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Key Points:14

• Asian monsoons modern characteristics appeared sequentially during the Cenozoic,15

driven by distinct paleogeographic and climatic forcings.16

• Model results depict seasonal precipitation in parts of Southern and Eastern Asia17

since the Paleogene.18

• The Paratethys Sea retreat and the Arabian Platform emergence, by greatly increas-19

ing continentality, are instrumental for the development of surface temperature gra-20

dients between Asia and the Indian Ocean which reinforces the advection of moist air21

towards Asia in summer.22

• Iran-Zagros and East African landforms contribute to channel and enhance the So-23

mali Jet that brings moisture to Southeastern Asia in summer, while the Himalayan-24

Tibetan plateau uplift induces heavy orographic precipitation.25

• Mongolian landforms uplift is the main driver for the Siberian high pressure settlement26

in winter. It results in a broad reinforcement of East Asian Monsoon precipitation27

seasonality, as it strongly reduces winter precipitation. It also induces aridification of28

current Gobi desert region.29

• Tian Shan and Pamir uplifts, by intercepting and deviating westerly moisture flux,30

concur to force the summer northern Jet Stream migration in Tibet and Eastern31

China. This triggers local orographic precipitation, increased winter precipitation in32

India (weaker South Asian Monsoon), and increased summer precipitation in North-33

eastern China (stronger East Asian monsoon). It enhances global aridification of34

Gobi, Taklamakan and Northeastern Tibet regions.35
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Abstract36

Modern Asian monsoons are triggered by complex interactions between the atmosphere,37

Asian and African orography and the surrounding oceans, resulting in a highly seasonal38

climate characterized by typical regional features. Although long considered as a Neo-39

gene phenomenon, recent evidence for monsoon-like seasonality as early as in the Paleogene40

Greenhouse, has come to challenge this paradigm. The occurrence of monsoons in a climatic41

and paleogeographic context very different from the present-day question our understand-42

ing of the drivers underpinning this peculiar atmospheric phenomenon, in particular with43

regards to its dependence to paleogeography. In this study, we take advantage of the wealth44

of new studies to tentatively draw an up-to-date portrait of the Asian tectonic and pa-45

leoenvironmental evolution through the Cenozoic and of the questions that remain to be46

answered. We then simulate the evolution of the Asian monsoon subsystems by investigating47

seasonal trends of 20 paleoclimate simulations spanning the late Eocene to latest Miocene48

(40-6 Ma). At odds with the traditional view of a monsoonal evolution driven mainly by49

the Himalayan-Tibetan uplift, this study confirms the findings of previous works stating the50

importance of peripheral landforms on the different Asian monsoons subsystems. Eastern51

African and Anatolian-Iranian topography, as well as the Arabian Peninsula emergence all52

concur to shape the South Asian summer Monsoon. Additionally, we suggest that conti-53

nentality, together with Mongolia, Tian Shan and Pamir orographic evolution, and pCO254

decrease, played important parts in the settlement of the East Asian Monsoon and in the55

aridification of inland Asia.56

1 Introduction57

The South and East Asian monsoons are highly seasonal climatic phenomenons, that58

today conditions the livelihood of billions of people. During summer, moisture-loaded winds59

blowing from the Indian Ocean (Fig. 1) trigger important nutrients-rich upwellings and60

lead to heavy precipitation over Southeastern Asia, allowing for widespread agriculture and61

fisheries. In winter, the reversal in wind direction induces advection of cold, dry and dust-62

loaded air masses from Siberia over Eastern and Southern Asia (Fig. 1). The spectacular63

extension and intensity of the Asian monsoons, combined to the highly dynamic tectonic64

context of the region, have triggered a lot of interest from the scientific community, in order65

to understand potential links between orography, land-sea distribution, global climate and66

the monsoon.67

While monsoons have long been viewed as an atmospheric phenomenon intimately68

intertwined with the Himalayan-Tibetan plateau uplift history (Molnar et al., 1993; Zhisheng69

et al., 2001; Tada et al., 2016; X. Liu, Guo, et al., 2015) and rooted in the Neogene, first with70

records of strong upwellings initiating in the Arabian Sea at ∼8 Ma (Kroon et al., 1991),71

then with evidence for massive dust deposition in the Chinese Loess Plateau since ∼22 Ma72

