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The number of spanning trees in 4-regular simple graphs

Jean-Sébastien Sereni∗ Zelealem B. Yilma†

Abstract

Extending an earlier work by Kostochka for subcubic graphs, we show that a connected
graph G with minimum degree 2 and maximum degree 4 has at least 75

n4
5 + n3

10 + 1
5 spanning

trees, where ni is the number of vertices of degree i in G, unless G is the complete graph
on 5 vertices or obtained from the complete graph on 6 vertices by deleting the edges of
a perfect matching. This, in particular, allows us to determine the value of the inferior
limit of the normalised number of spanning trees (introduced by Alon) over the class of
connected 4-regular graphs to be 751/5.

1 Introduction

In 1983, McKay [4] managed to determine precisely the asymptotics of the maximum number of
spanning trees a d-regular simple graph can have, by proving that

lim sup
n→∞

{
τ(G)1/n : G ∈ C(n, d)

}
= (d − 1)d−1

(d2 − 2d)d/2−1 = d − 1
2 + o(1),

where τ(G) is the number of spanning trees of the graph G, and C(n, d) is the class of all
connected d-regular n-vertex simple graphs. It is remarkable that the exact value could be
pinpointed. By contrast, the situation is less understood for the analogous inferior limit. Let
us set c(d) = lim infn→∞

{
τ(G)1/n : G ∈ C(n, d)

}
. In 1990, Alon [1] proved the following

inequalities:

d − Θ
(
d(log log d)2/ log d

)
⩽ c(d) ⩽

[
(d + 1)d−2(d − 1)

]1/(d+1)
= d − Θ(log d), (1)

where d ⩾ 3 for the second inequality. It is worth mentioning that Alon proved many other
properties of c(d) in his work, notably observing that the inferior limit defining c(d) is actually
an infinum, and also establishing the general lower bound

√
2 ⩽ c(d).

The asymptotic range for c(d) was reduced five years later: subtly modifying Alon’s approach,
Kostochka [3] showed that d − Θ((log d)2) ⩽ c(d). In addition, this stronger lower bound is
obtained as a corollary of a bound for connected graphs with given degree sequences, rather
than connected regular graphs. In this work, Kostochka also addressed one of Alon’s question:
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can we determine exact values of c(d)? Alon [1] predicted this should be generally difficult.
Kostochka [3] was able to provide an almost exact lower bound for the number of spanning
trees of a connected n-vertex graph with maximum degree 3 and minimum degree at least 2.
Specifically, he proved the following.

Theorem 1.1. Let G be a graph with minimum degree at least 2 and maximum degree at most 3.
Either G is isomorphic to K4 or τ(G) ⩾ 23(n3+2)/4, where n3 is the number of vertices of degree 3
in G.

As a direct corollary of Theorem 1.1, one obtains that c(3) ⩾ 23/4, which is sufficient to prove
equality because the upper bound in (1) is precisely 23/4 when d = 3.

The purpose of this work is to extend Theorem 1.1 to graphs with maximum degree at
most 4, and as a by-product determine the exact value of c(4). Kostochka’s argument follows an
inductive structural analysis. We proceed similarly, but are required to involve various new tools
and techniques, such as a lift operation on vertices. We obtain the following statement in which,
generalising the notation used in Theorem 1.1, for a graph G with minimum degree at least 2 we
define ni to be the number of vertices of degree i, for each positive integer i; and we also set

f(G) = 75
1
5 ·(n4+n3/2+1).

For any integer n ⩾ 3, we let Kn be the complete graph with n vertices. We define K−
6 to be

the graph obtained from K6 by deleting the edges of an arbitrary perfect matching of K6. We
observe that τ(K5) = 53 < 177 < f(K5) and τ(K−

6 ) = 384 < 421 < f(K−
6 ). However, as we shall

demonstrate, these two graphs are the only two connected graphs G with minimum degree 2 and
maximum degree at most 4 such that τ(G) < f(G). We let E = {K5, K−

6 }.

Theorem 1.2. If G is a connected graph with minimum degree 2 and maximum degree (at
most) 4, then

τ(G) ⩾ f(G) = 75n4/5+n3/10+1/5,

unless G ∈ E = {K5, K−
6 }.

A direct consequence of Theorem 1.2 is that c(4) ⩾ 751/5. This is sufficient to obtain equality
again thanks to the upper bound in (1), which is thus proved to be tight also for 4-regular graphs.

Corollary 1.3. We have c(4) = 751/5.

We follow an inductive approach to establish Theorem 1.2. The fact that there are two
exceptions to the stated lower bound thus obliges us, before applying the induction hypothesis,
to check if the smaller graph could be one of these exceptions, and if so then provide an argument
not using the induction hypothesis. A remark is that, when this might happen in our proof, the
considered graph must then be small: it has at most 9 vertices. It is thus possible, and we have
done it, to use a computer to verify the stated lower bound on all connected graphs with at
most 9 vertices, minimum degree at least 2 and maximum degree (at most) 4. However, since we
did not find these verifications to hinder too much the general flow of the proof, we decided to
explicitly include these exceptional cases along with the number of their spanning trees, showing
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they do satisfy the announced lower bound. The reader can, nonetheless, safely ignore these
situations, provided a computer verification would be satisfying enough.

