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Abstract: We study the structure of self-orthogonal and self-dual codes over two non-unital rings
of order four, namely, the commutative ring I =

〈
a, b | 2a = 2b = 0, a2 = b, ab = 0

〉
and the non-

commutative ring E =
〈

a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b
〉
. We use these structures to

give mass formulas for self-orthogonal and self-dual codes over these two rings, that is, we give the
formulas for the number of inequivalent self-orthogonal and self-dual codes, of a given type, over the
said rings. Finally, using the mass formulas, we classify self-orthogonal and self-dual codes over each
ring, for small lengths and types.

Keywords: code over ring; non-unital ring; self-orthogonal code; quasi self-dual; self-dual code; mass
formulas

MSC: 94B05; 16D10

1. Introduction

Coding theory has been classically studied using finite fields as alphabets [1–11]. In the
last thirty years, rings have been used instead of finite fields, i.e., linear codes are defined
as modules over a ring [12–17]. There have been many studies on codes over different
rings, but most of these are commutative rings, and in almost all cases rings with unity.
Recently, there has been interest in non-unital rings of order four [18–22]. The nonexistence
of a unity in this ring makes it difficult to deal with usual concepts such as self-duality.
For this reason, the notion of quasi self-dual (QSD) codes was introduced. Naturally, it is
interesting to look at a bigger class of codes called self-orthogonal codes, which contains
self-dual, or in this case, QSD codes.

We begin with some basic concepts about codes over rings. A linear code C of length n
over a ring R is an R-submodule of the Rn module if R is a commutative ring or a one-sided
R-submodule of the Rn module if R is a noncommutative ring. All codes in this paper
are linear codes. Every element of the code is called a codeword. A generator matrix for
C is a matrix G ∈ Mk×n(R) whose rows generate the code, and none of the rows can be
written as a linear combination of the other rows. For a matrix G ∈ Mk×n(R), we denote by
RkG the code of length n over R with generator matrix G. In this paper, we will consider
two non-unital rings of order four, namely, the rings I and E in the classification of [23,24].
These rings are given by

I =
〈

a, b | 2a = 2b = 0, a2 = b, ab = 0
〉

and
E =

〈
a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b

〉
.
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It is clear from the multiplication tables that both of these rings do not contain a unity
and, in addition, the ring I is commutative while the ring E is noncommutative. We will
look at the structures of codes over these rings. Like in the case of linear codes over rings
with unity of order four, like Z4 [25] and F2 + uF2 [26], we establish the generator matrix
for codes over the rings I and E and introduce the notion of residue and torsion codes.
From the dimensions of these codes, we define the type of code. Then, given a generator
matrix for a code C of a given type over the said rings, we also want to obtain the generator
matrices for the residue and torsion codes for C. We will look at the conditions for the
residue and torsion codes so that C is self-orthogonal, as well as self-dual. Using these
conditions, we will establish a mass formula for self-orthogonal and self-dual codes over
each of the rings I and E, similar to the work presented in [27]. Let C be the class of codes
of length n and of the given type we need to classify. Then, counting orbits under the action
of the symmetric group Sn on n letters leads to the equation

∑
D

n!
|Aut(D)| = |C|,

where D runs over a system of distinct representatives of equivalence classes of codes of C.
Classically this equation is written in the form

∑
D

1
|Aut(D)| =

|C|
n!

.

Computing the left-hand side one orbit at a time works as a stopping criterion in
the classification of codes when it adds up to reach the quantity in the right-hand side.
Calculating |C| is a challenging problem in linear algebra over rings, and that is what we
accomplish in this article.

The material is arranged as follows. Section 2 sets up basic notions and notation for
codes over I. Section 3 studies them in light of the residue and torsion codes. Sections 4 and 5
follow the same course as Sections 2 and 3 but for codes over E. The mass formulas are es-
tablished in Section 6. Section 7 is dedicated to classification in short lengths for fixed types.

2. Codes over I

In this section, we consider the ring I and recall some concepts about this ring
from [19,21]. The ring I is given by

I =
〈

a, b | 2a = 2b = 0, a2 = b, ab = 0
〉

.

It has characteristic two and consists of four elements: I = {0, a, b, c}, with c = a + b. The
addition and multiplication tables are as follows.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

× 0 a b c
0 0 0 0 0
a 0 b 0 b
b 0 0 0 0
c 0 b 0 b

Observe that I is a non-unital commutative ring. It is a local ring whose maximal ideal
is J = {0, b} and residue field F2, the binary field. We define a natural action of F2
on I by the rule r0 = 0r = 0 and r1 = 1r = r, for all r ∈ I. For all r ∈ I, this action is
distributive in the sense that r(s⊕ t) = rs+ rt, where⊕ denotes the addition in F2, s, t ∈ F2.
Moreover, every r ∈ I can be written as

r = as + bt,
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where s, t ∈ F2. Denote by αI : I → I/J ' F2 the map of the reduction modulo J.
We have αI(0) = αI(b) = 0 and αI(a) = αI(c) = 1. This map can be extended in the natural
way from In to Fn

2 .
A (linear) code over I, or simply an I-code, of length n is an I-submodule of In.

