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We investigate the problem of scattering and conversion of monochromatic planar gravitational and
electromagnetic waves impinging upon a Reissner-Nordstrom black hole using a Regge pole description,
i.e., a complex angular momentum approach. For this purpose, we first compute numerically the Regge
pole spectrum for various charge-to-mass ratio configurations. We then derive an asymptotic expressions
for the lowest Regge poles, and by considering Bohr-Sommerfeld-type quantization conditions, obtain the
spectrum of weakly damped quasinormal frequencies from the Regge trajectories. Next, we construct the
scattering and conversion amplitudes as well as the total differential cross sections for different processes
using both a complex angular momentum representation and a partial wave expansion method. Finally, we
provide an analytical approximation of the scattering and conversion cross sections of different processes
from asymptotic expressions for the lowest Regge poles and the associated residues based on the
correspondence Regge poles, “surface waves” propagating close to the photon (graviton) sphere. This
allows us to extract the physical interpretation encoded in the partial wave expansions in the high-frequency
regime (i.e., in the short-wavelength regime), and to describe semiclassically with very good agreement
both black hole glory and a large part of the orbiting oscillations, thus unifying these two phenomena from

a purely wave point of view.

DOI: 10.1103/PhysRevD.107.104051

I. INTRODUCTION

The study of perturbations of charged spherically sym-
metric black holes described by the Reissner-Nordstrom
metric, an electrovacuum solution of the Einstein-Maxwell
equations, has aroused great interest and was widely studied
in the 1970s (see, e.g., [1-7] and references therein). It was
shown that electromagnetic and gravitational perturbations
are nontrivially coupled, suggesting that in a strong electro-
magnetic field, gravitational waves can be converted into
electromagnetic waves of the same frequency and vice versa,
involving the existence of the conversion cross section. In
other words, an intense electromagnetic field can act as a
“catalyst” in this process. Many authors have contributed to
the study of this conversion process from different aspects
(see, e.g, [8—13,13-17]).

At the origin of this enthusiasm for this purely classical
(i.e., nonquantum) phenomenon, is the pioneering work of
Gertsenshtein in 1961 [18], which was later expanded upon
by Zel’dovich in a 1973 paper [19]. The Gertsenshtein-
Zel’dovich (GZ) effect involves the conversion of an
electromagnetic wave into a gravitational wave as it passes
through a strong magnetic field in a curved space, and vice
versa. Recently, the GZ effect has sparked renewed interest.
Despite being extremely weak, it could be responsible for
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generating distortions in the cosmic microwave background
(CMB) [20] and thus have significant consequences for the
early universe [21-23]. Furthermore, it is considered as a
potential model for explaining the origin of fast radio bursts
(FRBs) [24].

In this article, we extend our previous results in the
framework of the “Reggeization project” of black hole physics
by investigating the problem of monochromatic planar
gravitational waves and electromagnetic waves impinging
upon a Reissner-Nordstrém black hole using complex angular
momentum (CAM) techniques (analytic continuation of
partial wave expansions in the CAM plane, effective resum-
mation of S-matrix poles (i.e., the so-called Regge poles)
and associated residues, the semiclassical interpretation of
Regge pole contributions,...). Typically, the scattering of
various waves (scalar, electromagnetic, and gravitational) by
Reissner-Nordstrom black holes is studied using partial wave
expansions [17,25-27] (see also Ref. [28,29] for scattering of
massless Dirac fermions and references therein). Our previous
work [30] also examined the scattering and conversion
differential cross sections of an incident planar wave on a
Reissner-Nordstrom black hole, using both the partial-wave
method and a (numerical) geometric-optics approximation.
Specifically, we focused on the differential cross section for
converting an incoming electromagnetic wave (EW) into an
outgoing gravitational wave (GW), which is identical to the
cross section for the inverse process.

© 2023 American Physical Society
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Although the partial wave expansion approach is a natural
method for studying scattering problems involving black
holes (BHs) [31], ithas certain limitations. In particular, it can
suffer from a lack of convergence due to the long range nature
of the fields propagating on a Reissner-Nordstrom black
hole. Additionally, interpreting physical results described in
terms of partial wave expansions can be rather difficult in
general. One can circumvent these issues by employing the
CAM approach. This has been highlighted in our previous
articles dealing with the scattering of scalar, electromagnetic
and gravitational waves by the Schwarzschild BH using
CAM techniques [32,33] (see also [34] where the gravita-
tional radiation has been described by CAM). We have also
extended it to the scattering problem by compact objects [35]
and dirty BHs [36].

The CAM approach has already shown its interpretive
power in BH physics. In the case of the Schwarzschild BH,
this approach has enabled us to obtain analytical approx-
imations for both the glory and orbiting oscillations using
asymptotic expansions for the Regge poles and associated
residues in the Regge pole sums [32,33]. These expansions
are physically related to the excitation of surface waves and
diffraction effects due to the Schwarzschild photon (grav-
iton) sphere in the short-wavelength regime [37-41].
Traditionally, glory and orbiting oscillations scattering
are considered as two distinct effects and described by
different formulas, but we have shown that it is possible
to describe them with a unique analytical formula.
Additionally, Decanini er al. [38,39] have demonstrated
that the complex frequencies of weakly damped quasinor-
mal modes (QNMs) are Breit-Wigner-type resonances
generated by surface waves near the photon (graviton)
sphere, and that the spectrum of complex QNM frequencies
has been constructed using Regge trajectories, thus estab-
lishing an intuitive interpretation of Schwarzschild BH
QNMs (see Refs. [40—44] for results concerning other BHs
and massive fields). Furthermore, in [43,45,46], an ana-
lytical description in terms of Regge trajectories was given
for the absorption cross sections of BHs endowed with a
photon (graviton) sphere in the high frequency regime. This
has allowed for an explanation of the oscillations of
absorption cross sections in terms of the orbital period
and Lyapunov exponent of the null unstable geodesics
lying on the photon (graviton) sphere.

Our article is organized as follows. In Sec. II, we review
the theory of electromagnetic and gravitational waves on
Reissner-Nordstrom spacetime. Here, we recall the radial
wave equations governing the gravitational and electro-
magnetic perturbation-types (Sec. 11 A) and define the
S-matrix elements of the different processes using the
appropriate physical boundary conditions (Sec. I1IB). In
Sec. III, we focus on the poles of the S-matrix elements and
boundary conditions. Here, we describe the numerical
algorithm and we present the new numerical results of
Regge pole (RP) spectrum for Q < M (Sec. III A) and for

maximally charged Reissner-Nordstrom BH case (Q = M)
(Sec. III B). By using the Dolan-Ottewill approach [40,47],
we derive an asymptotic expressions for the lowest RPs and
by considering Bohr-Sommerfeld-type quantization con-
ditions, we derive the spectrum of weakly damped QNMs
frequencies from the Regge trajectories (Sec. IIIC). In
Sec. IV, we construct the CAM representation of the
scattering and conversion amplitudes and cross sections.
Here, we review the partial wave expansion method for the
scattering and conversion amplitudes and cross sections of
different processes (IVA), we construct the exact CAM
representation by using the Sommerfeld-Watson trans-
form [48-50] and Cauchy’s residue theorem from their
partial wave expansions (IV B). We provide a purely
analytical approximation of the scattering and conversion
cross sections of different processes based on the asymp-
totic expressions of the RPs and their associated residues.
In Sec. V, we outline the numerical computational method
(VA), and we display a selection of numerical results of the
scattering and conversion cross sections of the different
processes (V B). We show the asymptotic results describing
with very good agreement both the Reissner-Nordstrom
BH glory and a large part of the orbiting oscillations (V C).
We conclude with a discussion in Sec. VI.

Throughout this article, we adopt units such that
G = c=4ney = 1. We furthermore consider that the
exterior of the Reissner-Nordstrom BH is defined by the
line element [51],

ds®> = —f(r)d* + f(r)~'dr* + r*(d6* + sin® 0dg?),

where f(r) = 1-2M/r + Q*/r* = (1 —=r /r)(1 = r_/r),
with r, = M + \/M? — Q*. Here, r_ and r, represent
respectively the inner (Cauchy) and outer (event) horizons
of the black hole, while M and Q denote its mass and
charge. We finally assume a time dependence exp(—imt)
for the plane monochromatic waves considered.

II. WAVES ON A REISSNER-NORDSTROM
SPACETIME

A. The radial equations

In the Reissner-Nordstrom (RN) spacetime, gravitational
and electromagnetic-perturbation types are governed by
partial modes ¢§‘;/§), which are solutions of Moncrief’s

odd- and even-parity equations [11,52]
& (e/0)( | plelo)
At =VIIn gl (=0 (1)

where the symbols (e) and (o) are respectively associated
with even (polar) and odd (axial) objects, according to
whether they are even or odd parity in the antipodal
transformation on the 2-sphere unit S? which respectively
satisfy Eq. (1). Here, s € 1, 2, and it is worth noting that
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s = 1 is associated with the purely electromagnetic field,
while s = 2 is associated with the purely gravitational field
in the Schwarzschild BH limit (i.e., when Q — 0). We also
introduced r,, the so-called Regge-Wheeler coordinate or
the tortoise coordinate, which is defined by

d d
= 2
5= )
therefore given by
2 2
ry r—rg r- r—r_
L(r) = 1 - 1 C, (3
r(r) r+r+—r_n 2M r+—r_n 2M + ()

where C is an integration constant. We are furthermore
working outside the RN BH, i.e., we consider r > r,,
and we have r,(r) which is a bijection of r € |r,, +oo[

into r, €] — 00, +0|.
In Eq. (1), Moncrief’s odd-parity potential is given by
0 A+2 g Q2
Vo =ro(M2-% %) @

and Moncrief’s even-parity potential can be written accord-
ing to the odd-parity potential as (see Chandrasekhar
Refs. [7,51])

V() = v () +2

%;jﬂf%ﬁﬂ’ ®)

where A = (£ —1)(¢ +2) =£(¢+2) -2, and
g1 = 3M — \/OM? + 4AQ?,

gr = 3M + \/IM? + 4AQ? (6)

Note that we have chosen to define g; and ¢, in the
opposite order as in the Refs. [7,15] in order to simplify the
subsequent expressions.