(Guo et al., 2002), a wealth of recent studies has come to challenge this paradigm. Indeed,73

aeolian dust deposits in the Xining basin (northeastern China, see Fig. 1 for localities74

mentioned in the text), as well as paleoflora and isotopic measurement in fossils indicating75

a seasonal climate in Myanmar (Licht et al., 2014) and in the Yunnan region (South China)76

(Sorrel et al., 2017; Fang et al., 2021; Zheng et al., 2022) have been interpreted as pieces77

of evidence for an active monsoon as early as in the late Eocene. Proposing a monsoonal78

onset in the Paleogene, in a warmer, ice-free climate, during the early stage of the Tibetan79

plateau uplift and with much lower continentality due to higher sea level and to the presence80

of the Paratethys Sea in the west (see the late Eocene paleogeography in Fig. 3a), radically81

questions our understanding of the forcings of the monsoons.82

Climate modeling provides a unique opportunity to understand the part played by each83

potential forcing on the resulting climate. Overall, such studies, and independently of the84

model used (complexity, resolution) or the simulation protocol (i.e., derived from modern85

geography or with realistic paleogeography), have tended to highlight that paleogeography86
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out-compete global pCO2 variations or far-field ice-sheets effects when it comes to the SAM87

and EAM settlement and intensification over multi-million years time scales (Farnsworth88

et al., 2019; J.-Y. Lee et al., 2015; Zoura et al., 2019; Roe et al., 2016; Thomson et al.,89

2021). In a second time, sensitivity experiments of increasing complexity and precision,90

have helped disentangle the effect of the Himalaya-Tibet (and its sub units) uplift from91

that of peripheral landforms uplifts, such as the Tian Shan ranges, the Iranian-Anatolian92

orogen, eastern African domes, Mongolia landforms (H. Tang et al., 2013; Acosta & Huber,93

2020; R. Zhang et al., 2017), and from the effect of land-sea distribution changes (Fluteau94

et al., 1999; Z. Zhang et al., 2007). While modeling studies provide mechanistic basis to95

apprehend potential leverages for monsoon and aridity modulation, it remains paramount to96

dispose of robust constraints on the paleogeography and paleoclimate evolution, and on the97

relative chronology of these events. The past decades have been rich in both modeling and98

field studies, for example with marine cores that were extended back to the late Paleogene99

(W. Ding et al., 2021; S. Ali et al., 2021; Betzler et al., 2016; Beasley et al., 2021), and100

increased coverage in well-dated paleoclimate indicators, which offer new constraints on101

Cenozoic tectonic and paleoclimate.102

In this contribution, and building upon previous work (Sarr et al., 2022; Tardif et al.,103

2020; Barbolini et al., 2020), we aim at providing a comprehensive picture of large-scale wind104

circulation, precipitation seasonality and aridity evolution in continental Asia from the late105

Eocene to the late Miocene, using realistic paleoclimate simulations. In the following parts,106

we first describe in more depth the Asian monsoon subsystems characteristics (section 2),107

and propose an up-to-date overview of the Asian monsoon history as understood through108

proxy and models studies, and of remaining outstanding issues (section 3, Fig. 2). The main109

paleogeographic events that affected the regions surrounding the Indian Ocean together110

with continental Asia during the Cenozoic are presented (section 4), along with the past111

continental configurations that have been used (Fig.3). Other boundary conditions and112

simulations spin-up are then introduced, as well as criteria retained to track the Asian113

monsoons evolution throughout the different simulations (section 5). Our results are then114

presented and discussed in the light of actual knowledge.115

2 Modern Asian Monsoon subsystems characteristics116

The Asian monsoon is subdivided into two regional subsystems: the South Asian117

Monsoon, spreading roughly from Pakistan to Myanmar, and the East Asian Monsoon, from118

Myanmar to Japan. We hereafter refer to them as SAM and EAM respectively, SASM and119

EASM are used for the summer monsoon season while SAWM and EAWM refer to the winter120

monsoon season. These regional monsoons present specific climatic characteristics and have121

long been studied by distinct communities, although regions situated in the Southeastern122

Asian Peninsula can present mixed attributes of both subsystems and may be referred to123

as ”transition area” in the literature (R. Spicer et al., 2017).124

2.1 Summer season125

The SASM is associated with intense orographic precipitation over the Himalayan126

foothills as well as over smaller mountains ranges like the Ghats in western India and the127