Before ending this introduction, we mention that, surprisingly, the analogous questions for
connected regular (loopless) multigraphs could be completely solved. First, Bogdanowicz [2]
provided an exact lower bound, along with the extremal graphs, for connected cubic multigraphs;
next, Pekárek and the current authors [6] provided a full solution, for all values of n, the number
of vertices, and of d, the degree.

1.1 Notation

We use standard graph theory notation. In particular, given a graph G, we write V (G) for its
vertex set, and E(G) for its edge set. Given a subset V ′ of V (G), we let G[V ′] be the subgraph of G

induced by V ′. We write G−V ′ to mean G[V (G)\V ′], and abbreviate G−{v} to G−v. Similarly,
if e ∈ E(G) then G−e is the graph obtained from G by deleting the edge e, so that V (G−e) = V (G)
and E(G − e) = E(G) \ {e}. For a vertex v ∈ V (G), we let degG(v) be the degree of v in G, and
we set δ(G) = min{degG(v) : v ∈ V (G)} while ∆(G) = max{degG(v) : v ∈ V (G)}.

Spanning trees and forests of a graph will be seen as subset of edges. We will contract subsets
of vertices in a graph G: when performing contractions, we always delete multiple edges and
loops that could occur, thus obtaining again a simple graph G′. We canonically identify edges
in G′ and in G when there is no ambiguity. It will be useful to keep in mind that if T ′ is a
spanning tree of a graph G′ obtained from a graph G by contracting the set {x, y} ⊆ V (G), then
(using the canonical identification of edges) T ′ is a spanning forest of G composed of 2 trees,
separating x and y.

1.2 Preliminaries

We occasionally perform a “lifting” operation. Although everything in this section works also
for multigraphs, we here purposely restrict the setting to simple graphs. The lifting operation
is thus defined as follows. Let x, y1 and y2 be three distinct vertices in a graph H such that y1

and y2 are not adjacent, and suppose that fi is an edge in H between x and yi, for i ∈ {1, 2}.
(In other words, {x, y1, y2} induces in H a star centred at x.) Lifting f1 and f2 means deleting
the two edges f1 and f2 and adding an edge between y1 and y2.

If x is a vertex of degree 2m in H, a complete lift of x is the process of first performing a
sequence of m lifts of pairs of edges incident with x and then deleting the vertex x (which is,
by then, isolated), thereby producing a graph Hx. We underline that if a complete lift at x is
possible, then Hx is necessarily connected if x is not a cut-vertex of H. Moreover, with our
definition, it is possible to perform a complete lift at x such that the degree of every vertex in Hx

is the same as its degree in H only if there exists a matching of size m in the complement of the
subgraph of H induced by NH(x).

We shall use the following relation, discovered and demonstrated by Ok and Thomassen [5].

Theorem 1.4 (Ok and Thomassen [5]). Let H be a graph with a vertex x of degree 2m. Let Hx
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be a graph obtained from H by a complete lift of x. Then

τ(H) ⩾ cm τ(Hx),

with
cm = min

d1,d2,...,dk

min
X

∏k
i=1 di

τ(X) ,

where the minimum is taken over all sequences of positive integers d1, . . . , dk with varying
length k such that

∑k
i=1 di = 2m, and over all connected k-vertex multigraphs X with degree

sequence d′
1, d′

2, . . . , d′
k such that d′

i ⩽ di for each i ∈ {1, . . . , k}.

In particular, Ok and Thomassen [5] showed that c3 = 8
3 . (As noticed earlier [6], the set of

cases to be considered in the definition of cm can actually be reduced to the multigraphs with
degree sequence exactly d1, d2, . . . , dk.)

In the sequel, we will sometimes want to estimate the number of spanning forests of a (small)
graph that separates two given vertices. More precisely, given a graph G and 2 of its vertices v1

and v2, what is the number of spanning forests of G formed by the disjoint union of 2 trees T1

and T2 such that Ti contains vi for i ∈ {1, 2}? A general way to answer is to notice that this
number is precisely τ(G + uv) − τ(G) if uv /∈ E(G); and τ(G) − τ(G − uv) if uv ∈ E(G). Indeed,
in the former case the sought forests bijectively correspond to the spanning trees of G + uv that
contain the edge uv, which is equal to τ(G + uv) − τ(G). The latter case is similar.

Finally, we introduce three small graphs that will often occur as subgraphs in our forthcoming
analysis. The graph X5 is obtained from K4 by adding a vertex w with degree 2, the graph X ′

5

is obtained from K4 by adding a vertex w with degree 3, and the graph X6 is obtained from X5

by adding a vertex w′ with degree 2 and neighbourhood disjoint from that of w, as depicted in
Figure 1. We note that τ(X5) = 40, τ(X ′

5) = 75 and τ(X6) = 100.

v1 v2

v4 v3

w

v1 v2

v4 v3

w

v1 v2

v4 v3

ww′

Figure 1: The graphs X5 (left), X ′
5 (middle) and X6 (right). We have τ(X5) = 40, τ(X ′

5) = 75
and τ(X6) = 100.

