storage Facility 2 by lorry or train |
F6 | Worksite (TBR), Recycled Ballast |
F7 | Supply of New Ballast |
F7.1 | New Ballast Laid on the Railway Track |
F8 | Worksite (TBR), Leftover of New Ballast |
F8.1 | Evacuation, Leftover of New Ballast from the Worksite (TBR) to the Rear Base of the Worksite by TRT |
F8.2 | Evacuation, Leftover of New Ballast from the Rear Base of the Worksite to other Worksites (TBR) by lorry or train |
F8.3 | Evacuation, Leftover of New Ballast from the Rear Base of the Worksite to a Material Recovery Platform by lorry or train |
F8.4 | Evacuation, Leftover of New Ballast from the Rear Base of the Worksite to some Buffer Stocks * by lorry or train |
F8.5 | Evacuation, Leftover of New Ballast from the Worksite (TBR) to a Material Recovery by lorry or train |
Processus | Nature of the Process |
---|---|
P1 | Worksite (Track and Ballast Renewal), Cleaning of the Railway Track |
P2 | Worksite (TBR), End-of-Life (EOL) of Toxic Ballast and Soil: Handling/Transport |
P2.1 | Storage of EOL of Toxic Ballast and Soil at the Rear Base of the Worksite (RBW): Handling/Transport |
P3 | Worksite (TBR), Screening |
P4 | Worksite (TBR), End-of-Life of Non-Toxic Ballast: Handling/Transport |
P4.1 | Storage of EOL of Non-Toxic Ballast at the Rear Base of the Worksite: Handling/Transport |
P5 | Worksite (TBR), End of Life of Non-Toxic Soils: Handling/Transport |
P5.1 | Worksite (TBR), End of Life of Non-Toxic Soils Storage at the Rear Base of the Worksite |
P6 = F6 + F7.1 | Worksite (TBR), Stock on the Railway (Recycled Ballast + New Ballast) |
P7 | Worksite (TBR), New Ballast Laid on the Railway Track and Recovery Leftover New Ballast |
P8 | Worksite (TBR), Leftover of New Ballast: Handling/Transport |
P8.1 | Storage, Leftover of New Ballast at the Rear Base of the Worksite |
(a) | ||||||||||||
Input Flow In Process | Quantity Input (t) | Processus | Transfer Coefficient (%) | Output Flow of a Process | Analysis Chemical | Quantity Mean (t) | Standard Error | Confidence Interval | Error Margin % | |||
(t) | % | Low (t) | High (t) | |||||||||
F1 | 79,200 | P1 | X | 79,200 | 300 | 0.38 | 78,612 | 79,788 | 1.47 | |||
0.02 | F2 | X | 1584 | 6 | 0.38 | 1572 | 1596 | 1.47 | ||||
0.98 | F3 | X | 77,620 | 290 | 0.37 | 77,052 | 78,188 | 1.45 | ||||
F2 | 1584 | P2 | 0.10 | F2.1 | X | 158 | 0.6 | 0.38 | 157 | 159 | 1.48 | |
0.90 | F2.2 | X | 1425 | 5.4 | 0.38 | 1414 | 1436 | 1.47 | ||||
F2.2 | 1425 | P 2.1 | 1 | F2.3 | X | 1425 | 5.4 | 0.38 | 1414 | 1436 | 1.47 | |
F3 | 77,620 | P3 | 0.50 | F4 | 38,810 | 150 | 0.39 | 38,516 | 39,104 | 1.50 | ||
0.20 | F5 | 15,523 | 59 | 0.38 | 15,407 | 15,639 | 1.48 | |||||
0.30 | F6 | 23,285 | 88 | 0.38 | 23,113 | 23,457 | 1.47 | |||||