There are two binary codes associated with a code C over I, namely,

res(C) = {αI(y) | y ∈ C} and tor(C) = {x ∈ Fn
2 | bx ∈ C},

called the residue and torsion codes of C, respectively. Note that res(C) ⊆ tor(C). If k1 is
the dimension of res(C) and k1 + k2 is the dimension of tor(C), then

|C| = |res(C)||tor(C)| = 22k1+k2 .

Such code C is said to be of type {k1, k2}. An I-code C is said to be free if and only if k2 = 0,
that is, res(C) = tor(C).

By Theorem 1 in [19], every code of length n over I of type {k1, k2} is permutation-
equivalent to a code with a generator matrix(

aIk1 aX Y
0 bIk2 bZ

)
, (1)

where Ij is the j× j identity matrix, X and Z are binary matrices, and Y ∈ Mk1×(n−k1−k2)
(I).

In fact, generator matrices of res(C) and tor(C) are given by

(
Ik1 X αI(Y)

)
and

(
Ik1 X αI(Y)
0 Ik2 Z

)
,

respectively.
We equip In with the standard inner product x · y = ∑n

i=1 xiyi, for x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ In. The dual of an I-code C is defined as C⊥ = {v ∈ In | u · v = 0 for
all u ∈ C}. We say that a code C is self-orthogonal if C ⊆ C⊥, and self-dual if C = C⊥.
An I-code C is self-orthogonal if and only if res(C) is a binary self-orthogonal code.

Example 1. Any I-code C of length n and type {0, k2} is a self-orthogonal code for all k2 ≤ n.

If C is a self-dual I-code of length n with type {k1, k2}, then n = 2k1 + k2 (see Theorem
2 in [19]). We state the following useful results from [21].

Theorem 1 (Theorem 5 in [21]). A linear code C of length n over I is self-dual if and only if the
following two conditions are satisfied:

1. res(C) is a self-dual binary code;
2. tor(C) = Fn

2 .

Corollary 1 (Corollary 2 in [21]). If B is a self-dual binary code of length n, then B is a residue
code of a self-dual code of length n over I.

A code of length n is called quasi self-dual (QSD) if it is self-orthogonal and of size
2n. A linear I-code can never simultaneously be both QSD and self-dual (see Proposition 2
in [21]). We end this section with the following proposition.

Proposition 1.

1. For any positive integer n, there exists a QSD code over I of length n.
2. Let C = a res(C) + b tor(C) be an I-code with tor(C) = res(C) = res(C)⊥. Then C will be a

QSD code.
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Proof.

1. Let C = bFn
2 . Since uFn

2 ⊆ C⊥ for every u ∈ I, C ( C⊥ of size 2n.
2. If tor(C) = res(C), then C is a free code with n = 2k, where k is the dimension of

res(C). By Theorem 1 and Corollary 1, we have a self-orthogonal code C of size
22k = 2n.

3. Codes over I with Prescribed Residue and Torsion

Let C1 be a binary code of length n with dimension k1 and generator matrix(
Ik1 A

)
, (2)

and C2 be a binary code of length n with dimension k1 + k2 and generator matrix(
Ik1 A
0 D

)
, (3)

where A ∈ Mk1×(n−k1)
(F2), and D ∈ Mk2×(n−k1)

(F2) is of full row rank. Observe that
C1 ⊆ C2.

Lemma 1. Let C be a code of length n over I with res(C) = C1 and tor(C) = C2. Then, there
exists a matrix N ∈ Mk1×(n−k1)

(F2) such that the matrix(
aIk1 aA + bN

0 bD

)
(4)

is a generator matrix of C. If C is a free code, such a matrix N is unique.

Proof. Since the residue and torsion codes of C are C1 and C2, respectively, then for some
M1 ∈ Mk1×k1(F2) and M2 ∈ Mk1×(n−k1)

(F2),

Ik1+k2

(
aIk1 + bM1 aA + bM2

0 bD

)
⊆ C.

By an elementary row operation,

C ⊇ Ik1+k2

(
Ik1 + cM1 0

0 Ik2

)(
aIk1 + bM1 aA + bM2

0 bD

)
= Ik1+k2

(
aIk1 aA + b(M2 + M1 A)

0 bD

)
.

Taking N = M2 + M1 A, we have

|C| ≥
∣∣∣∣Ik1+k2

(
aIk1 aA + bN

0 bD

)∣∣∣∣ = 22k1+k2 = |C1||C2| = |C|.

Therefore, C has a generator matrix (4). Let C be a free code and suppose there exist
N1, N2 ∈ Mk1×(n−k1)

(F2) such that

Ik1
(
aIk1 aA + bN1

)
= Ik1

(
aIk1 aA + bN2

)
.

Then, aA + bN1 = aA + bN2, which implies that N1 = N2.

For the remainder of this section, assume that C1 ⊆ C⊥1 . Then,

Ik1 + AA> = 0. (5)
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It follows from (5) that A is of full row rank.