B. Scattering and boundary conditions

Due to the behavior of Moncrief’s odd-parity and even-

parity potentials near the horizon r and at spatial infinity,
we therefore consider the functions qﬁsw; / 0)(r) which are
defined by their purely ingoing behavior at r — r, (i.e., for
r, —» —o0), while at spatial infinity r — +oo (i.e., for

r, — +00), they have an asymptotic behavior. We then have

S E) () { e, r. = —oo,
swt Ai;’;/o)e—imr* —|—A£Z;/O)€+lmr*, r, — +oo,
(7)

where the coefficients A(ise/ o)
that|AG — AL =

are complex amplitudes such

1. It is also important to recall

that the solutions of the homogeneous Moncrief odd- and
even-parity equations (1) are related by the Chandrasekhar-
Detweiler transformation [7,51]. Indeed, the even partial

modes 45 f can be constructed from the odd partial

modes qﬁswf

[AA+2) F 2iwg,|p"

swt

2‘]? d (o/e)
A(A+2) +mf(’) +2q,f(r) ar D >

(8)

where the upper and lower signs are respectively associated
with the first and second choice of parity in the superscript.

According to Eq. (8), the coefficients Agwf /°) does not
depend on parity

ALY = ALY = AL (9)
while the coefficients Agz’; /) are parity dependent
A(A+2) = 2iog, AL
= [A(A +2) + 2ig,Ja)?. (10)
From the coefficients A( ;/ 0), we define the reflection
coefficients RE“’/ °)
(+.e/0)
A
RO ==l (11)
Asa)f

The electromagnetic (H) and the gravitational (Q)
perturbations are derived from the even- and odd-parity
radial functions [2,3,5] (see also [4,11])

Hlelo) = qﬁ(l;,/(j) cosy — Pqﬁzm siny, (12a)

Qlelo) = 77¢1;/af' siny + ¢2L,,w cosy,  (12b)
where P = +1 and —1 associated with even and odd parity
respectively.

In expressions (12), we have

cos>y = b , sinzl//:;ql,
92 — 41 92— 4
N = A2
sinp) = VD2 55 DT (13)
92 — 41 VOM? + 4NQ?

The conversion coefficient C'¢/°), which determines the
fraction of the incident wave converted from electromag-
netic to gravitational and vice versa, is defined from the
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reflection coefficients Rge/ o)
AE/0)y 5] 53]

smf

(i.e., from the coefficients

1 . e/o €/o 2
celo) =| Ssin(u) (R = RE) . (14)

To conclude this section, we define the S-matrix ele-

(e/o.sisy) e/o

ments S, from the reflection coefficients R
These S-matrix elements play a key role in the scattermg
processes, and will be discussed later. Here, the super-
scripts s; and s refer to the spins of the initial and final
fields, with s = 1 for an EW and s = 2 for a GW. Thus, we
have

SO — ittt R cos2y 4+ REsin?y],  (15a)
S0 — ietNmRIO)gin2y, + RIcos2y],  (15b)
and
S(;/o.lz) _ S;e/oll)
it+1)z sin(2y) R/ R (15¢)

2

Before proceeding to the construction of the scattering
and conversion cross sections, we will first focus on the
poles of the S-matrix in the complex plane, which are an
important ingredient, that will allow us to construct the
CAM representations.

III. THE POLES OF S-MATRIX ELEMENTS

The solutions of the problem (1)—(5) that govern its
resonant modes, the so-called quasinormal modes and
Regge modes, are defined by the purely ingoing and
outgoing boundary conditions at the horizon and at spatial
infinity, respectively. A spectrum of resonant modes is
defined by the boundary conditions (7) with

ALY =o0. (16)
The guasinormal frequency spectrum a)gn), which char-
acterizes the QNMs, is a set of frequencies in the complex—

(e/o.sisy) have

@ plane at which the S-matrix elements S,
simple poles for £ € N, i.e., simple zeros of (16).

The Regge pole spectrum /1,(15) (@) = £ (@) + 1/2 in the
complex-4 plane is the set of angular momenta at which the

(e/o.s;s7)

S-matrix elements S, have simple poles for o € R,

i.e., simple zeros of the coefficients Ag;ﬁ/ ° that depict
Regge modes. These spectra are defined with respect to each

s. According to relation (9), the zeros of the coefficients

AT and AU are identical. Here n=1,2,3,... is a

number of overtones that enumerates the discrete spectrum
of poles.

It is worth noting that the QNMs of the RN BH and their
associated quasinormal frequency spectrum have been
extensively studied in the literature (see, for example,
the nonexhaustive list of Refs. [54—-60] and references
therein). We will therefore focus on its Regge pole
spectrum which will be investigated here for the first time.

A. The Regge poles: Q <M
(e.11)

As mentioned earlier, the RPs of the matrices S 212 and

Sﬁ" ]1/1; in the complex A plane are identical, due to the

relation (9). These poles are defined with respect to each
spin s =1 and 2 and are located in the first and third
quadrants, symmetrically distributed with respect to the
origin O.

The spectrum associated with electromagnetic-type per-
turbations (s = 1) corresponds to the zeros of the coefficients

Ag;),,l—l/Z’ i.e., the values Af,”(w) with n = 1,2, 3, ... such

that

(=) _
Alw,/l,(,])(a;)—l/Z =0, (17)

while the spectrum associated with gravitational-type per-
turbations (s = 2) corresponds to the zeros of the coefficients
(@) with n =1,2,3, ...

Aé;) i—1/25 i.e., the values A such

that

AY = 0. (18)

Zwi,(, (0)-1/2

1. Numerical method

There are several numerical methods to calculate the
quasinormal frequency spectrum of BHs, and each method
has its own advantages and disadvantages (see Ref. [61] for
a summary of the different methods as well as Ref. [59]).

This being said, the continued fraction method intro-
duced by Leaver [56,62,63] remains the most popular and
widely used due to its robustness and accuracy. It is also
adaptable to the computation of the RP spectrum. However,
we will use a slightly different method introduced by
Majumdar and Panchapakesan [64], which involves finding
the zeros of a given determinant (known as the Hill
determinant). This method has already been employed to
compute the RPs for Schwarzschild and Kerr BHs (see,
e.g., Refs. [32-34,44]), as well as for other cases, such as
compact objects [35] and dirty BHs [36]. We will now
outline the key steps involved in applying this method to
the RN BH case.

Following Leaver [56], we will look for the resonant
mode solutions which satisfy the boundary conditions
discussed before by a series expansion of the form

104051-4
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) o [T ro—r\ —22Mw)-1
st = e () (25)

2
5 r—r_\i@Mo)+1 (p —io(—=-)
2M r—r_
+00 _ n
X eimr Z a, <: — :+> s (19)

where the coefficients a, satisfy a four-term recurrence
relation:

a,a;, . +ﬂnan + Ynln-1 + 5nan—2 = 07 vVn 2 2’ (20)
with

a, = (n+D[n+1)(r.—r.)=2ior]r,, (2la)

Pu=—(ry —r)2r, +r)n’
—[(rp —ro)2ry —4r.) = 2iw(+4r, — r_)ri]n
= (

ry—r)[(A+2)ry —q, +3r]

+ 2iw(2r, = 3r_)rp? + 8’1, (21b)
fu= (e = 1) + 20 = [10r_(r, = 1)
+ 2iwr, (2r% +4r_r, = 3r2)|n
+(ry —r)[(A+2)ro =g+ 12r_ —ry]
+10iwr, r_(2ry, —r_) — 40’3 (r, +3r_), (2lc)
Sy =—(rp —r_)yr_n®> +[6(r. —r_)r_
+ 2iw(2r% = r2)r_]n
= 9(rp —r_)r_ = 6iw(2rt — r2)r_
+4a?r(r_+r)r. (21d)

We then find solutions to the recurrence formula (20) using
the Hill determinant approach. Nontrivial solutions to
Eq. (20) exist when the Hill determinant vanishes,

ﬂo Q) 0 0 0
n b oo 0 0
6 2 P (25) 0

5n—1 Vn—-1 ﬂn—l Ap—1

5;1 Vn ﬂn Ay

Considering D,, as the determinant of the n X n submatrix
of D

Dn = ﬁnDn—l - ynan—an—Z + 5nan—1an—2Dn—3’ (23)
with the initial conditions

Dy = Py,
Dy = pify — 1190,
Dy = Bo(p1Sr — a1y2) — a6, —7162),  (24)

or, equivalently
n+1
D, = (Hk2>Pn+1
k=1
=1x22..(n=22%n-1)2n2(n+1)2P,,,. (25)

where
P () - (22) (i e
! <5:51) <(naf_f>2> ((n“j-;)2>p,1_3, (26)

with the following initial conditions

PO — 1,
Py = fo,
P, — Pobr — 710’0. (27)

4

The RPs (QNM frequencies) are found by setting v € R
A=7¢+1/2 with £ €N) and numerically finding the

roots A (@) (@) of D, (A,. @) = 0 (D, (A w,) = 0), i.e.,
of P,(4,,w) =0 (P,(1,®,) =0).