F4 | 38,810 | P4 | 0.20 | F4.1 | 7762 | 29 | 0.37 | 7705 | 7819 | 1.45 | ||
0.80 | F4.2 | 31,050 | 120 | 0.39 | 30,815 | 31,285 | 1.50 | |||||
F4.2 | 31,050 | P4.1 | 0.80 | F4.3 | 24,837 | 94 | 0.38 | 24,653 | 25,021 | 1.47 | ||
0.20 | F4.4 | 6209 | 24 | 0.39 | 6162 | 6256 | 1.50 | |||||
F5 | 15,523 | P5 | 0.20 | F5.1 | 12,419 | 47 | 0.38 | 12,327 | 12,511 | 1.47 | ||
0.80 | F5.2 | 3105 | 12 | 0.39 | 3081 | 3129 | 1.50 | |||||
F5.2 | 3105 | P5.1 | 1 | F5.3 | 3105 | 12 | 0.39 | 3081 | 3129 | 1.50 | ||
F6 + F7.1 | P6 | 66,000 | 500 | 0.76 | 65 | 66,980 | 2.93 | |||||
F7 | 43,150 | P7 | 43,150 | 500 | 1.16 | 42 | 44,130 | 4.44 | ||||
0.99 | F7.1 | 42,720 | 500 | 1.17 | 42 | 43,700 | 4.49 | |||||
0.01 | F8 | 431 | 5 | 1.16 | 421 | 441 | 4.45 | |||||
F8 | 431 | P8 | 0.80 | F8.1 | 345 | 4 | 1.16 | 337 | 353 | 4.44 | ||
0.20 | F8.5 | 86 | 1 | 1.16 | 84 | 88 | 4.44 | |||||
F8.1 | 345 | P8.1 | 0.75 | F8.2 | 258 | 3 | 1.16 | 252 | 264 | 4.46 | ||
0.15 | F8.3 | 52 | 0.6 | 1.15 | 51 | 53 | 4.42 | |||||
0.10 | F8.4 | 34 | 0.4 | 1.17 | 33 | 35 | 4.51 | |||||
(b) | ||||||||||||
Input Flow in a Process | Quantity Input (t) | Processus | Transfer Coefficient (%) | Output Flow of a process | Analysis Chemical | Quantity Mean (t) | Standard Error | Confidence Interval | Error Margin % | |||
(t) | % | Low (t) | High (t) | |||||||||
F1 | 79,200 | P1 | 79,200 | 300 | 0.38 | 78,612 | 79,788 | 1.47 | ||||
0.02 ± 0.01 | F2 | X | 1580 | 790 | 50 | 32 | 3128 | 98.98 | ||||
0.98 ± 0.01 | F3 | X | 77,620 | 840 | 1.08 | 75,974 | 79,266 | 4.15 | ||||
F2 | 1580 | P2 | 0.10 | F2.1 | X | 158 | 79 | 50 | 3 | 313 | 98.99 | |
0.90 | F2.2 | X | 1420 | 710 | 50 | 28 | 2812 | 98.99 | ||||
F2.2 | 1420 | P 2.1 | 1 | F2.3 | X | 1420 | 710 | 50 | 28 | 2812 | 98.99 | |
F3 | 77,620 | P3 | 0.45 | F4 | 34,900 | 3900 | 11.17 | 27,256 | 42,544 | 35.93 | ||
0.20 | F5 | 15,520 | 170 | 1.10 | 15,187 | 15,853 | 4.20 | |||||
0.35 ± 0.05 | F6 | 27,200 | 3900 | 14.34 | 19,556 | 34,844 | 43.87 | |||||
F4 | 38,800 | P4 | 0.20 | F4.1 | 6990 | 780 | 11.16 | 5461 | 8519 | 35.89 | ||
0.80 | F4.2 | 27,900 | 3100 | 11.11 | 21,824 | 33,976 | 35.77 | |||||
F4.2 | 31,000 | P4.1 | 0.80 | F4.3 | 22,400 | 2500 | 11.16 | 17,500 | 27,300 | 35.90 | ||
0.20 | F4.4 | 5990 | 620 | 10.35 | 4775 | 7205 | 33.73 | |||||
F5 | 15,520 | P5 | 0.20 | F5.1 | 12,420 | 130 | 1.05 | 12,165 | 12,675 | 4.02 | ||
0.80 | F5.2 | 3105 | 34 | 1.10 | 30,380 | 3172 | 4.20 | |||||
F5.2 | 3105 | P5.1 | 1 | F5.3 | 3105 | 34 | 1.10 | 30,380 | 3172 | 4.20 | ||
F6 + F7.1 | P 6 | 66,000 | 3900 | 5.90 | 58,356 | 73,644 | 20.76 | |||||
F7 | 39,190 | P7 | 39,190 | 500 | 1.28 | 38,210 | 4017 | 4.88 | ||||