2 Proof of Theorem 1.2

For each n ⩾ 3, we define An be the class of connected n-vertex graphs with minimum degree at
least 2 and maximum degree at most 4. We assume the existence of a smallest integer n ⩾ 3
such that there is G ∈ An \ E satisfying τ(G) < f(G). Note that |V (G)| ⩾ 4. Our aim is to
derive a contradiction, which will establish Theorem 1.2.

(A). The graph G has no cut edge.
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Proof. Suppose, on the contrary, that e is a cut edge of G. There exists a path P in G that
contains e, has internal vertices of degree 2 only and end-vertices — which we call u and v —
each of degree at least 3. Deleting the path P forms two connected graphs G1 and G2, each in
some As where s ⩾ 3. Moreover, δ(G1), δ(G2) < 4 so neither G1 nor G2 belongs to E . Since
adding the edges of the path P to the (disjoint) union of any spanning tree of G1 and any
spanning tree of G2 produces a spanning tree of G, we deduce that

τ(G) = τ(G1)τ(G2) ⩾ f(G1)f(G2) = 751/5−2·1/10f(G) = f(G).

This contradiction concludes the proof. ⌟

(B). The graph G has no cut vertex.

Proof. Suppose, on the contrary, that u is a cut vertex of G. Since G has no cut edge by (A),
we necessarily have degG(u) = 4, and G − u is composed of exactly 2 components C1 and C2,
each containing precisely 2 neighbours of u. For i ∈ {1, 2}, let Gi = Ci + u, so degGi

(u) = 2.
Then, G1 and G2 are connected graphs, each in some As where s ⩾ 3, and neither of them
belongs to E . In addition, the union of any spanning tree of G1 and any spanning three of G2

produces a spanning tree of G. It follows that τ(G) = τ(G1)τ(G2) ⩾ f(G1)f(G2). Moreover,
f(G1)f(G2) = 751/5−1/5f(G) = f(G). This contradiction concludes the proof. ⌟

We continue with a straightforward property, that will be useful for us later on.

(C). If v is a vertex of degree 2 in G, then v is contained in a triangle of G.

Proof. Suppose, on the contrary, that v is a vertex of degree 2 in G, with neighbours x and y that
are not adjacent in G. Let G′ be the graph obtained from G by deleting the vertex v and adding
the edge xy. Then τ(G) ⩾ τ(G′) and f(G′) = f(G). Moreover, G′ ∈ An−1 and hence if G′ /∈ E
then τ(G) ⩾ f(G). If G′ ∈ E , then G is obtained from either K5 or K−

6 by subdividing an
arbitrary edge (all edges being isomorphic). However, this contradicts that G violates Theorem 1.2,
as then we have τ(G) = 200 > 178 = ⌈f(G)⌉ in the former case, and τ(G) = 608 > 422 = ⌈f(G)⌉
in the latter case.

(D). The graph G has no subgraph isomorphic to K4.

Proof. Suppose that V ′ = {v1, v2, v3, v4} induces a clique in G. For i ∈ {1, 2, 3, 4}, let ui be the
neighbour of vi not in V ′, if it exists. We can assume that u1 exists because otherwise G is K4,
but τ(K4) = 16 > 14 = ⌈f(K4)⌉. By (B), either G is obtained from K5 by deleting at most 2
edges incident with u1, or we can assume that u2 exists and is different from u1. The former
case cannot happen, because first G is not K5; second if G is obtained from K5 by deleting one
edge, then τ(G) = 75 = f(G); and third if G is obtained from K5 by deleting two adjacent edges,
then τ(G) = 40 > 32 = ⌈f(G)⌉.

It thus remains to deal with the latter case. We discriminate with respect to the maximum
number D of neighbours in V ′ a vertex in V (G) \ V ′ has. Since G /∈ E , we have D ∈ {1, 2, 3}.
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• If D = 1, then all (existing) vertices ui are pairwise distinct, and we form G′ by con-
tracting V ′ into a new vertex v′. Because D = 1, and u1 and u2 exist and are distinct,
we have G′ ∈ An−3. Moreover, notice that f(G′) = 75−3/5f(G) (whatever the existence
of u3 or u4). We observe that G′ /∈ E , for otherwise G is one of the two graphs in Fig-
ure 2. However, this is impossible since we would then have τ(G) > f(G). It follows
that τ(G) ⩾ τ(K4) · τ(G′) = 16τ(G′) ⩾ 16 · 75− 3

5 f(G) > f(G).

u1

u2

u4

u3

v1

v2

v4

v3

Figure 2: The graph H1 (left) satisfies τ(H1) = 3456 > 2372 = ⌈f(H1)⌉, and the graph H2 (right)
satisfies τ(H2) = 10469 > 5625 = f(H2).

• If D = 3, then assume without loss of generality that u2 = u3 = u4, and call this vertex w.
Because u1 has degree at least 2 and is not a cut vertex by (B), we observe that degG(w) = 4.
Moreover w and u1 are not adjacent, for otherwise G is obtained from K5 by subdividing
an edge (yielding the vertex u1), which as was pointed out in the proof of (C) would imply
that τ(G) = 200 > 178 = f(G).