Lemma 2. The number of free self-orthogonal codes over I with residue code C1 is

2k1(n−k1).

Proof. Suppose C is a free I-code with residue code C1. Then, by Lemma 1, C has a
generator matrix

(
aIk1 aA + bN

)
, for some unique N ∈ Mk1×(n−k1)

(F2). Note that C is
self-orthogonal if and only if(

aIk1 aA + bN
)(

aIk1 aA + bN
)>

= 0.

Observe that by (5),

(aIk1)(aIk1) + (aA + bN)(aA + bN)> = b(Ik1 + AA>) = 0,

for any N ∈ Mk1×(n−k1)
(F2). Hence, the number of free self-orthogonal codes C over I with

residue code C1 is∣∣∣{N ∈ Mk1×(n−k1)
|
(

aIk1 aA + bN
)(

aIk1 aA + bN
)>

= 0
}∣∣∣ = 2k1(n−k1). (6)

Now, we define the sets

X =
{
C | C ⊆ In, type {k1, 0}, C ⊆ C⊥, res(C) = C1

}
and

X′ =
{
C ′ | C ′ ⊆ In, C ′ ⊆ C ′⊥, res(C ′) = C1, tor(C ′) = C2

}
.

Lemma 3. Suppose C ∈ X. Then, there exists a unique code C ′ ∈ X′ such that C ⊆ C ′.

Proof. Since C ∈ X, by Lemma 1, C has a generator matrix
(
aIk1 aA + bN

)
for some

unique matrix N. Let C ′0 be a code with generator matrix(
aIk1 aA + bN

0 bD

)
.

The code C ′0 satisfies res(C ′0) = C1 and tor(C ′0) = C2.
Clearly, C ⊆ C ′0. Since C ∈ X, C ′0 is self-orthogonal and hence, C ′0 ∈ X′. Suppose C ⊆ C ′

for some C ′ ∈ X′. Note that C ′ has torsion code C2. Thus, by Lemma 1, Ik2(0 bD) ⊆ C ′ and
so C ′0 ⊆ C ′. Observe that

∣∣C ′0∣∣ = |C1||C2| = 22k0+k1 = |C ′|. Therefore, C ′0 = C ′.

Lemma 4. If C ′ ∈ X′, then |{C ∈ X|C ⊆ C ′}| = 2k1k2 .

Proof. By Lemma 1, C ′ has a generator matrix (4). We define the map

ψ : Mk1×k2(F2) −→
{
C ∈ X | C ⊆ C ′

}
M 7−→ Ik1

(
aIk1 aA + b(N + MD)

)
.

Observe that ψ is well defined. Now, we will show that ψ is bijective. If M1, M2 ∈
Mk1×k2(F2) such that ψ(M1) = ψ(M2), then

Ik1
(

aIk1 aA + b(N + M1D)
)
= Ik1

(
aIk1 aA + b(N + M2D)

)
.

Therefore, aA + b(N + M1D) = A + b(N + M2D). Hence, N + M1D = N + M2D. Since
D is of full row rank, we have M1 = M2. Therefore, ψ is injective.
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Suppose C ∈ X and C ⊆ C ′. By Lemma 1, C = Ik1
(

aIk1 aA + bH
)
, for some matrix

H. From the inclusion C ⊆ C ′, we have

aA + bH = aA + b(N + MD)

for some matrix M. Therefore, H = N + MD, which shows that ψ is surjective. Hence, ψ is
bijective. Thus, ∣∣{C ∈ X|C ⊆ C ′

}∣∣ = ∣∣Mk1×k2(F2)
∣∣ = 2k1k2 .

Now, we count self-orthogonal I-codes C with a given residue code and torsion code.

Theorem 2. Let C1 and C2 be binary codes of length n where C1 ⊆ C2 and C1 ⊆ C⊥1 .
If dim C1 = k1 and dim C2 = k1 + k2, then the number of self-orthogonal I-codes C of length n
with res(C) = C1 and tor(C) = C2 is

2k1(n−k1−k2).

Proof. We may assume without loss of generality that C1 and C2 are binary codes with
generator matrices (2) and (3), respectively. Now, we compute |X′|. By Lemmas 3 and 4,
we have

2k1k2
∣∣X′∣∣ = ∑

C ′∈X′

∣∣{C ∈ X|C ⊆ C ′
}∣∣ = ∑

C∈X

∣∣{C ′ ∈ X′|C ⊆ C ′
}∣∣ = ∑

C∈X
1 = |X|.

The result follows from Lemma 2.

Theorem 3. Let C1 be a binary self-dual code of length n. Then, the number of self-dual I-codes C
of length n with res(C) = C1 is equal to the number of self-dual binary codes of length n.

Proof. From Theorem 1, the number of self-dual I-codes C depends on the number of
self-dual codes over F2, and tor(C) = Fn

2 .

4. Codes over E

In this section, we consider another ring, E. We recall some concepts from [20,21].
The ring E is given by

E =
〈

a, b | 2a = 2b = 0, a2 = a, b2 = b, ab = a, ba = b
〉

.