2. Numerical results and comments

In Figs. 1 and 2, we present numerical results of the RP
spectra for electromagnetic-type perturbations [ﬂf,l)] (s=1)

and gravitational-type perturbations [15,2)] (s = 2) for differ-
ent configurations of the RN BH.
Figure 1 shows the first 30 RPs of both branches (/121))

and (/1,(12)) at reduced frequency 2Mw = 1 for charge-to-
mass ratios Q/M = 0, 0.50, 0.80, and 0.99998. Note that
the splitting of the two branches occurs as the charge-to-
mass ratio Q /M increases, and the difference between these
two branches tends to unity as Q — M and becomes
exactly equal to unity in the extremal charged RN BH
case (cf. Sec. III B).

Figure 2 shows the first 30 Regge poles of both branches
(/1,(11)) and (/1,(12)) for the “high”-frequency case at 2Mw = 6
for charge-to-mass Q/M = 0, 0.50, 0.80, and 0.99998. We
observe that the structure of the two branches remains
the same.
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FIG. 1. The Reissner-Nordstrom Regge poles for the electromagnetic-type perturbations /1511) (filled markers) and for the gravitational-
type perturbations /1512) (unfilled markers). The results are obtained for charge-to-mass ratios Q/M = 0, 0.50, 0.80 and 0.99998 at

2Mw = 1. Here, we took n = 1,2,3,4,...,30.

Table I presents the lowest Regge poles for the RN BH at
reduced frequencies 2Mw = 1 and 2M @ = 6 for charge-to-
mass ratios Q/M = 0, 0.50, 0.80, and 0.99998.

B. The Regge poles of extremal
charged RN: Q=M

1. Numerical algorithm

To calculate the RP spectrum in the extremal RN BH
case (i.e., for Q = M), we will use the method proposed by
Onozawa et al. [65]. In fact, Leaver’s method, or more
precisely, the slightly modified version presented above
that we used to calculate the RP spectrum in the case
O < M, does not work in the extremal case. Indeed, the
associated wave equations for Q = M have an irregular
singular point at the horizon and at infinity, which means
that the series expansion of the solution (19) is not valid.
This makes the use of the continued fraction (or Hill’s
determinant method) impossible. To overcome this,
Onozawa et al. showed that we can still use the continued
fraction method if we choose the right regular point around
which to expand the solution. To achieve this, we will
review some of the essential steps described in [65].

We recall that the fortoise coordinate r, for the extremal
charged RN BH case (Q = M) becomes

M2
r—m

r.(r)=r+2Mn <%—1) - . (28)

and the wave equation (1) has an essential singularity at
r =M and r - oo. Following Onozawa et al., we expand
the solution around the ordinary point r = 2M. Thus, we
look for resonant mode solutions that satisfy the boundary
conditions on both sides simultaneously, using a series
expansion of the form
—-i2Mw
)

(0) _ oMo [ T . T
¢swf(r) =e (M) M
) ) 2MN\ "
lw(rj‘f:/,) iwr 1 ===
X e e E a,,( . ) ,

+0o0
n=0

(29)

where the coefficients a, verify a five-term recurrence
relation:

aja; + fra; +yrap =0, (30a)
ar a3 +ﬁ2a2 + 720y + 52610 = O, (30b)

Apdyy +ﬂnan + V1 +6nan—2+€nan—3 =0, Vn2>3,
(30c)
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FIG. 2. The Reissner-Nordstrom Regge poles for the electromagnetic-type perturbations /1511) (filled markers) and for the gravitational-
type perturbations /1512) (unfilled markers). The results are obtained for charge-to-mass ratios Q/M = 0, 0.50, 0.80 and 0.99998 at

2Mw = 6. Here, we took n = 1,2,3,4, ..., 30.

with

a,=n(n+1), (31a)

B, =0, (31b)

Yu = 162Mw)? 4+ 6i(2Mw)(2n — 1) = 2n(n — 1)
+2%—4A— 12, (31c)

5, = 2(4-%), (31d)

€, =—42Mw)* -2i2Mw)(2n—3) +n(n—-3)—4. (3le)

The trick used by Onozawa et al. was to separate the
five-term recurrence relation into two distinct even and odd
five-term recurrence relations, Y ¢, = a,, and > b, =
a,,. respectively, which satisfy the convergence condi-
tions of the even and odd coefficients. Thereafter, the two
even and odd five-term recurrence relations are reduced to
two three-term recurrence relations using two successive
iterations of Gaussian elimination steps. Thus, the method
of continued fractions can be applied to determine the RP
spectrum, which are the minimal solution of both even and

odd three-term recurrence relations simultaneously (see
Ref. [65] for more details).

2. Numerical results
In Fig. 3, we display the first 30 RPs of the two branches

/15,1) and /1,(12) for extremal charged RN BH case at reduced
frequencies 2Mw =1 and 6. The lowest RPs for this
configuration are given in Table II. We observe that the
spectrum for Q < M smoothly approaches the spectrum for
Q = M, and no evidence of new modes. Interestingly, even
though the continued fraction method should not be effective,
the RPs obtained by the Leaver’s algorithm for near
extremal charged RN BH (i.e., for charge-to-mass ratio
Q/M = 0.99998) are remarkably similar to those obtained
by the Onozawa et al.’s method for extremal charged RN BH
case (i.e., for charge-to-mass ratio Q/M = 1), with a differ-
ence of less than 0.1% for the real and imaginary parts.

It is worth noting that as the parameter Q increases,
the numerical results indicate that the RPs /IS,Z)
pI

nl o=

approach
1 and coincide in the extremal charged case. In other

words, the RPs /121]) associated with electromagnetic-type
perturbations (s = 1) can be obtained from those associated
with gravitational-type perturbations (s = 2), and vice versa.
Consequently, we can express this relationship as follows
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TABLE 1. Lowest Regge poles /1,(,1)(01) correspond to electromagnetic-type perturbations (s = 1), and i (@)
correspond to gravitational-type perturbations (s = 2). We assume 2M = 1.

0 2Mw n A (o) A7 (w)
0 1 1 2.705358 + 0.475454i 3.031094 +- 0.411206i
2 2.769262 + 1.419171i 3.018269 + 1.2608711
3 2.892291 + 2.330092i 3.050451 + 2.151728i
4 3.049988 + 3.194709i 3.149417 4 3.032799i
5 3.222920 + 4.017260i 3.289281 + 3.877087i
6 3.401342 + 4.805736i 3.448514 + 4.684410i
6 1 15.607716 + 0.499228i 15.671479 + 0.496524i
2 15.625210 + 1.496753i 15.688070 + 1.488756i
3 15.659860 + 2.491532i 15.720985 + 2.478570i
4 15.711016 + 3.481878i 15.769709 + 3.464449i
5 15.777770 + 4.466296i 15.833503 + 4.445015i
6 15.859025 + 5.443533i 15.911449 + 5.419065i
0.50M 1 1 2.523634 + 0.453499i 2.985198 + 0.401517i
2 2.576162 + 1.357438i 2.973672 + 1.229947i
3 2.682486 + 2.237176i 3.006106 + 2.098412i
4 2.823439 4 3.077972i 3.104273 + 2.956203i
5 2.981750 4 3.881305i 3.241485 4 3.776757i
6 3.147877 4 4.652962i 3.396215 + 4.560892i
6 1 14.775517 + 0.483943i 15.134550 + 0.479904i
2 14.792059 + 1.450965i 15.150065 + 1.438960i
3 14.824835 + 2.415434i 15.180854 + 2.395787i
4 14.873253 + 3.375773i 15.226446 + 3.348985i
5 14.936484 + 4.330580i 15.286167 + 4.297277i
6 15.013516 + 5.278667i 15.359178 + 5.239547i
0.80M 1 1 2.200260 +- 0.411372i 2.878223 4 0.370251i
2 2.232046 + 1.239437i 2.867525 + 1.129486i
3 2311737 4+ 2.061194i 2.889105 + 1.924910i
4 2.430953 + 2.853595i 2.966166 + 2.716062i
5 2.571183 + 3.611330i 3.078581 + 3.478546i
6 2.7206111 + 4.3387083i 3.208461 + 4.211212i
6 1 13.365832 + 0.446058i 14.011119 + 0.440124
2 13.379999 + 1.337458i 14.023988 + 1.319780i
3 13.408085 + 2.226743i 14.049543 + 2.197674i
4 13.449616 + 3.112599i 14.087424 + 3.072699i
5 13.503920 + 3.993846i 14.137118 + 3.943834i
6 13.570178 + 4.869475i 14.197983 + 4.810182i
0.99998M 1 1 1.737232 + 0.304722i 2.737171 + 0.304701i
2 1.759495 + 0.916949i 2.759438 4+ 0.916884i
3 1.820494 + 1.535097i 2.820443 + 1.534989i
4 1.925439 +2.131438i 2.925398 4 2.131285i
5 2.053919 + 2.693727i 3.053892 + 2.693529i
6 2.191582 + 3.225730i 3.191571 4 3.225486i
6 1 11.545607 + 0.351631i 12.545547 +0.351627i
2 11.560499 + 1.054091i 12.560439 + 1.054081i
3 11.589995 + 1.754186i 12.589935 + 1.754169i
4 11.633546 + 2.450454i 12.633487 + 2.450429i
5 11.690378 + 3.141593i 12.690319 + 3.141561i
6 11.759546 + 3.826502i 12.759488 + 3.826462i
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FIG. 3. The Reissner-Nordstrom Regge poles for the electro-

magnetic-type perturbations A (filled markers) and for the
gravitational-type perturbations /1512> (unfilled markers). The results
are obtained for charge-to-mass Q/M =1 at (a) 2Mw = 1 and
(b) 2M @ = 6. The results are in agreement with Eq. (32). Here, we
took n =1,2,3,4,...,30.