Now, we form G′ by contracting V ′ ∪ {w} (which in G induces K5 minus and edge, so
that τ(G[V ′ ∪ {w}]) = 75)) into a new vertex v′, which must have degree 2. So we
infer that G′ ∈ An−4 \ E . Moreover, f(G′) = 75−5· 1

5 f(G) = 75−1f(G). It follows that
τ(G) ⩾ τ(G[V ′ ∪ {w}]) · τ(G′) ⩾ 75 · 75−1f(G) = f(G).

• If D = 2, then we can assume without loss of generality that u2 = u3, and we call this
vertex w. If u4 does not exist, then degG(w) ⩾ 3, for otherwise u1 would be a cut-vertex
of G, thereby contradicting (B). We form G′ by contracting V ′ into a single vertex v′,
which thus has degree 2 in G′. So G′ ∈ An−3 \ E and hence τ(G′) ⩾ f(G′) = 75−4/5f(G).

We now consider an arbitrary spanning forest F ′ of G′ − v′ = G − V ′ that can be extended
into a spanning tree of G′ by adding edges in {v′u1, v′w}. We next prove that the ratio
between the number of spanning trees of G that contain F ′ and the number of spanning
trees of G′ that contain F ′ is at least 75

2 .

If u1 and w are in different components of F ′, then there is exactly 1 way to extend F ′

into a spanning tree of G′, specifically by adding to F ′ both edges incident to v′. Moreover,
there are τ(X5) = 40 spanning trees of G that contain F ′, all obtained by adding to F ′ the
edge u1v1, and a spanning tree of G[V ′ ∪ {w}] ∼ X5.

6



If u1 and w are in a same component of F ′, that is, if F ′ is a spanning tree of G′ − v′,
then there are degG′(v′) = 2 ways to extend F ′ into a spanning tree of G′. Moreover,
there are τ(X ′

5) = 75 spanning trees of G that contains F ′, all obtained by adding to F ′

a spanning tree of the graph constructed from G[V ′ ∪ {u1, w}] by identifying u1 and w,
thereby producing X ′

5.

Consequently, we infer that τ(G) ⩾ 75
2 · τ(G′) ⩾ 75

2 · 75−4/5f(G) > f(G).

If u4 exists, then the situation can be best treated under two cases, depending on whether
or not u1 and u4 are the same vertex.

– If u1 ̸= u4, then assume first that w has degree 2 in G. In particular, w is adjacent
to neither of u1 and u4. So if we form G′ by contracting the vertices in V ′ ∪ {w}
into a single vertex v′, it follows that G′ ∈ An−4 \ E , since degG′(v′) = 2, and also
that f(G′) = 75−4/5f(G). Moreover, τ(G) ⩾ τ(G[V ′ ∪ {w}]) · τ(G′) = 40 · τ(G′),
as G[V ′ ∪ {w}] ∼ X5. Consequently, τ(G) ⩾ 40f(G′) = 40 · 75−4/5f(G) > f(G).
Suppose now that w has degree at least 3 in G. We then contract the vertices
in V ′ into a single vertex v′. Note that G′ ∈ An−3 \ E , as degG′(v′) = 3, and
hence τ(G′) ⩾ f(G′) = 75−4/5f(G). We consider an arbitrary spanning forest F ′

of G′ − v′ = G − V ′ that can be extended into a spanning tree of G′ by adding edges
in {v′u1, v′u4, v′w}. Again, we prove that the ratio between the number of spanning
trees of G that contain F ′ and the number of spanning trees of G′ that contain F ′ is
at least 75

2 .
∗ If u1, u4 and w are in different components of F ′, then there exists exactly 1

spanning tree of G′ that contains F ′: it is obtained by adding to F ′ all three edges
incident to v′ in G′. On the other hand, there are τ(X5) = 40 spanning trees of G

that contain F ′, all obtained by adding to F ′ the edges uivi for i ∈ {1, 4}, and a
spanning tree of G[V ′] ∼ X5.

∗ If u1 and u4 are in the same component of F ′, and w is in a different one, then
there are exactly 2 spanning trees of G′ that contain F ′: they are obtained by
adding to F ′ the edge wv′ and one of the 2 edges in {u1v′, u4v′}. On the other
hand, there are τ(X6) = 100 spanning trees of G that contain F ′, all obtained by
adding to F ′ a spanning tree of the graph constructed from G[V ′ ∪ {w, u1, u4}]
by identifying u1 and u4, thereby producing X6.

∗ If w and u are in the same component of F ′, and u′ is in a different one,
where {u, u′} = {u1, u4}, then there are exactly 2 spanning trees of G′ that
contain F ′: they are obtained by adding the edge between u′ and V ′ and one of
the 2 edges between {u, w} and V ′. On the other hand, we obtain τ(X ′

5) = 75
different spanning trees of G containing F ′ by adding to F ′ the edge between u′

and V ′, and a spanning tree of the graph constructed from G[V ′ ∪ {w, u}] by
identifying w and u, thereby producing X ′

5.
∗ If all of u1, u4 and w are in the same component of F ′, then there are exactly 3

spanning trees of G′ that contain F ′: they are obtained by adding to F ′ any of

7



the 3 edges incident to v′ in G′. On the other hand, there are τ(K5) = 125 different
spanning trees of G that contain F ′, obtained by adding to F ′ a spanning tree of
the graph constructed from G[V ′ ∪ {u1, u4, w}] by identifying the vertices u1, u4

and w, thereby producing K5.