Similar to I, this ring has characteristic two and consists of four elements: E = {0, a, b, c},
with c = a + b. The addition and multiplication tables are as follows.

+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

× 0 a b c
0 0 0 0 0
a 0 a a 0
b 0 b b 0
c 0 c c 0

Observe that E is a non-unital and noncommutative ring. It is a local ring whose maximal
ideal is J = {0, c} and residue field F2. We define a natural action of F2 on E by the
rule r0 = 0r = 0 and r1 = 1r = r for all r ∈ E. For all r ∈ E, this action is distribu-
tive in the sense that r(s ⊕ t) = rs + rt, where ⊕ denotes the addition in F2, s, t ∈ F2.
Moreover, every r ∈ E can be written as

r = as + ct,



Mathematics 2023, 11, 4736 7 of 17

where s, t ∈ F2. Denote by αE : E → E/J ' F2 the map of reduction modulo J. We have
αE(0) = αE(c) = 0 and αE(a) = αE(b) = 1. This map can be extended in the natural way
from En to Fn

2 .
A (linear) code over E, or E-code, of length n is a one-sided E-submodule of En.

We also associate the two following binary codes with a code C over E:

res(C) = {αE(y) | y ∈ C} and tor(C) = {x ∈ Fn
2 | cx ∈ C},

called the residue and torsion codes of C, respectively. Note that res(C) ⊆ tor(C). If k1 is
the dimension of res(C) and k1 + k2 is the dimension of tor(C), then

|C| = |res(C)||tor(C)| = 22k1+k2 .

As in I-codes, such a code C over E is said to be of type {k1, k2} and an E-code C is said to
be free if and only if k2 = 0, that is, res(C) = tor(C).

By Theorem 1 in [20], every code C of length n over E is permutation-equivalent to a
code with the generator matrix (

aIk1 X Y
0 cIk2 cZ

)
, (7)

where Ij is the j × j identity matrix, Z is a binary matrix, X ∈ Mk1×k2(E), and Y ∈
Mk1×(n−k1−k2)

(E). In fact, generator matrices of res(C) and tor(C) are given by

(
Ik1 αE(X) αE(Y)

)
and

(
Ik1 αE(X) αE(Y)
0 Ik2 Z

)
,

respectively.
We equip En with the standard inner product x · y = ∑n

i=1 xiyi, for x = (x1, . . . , xn),
y = (y1, . . . , yn) ∈ En. The right dual of C is the right module defined as

C⊥R = {y ∈ En | ∀ x ∈ C, x · y = 0}

and the left dual of C is the left module defined by

C⊥L = {y ∈ En | ∀ x ∈ C, y · x = 0}.

C is said to be left nice (respectively, right nice) if |C||C⊥L | = 4n (respectively, |C||C⊥R | = 4n).
If it is both left and right nice, it is said to be nice.

Furthermore, C is called right self-dual if C = C⊥R and left self-dual if C = C⊥L .
The two-sided dual of C, denoted by C⊥, is given by C⊥ = C⊥L ∩ C⊥R . We have C is
self-orthogonal if for all x, y ∈ C, x · y = 0, that is, C ⊆ C⊥, and self-dual if C = C⊥. We see
that if C is self-dual and of type {k1, k2}, then n = 2k1 + k2.

The following lemma shows the relationship between the residue and torsion codes of
a self-orthogonal code over E. The proof is given in [20].

Lemma 5. Let C be a self-orthogonal code of length n over E. Then,

1. res(C) is self-orthogonal, i.e., res(C) ⊆ res(C)⊥;
2. tor(C) ⊆ res(C)⊥;
3. tor(C) = res(C)⊥ if |C| = 2n.

In addition, C is quasi self-dual (QSD) if it is self-orthogonal and of size 2n. By
Remark 2 in [21], the notions of QSD codes and self-dual codes over E are equivalent. We
state the following theorems from [21].
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Theorem 4 (Theorem 14 in [21]). If C is a linear code of length n over E, then the following hold:

1. C is left self-dual if and only if C is free and res(C) is self-dual.
2. C is right self-dual if and only if C is of type {0, n}.

Theorem 5 (Theorem 15 in [21]). A linear code C over E is self-dual if and only if
res(C) = tor(C)⊥.

5. Codes over E with Prescribed Residue and Torsion

Similar to Section 2, we take C1 to be a binary code of length n with dimension k1 and
generator matrix (2) and C2 be a binary code of length n with dimension k1 + k2 and has
a generator matrix (3), where A ∈ Mk1×(n−k1)

(F2), and D ∈ Mk2×(n−k1)
(F2) is of full row

rank. Also, C1 ⊆ C2.

Lemma 6. Suppose C is a code of length n over E with res(C) = C1 and tor(C) = C2. Then, there
exists a matrix N ∈ Mk1×(n−k1)

(F2) such that the matrix(
aIk1 aA + cN

0 cD

)
(8)

is a generator matrix of C. If C is a free code, such a matrix N is unique.