AP = =1. (32)

In fact, Onozawa et al. [65] observed this property in the
case of QNM frequencies. They found that numerically,
QNM frequencies associated with gravitational-type per-
turbations with a multipolar index £ coincide with those
associated with electromagnetic-type perturbations with a
multipolar index of (£ —1) in the extreme limit. It was
subsequently observed that this phenomenon is linked to
the fact that the extremal charged RN BH preserves super-
symmetry, and therefore responds similarly to fields of
different spin [66]. However, this effect was not observed in
the case of higher-dimensional charged BHs [67].

C. The semiclassical approach of Regge poles

It is possible to derive an analytical approximations for
the lowest RPs for the RN BH by extending the approach
developed by Dolan and Ottewill [40], which enabled them
to derive analytical expressions for the lowest QNM
frequencies of spherically symmetric spacetimes and the
RPs of the Schwarzschild BH. It is noteworthy that the key

idea of their approach is based on an ansatz for the resonant
modes (i.e., the QNMs or the Regge modes), which relates
high-# or high-w resonant modes to null geodesics that
start at infinity and end in perpetual orbit on the photon
(graviton) sphere. Accordingly, we obtained expressions
for the lowest Regge poles

5 () = b.co i(2n—1)a V3i—-a
hrto) = bt (ﬁm:Fﬁm)
(14 a)/? )
32v202(3 + a)3/? (&i12(2n = 1)
x (@a=1)v/a(3—a)
+6n(n—1)(4a*> = Ta +5) + 84> — 25a + 11)
1 1
i1 Gty G3)
where
b, = ——C 34
f(re) (4

is the critical impact parameter for the ray that asymptotes
to the photon (graviton) orbit at radius r, which is given by

. :%M(3 +a). (35)

a:1/9—8<%>2. (36)

It should be emphasized that the approximation (33)
remains valid even at the critical charge-to-mass ratio
Q/M = 1, when the two horizons coalesce and disappear.
The approximation only breaks down when the unstable
circular orbit disappears, which occurs at Q/M = 3/(2v/2).
This holds true for the formula derived in Ref. [40], which
provides an analytical expression for the QNM frequencies
of the RN BH.

For the extremal charged RN BH case, Q/M = 1, we
obtain

5) () — b i(2n—-1) 1\ 6n(n-1)+35 1

_i2n=1)31n(n—-1)+411] 1

and

1638412 (Mw)?
_3n(n—1)[277n(n—1) + 6603 + 13585 1
2097152 (Mw)?
1
— . 7
T m?oo ((2Ma))4) (3 )
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TABLE II. Lowest Regge poles /1511)(@) for electromagnetic-type perturbations (s = 1) and AP (w) for
gravitational-type perturbations (s = 2) for the extremely charged RN BH. We assume 2M = 1.

0 2Mo n I (@) i ()
M 1 1 1.737154 4 0.304689i 2.737154 + 0.304689i
2 1.759438 + 0.916848i 2.759438 4 0.916848i
3 1.820478 + 1.534929i 2.820478 + 1.534929i
4 1.925487 +2.131205i 2.925487 + 2.131205i
5 2.054052 4 2.693430i 3.054052 + 2.693430i
6 2.191821 + 3.225372i 3.191821 + 3.225372i
6 1 11.545336 + 0.351607i 12.545336 + 0.351607i
2 11.560231 + 1.054022i 12.560231 + 1.054022i
3 11.589734 + 1.754071i 12.589734 4 1.754071i
4 11.633296 + 2.450292i 12.633296 + 2.450293i
5 11.690142 + 3.141386i 12.690142 + 3.141386i
6 11.759327 + 3.826248i 12.759327 + 3.826248i

Now, by using approximation (37), while considering the
difference between 4, and lnl , we asymptotically obtain
relation (32).

Finally, it is noteworthy that the results (33) and (37) allow
us to associate the lowest RPs with surface waves propa-
gating close to the photon (graviton) sphere [37,44,68].
These waves are dispersive and damped. Furthermore, this
association establishes a partial link between the RP spec-
trum and the QNM frequency spectrum. Using the Regge
trajectories, we can semiclassically construct the complex
frequencies

() (M) () _ - (3)(s) (38)

n — gy — Wy, ’

of the weakly damped QNMs by considering Bohr-

Sommerfeld-type quantization conditions. Here, a)g)(‘v) >0

and a)l(/;:‘l) > 0 as well as w(fﬂ;)“) > w(fi) ()

The first of these semiclassical formulas provides the

location of the excitation frequencies wg)(s)

nances generated by nth RP,

of the reso-

s 1
Re[1{) (o)) = £+5. feN. (39

The widths of these resonances can be obtained via a
second semiclassical formula

S@w __ ImiY @) GERef ()

(Rl (@) + (L ImA (w)])

atw = a)g)(‘y). In the frequency range where the condition

|d/dwRel (o) > |d/dolmi ()] is fulfilled, this rela-
tion is reduced to

o Ima (@)

Wy = e
4 Re[21 (@)oo

(41)

Using Egs. (33), (39), and (41), we can derive the
asymptotic behavior of QNM frequencies for a RN BH
(Q < M). We then obtain

o T2
‘= b
B <i(2n— 1)y/a(l+a) - \/(3—a)(1+a)>
M(a+3)? M(a+3)?
(1+a)*?
T RMV2d2(3+a)?

(£i12(2n—=1)(a—1)v/a(3—a)

1
+6n(n—1)(4a2—7a+5)+84a2—25a+11)?

+ 0 (;) (42)

and for extremal charged RN BH case (Q = M), we have

(s) c+1/2 1 i(2n — 1) 1
a = —_— —
T o b\ 2va T2
6n(n—1)+351 1
e _ 4
256M f+f—(?oo<f2> (43)

withZeNand n=1,2,3,....

In expressions (33), (37), (42), and (43), the upper
symbol of F (&) is associated with electromagnetic-type
perturbations (s = 1), and the lower one is associated with
gravitational-type perturbations (s = 2). It should be noted
that by setting n = 1 in (42) and (43), i.e., the fundamental
QNM frequency, the results presented by Dolan and
Ottewill in Ref. [40] are obtained.
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TABLE 1III. The lowest Regge poles /1,(11)(01) for electromagnetic-type perturbations (s = 1) and A

2)

n

(w) for gravitational-type

perturbations (s = 2) versus semiclassical results given by (33) for the charge-to-mass ratios (Q/M = 0.50) and (37) for extremal
charged case (Q/M = 1) and the relative error. We assume 2M = 1.

(0] 2Mw n

(exact) A\ (w)

(semiclassical) 4 (@)

(exact) 1\ (@)

(semiclassical) 47 (@)

0.50M 6 1

14.775517 + 0.483943i

2 14.792059 + 1.450965i
3 14.824835 + 2.415433i
4 14.873253 + 3.375772i
5 14.936484 + 4.330579i
M 6 1 11.545336 4 0.35160757i
2 11.560231 + 1.0540222i
3 11.589734 + 1.7540710i
4 11.633296 + 2.4502928i
5 11.690142 + 3.14138591

14.778154 + 0.485909i
(0.0178%, 0.4061%)
14.794958 + 1.457726i
(0.0196%, 0.4659%)
14.828568 + 2.429543i
(0.0251%, 0.5841%)
14.878983 + 3.401360i
(0.0385%, 0.7580%)
14.946202 + 4.373177i
(0.0650%, 0.9836%)

11.545333 + 0.351582i
(2.57 x 1075%, 0.0071%)
11.560200 + 1.053855i
(0.0002%, 0.01581%)
11.589581 + 1.7534528i
(0.0013%, 0.0352%)
11.632772 + 2.4485903i
(0.0045%, 0.0694%)
11.688716 + 3.1374842i
(0.0122%, 0.1242%)

15.134550 + 0.47990406i
15.150065 + 1.4389603i
15.180854 + 2.3957873i
15.226446 + 3.3489852i

15.286167 + 4.2972773i

12.545336 + 0.35160757i
12.560231 + 1.0540222i
12.589734 4 1.7540710i
12.633296 + 2.4502928i

12.690142 + 3.1413859i

15.132402 + 0.482210i
(2.36 x 107%,0.0071%)
15.149207 + 1.446631i
(0.0002%, 0.01581%)
15.182817 + 2.411051i
(0.0012%, 0.0352%)
15.233231 + 3.375472i
(0.0041%, 0.0694%)
15.300451 + 4.339892i
(0.0112%, 0.1242%)

12.545333 4 0.3515825i
(0.01419%, 0.4806%)
12.560200 + 1.0538555i
(0.005664%, 0.5331%)
12.589581 + 1.7534528i
(0.01293%, 0.6371%)
12.632772 + 2.4485903i
(0.04456%, 0.7909%)
12.688716 + 3.1374842i
(0.09344%, 0.9917%)

In Table III, we compare the lowest Regge poles lﬁ,l) (w)

for electromagnetic-type perturbations (s = 1) and AP (w)
for gravitational-type perturbations (s =2) obtained
through numerical methods with the semiclassical approx-
imations outlined in Eqgs. (33) and (37) for 2M® = 6 and
charge-to-mass ratios Q/M = 0.50 and 1. The data sug-
gests that the leading-order terms of semiclassical approx-
imations for the “high”-frequency regime are in agreement
with the numerical results, accurately capturing the funda-
mental characteristics of the RPs.

IV. SCATTERING AND CONVERSION CROSS
SECTIONS AND THEIR CAM REPRESENTATIONS

A. The partial wave expansion

The cross section of different processes are given by (see
Refs. [11,31] for details)

do (si=sy)

- — [§(+5i50) (@)]2 (=.sisf) 0)|2
GOBT _ [ (@) + [ ().

(44)
with
géi,sisf)f(i,s[s,f) 9),

f(;t,s[S/) (9) — (45)

where f(+1/) (9) and §(=*1*/) (8) are respectively the helicity-
preserving and helicity-reversing scattering amplitudes,

while Q)é, 5i57) are the differential operators associated with
each process.