0.99 | F7.1 | 38,800 | 530 | 1.36 | 37,761 | 39,838 | 5.22 | |||||
0.01 ± 0.005 | F8 | 390 | 200 | 51.28 | 2 | 782 | 100.26 | |||||
F8 | 430 | P8 | 0.80 | F8.1 | 310 | 160 | 51.61 | 4 | 624 | 100.58 | ||
0.20 | F8.5 | 78 | 39 | 50 | 2 | 154 | 98.99 | |||||
F8.1 | 350 | P8.1 | 0.75 | F8.2 | 240 | 120 | 50 | 5 | 475 | 98.99 | ||
0.15 | F8.3 | 47 | 24 | 51.06 | 0 | 94 | 100.04 | |||||
0.10 | F8.4 | 31 | 16 | 51.61 | 0 | 62 | 100.58 |
Scenario | Stock: P6 = F7.1 + F6 (t) | F7.1 (t) | F6 (t) | % F7.1 | % F6 |
---|---|---|---|---|---|
1 | 66,000 | 42,720 | 23,285 | 64 | 36 |
2 | 66,000 | 11,670 | 54,330 | 18 | 82 |
Difference | 31,050 | 31,045 | 46 | 46 |
(a) | |||||||||||||
Scenario 1 | Scenario 2 | ||||||||||||
Processus Worksite | Flows | Input by Train (t) | Output by TRT Worksite (t) | Ouput by Train Worksite (t) | Ouput by Train Rear Base Worksite (t) | Ouput by Truck Worksite (t) | Ouput by Truck Rear Base Worksite (t) | Input by Train (t) | Output by TRT Worksite (t) | Ouput by Train Worksite (t) | Ouput by Train Rear Base Worksite (t) | Ouput by Truck Worksite (t) | Ouput by Truck Rear Base Worksite (t) |
P2 | F2.1 | 158 | 158 | ||||||||||
P2.1 | F2.2 | 1426 | 1426 | ||||||||||
F2.3 | 1426 | 1426 | |||||||||||
P4 | F4.1 | 7762 | 1552 | ||||||||||
P4.1 | F4.2 | 31,050 | 6209 | ||||||||||
F4.3 | 24,837 | 4967 | |||||||||||
F4.4 | 6209 | 1241 | |||||||||||
P5 | F5.1 | 12,419 | 12,419 | ||||||||||
P5.1 | F5.2 | 3105 | 3105 | ||||||||||
F5.3 | 3105 | 3105 | |||||||||||
P7 | F7 | 43,150 | 11,790 | ||||||||||
P8 | F8.5 | 86 | 24 | ||||||||||
P8.1 | F8.1 | 345 | 94 | ||||||||||
F8.2 | 258 | 71 | |||||||||||
F8.3 | 52 | 14 | |||||||||||
F8.4 | 34 | 10 | |||||||||||
Total in (t) | 43,150 | 35,926 | 12,419 | 32,599 | 6453 | 4875 | 11,790 | 10,834 | 12,419 | 6519 | 1423 | 4626 | |
(b) | |||||||||||||
Input by Train (t) | Ouput by TRT Worksite (t) | Ouput by Train Worksite (t) | Ouput by Train Rear Base Worksite (t) | Ouput by Truck Worksite (t) | Ouput by Truck Rear Base Worksite (t) | ||||||||
SCN 1 | 43,150 | 35,926 | 12,419 | 32,599 | 6453 | 4875 | |||||||
SCN 2 | 11,790 | 10,834 | 12,419 | 6519 | 1423 | 4626 | |||||||
Relative Change (%) | 27 | 30 | 0 | 20 | 22 | 95 | |||||||
Difference (%) | 73 | 70 | 0 | 80 | 78 | 5 | |||||||
(c) | |||||||||||||
Total Transport Rate by Mode | SCN 1 (t) | SCN 2 (t) | Relative Change % | Difference % | |||||||||
Train | 76,998 | 30,728 | 40 | 60 | |||||||||
TRT | 35,926 | 10,834 | 30 | 70 | |||||||||
Truck | 11,328 | 6049 | 53 | 47 |
Process Worksite | Flows | TRT Work SCN 1 Quantity (t) | TRT Work SCN 1 in % | TRT Work SCN 1 Quantity (t) | TRT Work SCN 2 in % | Difference in t SCN1/SCN2 | Difference in % SCN1/SCN2 |