We conclude that τ(G) ⩾ 75
2 τ(G′) ⩾ 75

2 · 75−4/5f(G) > f(G).

– Suppose now that u1 = u4, and let us call w′ this vertex.
Let H be the subgraph of G induced by V ′ ∪{w, w′}. Then H has either 10 or 11 edges,
depending on whether or not w and w′ are adjacent in G. We first observe that H

cannot be the whole graph G, since H does not contradict the statement of Theorem 1.2.
Indeed, if w and w′ are not adjacent in G then H ∼ X6 so τ(H) = 100 > 75 = f(H);
while otherwise τ(H) = 225 > 178 = ⌈f(H)⌉. By (B), we thus deduce that each of w

and w′ has degree at least 3.
If w and w′ are adjacent, then (B) further implies that both vertices have degree 4
in G. Furthermore, if w and w′ have a common neighbour, then G is the graph H4

depicted in Figure 3. However, this is not possible as τ(H4) = 575 > 422 = ⌈f(H4)⌉.
Now, contracting V ′ ∪ {w, w′} into a single vertex v′ yields a graph G′ ∈ An−5 \ E ,
because degG′(v′) = 2. Moreover, f(G′) = 75−6/5f(G), and since in this case τ(H) =
225, we infer that τ(G) ⩾ 225τ(G′) ⩾ 225 · 75−6/5f(G) > f(G).
Similarly, if w and w′ are not adjacent in G, then we form G′ from G − V ′ by adding
an edge between w and w′. Notice that δ(G′) ∈ {2, 3} so G′ ∈ An−4 \ E . Observe
also that f(G′) = 75−5/5f(G) = 75−1f(G), whatever the degrees of w and w′ are
in {3, 4}. We assert that every spanning tree of G′ yields at least 100 spanning trees
of G, in a way that all of them are distinct. Indeed, consider a spanning tree T ′

of G′. If T contains the edge ww′, then T ′ − ww′ is a spanning forest of G − V ′ into 2
trees (such that w and w′ belong to different trees). Therefore, adding to T ′ − ww′

any of the 100 spanning trees of H ∼ X6 yields a spanning tree of G. If now T ′

does not use the edge ww′, then it can be extended into a spanning tree of G

by adding to it any spanning forest of H = G[V ′ ∪ {w, w′}] composed of 2 trees
separating w and w′. There are τ(H + ww′) − τ(H) = 225 − 100 = 125 such forests.
All spanning trees of G thus created are pairwise distinct, since they either differ
in G − V ′ (that is, on T ′ − ww′), or in G[V ′ ∪ {w, w′}]. Consequently, we infer
that τ(G) ⩾ 100τ(G′) ⩾ 100 · 75−1f(G) > f(G).

⌟

Our next aim is to prove that G has no subgraph isomorphic to the diamond D4. We proceed
in two steps. Let D5 be the graph obtained from the diamond D4 with edges {ux, uy, vx, vy, xy}
by adding a vertex w adjacent only to x and to y.

(E). The graph G has no subgraph isomorphic to D5.

Proof. First note that, by (D), none of the edges uv, uw and vw belong to E(G). We form G′

from G by deleting the vertices x and y, and adding the edges uv, uw and vw. We observe
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v1

v2

v4

v3

w

w′

Figure 3: The graph H4 satisfies τ(H4) = 575 > 422 = ⌈f(H4)⌉.

that G′ ∈ An−2, and we note that f(G′) = 75−2/5f(G). Consider any spanning forest F ′

of G′ − {uv, uw, vw} = G − {x, y} that can be extended to a spanning tree of G′ by adding
(possibly 0) edges in {uv, uw, vw}. We show that the ratio between the number of spanning trees
of G that contain F ′ and the number of spanning trees of G′ that contain F ′ is at least 20

3 .

• If u, v and w belong to 3 different components of F ′, then there are exactly 3 spanning trees
of G′ that contains F ′: they are obtained by adding any 2 edges from the triangle uvw.
On the other hand, there are 20 spanning trees of G than contain F ′, obtained by adding
to F ′ a spanning tree of G[u, v, w, x, y] ∼ D5.

• If exactly 2 vertices among u, v, w are in a same component of F ′, then F ′ has exactly 2
components and we assume, (by symmetry), that u, v are in the same component and w is
in a different component. Then there are exactly 2 spanning trees of G′ that contain F ′:
they are obtained by adding to F ′ either of the 2 edges uw and vw. On the other
hand, adding to F ′ any spanning forest of G[u, v, w, x, y] ∼ D5 composed of 2 trees Tu

and Tv separating u and v yields a spanning tree of G that contains F ′. As reported
earlier, since u and v are not adjacent in G[u, v, w, x, y], the number of such forests
is τ(G[u, v, w, x, y] + uv) − τ(G[u, v, w, x, y]) = 40 − 20 = 20.

• If all of u, v, w are in one component of F ′, then necessarily F ′ is a spanning tree of G′.
Moreover, there are 15 spanning trees of G that contain F ′, obtained by adding to F ′ either
the edge xy and one of the 6 edges between {x, y} and {u, v, w}; or one of the 3 edges
in {xu, xv, xw} and one of the 3 edges in {yu, yv, yw}.