Proof. Because the residue and torsion codes of C are C1 and C2, respectively, then for
some M1 ∈ Mk1(F2) and M2 ∈ Mk1×(n−k1)

(F2),

Ek1+k2

(
aIk1 + cM1 aA + cM2

0 cD

)
⊆ C.

By an elementary row operation,

C ⊇ Ek1+k2

(
Ik1 + cM1 0

0 Ik2

)(
aIk1 + cM1 aA + cM2

0 cD

)
= Ek1+k2

(
aIk1 aA + c(M2 + M1 A)

0 cD

)
.

Taking N = M2 + M1 A, we have

|C| ≥
∣∣∣∣Ek1+k2

(
aIk1 aA + cN

0 cD

)∣∣∣∣ = 22k1+k2 = |C1||C2| = |C|.

Therefore, C has a generator matrix (8). The proof that such matrix N is unique if C is a free
code is similar to Lemma 1.

For the remainder of this section, assume that C1 ⊆ C2 ⊆ C⊥1 . Then,

Ik1 + AA> = 0, (9)

DA> = 0. (10)

It follows from (9) that A is of full row rank. We define the mapping

βX : Mk×m(F2) −→ Mk×k(F2)

N 7−→ XN>,

where X ∈ Mk×m(F2). Note that βX is surjective if X is of full row rank.



Mathematics 2023, 11, 4736 9 of 17

Lemma 7. The number of free self-orthogonal codes over E with residue code C1 is

2k1(n−2k1).

Proof. Suppose C is a free E-code with residue code C1. By Lemma 6, C has a generator ma-
trix

(
aIk1 aA + cN

)
, for some unique N ∈ Mk1×(n−k1)

(F2). Note that C is self-orthogonal
if and only if (

aIk1 aA + cN
)(

aIk1 aA + cN
)>

= 0.

That is,

(aIk1)(aIk1) + (aA + cN)(aA + cN)> = a(Ik1 + AA>) + cNA> = cNA> = 0,

by (9). Since c 6= 0 and NA> is a binary matrix, we have NA> = 0. Hence, the number of
free self-orthogonal codes C with residue code C1 is

∣∣∣{N ∈ Mk1×(n−k1)
|AN> = 0}

∣∣∣ = |ker βA| =

∣∣∣Mk1×(n−k1)

∣∣∣
|Im βA|

= 2k1(n−k1)−k1k1 , (11)

since A is of full row rank.

Similar to ring I, we define the sets

Y =
{
C | C ⊆ En, type {k1, 0}, C ⊆ C⊥, res(C) = C1

}
and

Y′ =
{
C ′ | C ′ ⊆ En, C ′ ⊆ C ′⊥, res(C ′) = C1, tor(C ′) = C2

}
.

Lemma 8. Let C ∈ Y. Then, there exists a unique code C ′ ∈ Y′ such that C ⊆ C ′.

Proof. Since C ∈ Y, by Lemma 6, C has a generator matrix
(
aIk1 aA + cN

)
for some

unique matrix N. Let C ′0 be a code with generator matrix(
aIk1 aA + cN

0 cD

)
.

The code C ′0 satisfies res(C ′0) = C1 and tor(C ′0) = C2. Clearly, C ⊆ C ′0. Since
C ∈ Y, (10) implies C ′0 is self-orthogonal and hence, C ′0 ∈ Y′. Suppose C ⊆ C ′ for some
C ′ ∈ Y′. Since C ′ has torsion code C2, Ek2(0 cD) ⊆ C ′ by Lemma 6. Therefore, C ′0 ⊆ C ′.
Moreover,

∣∣C ′0∣∣ = |C1||C2| = 22k0+k1 = |C ′|. Hence, C ′0 = C ′.

Lemma 9. If C ′ ∈ Y′, then |{C ∈ Y|C ⊆ C ′}| = 2k1k2 .

Proof. By Lemma 6, C ′ has a generator matrix (8). Define the map

ψ : Mk1×k2(F2) −→
{
C ∈ X | C ⊆ C ′

}
M 7−→ Ek1

(
aIk1 aA + c(N + MD)

)
.

Clearly, ψ is well-defined. We will show that ψ is bijective. If M1, M2 ∈ Mk1×k2(F2) such
that ψ(M1) = ψ(M2), then

Ek1
(

aIk1 aA + c(N + M1D)
)
= Ek1

(
aIk1 aA + c(N + M2D)

)
which means aA + c(N + M1D) = A + c(N + M2D). Therefore, N + M1D = N + M2D.
Since D is of full row rank, we have M1 = M2. Hence, ψ is injective.
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Suppose C ∈ Y and C ⊆ C ′. By Lemma 6, C = Ek1
(

aIk1 aA + cF
)
, for some

matrix F. The inclusion C ⊆ C ′ implies that

aA + cF = aA + c(N + MD)

for some matrix M. Therefore, F = N + MD. Hence, the map ψ is surjective, and it follows
that ψ is bijective. Thus,∣∣{C ∈ Y|C ⊆ C ′

}∣∣ = ∣∣Mk1×k2(F2)
∣∣ = 2k1k2 .