---|---|---|---|---|---|---|---|
P1 | F1 | 79,200 | 100 | 79,200 | 100 | 0 | 0 |
F2 | 1584 | 2 | 1584 | 2 | 0 | 0 | |
P3 | F3 | 77,620 | 98 | 77,620 | 98 | 0 | 0 |
F4 | 38,810 | 50 | 77,620 | 10 | 31,048 | 40 | |
F5 | 15,523 | 20 | 15,523 | 20 | 0 | 0 | |
F6 | 23,285 | 30 | 54,330 | 70 | 31,045 | 40 | |
P6 | F6 + F7.1 | 66,000 | 100 | 66,000 | 100 | 0 | 0 |
P7 | F7.1 | 42,720 | 65 | 11,670 | 18 | 31,050 | 47 |
P8 | F8 | 431 | 1 | 118 | 1 | 313 | 0 |
F7 Supply of New Ballast/F6 Recycled Ballast Supply Table | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
F7 (t) | F3 (t) | % F4 | F4 (t) | F5 (t) | % F6 | F6 (t) | F7.1 (t) | F8 (t) | P6 = F7.1 + F6 (t) | |
58,831 | 77,620 | 0.70 | 54,334 | 15,523 | 0.10 | 7762 | 58,243 | 588 | 66,005 | |
50,990 | 77,620 | 0.60 | 46,572 | 15,523 | 0.20 | 15,524 | 50,480 | 510 | 66,004 | |
43,150 | 77,620 | 0.50 | 38,810 | 15,523 | 0.30 | 23,285 | 42,719 | 432 | 66,004 | Scenario 1 |
35,308 | 77,620 | 0.40 | 31,048 | 15,523 | 0.40 | 31,048 | 34,955 | 353 | 66,003 | |
27,467 | 77,620 | 0.30 | 23,286 | 15,523 | 0.50 | 38,810 | 27,192 | 275 | 66,002 | |
19,626 | 77,620 | 0.20 | 15,524 | 15,523 | 0.60 | 46,572 | 19,430 | 196 | 66,002 | |
11,789 | 77,620 | 0.10 | 7,762 | 15,523 | 0.70 | 11,671 | 11,671 | 118 | 66,001 | Scenario 2 |
(a) | ||||||||||||
Worksite | Lenght (m) | F1 (t) | F2 (t) | F3 (t) | F4 (t) | F5 (t) | F6 (t) | SNB Planned (t) | F7 (t) | F7.1 (t) | P6 = F7.1 + F6 (t) | F8 (t) |
1 | 42,926 | 79,200 | 1584 | 77,620 | 38,810 | 15,523 | 23,285 | 66,000 | 43,150 | 42,720 | 66,005 | 431 |
2 | 44,746 | 82,558 | 1681 | 80,911 | 40,455 | 16,181 | 24,272 | 68,798 | 44,979 | 44,531 | 68,803 | 449 |
3 | 80,070 | 147,732 | 2,955 | 144,785 | 73,392 | 28,955 | 43,434 | 123,110 | 80,488 | 79,685 | 123,118 | 804 |
4 | 33,290 | 61,421 | 1228 | 60,196 | 30,098 | 12,038 | 18,058 | 51,184 | 33,464 | 33,310 | 51,188 | 334 |
5 | 70,327 | 129,756 | 2595 | 127,167 | 63,584 | 25,432 | 38,149 | 108,130 | 70,694 | 69,989 | 108,137 | 706 |
6 | 39,504 | 72,886 | 1458 | 71,432 | 35,716 | 14,286 | 21,429 | 60,739 | 39,710 | 39,314 | 60,743 | 397 |
7 | 35,368 | 62,255 | 1305 | 63,953 | 31,977 | 12,790 | 19,185 | 54,379 | 35,553 | 35,198 | 54,383 | 355 |
8 | 19,785 | 36,504 | 730 | 35,776 | 17,888 | 7155 | 10,732 | 30,420 | 19,888 | 19,690 | 30,422 | 199 |
9 | 67,094 | 123,791 | 2476 | 121,321 | 60,661 | 24,263 | 36,395 | 103,159 | 67,444 | 66,771 | 103,166 | 674 |
10 | 49,016 | 90,436 | 1806 | 88,632 | 44,316 | 17,725 | 26,588 | 75,364 | 49,272 | 48,780 | 75,369 | 492 |
11 | 58,382 | 107,717 | 2154 | 105,568 | 52,784 | 21,112 | 31,662 | 89,764 | 58,687 | 58,101 | 89,763 | 586 |
Total | 540,508 | 997,257 | 19,945 | 977,362 | 488,681 | 195,460 | 293,189 | 831,047 | 543,329 | 537,908 | 831,097 | 5433 |