We deduce that τ(G) ⩾ 20
3 · τ(G′). If G′ /∈ E , then τ(G′) ⩾ f(G′) = 75−2/5f(G), and we hence

conclude that τ(G) ⩾ 20
3 · 75−2/5f(G) > f(G).

If G′ ∈ E , then G is one of the two graphs of Figure 4, which however is impossible as
then τ(G) > f(G). ⌟

(F). The graph G has no subgraph isomorphic to the diamond D4.

Proof. Suppose, on the contrary, that the subset of vertices {u, v, x, y} induces a diamond in G,
where u and v are not adjacent. By (E), we know that NG(x) ∩ NG(y) = {u, v}. Let G′ be

9
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Figure 4: The graph H5 (left) satisfies τ(H5) = 1200 > 1001 = ⌈f(H5)⌉; and the graph H6

(right) satisfies τ(H6) = 3610 > 2372 = ⌈f(H6)⌉.

obtained from G by adding an edge between u and v, and next contracting the edge xy to
produce a new vertex z. So {u, v, z} induces a triangle in G′, the degrees of u and v in G′ are
the same as those in G, and NG′(z) = (NG(x) ∪ NG(y)) \ {x, y}. We have G′ ∈ An−1 and we
observe that f(G′) = 75−1/5f(G), whatever the degrees of x and y in G are — each of them
being either 3 or 4.

We now consider any spanning forest F ′ of G′ − {uv, uz, vz} that is contained in a spanning
tree of G′. We recall that if x has in G a neighbour x′ not in {u, v, y}, then in the sequel we
identify the edge xx′ of G with the edge zx′ of G′; and we do similarly for y. This allows us
to consider F ′ as a forest contained in G, which necessarily separates x and y. We next prove
that the ratio between the number of spanning trees of G that contain F ′ and the number of
spanning trees of G′ that contain F ′ is at least 5

2 .

• If u, v and z are all in different components of F ′, then F ′ is contained in exactly τ(K3) = 3
spanning trees of G′. On the other hand, there are 8 spanning trees of G that contain F ′,
all obtained by adding to F ′ one of the 8 spanning trees of G[u, v, x, y] ∼ D4.

• If u and v are in a same component of F ′, different from that of z, then F ′ is contained
in exactly 2 spanning trees of G′: they are obtained by adding to F ′ either the edge zu

or the edge zv. On the other hand, F ′ is contained in 8 spanning trees of G, obtained
by adding to F ′ a spanning forest of G[V ′] ∼ D4 composed of 2 trees separating u and v.
There are τ(G[V ′] + uv) − τ(G[V ′]) = 16 − 8 = 8 such forests.

• If z is in the same component of F ′ as exactly one of u and v, say u by symmetry, then F ′

is again contained in exactly 2 spanning trees of G′. On the other hand, F ′ is contained
in 5 spanning trees of G, obtained as follows: assuming by symmetry that F ′ (now viewed
as a subgraph of G) contains a path between u and x, and thus not between u and y, we
obtain a spanning tree of G by adding to F ′ any spanning forest of G[V ′] composed of 2
trees separating u and x. There are τ(G[V ′]) − τ(G[V ′] − ux) = 8 − 3 = 5 such forests.

• If all of u, v, z are in a same component of F ′, then F ′ is a spanning tree of G′. On the
other hand, F ′ is contained in 3 spanning trees of G, obtained as follows. We assume by
symmetry that F ′, now viewed as a subgraph of G, has a path between u and x, and thus
not between u and y. If y and v are in different components of F ′, then we add to F ′ any
of the 3 edges between y and {u, v, x}; while if F ′ contains also a path between v and y,
then we add to F ′ any of the 3 edges in {xv, xy, yu}.

10



We deduce that τ(G) ⩾ 5
2 · τ(G′). If G′ /∈ E , then τ(G′) ⩾ f(G′) = 75−1/5f(G), and we hence

conclude that τ(G) ⩾ 5
2 · 75−1/5f(G) > f(G).

If G′ ∈ E , then observe that G′ must be isomorphic K−
6 . Indeed, otherwise G′ is K5, and

then G must be K−
6 , and thus belongs to E , which is not the case. If now G′ is K−

6 , then G must
be isomorphic to the graph depicted in Figure 5, which contradicts that G is a counter-example.

⌟

u

x

v

y

Figure 5: The graph H7 satisfies τ(H7) = 1183 > 1001 = ⌈f(H7)⌉.

We now show that G has clique number 2.

(G). The graph G does not contain a triangle.

Proof. Suppose, on the contrary, that V ′ = {x, y, z} induces a triangle in G. Observe that (F)
implies that every vertex of G not in V ′ has at most 1 neighbour in V ′. The analysis is best
treated under three cases, regarding the degrees of x, y and z.