Indo-Burman Ranges in Myanmar (Fig. SI 14 a,b). In these regions, summer precipitation128

account for nearly 80% of the total annual precipitation and are responsible for massive fresh-129

water discharge in the Bay of Bengal, via the Ganga, Brahmaputra and Ayeyarwady Rivers130

and in the Arabian Sea via the Indus River. Precipitation is supplied by moisture-loaded131

air masses from the Inter Tropical Convergence Zone (ITCZ), which is steered towards the132

Asian continent during summer, as a consequence of the wide low pressure belt develop-133

ing from Arabia to eastern China (Fig. SI 14 d). This typical pressure pattern is driven134

by the establishment of a surface temperature gradient between the Indian Ocean and the135

overheated Asian continent and the Arabian Peninsula (up to 40°C, Fig. SI 14 d).136
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Figure 1. Modern geography and topography (in m), with main seasonal winds: Westerlies

(yellow arrow), East Asian Winter monsoon (blue arrow) and Summer monsoons (green arrows)

; Somali Jet (SJ), Indo-Gangetic-Low Level Jet (IGLLJ). Dotted green/yellow line indicate the

modern limit between the westerlies and the monsoonal regions. Main landforms units (in black)

and main geographical regions (in white) mentioned in the text, with the following abbreviations:

H-STP - Himalayas and Southern Tibetan Plateau, NETP - Northeastern Tibetan Plateau, IBR

- Indo Burman Ranges, SBR - Sino Burman Ranges, ML - Mongolian Landforms, CLP - Chinese

Loess Plateau, JgB - Junggar Basin. Smaller basins and localities mentionned in the text are

numbered as follow: (1) Jianghan B., (2) Xining B., (3) Linzhou B., (4) Qaidam, (5) Hoh Xil B.,

(6) Nangqian B., (7) Markam B., (8) Bayanhot B., (9) Valley of Lakes, (10) Taatsin Gol, (11) Ili

B., (12) Issyk Kul B., (13) Tajik B.

Characteristic low-level wind patterns are associated with the SASM, represented by137

the Findlater Jet (Findlater, 1969) (or Somali Jet (H.-H. Wei & Bordoni, 2016)), which138

crosses the equator alongshore East Africa and blows towards the Indian subcontinent (Fig.139

SI 14 d). This powerful trans-equatorial jet triggers strong surface oceanic currents, flowing140

up the East African and Arabian coasts, then circumventing India from West to East. These141

currents generate strong upwellings in the Arabian Sea and the Bay of Bengal (Schott & Mc-142

Creary, 2001), favoring broad phytoplankton productivity blooms from July to September143

(Lévy et al., 2007). Over the Bay of Bengal, the Somali Jet splits into two distinct branches144

(Fig. SI 14 d), one pursuing its northeastern flow towards southeastern and eastern Asia145

(from Myanmar to China), and the Indo-Gangetic Low Level Jet (Acosta & Huber, 2017),146

bifurcating towards northwestern India and the Himalayan foothills.147
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The EASM is characterized by a band of strong convective precipitation stretching148

from Myanmar to Japan along eastern China, also called the Meiyu-Bayu front. This high-149

precipitation zone is fed by warm moist air, advected from the Bay of Bengal and nearby150

Indo-Pacific Warm Pool (IPWP) (Fig. SI 14 d). The Meiyu-Bayu front results from the151

ascension of these moist winds over the Jet Stream in the subtropics (Kong et al., 2017;152

Molnar et al., 2010; Sampe & Xie, 2010). The progressive northward migration of the front153

during spring and early summer is likely influenced by the seasonal displacement of the154

Jet Stream relative to the Tibetan Plateau (TP): it is located south of the TP at ∼25°N in155

winter, and progressively migrates to its northern edge in summer. The EASM, observed up156

to ∼40°N, is an extra-tropical phenomenon, and is therefore regularly questioned as being157

a ”real” monsoon (Molnar et al., 2010; R. A. Spicer et al., 2016).158

2.2 Winter season159

Boreal winter is marked by a generally dry climate over most of the Asian continent.160

North of ∼20°N, Eastern Asia is swept by northwestern winds bringing cold air and dusts161

from inland Asia, while south of ∼20°N, northeastern winds carry moisture from the Pacific162

Warm Pool, leading to monsoonal precipitation over Indonesia and northern Australia (Fig.163

SI 14 f). The Indian subcontinent experiences a more complex wind pattern, as the westerly164

winds in the North are channeled by the Zagros and Himalaya-Tibetan orography and then165

deviated into northeasterly winds over the Arabian Sea, towards the eastern African coast166