(b) | ||||||||||||
Worksite | Lenght (m) | F1 (t) | F2 (t) | F3 (t) | F4 (t) | F5 (t) | F6 (t) | SNB Planned (t) | F7 (t) | F7.1 (t) | P6 = F7.1 + F6 (t) | F8 (t) |
1 | 42,926 | 79,200 | 1584 | 77,620 | 7762 | 15,523 | 54,330 | 66,000 | 11,790 | 11,670 | 66,000 | 118 |
2 | 44,746 | 82,558 | 1651 | 80,911 | 8091 | 16,181 | 56,634 | 68,798 | 12,290 | 12,165 | 68,798 | 123 |
3 | 80,070 | 147,732 | 2955 | 144,785 | 14,478 | 28,955 | 101,342 | 123,110 | 21,992 | 21,768 | 123,110 | 22 |
4 | 33,290 | 61,421 | 1228 | 60,196 | 6020 | 12,038 | 42,134 | 51,184 | 9143 | 9050 | 51,184 | 92 |
5 | 70,327 | 129,756 | 2595 | 127,167 | 12,717 | 25,432 | 89,011 | 108,130 | 19,316 | 19,119 | 108,129 | 193 |
6 | 39,504 | 72,886 | 1458 | 71,432 | 7143 | 14,286 | 49,999 | 60,739 | 10,850 | 10,739 | 60,738 | 109 |
7 | 35,368 | 65,255 | 1305 | 63,953 | 6395 | 12,790 | 44,764 | 54,379 | 9174 | 9615 | 54,379 | 97 |
8 | 19,785 | 36,504 | 730 | 35,776 | 3578 | 7155 | 25,041 | 30,420 | 5434 | 5379 | 30,420 | 54 |
9 | 67,094 | 123,791 | 2476 | 121,321 | 12,132 | 24,263 | 84,919 | 103,159 | 18,428 | 18,240 | 103,159 | 184 |
10 | 49,016 | 90,436 | 1809 | 88,632 | 8863 | 17,725 | 62,038 | 75,364 | 13,463 | 13,325 | 75,363 | 135 |
11 | 58,382 | 107,717 | 2154 | 10,568 | 10,557 | 21,112 | 73,892 | 89,764 | 16,035 | 15,872 | 89,764 | 160 |
Total | 540,508 | 997,257 | 19,945 | 977,362 | 97,736 | 195,460 | 684,103 | 831,047 | 148,455 | 146,941 | 831,044 | 1486 |
(c) | ||||||||||||
Total Worksite | Lenght (m) | F1 (t) | F2 (t) | F3 (t) | F4 (t) | F5 (t) | F6 (t) | SNB Planned (t) | F7 (t) | F7.1 (t) | P6 = F7.1 + F6 (t) | F8 (t) |
SCN 1 | 540,508 | 997,257 | 19,945 | 977,362 | 488,681 | 195,460 | 293,189 | 831,037 | 543,329 | 537,908 | 831,097 | 5433 |
SCN 2 | 540,508 | 997,257 | 19,945 | 977,362 | 97,736 | 195,460 | 684,103 | 831,037 | 148,455 | 146,941 | 831,044 | 1486 |
Relative change SCN 1 and SCN 2 (%) | 20 | 43 | 27 | 27 | 27 | |||||||
Difference | 390,945 | 390,914 | 394,873 | 390,967 | 3948 |
SWOT | Strengths | Weaknesses | Opportunities | Threats | |||||
---|---|---|---|---|---|---|---|---|---|
Criteria | SCN 1 | SCN 2 | SCN 1 | SCN 2 | SCN 1 | SCN 2 | SCN 1 | SCN 2 | |
Production/site organisation | |||||||||
Dimensioning and characterisation of flows (input, output, and stock) | + | + | |||||||
Rate of ballast and toxic soil (F2) | − | − | |||||||
Identify solutions to reduce the flow of toxic ballast | + | + | |||||||
Rate of ballast at end of life (F4) | + | − | |||||||
Rate of land (F5) | − | − | |||||||
Facilitate the search for solutions to recover material flows at the end of the site’s life at local, regional, and national levels | + | + | |||||||