1. Scattering amplitude of EW — EW

The scattering amplitudes for incoming EW (s; = 1) to
an outgoing EW (s; = 1) are given by (45)

=1 (0) = 26 O), (46)
with
H1) () = 1 f 20 +1
2wz L(C+ 1)
L (e1l) | ooy, 1£1
X |:§(Sf + S, )—T
X Ps(cos @), (47)
and the associated differential operator is given by
o _ (& 1 d (48)
o do® " sin0do)’

while the S-matrix elements S(;/ 0.11)

Eq. (47) are given by (15a).

(w) appearing in
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2. Scattering amplitude of GW — GW

The scattering amplitudes for incoming GW (s; = 2) to
an outgoing GW (s; = 2) are given by (45)

fE2(0) = D2 9), (49)
with
F22) () — S (20” +1)
T 2iw ; +1)(¢+2)
{ gle22) iSozz)) <l_ﬂ221>}
x Py(cos0), (50)

and the differential operator S)xi 22)

wave series (50) is given by

which act on the partial

o =t fu s 0w dl] o

where the variable x is linked to the scattering angle 6 by

x = cos . In Eq. (50), the S-matrix elements S'*/**

given by (15b).

are

3. Conversion amplitude of EW — GW

The conversion scattering amplitudes for incoming EW
(s; = 1) to an outgoing GW (s; = 2) are given by (45)

f=12(0) = D F2)0), (52)

with
+oo

F12)(g) = _LZ 22 +1

2w (¢ + 1)/ (€ +2)(f - 1)

1 e, o,
x L (sl 4 s 12))} Py(cos @), (53)
(+.12)

and the associated differential operator D,

l+cos@ d ((cos@F1)>d [ 1 d
DEY =4 . (54
0 1 Fcosfdo sinf  d6 |sinfd6d (54)

is given by

while the S-matrix elements Sb(ﬂe/o,IZ)

are given by (15¢).

It should be noted that the EW — GW and GW — EW
conversion cross section are equal, i.e., do/dQ(~2)=
do/dQ=1),

It is worth noting that the notations we used for the
scattering amplitudes (47) and (50), as well as the con-
version amplitudes (53), differ slightly from those pre-
sented in our previous article [30] and generally from those

appearing in Eq. (53)

found in the literature. Specifically, we employed the
Legendre polynomials P,(cosd) [69], rather than the
spin-weighted spherical harmonics (Y7 (). This notation
is more tractable and allows us to extract the exact CAM
representations from their partial wave expansions.

B. CAM representations

1. Scattering amplitude of EW — EW

To construct the CAM representation of the scattering
amplitudes (46) and (47), we use the Sommerfeld-Watson
transformation in the form [48-50]

S =4 [afEUD s

‘— cos(zA)

following the steps in Sec. II of Ref. [32], with some
subtleties to take into account. Here, F'(-) has no singularities
on the real 1 axis, and C' =] + oo + ie, 1 + ie] U [1 + i,
1 —ie] U [1 — ie, +o0 — ie[ with € — 0, (see Fig. 4).
Now, by replacing the discrete sum over the ordinary
angular momentum ¢ with a contour integral in the complex

Im[A]
-------- Cunr
x WP x 1@~
x AP x/\g)(w)
’
C x 1P x 12w c
+ig f---- -
‘L C. ¢
yz | 32 v
o P Re[l]
13 3 4 5 6
C_
—ig[---- »
&
------- Cu-

FIG. 4. Integration contours in the complex A plane: (i) C’ (black
line) associated with scattering amplitude of electromagnetic field
(56) and (ii) C" (blue line) the one associated with scattering
amplitude of gravitational field (77) and the conversion amplitude
(93). Here, C = C, U C_ defines (66), (84) as well as (101) and its
deformations allow to collect the contributions of the Regge poles

A0 and A2,
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A plane (that is, in the complex # plane with 1 = £ + 1/2),
and noting that P,(cos @) = (=1)?P,(— cos @), we obtain

B0 (g) = 1 A
e _Zw//d/l( 2 —1/4) cos(nd)

el1) ol 1+1
esesem- (2]
X P;_i/p(—cos0). (56)

It should be noted that the Legendre function of the first
kind, P,_;/,(—z), denotes the analytic extension of the
Legendre polynomials P,(z) and is defined in terms of
hypergeometric functions [69]

Piip(2) = F[1/2=2.1/2+ 41, (1 = 2)/2],  (57)

while S(e }}% and SE" 11/1% denote the analytic extensions of

0,11)

the matrices S(f Y and S( , they can be defined from the

complex amplitudes Aij j/ ‘i 72 [ef. (152) and (11)]

S(e/0/11> el +1/2)x
A(IJPZ/O[) A(+,C/0)
w,A—1/2 2 20A-1/2 . o
X [A7<_’e/°) cosTy + —— o siny |, (58)
lw,A—1/2 20,4-1/2
which are the analytical extensions of Asif /) obtained
from the analytic extension of the modes qﬁswf , that is,

from the function ¢, (e/ Z 12+ Itis worth mentioning that the

Chandrasekhar-Detweiler relation (8) leads, in the CAM
plane, to

() _ (=0 _ 45
Asa),j—l/Z = Asw,j—1/2 = Asa},/l—l/2’ (59a)
and
(22— 1/4)(22 = 9/4) — 2iwgq )AL, )
= [(A2 = 1/4)(22 9/4)+2lqu}AEM>l/2 (59b)

(e,11)

Because the residues of the matrices S/1 12 and
S<0 11/1;(0)) at the RPs play a crucial role in the CAM

construction, it is important to define them correctly. To
|

~ 1 j’
1) = o {/c da (2> = 1/4) cos(zA) |2

A

I, (11
Loty

d
—2iz lim — [(A—-1/2
m-/l—lle}Q dA [(/1 /2

(2> = 1/4) cos(z) |2

achieve this, we first express the matrices in a way that

separates the contributions of RPs /1511) associated with

electromagnetic-type perturbations (s = 1) from those
associated with gravitational-type perturbations (s = 2)

25,2). Thus, we obtain

(e/o.11) _ q(e/o,11) (e/o,11)
5,1—1/2 = S1,/1—1/2 + 52,1—1/2’ (60)
where
11 A(1+’j/01)/2
Ssel{ol/z) = cosZyeltit1/2)m l%] (61)
Alm,/l—l/Z
and
(+.e/0)
e -
A2w,/1—l/2

We then define the associated residues for each contribu-
tion by

[ = cos? ], (63)
and
rgen/o’”) = sin y/rgen/o), (64)
where
(+.¢/0)
Ael0) _ Lin() (0)+1/2) s0.A—1/2 (65)
sn iA(_) .
A1 sw.A—1/2 lz/lif)((u)

Now, in order to collect, by using Cauchy’s theorem, the
contributions of all RPs, we must first shift the contour C’ to
the left so that it coincides with C =] + oo + i€, +ie] U
[+ie, —ie] U [—ie, 400 — i¢[ (see Fig. 4). However, we then
introduce a spurious double pole at A = 1/2 (i.e., at £ = 0)
corresponding to the term 1/[(4 — 1/2) cos(z1)] which we
should remove by subtracting the contribution of the
associated residue. Thus, we have

011 1+1
4_1/;) - <T>}Pﬂ_l/2(_ cos 0)

1 . 1+1
[ (Si i}% * Sﬁ_}/l%) - <T>]Pz—1/2(—005 9)] } (66)
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By using

E pi_1/2<_x>}“/2 -n(*3%). @

we can show that

(.11 _1 /1
P “”‘ﬁ/ﬁ”( 1/4)cos(nl)

1 e, 0, j:
X|:2(S( 1}2:|:S :/12 <—>]P,1 1/2(—cos0)

2
+i 1(S(e11 j:Sou
2w (2
xIn F(l —0059)}
2

-+ terms independent of 6. (68)

The terms introduced in Eq (68) to neutralize the
spurious modes can be evaluated numerically. However,
they do not necessarily contribute to scattering amplitudes
(46). Indeed, by applying the differential operator given by
(48), we obtain the following expression

1 A
(£,11) 0 :g(iv“) —/d/l
) 0 2w Je (A2 =1/4)cos(nl)
1 (et o1 1+ 1
(s s - (5]

< Py p(—cos e>} LiE(). (69)

where the amplitudes fSlf "(6) denote the “shift correc-

tions” introduced to neutralize the spurious double pole at
A =1/2, and are given by

i (0) =0. (70a)
and
. (o,11)
(=.11) i S
)= ——-——. 70b

Here, it should be noted that we have simplified the last
expression by using the fact that

(e.11) (0.11)

Sy T+ S, =0. (71)

We then deform the integration contour C in Eq. (69)
with the aim of collecting the RPs in mind (see Fig 4), and
we obtain

FE0) = 171(0) + e (0) + 15" (0). (72)

Here, the background integral contribution is

i (0) = fuge (O) + Furm (6).  (731)
with
(+. 11) [ 1 A
0) = di
(e,11) 0,11)
X[+ S,1 1/2]QA 12(0 + 10)} (73b)
and
(=1, 0 (1)) 1[0 A
0) = L R R —
fan’ (€)= % {2m /ﬂ-m (22 = 1/4)
(e.11) (0,11) .
X 83212 £ 871 51Qu-12(0 + 10)}’ (73¢c)
where C_ = [0, —ie] U [—ie, 400 — ie[ with € — 0,). The

Regge pole contribution is

(£.11 +,11
fRP >(9) = 5)((9 )
2_1/4] coswff) ()]

X P ((,;)—1/2(_005 9)}, (74)

which involves a sum over the RPs /1,(11)(60) and A (@)
lying in the first quadrant of the CAM plane and their
associated residues [see Eq. (63) and (64)].