• If degG(x)+degG(y)+degG(z) ⩽ 10, then |NG(x)∪NG(y)∪NG(z)\V ′| ⩽ 4. Consequently,
if G′ is obtained from G by contracting V ′ into a single vertex v′, then G′ ∈ An−2.
Moreover, τ(G) = τ(K3) · τ(G′) = 3τ(G′). Observe now that f(G′) = 75−1/5f(G), as can
be seen by considering degG′(v′) and recalling that at most 2 vertices of V ′ have degree 4 in G,
the third one then having degree 2. Therefore, if G′ /∈ E then τ(G) ⩾ 3 ·75−1/5f(G) > f(G).
We deduce that G′ ∈ E . However, this contradicts (D) or (F). Indeed, if G′ = K5,
then letting a, b, c, d be the 4 vertices of G outside V ′, necessarily G[{a, b, c, d}] ∼ K4.
If G′ = K−

6 , then let a, b, c, d, e be the 5 vertices of G outside V ′, such that e is adjacent
to no vertex in V ′. Necessarily, a vertex in V ′ has at least 2 neighbours among a, b, c, d.
These 3 vertices thus induce a triangle in G, and the vertex e is adjacent to exactly 2 of
them, thereby forming a copy of D4 in G.

• If 2 vertices in V ′ have degree 4, say x and y, and z has degree 3, then let G0 = G − z.
Call w the unique neighbour of z not in V ′. Notice that G0 ∈ An−1 because G has no
cut-vertex by (B) and, if w has degree 2 in G, then (C) implies that the other neighbour
of w in G is either x or y, which would contradict (F). By the deletion-contraction
formula, τ(G0) = τ(G′

0) + τ(G′′
0) where G′

0 = G0 − xy and G′′
0 is obtained from G0 by

contracting the edge xy into a new vertex x′′. We observe that G′
0 ∈ An−1 and G′′

0 ∈ An−2

because none of x, y and z is a cut-vertex in G, by (B), and z has degree 3 while x and y

have degree more than 2 in G. Furthermore, f(G′
0) = 75−3/5f(G) and f(G′′

0) = 75−2/5f(G).
Last, we also note that none of G′

0 and G′′
0 belongs to E , as both contain a vertex of degree 2

or 3, namely w.

11



x

y z

x

y z

Figure 6: The graph H8 (left) satisfies τ(H8) = 12096 > 5625 = f(H8); and the graph H9 (right)
satisfies τ(H9) = 12480 > 5625 = f(H9).

Consider an arbitrary spanning tree T ′ of G′
0. Then T ′ is a spanning tree of G0 that does

not use the edge xy. Adding to T ′ any of the 3 edges of G incident with z yields a spanning
tree of G that contains T ′, and precisely 1 edge in {xy, zx, zy, zw}. As G′

0 /∈ E , we thus
obtain in total at least 3 · 75−3/5f(G) such spanning trees of G.

Consider an arbitrary spanning tree T ′′ of G′′
0. The edge set of T ′′ forms a spanning forest

of G with exactly 3 components, one composed only of the vertex z, one containing both w

and either x or y, say x by symmetry, and another one containing y. Each such forest extends
into 5 different spanning trees of G, by adding to it any pair of edges in {xy, xz, yz, zw}
but the pair {xz, zw}. As G′′

0 /∈ E , we thus obtain in total at least 5 · 75−2/5 spanning trees
of G, all containing precisely 2 edges in {xy, zx, zy, zw}.

In total, we have thus obtained at least (5 · 75−2/5 + 3 · 75−3/5)f(G) spanning trees of G,
which is more than f(G).

• It remains to deal with the case where each of x, y and z has degree 4 in G. First consider
the graph Gxy obtained from G by deleting the edges zx and zy, and contracting the
edge xy into a new vertex. Then Gxy ∈ An−1 by (B), and since z has degree 2 in Gxy,
we further know that Gxy /∈ E . Consequently, τ(Gxy) ⩾ f(G′) = 75−2/5f(G). Adding the
edge xy to any spanning tree of Gxy yields a spanning tree of G that contains the edge xy,
but none of the edges zx and zy. We thus obtain at least 75−2/5f(G) such spanning
trees of G. Using an analogous argument where we contract xz or yz instead of xy, we
in total obtain 3 · 75−2/5 different spanning trees of G, each containing precisely 1 edge
in {xy, xz, yz}.

Second, consider the graph G1 obtained by contracting the whole triangle xyz into a single
new vertex u, which thus has degree 6. We observe that it is possible to completely lift the
vertex u, unless G has precisely 9 vertices and the 6 vertices not in {x, y, z} induce a copy
of K3,3. Indeed, let N = NG({x, y, z}) \ {x, y, z}. The 6-vertex subgraph of G induced
by N has maximum degree at most 3, and at least 2 of its vertices have degree at most 2
unless G has precisely 9 vertices, because G has no cut-vertex by (B). From there, the
facts that G has no K4 and no D4, by (D) and (F), yield the statement quickly. We deduce
that if u cannot be completely lifted, then G is either the graph H8 or the graph H9, both
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depicted in Figure 6. However, none of these graphs contradicts Theorem 1.2, so that u

can indeed be completely lifted in G1, yielding a graph G′ ∈ An−3. Theorem 1.4 then
guarantees that τ(G1) ⩾ 8

3τ(G′).