(Fig. SI 14 f). These peculiar winds lead to the formation of upwellings in the Bay of Bengal167

and the Arabian Sea, allowing phytoplankton productivity blooms to occur in winter as well168

(Lévy et al., 2007). This typical winter wind circulation (Fig. SI 14 f) is controlled by the169

pressure gradients forming between the Siberian High and the surrounding Aleutian Low170

(over the North Pacific) to the East and the low pressure center settled over the Maritime171

Continent to the South (L. Wang & Chen, 2014). The spectacular extent and strength of172

the Siberian High in boreal winter is a consequence of a strong radiative cooling of the lower173

troposphere over snow-covered Asia (Jeong et al., 2011; Cohen et al., 2001; Jhun & Lee,174

2004).175

2.3 Summary: what traces leave the monsoons ?176

Asian climate is under the crossed influence of the dry East Asian winter monsoon and177

of three moisture sources, the westerlies and the East and South Asian summer monsoon178

(Fig. 1). Nowadays, the boundary between regions receiving most of their annual precipita-179

tion via the monsoons or via the westerlies is clearly bounded by the Himalayas in the South,180

while it fluctuates in the East over China (Chen et al., 2021), crossing Eastern Tibet and181

the Chinese Loess Plateau (Fig. 1). This boundary however likely evolved in the past, espe-182

cially during the Paleogene when the orography and land-sea distribution were substantially183

different from today (no Himalayas, less extent Tibetan Plateau, presence of the Paratethys184

epicontinental Sea until the EOT) (X. Liu, Guo, et al., 2015) (see section 4). Tracking the185

monsoons back in time can be done thanks to a variety of paleoclimatic archives recording186

either their winds (intensity, direction) or precipitation (amount, seasonality) (P. Wang et187

al., 2005; Zhisheng et al., 2015; Tada et al., 2016). Markers of aridification on the other188

hand, such as increased proportion of xerophytic or halophytic plants or aeolian deposits189

(dusts, loesses) in the fossil record are often interpreted as evidence for the presence of a190

winter monsoon. The next section depicts the evolution of the Asian climate throughout191

the Cenozoic based on these different paleoclimate indicators.192

3 Increasingly old testimonies of paleo-monsoons through times193

The classical view for the Asian paleoenvironment evolution throughout the Cenozoic194

usually proposes a transition from a Paleogene ”zonal climatic pattern” to a Neogene ”mon-195

soonal climatic pattern” (Guo et al., 2008; X. Sun & Wang, 2005; Jia et al., 2003). The196
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zonal pattern is described as a widespread arid to semi-arid band stretching across China197

and bracketed in its southern and northern borders by two humid belts, while the mon-198

soonal pattern hosts a core of pronounced aridity in inland Asia, surrounded by monsoonal199

(seasonally wet) climate on its southern and eastern edges. This view is mostly based on200

paleoclimate indicators compilations (pollen, fossils and lithological arguments, e.g. from201

Boucot et al. (2013)) used to infer either humid conditions (coal, indicators of forested en-202

vironments, large mammals, etc.) or arid ones (evaporites, desert and shrub environment,203

etc.). Recent evidence for highly seasonal climate in India, Myanmar and China as early204

as in the Eocene, at least 20 Myr earlier than previously thought, nevertheless challenge205

this paradigm. This section aims at presenting in the most comprehensive way the broad206

paleoenvironmental changes inferred from paleoclimate indicators in Asia from the Eocene207

to the early Pliocene, which are tentatively gathered in Fig. 2 (upper part). Localities and208

basins mentioned throughout the text are localized in Fig. 1.209

3.1 Eocene to Oligocene paleoenvironment evolution210

3.1.1 A progressive increase in summer monsoon indices from the Eocene211

to the Oligocene212

Oldest testimonies of strongly seasonal precipitation in Southern Asia come from early213