In Eqgs. (73b) and (73c), Q;_i2(z) is the Legendre
function of second kind and is related to P;_; ,(z) by [69]

Qj—12(x +1i0) = mwz—uz(—x)

— e =12p, o (x)]. (75)

It is important to note that the scattering amplitude
f#)(9), given by Eqs. (72)~(74) and (70), is equivalent to
the initial partial wave expansions defined by (46)—(48).

2. Scattering amplitude of GW — GW

In order to obtain the CAM representation of the scattering
amplitude for GWs (49) and (50), we will extend our
treatment of scattering of EWs (cf. Sec. IV B 1) and provide
the necessary key steps (see also Sec. II of Ref. [33]).

By using the Sommerfeld-Watson transformation

+0o0 . _
N (~1)7F(2) :%/ pEO=12)

£~ cos(zA)
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we replace the discrete sum over the ordinary angular
momentum ¢ in Eq. (50) with a contour integration in the
complex A plane. We then have

1 A
f(i,22)<9) = %/C” dA (/12 —1/4) (12 - 9/4) cos(ﬂ'ﬂ)

1 (e22) (0.22) 1+1
x {5 (Sﬂ—l/Z * S/l—l/Z) - 7

X P/l—l/Z(_ COS 9), (77)

with C" =]+ o0 +ie,2 4 i€] U [2 + ie,2 — ie] U [2 — i,
+oo — ie[ where € — 0, (see Fig. 4).

Here the matrices Sﬁe_f% and Sﬁif% are the analytical

extensions of Sf/f"zz) and Sff‘zz) which can also be defined
(£.e/0)

from the complex amplitudes A, 7" 1 [cf. (15b) and (11)]

S("/(’-zz) —_ ei(1+1/2)ﬂ

i-1/2
g (He/0) Altelo)
2042 o2y 4 2 Gy | (78)
ne e
2w,4—1/2 lw,A—1/2

It should be noted that the Sff_?; and 5510_122% matrices

have the same RPs [cf. Eq. (59a)] and are identical to those
previously defined for the electromagnetic field, specifi-
cally those associated with matrices (58).

Similarly, we separate the contributions associated with

s=1(.e., Ag,l)(a))) from those associated with s = 2 [i.e.,
/15,2) (a))] in order to determine the associated residues of the
Sﬁe_f% and SE{:IZ% matrices

(e/0.22)

(e/0.22) (e/0.22)
Si— 1/2

Sl.l—l/Z +S2./1—l/2’ (79)

where
A(+~e/0)
Sﬁe{i’f/]z) _ Sinzwei(ﬁﬂ/z)n li)-ﬂ—l/ﬂ’ (80)
Alw,/l—l/Z
and
(+.¢/0)
S;e/{fll/lz) = cos?ye!it1/2)m liz‘””l_]ﬂ] , (81)
. ne
20,A-1/2
and then we define the associated residues by
rgi/o'n) = sin’ l//l"(li/0>, (82)
and
réil/ 22 — cos? y/réi/ o), (83)

Taking into account the collection of RPs /1,(11)(60) and

/1512) (), it is necessary to shift the contour C” to the left until
it coincides with the contour C, as shown in Fig. 4.
However, this introduces two spurious double poles. The
first double pole is located at A = 1/2 (that is, at £ = 0),
arising from the term 1/[(A —1/2)cos(z4)]. The second
double pole is located at A = 3/2 (that is, at £ = 1), which
comes from the term 1/[(4 —3/2) cos(z4)]. The contribu-
tion of the associated residues must therefore be removed,
which gives the following expression:

. I ) Uoem) o comy, (141
00 =5, (/c A0 @ =92 cos(nd) {E(Sﬁ% =S <T>} Firt=5)

A

d
—2iz lim — —1/2)?
mﬁ—lfll}zdll{(l /2)* %

A

1 e 0 1+1
(22=1/4)(A*=9/4)cos(nA) {E(SE_T?; = Si_?/z%) B <T>] P’H/Z(_x)}

... d L) (e22) | o(022) I+1
—21”12925{(4—3/2)2 X (2=1/4)(22=9/4) cos(n) |:§(S,1—1/2i5/1—1/2) - (T>:|Pl—l/2(_x)}>- (84)

Using. in particular, (67) and

d
—_PpP -
[dll /1—1/2( X)Ls/z

:—(l—l—x)—xln(

1;x>’ (85)

we can explicitly evaluate the terms that neutralize the contributions of the spurious poles, giving us
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1, (e (0.22 1+1
(st 1/;is l/;) (T)}PH/Z(_X)

3 1 2
(£.22) — d
B =5 | A ST = 9/4) cos(a) [2
D1 e22) | o(022) 1+1
4o {2 (557 & 50" - 2

)]IHC?)

i 1 (e.22) (022 lil 1—x
+4w{2(S £S5 l1+x)+xIn 5

i (711, (. o. 1+
_@{6 |:2(S( 22):|:S( 22)) (

+ terms independent of x.

Applying the differential operator > o (86), we can
show that the terms introduced to neutralize the spurious
modes do not necessarily contribute to the scattering
amplitudes (49). Thus, we obtain

_ a2 1 A
F22 (x) = s {2w /C a (12=1/4)(22=9/4) cos(n)
X B(S; %fZ:I:S ” 12?2) (#)]Pz—l/z(_x)}
+i67 (x), (87)

where the amplitudes fgj;’”)
and are given by

(x) denote the shift corrections

fso ) (x) =0, (88a)
and

2i o 0
== 382 — sl (2 4 x)]

foo ™ (x) (88b)

1
(1-x)*

Here, it should be noted that we have simplified the last
expression by using the fact that

S(e 22) + S(O 22) _ =0 for=0 and 7 =1. (89)

AN @) [ & )

d [1 (e22) (0.22)
(522 4 5lo22)) x
):| dﬂ A-1/2 A-1/2 =32

(86)

We now deform the contour C in Eq. (87) in order to
collect the Regge pole contributions, using Cauchy’s
residue theorem (see Fig. 4), and we obtain

FE2)(x) = 1572 () + ™ (1) + e 2 (1), (90)

where

BP0 = 5220 + 552200, (91a)

with

+22), (22 1 A
foe (¥) = D {2m /C d (A2 =1/4)(2* = 9/4)

X [S10) £ 8 T100 2 (x +i0)}, (91b)

and

(£.22) o) [ 1 0 A
— o _— di
fB m () =D {Zﬂw /+ioo (’12 - ]/4)('12

x [S 8%5)2 + S o, 12/22]Q/1 1/2( X+ iO)} (91c)

—9/4)

is a background integral contribution, and where

(92)

(£22 +22 in
fRP )(x)zsj(c ){—%Z

is a sum over the RPs A" (w) and pi (w) lying in the first
quadrant of the CAM plane involving the associated
residues (82) and (83). It is also important to note that
the scattering amplitude f*22)(x) given by (90)—(92) and
(88) is equivalent to the initial partial wave expansions
defined by (49)-(51).

S @) - 1745 (w)?

—9/4] cos[ziY ()] P 2(_X)}

I
3. Conversion amplitude of EW — GW

By following the steps in Sec. IVB2 and using the
Sommerfeld-Watson transformation (76), we can write the
sum over the ordinary angular momentum # in Eq. (53) as a
contour integral in the complex A plane
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- 1 A
f(i,12)<9) ——— | a where
20 Jor (22 = 1/4)\/ (2> = 9/4) cos(7A) Ceeo)
. A e/ 0
U ger2) |, glo2) } ste/o12) _ SNY) iy | Alwsi 1 96
x |S(Sh £ S, LA-1/2 = e - . (%)
{2( /2 ]/2) 2 Ag.u)).z—uz(w)
P, _1/5(—cos8), 93
X 1/2( cos 0) (93) and
where
(+,e/0)
. el = - iy [L‘”‘“/ 21 . (97)
S(e/IO/ 12) _ i(+1/2)x sin(2y) ’ 2 Asei1)2
2
AlTe/0) g (He/o) and then the associated residues are given by
[ loA=1/2 2w,ﬁ—1/2‘| (94)
(=) =)
A A e/o, 2 e/o
lwa—1/2 20.0—1/2 rin/ 12) sm(2 w) ”(1n/ )’ (98)
(e,12) (0,12)
are the analytical extensions of S, and S, and they and
have the same RPs [cf. Eq. (59a)]. These are identical to the
ones previously defined. /012 Sin2y) (e/o
In order to evaluate the integral in (93) by using r én/ = _% r én/ . (99)
Cauchy’s theorem to collect the RP contributions, we will
use the procedure employed in Sec. IV B 2. First, we need Now, before applying Cauchy’s theorem, we must shift the
to define the associated residues of $'2 and S(” 12) Todo  contour integration C” to the left so that it coincides with C

a-1/2 4 1/2° . o .

this, we will rewrite (94) in order to separate the different (see Fig. 4). Howeyer, this introduces two Spurious double

contributions associated with s = 1 and s = 2. We have poles at 1 =1/2 (i.e., at £ = 0) correspondmg to the te.rm
1/[(A—1/2)cos(zA)] and at A = 3/2 (i.e., at £ = 1) which

(/0.12) comes from the term 1/[(1 — 3/2)3/* cos(z)] and must be

1a-1/2 T+ 52,11—1/2’ (95) removed. We then have

|

(e/012) _ ole/0.12)
SiZip =S

(e,12) (0,12)

1 A 1
0=, (/c RTEYIIN pm T P g [2(5 R ”zﬁ Fimp(mend)
—2ix lim %{(1—1/2)2

A—1/2

1 (e,12) (0,12) :| }
S +S5) P cosf
_1/4)\/79/4(:05 ) [ (S22 ES8,212) | Paeija(—cos0)

. d A 1 (e12 012
—2151;1;;@{(1—3/2)3/% SRS Pscea ). 00

(A2 =1/4)\/ (2> =9/4)cos(nA) [2

By using in particular (67) and (85), we can write

1 A 1 (e12) (0.12) ]
— [ dA —(S £, P cos @
20 Je (22 - 1/4) (2> = 9/4) cos(zA) {2( 12 % 572) [ Pimal= )

e
V3l {2( (12 4 gl 12y ][ + cos 0) —|—cos¢91n<1_cose)]

FE1200) = -

4o 2
l\/_ e,12) o 12) e 12) (0.12)
4a) { {2( )] { i-1/2 =5 1/2) 3 cos 6
+ terms independent of 6. (101)
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By applying the differential operator i‘) ) to (101)
and taking into account that S So" '~ 0 and

Sie/ >12) _ () we can show that the terms introduced to
neutralize the spurious modes do not necessarily contribute
to the conversion scattering amplitude (52) and we obtain

12 (o)

_ 12 {_L/ 4 A
20 Jc (22 =1/4)\/(2* = 9/4) cos(nA)
1 e, o,
X {2 (S( 1152:&8( :%)}Pl 1/2(= cosé)}
(+.12)
+ 02 (6), (102)
where the “shift corrections” disappear

i) = 0.