Now, we count self-orthogonal E-codes C with a given residue code and torsion code.

Theorem 6. Let C1 and C2 be binary codes of length n where C1 ⊆ C2 ⊆ C⊥1 . If dim C1 = k1
and dim C2 = k1 + k2, then the number of self-orthogonal E-codes C of length n with res(C) = C1
and tor(C) = C2 is

2k1(n−2k1−k2).

Proof. We may assume without loss of generality that C1 and C2 are binary codes with
generator matrices (2) and (3), respectively. The codes C1 and C2 satisfy the conclusions
(1)–(2) of Lemma 5. Now, we have to compute |Y′|. By Lemmas 8 and 9, we have

2k1k2
∣∣Y′∣∣ = ∑

C ′∈Y′

∣∣{C ∈ Y|C ⊆ C ′
}∣∣ = ∑

C∈Y

∣∣{C ′ ∈ Y′|C ⊆ C ′
}∣∣ = ∑

C∈Y
1 = |Y|.

The result follows from Lemma 7.

6. Mass Formula for Self-Orthogonal Codes over I and E

Let Φ(n, k1) denote the number of distinct self-orthogonal binary codes of length n

and dimension k1, given in [28]. We define the Gaussian coefficient
[

n
m

]
q

for m ≤ n as

[
n
m

]
q
=

(qn − 1)(qn − q) · · · (qn − qm−1)

(qm − 1)(qm − q) · · · (qm − qm−1)
,

which gives the number of subspaces of dimension m contained in an n-dimensional vector
space over Fq.

We now have the following mass formula for self-orthogonal codes over I.

Theorem 7. Let MI(n, k1, k2) denote the number of distinct self-orthogonal codes of length n over
I of type {k1, k2}. We have

MI(n, k1, k2) = Φ(n, k1)

[
n− k1

k2

]
2
2k1(n−k1−k2).

Proof. If C is a self-orthogonal code of length n over I of type {k1, k2}, then by set-
ting C1 = res(C) and C2 = tor(C), we see that C1 and C2 satisfy Lemma 3 in [19] and
res(C) ⊆ tor(C). There are Φ(n, k1) self-orthogonal binary codes C1 of length n. Given

C1, there are
[

n− k1
k2

]
2

codes C2 such that C1 ⊆ C2 ⊆ Fn
2 . Then, the result follows from

Theorem 2.

We have the following mass formula for quasi self-dual codes over I as a direct
consequence of the previous theorem.
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Corollary 2. The number of quasi self-dual codes of length n over I is given by

∑
0≤k1≤b n

2 c
Φ(n, k1)

[
n− k1

n− 2k1

]
2
2k2

1 . (12)

Proof. Since quasi self-dual codes are self-orthogonal codes of type {k1, n − 2k1}, the
number of quasi distinct self-dual codes of length n over I is given by

∑
0≤k1≤b n

2 c
MI(n, k1, n− 2k1) = ∑

0≤k1≤b n
2 c

Φ(n, k1)

[
n− k1

n− 2k1

]
2
2k1(n−k1−n+2k1)

= ∑
0≤k1≤b n

2 c
Φ(n, k1)

[
n− k1

n− 2k1

]
2
2k1(k1).

Note that Corollary 2 agrees with Theorem 5 in [19].

Corollary 3. For an even integer n, the number of self-dual codes of length n over I is given by

Φ
(

n,
n
2

)
, (13)

where Φ
(
n, n

2
)

is the number of self-dual binary codes of length n.

Proof. By Theorem 3, the number of self-dual I-codes C of length n depends on the number
of self-dual binary residue codes and tor(C) = Fn

2 .

And we have the following mass formula for self-orthogonal codes over E.

Theorem 8. Let ME(n, k1, k2) denote the number of distinct self-orthogonal codes of length n over
E of type {k1, k2}. We have

ME(n, k1, k2) = Φ(n, k1)

[
n− 2k1

k2

]
2
2k1(n−2k1−k2).

Proof. If C is a self-orthogonal code of length n over E of type {k1, k2}, then by setting
C1 = res(C) and C2 = tor(C), we see that C1 and C2 satisfy (1)–(2) of Lemma 5 and
res(C) ⊆ tor(C). There are Φ(n, k1) self-orthogonal binary codes C1 of length n. Given C1,

there are
[

n− 2k1
k2

]
2

codes C2 such that C1 ⊆ C2 ⊆ C⊥1 . Then, the result follows from

Theorem 6.

We now have the following mass formula for self-dual codes over E as a direct
consequence of the previous theorem.

Corollary 4. The number of self-dual codes of length n over E is given by

∑
0≤k1≤b n

2 c
Φ(n, k1). (14)
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Proof. Note that self-dual codes are self-orthogonal codes of type {k1, n − 2k1}.
Therefore, the number of distinct self-dual codes of length n over E is given by

∑
0≤k1≤b n

2 c
ME(n, k1, n− 2k1) = ∑

0≤k1≤b n
2 c

Φ(n, k1)

[
n− 2k1
n− 2k1

]
2
2k1(n−2k1−n+2k1)

= ∑
0≤k1≤b n

2 c
Φ(n, k1).