Now, if the graph G′ thus obtained belongs to E , then G′ = K−
6 , since |V (G′)| ⩾ 6. It

follows that the 6 vertices not in V ′ induce a 4-vertex path P with two additional vertices,
both joined to the end-vertices of P , and to one of the inner vertices of P , in a way that
every vertex has degree 3. Using that G contains no diamond by (F), we infer that G is
one of the 4 graphs depicted in Figure 7. However, none of them is a counter example to
Theorem 1.2, and therefore G′ /∈ E . Consequently, τ(G′) ⩾ f(G′) = 75−3/5f(G). We deduce
that τ(G1) ⩾ 8

3 · 75−3/5f(G). Observe now that every spanning tree of G1 yields τ(K3) = 3
different spanning trees of G, thus yielding at least 8 · 75−3/5f(G) different spanning trees
of G, each containing precisely 2 edges in {xy, xz, yz}.

In total, we have constructed (3 · 75−2/5 + 8 · 75−3/5)f(G) different spanning trees of G,
which is more than f(G). This concludes the proof.

⌟
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Figure 7: In these pictures, the triangle xyz is not shown, but from each vertex starts an arrow
pointing to its unique neighbour in the triangle xyz. The graphs are named H10, . . . , H13 from
left to right. We note that f(Hi) = 5625 for each i ∈ {10, . . . , 13}. We have τ(H10) = 12096;
τ(H11) = 12321; τ(H12) = 11729 and τ(H13) = 11520.

We can now prove our last property of the graph G, that the neighbours of any vertex of
degree 4 must induce a subgraph with at least 1 edge.

(H). If x is a vertex of degree 4 in G, then G[NG(x)] is not empty.

Proof. Suppose, on the contrary, that NG(x) = {a, b, c, d} induces no edge in G. We consider
the 3 graphs that may be formed by doing a complete lift at x: we can indeed completely lift
the vertex x, and it amounts to deleting x and adding the edges of a perfect matching between
its neighbours. Thus, from G − x, we obtain G1 by adding the edges in M1 = {ab, cd}; G2 by
adding the edges in M2 = {ac, bd}; and G3 by adding the edges in M3 = {ad, bc}. As x is not a
cut-vertex of G by (B), we have G1, G2, G3 ∈ An−1. Moreover, since G[NG(x)] is empty, we see
that G1, G2, G3 /∈ E . Therefore τ(Gj) ⩾ f(Gj) = 75−1/5f(G) for each j ∈ {1, 2, 3}.

Now we consider all spanning forests of G − x that are contained in a spanning tree of G.
Note that they include all spanning forests of Gi − Mi that are contained in a spanning tree
of Gi. We classify in Table 1 all these forests of G − x into 15 types, regarding which vertices
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Type Forest type G G1 G2 G3

1 a, b, c, d 1 0 0 0
2 ab, c, d 2 0 1 1
3 ac, b, d 2 1 0 1
4 ad, b, c 2 1 1 0
5 bc, a, d 2 1 1 0
6 bd, a, c 2 1 0 1
7 cd, a, b 2 0 1 1
8 ab, cd 4 0 2 2
9 ac, bd 4 2 0 2

10 ad, bc 4 2 2 0
11 a, bcd 3 1 1 1
12 b, acd 3 1 1 1
13 c, abd 3 1 1 1
14 d, abc 3 1 1 1
15 abcd 4 1 1 1

Table 1: All the possible types of spanning forests of G − x, along with the number of ways to
extend them into spanning trees of G, G1, G2 and G3.

among a, b, c, d belong to the same component — really, only 5 types up to the symmetry of the
roles played by the neighbours of x. For each such type, we calculate the number of ways each
corresponding forest may be extended into a spanning tree of G, G1, G2 and G3 — this number
indeed depends only on the type of the forest.

For each i ∈ {1, . . . , 15}, let fi be the number of forests of type i, let λi be the number of
ways to extend a forest of type i to a tree of G, and let λi,j be the number of ways to extend a
forest of type i to a tree of Gj .

We have

τ(G) =
15∑

i=1
λifi and ∀j ∈ {1, 2, 3}, τ(Gj) =

15∑
i=1

λi,jfi. (2)

We further read off from Table 1 that

∀i ∈ {1, . . . , 15}, λi ⩾ λi,1 + λi,2 + λi,3.

Consequently, (2) now implies that τ(G) ⩾ τ(G1) + τ(G2) + τ(G3). As noted earlier, τ(Gj) ⩾
f(Gj) = 75−1/5f(G) for each j ∈ {1, 2, 3}, and hence τ(G) ⩾ 3 · 75−1/5f(G) > f(G). This
contradiction concludes the proof. ⌟

We are now ready to demonstrate Theorem 1.2.

Proof of Theorem 1.2. Suppose the existence of a smallest positive integer n such that there
exists G ∈ An \ E with τ(G) < f(G). Clearly, n ⩾ 4. Moreover, G ̸= K4 as τ(K4) = 16 > 13 =
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⌈f(K4)⌉. If G has maximum degree less than 4, then Theorem 1.1 implies that G ⩾ 23(n3+2)/4 >

75n3/10 as 23/4 > 751/10. Therefore, G contains a vertex v of degree 4. By (H), there are 2
neighbours u and w of v that are adjacent in G. Consequently, {u, v, w} induces a triangle in G,
which contradicts (G).
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