We then deform the integration contour C in Eq. (102) to
collect the contributions of the RPs, and thus, we obtain

(103)

Vsn

2 (w)]

where

ioP0) = 1520) + 15a20),  (105a)

with

) 1)) 1 A
{512 (9) — @ { o /c b T

X [SS £ 501051 0(0 + i0>}, (105b)

and

12) oy e (E212) 1 /0 A
0)=9 - dA
fon(0) =) { 200 i (12— 1/4)\/(F2=9/4)

X [Sﬁe 5;:&5,10 11?2]Q1 1/2(9+10)} (105¢)

is a background integral contribution, and where

(e.12) + rgz:l.lZ)]

f=2(0) = 1,70 + i), (104)
|

. 400 2

i (0) = D) ‘”{ﬂ >
2&) n=1 s=1 [lff)( )2—1/4”

is a sum over the RPs Aﬁ,l) (w) and /1512) () lying in the first
quadrant of the CAM plane involving their associated
residues. It is also important to note that the scattering
amplitude f*'2 () given by (104)—(106) and (103) is
equivalent to the partial wave expansions defined
by (52)—(54).

C. Analytic Regge pole approximation of scattering

/15,5) (0)?

P15 () 1/2( 0059)} (106)
—9/4] cos[zA} ()]

|
extending the calculations used by Dolan and Ottewill in
their work on obtaining an analytical expression for the
excitation factors of the QNMs of the Schwarzschild
BH [47]. This has allowed us, after tedious calculations,
to obtain

0 Nal@+1)  (a=1)F /(a=3)(a+1)

and conversion amplitudes = 2vava+3n-1)! (Vala=3) F (a-1))*
To construct an analytical approximation for the RP 64 /72 3 n—}
contribution, i.e., for the helicity-preserving and helicity- —i wlat b.w
reversing of scattering and conversion amplitudes (74), (92) (a+ ) (Va+ va+ )
and (106), we need to determine the asymptotic expressions « 2iMo(a) piniy )’ (107)
of the RPs ﬂ&v)(w) and their associated residues ryy .
An analytical expression for the residues rEn corre-
sponding to the lowest RPs of the RN BH can be derived by ~ with
|
C(a)_(a+3)(\/a+1—2\/_)+ [ 8(a+1)
2Va+1 (@+3)2a+1+2/ala+1))?
a* +7 2-4/2-3 1+3Vava+ 1+ Va+1+ala+2)—vV2Va® -1
+ In +1In (108)
4/2vVa? - 1 24,/2-2 1+3ava+1+a*Va+1+ala+2)+V2Va* -
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As for the even residues, they can be obtained by
[cf. Eq. (59b)]

(R VAP
(A2 = 1/4) (A7

— 9/4) + 210)613] (0>(w)
—9/4) = 2iwg,] r k)
(109)

It should be noted that setting Q = 0 (i.e., « = 3) in the
expressions (107) and (108) yields the same expressions as
those derived in Refs. [32,33] for the Schwarzschild
BH case.

Because the concentric event horizons become degen-
erate in the extreme case (Q = M), it is not possible to
obtain the tortoise coordinate necessary for the residue
calculations by taking the limit r, — M in (3). To address
this issue, we chose to handle the situation separately by
using the tortoise coordinate (28). Similarly, for the
extremal charged RN BH, we also used the Dolan and
Ottewill method [47] and obtained

(©) 1i32(4 = 3v2)b )"
Fsn — T
2y/x(n—1)!

. ()
2M A
e2May gindy”

(110)

with

y=3-4V2—4mn[l + V2] -2In[M].  (111)
Here, the upper symbol of F (£) in expressions (107) and
(110) is associated with electromagnetic-type perturbations
(s = 1), while the lower one with gravitational-type per-
turbations (s = 2).

It is worth noting that setting /1 /1(1) + 1 in (110)

yields
o = i (112)
Using (32), (112), and, for Q = M,
1 3
cosly =+ ——, (113a)
243y
1 3
sin? y = , (113b)
2 4y

we have shown, after some algebraic calculations, that

f=22)(6) = F=11 0) (114)
for the extremal charged RN BH, which means that the
gravitational and electromagnetic scattering cross sections

are identical.

V. RESULTS

A. Numerical computational method

To construct the differential cross sections (44)—(45) and
their RP contributions (74), (92) and (106) involving
scattering and conversion amplitudes of various processes
(EW - EW, GW — GW and EW — GW), we need (i) the

(/o) , and the

st

, reflection coefficients R\/”

S-matrix elements S(f ) for the partial wave expansion

representation, and (ii) the RP spectrum, as well as their
associated residues for the RP contribution. To do this:

(1) Partial wave expansion case: we numerically solved

the problem (1)—(5) using the Runge-Kutta method.

This enabled us to compute the functions qﬁm}f)( r),

(£.e/0)

smf

coefficients A

, the reflection coefficients

, and the matrix elements S, (¢/o557) We then
summed over 120 modes to obtain the scattering and
conversion amplitudes for the various processes
(see Ref. [30] for more details). It should be noted
that the series representation of the scattering and
conversion amplitudes suffers from a lack of con-
vergence due to the long-range nature of the electro-
magnetic and gravitational fields propagating on
the RN BH. To handle this, we used the algorithm
presented in the appendix of Ref. [32] to accelerate
the convergence of the mode sum.

(i1) The RP contribution case: We first obtained the RP
spectrum /Iff) using the algorithm presented in

Sec. III. Then, we constructed the associated resi-

dues rﬁf/ 0:8i8y) using the same procedure as for the

partial wave expansion case to determine numeri-

cally the coefficient A(ji 01)/2 All numerical calcu-

the coefficients A
R (e/o )

lations were performed using Mathematica software.

B. Numerical results and comments

In Figs. 5-16, we display the scattering and conversion
cross sections for different processes. The results are
obtained using the RP contribution and compared with
those obtained from the partial wave expansion method.
The comparisons are performed for the reduced frequencies
2Mw =1 and 6, as well as for the charge-to-mass ratios
Q/M = 0.5 and 0.99998.

In Figs. 5-8, we focus on the differential scattering cross
section of the EWs and we compare the results obtained
from the partial wave expansion (46)—(48) with its RP
contribution constructed from (74). In Figs. 9-12, we
illustrate the differential scattering cross section of the
GWs and we compare the results obtained from the partial
wave expansion (49)—(51) with its RP contribution con-
structed from (92). In Figs. 13-16, we show the conversion
of the EWs to GWs and we compare the differential
conversion cross section constructed from the partial wave
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L e
2 Reissner—Nordstréom scattering cross section
for electromagnetic waves at 2Mw = 1 and Q = 0.50M

a2 ]
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Vbl a Sum over Regge poles (n=1)
|3 1 ———— —————
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FIG. 5. Scattering cross section of a RN BH for EWs 2M® = 1 and Q = 0.50M). We compare the exact cross section defined by

(46)—(48) with its Regge pole contribution constructed from (74).

expansion (52)—(54) with its RP contribution obtained
from (106).

In the intermediate reduced frequency regime CMw = 1)

accurately describe the differential and conversion cross
sections for scattering angle & > 10° for various processes by
summing over a small number of RPs in the Regge pole

and for different charge-to-mass ratios Q/M, we can  contribution. Figs. 5-6 show the results for EW — EW,

A L L B AL L B AL B AL B AL R B AL |
2 Reissner—Nordstrém scattering cross section 1
for electromagnetic waves at 2Mw = 1 and Q = 0.99998M
=
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FIG. 6. Scattering cross section of a RN BH for EWs 2M® = 1 and
(46)—(48) with its Regge pole contribution constructed from (74).