Note that Corollary 4 means classifying self-dual codes over E reduces to a classifica-
tion of binary self-orthogonal codes, which agrees with [20], page 13.

Corollary 5. The number of left self-dual codes of length n over E is given by

Φ(n,
n
2
). (15)

Proof. By Theorem 4, the number of left self-dual codes is given by

ME(n,
n
2

, 0) = Φ(n,
n
2
)

[
n− 2 n

2
0

]
2
2

n
2 (n−2 n

2−0) = Φ(n,
n
2
),

since left self-dual codes are free codes with self-dual binary residue codes.

Proposition 2. There is a unique right self-dual code over E of length n.

Proof. By Theorem 4, the code C = cFn
2 with type {0, n} is the unique right self-dual code

over E of length n.

7. Classification

We illustrate how the mass formula can be used in the classification of self-orthogonal
codes, that is, we find representatives for the equivalence classes of self-orthogonal codes
for each length and type. The set of representatives C is complete if the mass formula in
Theorem 7 or 8 equals

∑
C∈C

n!
|Aut(C)|

where Aut(C) is the automorphism group of C.

Example 2. Let C be the set of self-orthogonal codes of length 3 over I of type {1, 1} given by the
following generator matrices:

{(
a a 0
0 b 0

)
,
(

a a 0
0 b b

)
,
(

a a 0
0 0 b

)
,
(

a c 0
0 b b

)
,
(

a c 0
0 0 b

)
,
(

a a b
0 b 0

)}
.

The codes in C are inequivalent and each has an automorphism group of order 2. Therefore,

∑
C∈C

3!
|Aut(C)| = 6

(
6
2

)
= 18.

From 7,

MI(3, 1, 1) = Φ(3, 1)
[

2
1

]
2
21(3−1−1) = (3)(3)(2) = 18,

which shows that there are exactly six self-orthogonal codes over I of length 3 and type {1, 1}, up
to equivalence.
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Table 1 is the classification of self-orthogonal codes over I for short lengths.

Table 1. Inequivalent self-orthogonal codes of length n ≤ 3 over I .

n {k1, k2} Generator Matrix |Aut(C)| Weight Distribution

2 {0, 1}
(

0 b
)

1 [< 0, 1 >,< 1, 1 >](
b b

)
2 [< 0, 1 >,< 2, 1 >]

{0, 2}
(

b 0
0 b

)
2 [< 0, 1 >,< 1, 2 >,< 2, 1 >]

{1, 0}
(

a u
)

2 [< 0, 1 >,< 2, 3 >]

u ∈ {a, c}

{1, 1}
(

a a
0 b

)
2 [< 0, 1 >,< 1, 2 >,< 2, 5 >]

3 {0, 1}
(

b 0 0
)

2 [< 0, 1 >,< 1, 1 >](
b b 0

)
2 [< 0, 1 >,< 2, 1 >](

b b b
)

6 [< 0, 1 >,< 3, 1 >]

{0, 2}
(

b 0 0
0 b 0

)
2 [< 0, 1 >,< 1, 2 >,< 2, 1 >](

b 0 b
0 b 0

)
2 [< 0, 1 >,< 1, 1 >,< 2, 1 >,< 3, 1 >](

b 0 b
0 b b

)
6 [< 0, 1 >,< 2, 3 >]

{0, 3}

 b 0 0
0 b 0
0 0 b

 6 [< 0, 1 >,< 1, 3 >,< 2, 3 >,< 3, 1 >]

{1, 0}
(

a u 0
)

2 [< 0, 1 >,< 2, 3 >]

u ∈ {a, c}(
a u b

)
2 [< 0, 1 >,< 2, 1 >,< 3, 2 >]

u ∈ {a, c}

{1, 1}
(

a a 0
0 b 0

)
2 [< 0, 1 >,< 1, 2 >,< 2, 5 >](

a u 0
0 b b

)
2 [< 0, 1 >,< 2, 5 >,< 3, 2 >]

u ∈ {a, c}(
a u 0
0 0 b

)
2 [< 0, 1 >,< 1, 1 >,< 2, 3 >,< 3, 3 >]

u ∈ {a, c}(
a a b
0 b 0

)
2 [< 0, 1 >,< 1, 2 >,< 2, 1 >,< 3, 4 >]

{1, 2}

 a a 0
0 b 0
0 0 b

 2 [< 0, 1 >,< 1, 3 >,< 2, 7 >,< 3, 5 >]
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Example 3. Consider the self-orthogonal code C of length 3 over E of type {1, 1} given by the

generator matrix
(

a a 0
0 0 c

)
. Its automorphism group has order two and hence,

3!
|Aut(C)| =

6
2
= 3.