Ballast recycling rate (F6) | + | − | |||||||
Identify ways of increasing ballast recycling | + | + | |||||||
Rate of supply of new ballast (F7) | + | − | |||||||
Stock rate P6 = % (F7.1) + % (F6) | + | − | |||||||
Ballast wastage reduction rate (F8) | + | − | |||||||
Identify solutions for eliminating new ballast residues | + | + | |||||||
Determining which processes are most stressed on the site | + | + | |||||||
Transport | |||||||||
Total transport rate TRT | + | − | |||||||
Total truck transport rate | + | − | |||||||
Total transport rate by train | + | − | |||||||
Environment | |||||||||
Development of a strategy to reduce the use of new ballast in order to preserve resources | + | − | |||||||
The absence of solutions for recycling material flows leaving the site does not promote a zero-waste strategy | − | − | |||||||
Encourage the use of energy and maintenance products for works equipment and less polluting transport | + | + | |||||||
The lack of solutions for eliminating toxic discharges is not an argument in favour of a “zero toxic discharges” strategy | − | − | |||||||
Developing a strategy for preserving the landscape due to the use of new ballast | + | + | |||||||
Development of a strategy for road deterioration caused by road transport | + | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giboulot, O.; Lemelin, E.; Binetruy, C.; Abriak, N.-E. Material Flow Analysis: An Analytical Tool for Strategic Planning Towards a Zero-Waste Solution for End-of-Life Ballast Flows on a Track and Ballast Renewal Site (French Conventional Line). Resources 2024, 13, 165. https://doi.org/10.3390/resources13120165
Giboulot O, Lemelin E, Binetruy C, Abriak N-E. Material Flow Analysis: An Analytical Tool for Strategic Planning Towards a Zero-Waste Solution for End-of-Life Ballast Flows on a Track and Ballast Renewal Site (French Conventional Line). Resources. 2024; 13(12):165. https://doi.org/10.3390/resources13120165
Chicago/Turabian StyleGiboulot, Olivier, Emmanuel Lemelin, Christophe Binetruy, and Nor-Edine Abriak. 2024. "Material Flow Analysis: An Analytical Tool for Strategic Planning Towards a Zero-Waste Solution for End-of-Life Ballast Flows on a Track and Ballast Renewal Site (French Conventional Line)" Resources 13, no. 12: 165. https://doi.org/10.3390/resources13120165
APA StyleGiboulot, O., Lemelin, E., Binetruy, C., & Abriak, N. -E. (2024). Material Flow Analysis: An Analytical Tool for Strategic Planning Towards a Zero-Waste Solution for End-of-Life Ballast Flows on a Track and Ballast Renewal Site (French Conventional Line). Resources, 13(12), 165. https://doi.org/10.3390/resources13120165