0 = 0.99998M). We compare the exact cross section defined by
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FIG. 7. Scattering cross section of a RN BH for EWs 2M® = 6 and Q = 0.50M). We compare the exact cross section defined by
(46)—(48) with its Regge pole approximation constructed from (74).
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FIG. 8. Scattering cross section of a RN BH for EWs 2M® = 6 and Q = 0.99998M). We compare the exact cross section defined by
(46)—(48) with its Regge pole contribution constructed from (74).
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Figs. 9-
Figs. 13—

10 1illustrate the results for GW — GW, and
14 display the results for the conversion process

of EW — GW. However, it should be noted that in the case of
nearly extremal RN BH (Q/M = 0.99998), additional RPs

do (2—2)
da

2M)~2

do (2—2)
da

M2

are required to accurately describe the scattering and con-
version cross sections at small scattering angles. It should
also be noted that we did not consider background integrals in
the construction of the RP contribution.
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FIG. 9. Scattering cross section of a RN BH for GWs 2M® = 1 and Q = 0.50M). We compare the exact cross section defined by
(49)—(51) with its Regge pole contribution constructed from (92).
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FIG. 10. Scattering cross section of a RN BH for GWs 2M® = 1 and Q = 0.99998M). We compare the exact cross section defined
by (49)—(51) with its Regge pole contribution constructed from (92).
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FIG. 11. Scattering cross section of a RN BH for GWs 2M®» = 6 and Q = 0.50M). We compare the exact cross section defined by
(49)—(51) with its Regge pole contribution constructed from (92).

T T T T T T T T
20 Reissner—Nordstrém scattering cross section
t for gravitational waves at 2Mw = 6 and Q = 0.99998M 1
ﬁ [ ]
(I‘ 150 Exact ]
‘é a t Sum over Regge poles (n=1)
-cl o [ 100 T T T T T T T T T T T T T T T T T T T T T T T T T T T 3
~ 1oL Sum over Regge poles (n=1,...,3) ] E
DI [ 1 E 2Mw = 6 and Q = 0.99998M i
b= t Sum over Regge poles (n=1,...,10) 10 ]
S r 1 E E
5 1a E
‘ 1o ‘ ]
0 T T T T T T ™ v-gl % 0.100 3
. j
20 2Mw = 6 and Q = 0.99998M 1 S o010l Exact i
[ 1 N E E
8 ; ] ~ Fo----- Sum over Regge poles (n =1,...,45)
(I‘ 156 Exact ] 0.001 3 E
‘é I e Sum over Regge poles (n =1,...,25) [
'Ul Eel 4 10_4 1 1 1 1 1 1 1
~ 10: ] 40 60 80 100 120 140 160 180
|
s [ ] Scattering angle 6 (deg)
S t )
5 = -
0 L PSS N S SR S vl B L I |
40 60 80 100 120 140 160 180

Scattering angle 6 (deg)

FIG. 12. Scattering cross section of a RN BH for GWs 2M® = 6 and Q = 0.99998M). We compare the exact cross section defined
by (49)—(51) with its Regge pole contribution constructed from (92).
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FIG. 13. Conversion cross section of a RN BH for EWs to GWs 2M® = 1 and Q = 0.50M). We compare the exact cross section
defined by (52)—(54) with its Regge pole contribution constructed from (106).

In the “high”’-frequency regime (2Mw = 6) and for  cross sections very well for intermediate and large scattering
different charge-to-mass ratios Q/M, we can observe that  angle 0 of different processes (see Figs. 7-8 for EW — EW,
the RP contribution involving a small number of RPs allows ~ Figs. 11-12 for GW — GW, and Figs. 15-16 for
us to construct the differential scattering and conversion ~ EW — GW). Summing over a larger number of RPs
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FIG. 14. Conversion cross section of a RN BH for EWs to GWs 2M® = 1 and Q = 0.99998M). We compare the exact cross section
defined by (52)—(54) with its Regge pole contribution constructed from (106).
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FIG. 15. Conversion cross section of a RN BH for EWs to GWs 2M® = 6 and Q = 0.50M). We compare the exact cross section
defined by (52)—(54) with its Regge pole contribution constructed from (106).
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FIG. 16. Conversion cross section of a RN BH for EWs to GWs 2M® = 6 and Q = 0.99998M). We compare the exact cross section
defined by (52)—(54) with its Regge pole contribution constructed from (106).

improves the Regge pole contribution, allowing us to  RPsum, we were able to overcome the challenges associated
describe the whole scattering and conversion differential ~ with the lack of convergence that characterizes the partial
cross sections, including small scattering angles, without ~ wave expansion defining the cross sections, which arises
considering the background integral. Furthermore, usingthe ~ from the long range nature of the fields propagating on a RN
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background. It also enabled us to derive analytical approx-
imations, in the short-wavelength regime, that describe both
the BH glory and a large part of the orbiting oscillations, thus
decoding the physical information hidden into the partial
wave expansions.

C. Asymptotic results and comments

We now have analytical approximations available to
calculate the scattering and conversion cross sections for
different processes, which are formally valid for 2M o — .
Specifically, we used the analytical expressions for PRs (33)

and (107)—(108) for the associated rgf,), as well as the relation

(109) for rﬁ?, to obtain results for the case Q < M (see
Figs. 17 and 18). In the case of an extremal charged RN BH
(Q = M), we achieved this by using asymptotic approx-
imations for the lowest Regge poles [cf. (37)]

), N i2n—=1) _1\6n(n—-1)+35 1
Ai(w) = bew ( W2 5) 256 (Mw)
+ 0 <7(2 le)2> (115)

and the associated residues r§,‘;) (110)—(111), as well as rgf)

obtained from the relation (109) (see Fig. 19).
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In Figs. 17-19, we present results comparing exact
scattering and conversion cross sections with their analytical
RP approximations. The comparisons are made for reduced
frequency 2Mw = 6 and different charge-to-mass ratios
Q0/M = 0.50, 0.80, and 0.99998, with the summations
performed over 20 RPs. The analytical RP approximations
are found to reproduce the glory cross section and a
significant part of the orbiting cross section with high
accuracy. In fact, from a purely wave point of view, which
characterizes the RP approach, the glory and orbiting
oscillation effects are not fundamentally different. Indeed,
we consider that both phenomena are generated by the
excitation of surface waves propagating close to the RN
BH photon (graviton) sphere and are a consequence of
diffraction effects due to this hypersurface [32,33,37—41]. It
should be noted that despite the inaccuracy of the higher RP
approximations, using analytical RP sums involving 20
terms enables us to describe the cross sections over a wide
range of scattering angles.

In Fig. 19, we first observe that the scattering cross
sections for EWs and GWs coincide. This is because the
behavior of the RPs and their associated residues converge
towards those for Q = M, in which case the scattering cross
sections for EWs and GWs are equal. In fact, this also
confirms the fact that there are no other branches of RPs
when Q = M, as discussed in Sec. III B 2. Moreover, we
find that for nearly extremal charged RN BH with a charge-
to-mass ratio of Q/M = 0.99998 and beyond § = 90°, the

" 7 Refssner-Nordstrém conversion cross section
1ok for EWs to GWs at 2Mw = 6 and Q = 0.5M

‘\
0.100
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do
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0.001

1075
40

L L

L L L
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Scattering angle 6 (deg)

The differential cross section of a RN BH at 2M@ = 6 and Q = 0.50M (a) for electromagnetic waves (b) gravitational waves

and (c) for a conversion process from electromagnetic to gravitational waves. We compare the exact results given in Sec. IV with those
obtained from the analytical Regge pole approximations constructed in Sec. V.
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The differential cross section of a RN BH at 2M@ = 6 and Q = 0.80M (a) for electromagnetic waves (b) for gravitational

waves and (c) for a conversion process from electromagnetic to gravitational waves. We compare the exact results given in Sec. IV with
those obtained from the analytical Regge pole approximations constructed in Sec. V.
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FIG. 19. The differential cross section of a RN BH at 2Mw® = 6
and Q = 0.99998M for electromagnetic and gravitational waves
(red line) and for a conversion process from electromagnetic to
gravitational waves (blue line). We compare the exact results
given in Sec. IV with those obtained from the analytical Regge

pole approximation for Q = M constructed in Sec. V (black
dashed line).

conversion process of EWs into GWs (or vice versa)
becomes larger than the scattering process. In other
words, the converted flux exceeds the scattered flux.
This effect is confirmed by the analytic RP approximation
in the “high”-frequency regime (short-wavelength). It is
important to note that this effect has already been shown
using the geometric-optics approximation [30].

VI. CONCLUSION AND PERSPECTIVES

In this article, we used an alternative approach based on
the analytic extension of the S-matrix in the complex
angular momentum plane and its associated Regge poles to
compute the scattering and conversion cross sections for
planar electromagnetic and gravitational waves interacting
with a Reissner-Nordstrom BH. To achieve this, we
focused on the resonance spectra of the S-matrix in the
CAM plane and calculated its Regge poles for various
configurations of the charge-to-mass ratio Q/M in both
intermediate- and high-reduced frequency regimes. We
employed Leaver’s method [56,62,63], specifically, its
modified Hill determinant approach [64] for Q < M, and
the Onozawa et al. algorithm [65] for the extremal charged
RN case Q = M.

In the intermediate and short-wavelength regimes, we
numerically reconstructed the scattering and conversion
cross sections for the different processes (EW — EW,
GW — GW and EW — GW) from the Regge pole sums
and their associated residues, and we shown a perfect
agreement with those obtained using the partial wave
expansion method. This was achieved for different
charge-to-mass ratios Q/M.

Finally, in the short-wavelength regime, we derived an
analytical Regge pole approximation from the asymptotic
expressions of Regge poles and their associated residues,
which allowed us to accurately describe both the glory and
the orbiting oscillations of the RN BH. Furthermore, we
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illustrated that for sufficiently charged BH, the converted
flux exceeds the scattered flux at large angles. This effect
is particularly pronounced for extremal charged RN BH
(Q = M), where the angle at which the converted flux
exceeds the scattered flux reaches a minimum of 90°. This
has already been demonstrated in our previous article using
the geometric-optics approximation [30].

We hope to extend our study in our next works to the
scattering of a scalar field by a rotating charged black
hole to explore various implications [70]. Extending our

study to the scattering and conversion of electromagnetic
and gravitational waves by a Kerr-Newman black hole is a
more challenging task [71]. We also hope to make progress
in this direction.
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