From Theorem 8, ME(3, 1, 1) = Φ(3, 1)
[

3− 2
1

]
2
23−2−1 = 3. Therefore, there is a unique

self-orthogonal code over E of length 3 and type {1, 1}, up to equivalence.

We also have the classification of self-orthogonal codes over E for short lengths in
Table 2.

Table 2. Inequivalent self-orthogonal codes of length n ≤ 4 over E. The generator matrices for the
codes where k1 = 0 are the same as those in Table 1, but with b replaced with c.

n {k1, k2} Generator Matrix |Aut(C)| Weight Distribution

2 {1, 0}
(

a a
)

2 [< 0, 1 >,< 2, 3 >]

3 {1, 0}
(

a a 0
)

2 [< 0, 1 >,< 2, 3 >](
a a c

)
2 [< 0, 1 >,< 2, 1 >,< 3, 2 >]

{1, 1}
(

a a 0
0 0 c

)
2 [< 0, 1 >,< 1, 1 >,< 2, 3 >,< 3, 3 >]

4 {1, 0}
(

a a 0 0
)

4 [< 0, 1 >,< 2, 3 >](
a a a a

)
24 [< 0, 1 >,< 4, 3 >](

a a b b
)

8 [< 0, 1 >,< 4, 3 >](
a a c 0

)
2 [< 0, 1 >,< 2, 1 >,< 3, 2 >](

a a c c
)

4 [< 0, 1 >,< 2, 1 >,< 4, 2 >]

{1, 1}
(

a a 0 0
0 0 c 0

)
2 [< 0, 1 >,< 1, 1 >,< 2, 3 >,< 3, 3 >](

a a 0 0
0 0 c c

)
4 [< 0, 1 >,< 2, 4 >,< 4, 3 >](

a a c 0
0 0 0 c

)
2 [< 0, 1 >,< 1, 1 >,< 2, 1 >,< 3, 3 >,< 4, 2 >](

a u a u
0 0 c c

)
8 [< 0, 1 >,< 2, 2 >,< 4, 5 >]

u ∈ {a, b}(
a a c 0
0 0 c c

)
4 [< 0, 1 >,< 2, 2 >,< 3, 4 >,< 4, 1 >]

{1, 2}

 a a 0 0
0 0 c 0
0 0 0 c

 4 [< 0, 1 >,< 1, 2 >,< 2, 4 >,< 3, 6 >,< 4, 3 >]

 a a a a
0 c c 0
0 0 c c

 24 [< 0, 1 >,< 2, 6 >,< 4, 9 >]

{2, 0}
(

a a 0 0
0 0 a a

)
8 [< 0, 1 >,< 2, 6 >,< 4, 9 >]

The generators, order of automorphism group, and weight distribution of inequivalent
self-orthogonal I-codes for n = 4, 5 and inequivalent self-orthogonal E-codes for n = 5
may be requested by the interested reader from the authors.
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In Table 3, we give a summary of the number of inequivalent self-orthogonal codes
for small lengths over both the rings I and E of every possible type. The computations
were performed in the MAGMA computer algebra system [29] using the so-called additive
generator matrix, similar to the method used in [19,20].

Table 3. Number of inequivalent self-orthogonal codes over I and E of length n ≤ 5. Entries marked
with * are QSD codes, and those marked with ** are self-dual codes.

n {k1, k2} I-Codes Remark E-Codes Remark

2 {0, 1} 2 2
{0, 2} 1 * 1 **, [20]
{1, 0} 2 *, [19] 1 **, [20]
{1, 1} 1 ** -

3 {0, 1} 3 3
{0, 2} 3 3
{0, 3} 1 * 1 **, [20]
{1, 0} 4 2
{1, 1} 6 *, [19] 1 **, [20]
{1, 2} 1 -

4 {0, 1} 4 4
{0, 2} 6 6
{0, 3} 4 4
{0, 4} 1 * 1 **, (Table 1 in [20] )
{1, 0} 9 5
{1, 1} 23 6
{1, 2} 14 * 2 **, (Table 1 in [20])
{1, 3} 2 -
{2, 0} 10 * 1 **, (Table 1 in [20])
{2, 1} 7 -
{2, 2} 1 ** -

5 {0, 1} 5 5
{0, 2} 10 10
{0, 3} 10 10
{0, 4} 5 5
{0, 5} 1 * 1 **, (Table 2 in [20])
{1, 0} 14 8
{1, 1} 59 18
{1, 2} 66 12
{1, 3} 24 * 2 **, (Table 2 in [20])
{1, 4} 2 -
{2, 0} 36 3
{2, 1} 60 * 1 **, (Table 2 in [20])
{2, 2} 17 -
{2, 3} 1 -

8. Conclusions and Open Problems

In the present paper, we have derived mass formulas for self-dual and self-orthogonal
codes over two non-unitary rings of order four, namely, E and I in the notation of Fine [23].
These formulas have been employed to classify these codes in short lengths and small
types. To reach higher lengths would require more computer power or sharper algorithms.
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A natural generalization would be to consider similar rings of order p2 for p being a prime
greater than 2.
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