Eocene floras situated in northwestern India (Shukla et al., 2014; Bhatia, Khan, et al., 2021)214

and from mid-late Eocene (40 Ma) floras and isotopic measurements in freshwater gastropod215

shells and mammals tooth enamel found in Myanmar (Licht et al., 2014; H. Huang et216

al., 2021). Both regions were however located further South at their respective period of217

deposition (between the equator and ∼10°N, Shukla et al. (2014); Westerweel et al. (2019))218

and their seasonality is therefore mainly interpreted within the scope of a pronounced ITCZ219

seasonal migration rather than monsoonal climate.220

Further east, in the Yunnan region (Southwestern China), today submitted to a mix-221

ture of Southern and Eastern Asian summer monsoon, a shift from arid/semi-arid to humid222

environment is recorded during the late Eocene and interpreted as the onset of the Asian223

monsoon at that time (Sorrel et al., 2017; Fang et al., 2021; Zheng et al., 2022). Such cli-224

mate transition is inferred by the presence of coal layers, a change in the pollen record from225

xerophytic to mixed forest, change in lithology interpreted as lake and swamps expansion,226

together with the presence of fossils of freshwater fishes, gastropods and large mammals.227

While the precise date for this paleoenvironmental change is still debated between ∼41 Ma228

(Fang et al., 2021), ∼36 Ma (Zheng et al., 2022) and ∼35.5 Ma (Sorrel et al., 2017), it never-229

theless predates the Eocene-Oligocene Transition (∼34 Ma). Proposed driving mechanisms230

to explain this regional climate shift usually involve either the crossing of a Tibetan Plateau231

elevation threshold (Zheng et al., 2022), a response to the Paratethys Sea retreat in the232

west, that would have allowed the penetration of more moisture from the east (Fang et al.,233

2021), or a response to the global climate cooling initiated after the Middle Eocene Climate234

Optimum (MECO) and subsequent sea surface temperature patterns reorganization (Sorrel235

et al., 2017).236

Signs for the presence of an Eocene East Asian summer monsoon are also debated.237

In eastern China, Eocene paleovegetation mostly point to warm, humid and weakly sea-238

sonal evergreen forested environments on the coast (R. A. Spicer et al., 2016; X. Ma et al.,239

2012; Pound & Salzmann, 2017), except for northeastern middle-late Eocene Chinese floras240

retrieved from the coal deposits of the Huadian basin, that already seem to indicate adapta-241

tion to highly seasonal climate (Meng et al., 2018). Further inland, toward the eastern edge242

of the TP, these paleoenvironments gradually translate into sub-humid and/or seasonally243

dry conditions, as attested by various basin displaying alternating mudstone and evapor-244

ite deposits (D. Wang et al., 2013; Abels et al., 2011). Highly resolved deposits from the245

Jianghan basin, spanning the mid Eocene to early Oligocene (∼40-34 Ma), together with246

modeling studies (Tardif et al., 2021), have shown that the penetration of moisture into east-247
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Figure 2. upper Paleoclimate tendencies recorded in inland, eastern and southern Asia. Bib-

liographic references in brackets are listed in SI Table 3 ; center Evolution of main landforms,

seaways, ice sheets and pCO2 during the Cenozoic overlain with values used in our reference simu-

lations (elevations expressed in % of modern). White stars indicate parameters that where tested

with sensitivity experiments ; bottom Overview of the main monsoon indicators evolution obtained

in this study. We used the following abbreviations: NETP (SETP) - Northeastern (Southeastern)

Tibetan Plateau, CLP - Chinese Loess Plateau.
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ern China in the late Eocene was likely strongly modulated by orbital forcing. This may248

indicate that this Paleogene wet/dry zonal climatic pattern previously introduced (Guo et249

al., 2008; X. Sun & Wang, 2005) was already periodically disturbed in the late Eocene, and250

may have prefigured a more stable and widespread monsoon-like precipitation seasonality251

settlement in the Oligocene.252

Indeed, after the global cooling and aridification occurring at the Eocene-Oligocene253

Transition, pieces of evidence for monsoon-like precipitation seasonality of variable intensity254

become more widespread in floras from both China (X. Ma et al., 2012; Herman et al., 2017;255

Vornlocher et al., 2021; J. Ren et al., 2021; Miao, 2013; Ling et al., 2021; S. Li et al., 2018;256

C. Huang & Hinnov, 2019; H. Tang et al., 2020) and India (Bhatia, Khan, et al., 2021;257

R. Spicer et al., 2017; Srivastava et al., 2012). Additionally, oceanographic records from258

adjacent seas (Bay of Bengal and South China Sea) that were recently extended back to259

the late Paleogene, have been used to track the SAM and EAM evolution from the middle260

Oligocene onward. Drilling from the Ying-Qiong Basin in the South China Sea, spanning261

the late Oligocene to early Miocene (25-18 Ma), record an increase in terrigenous organic262

matter influx, together with increased tropical-subtropical angiosperm pollen proportion,263

which are interpreted as signs of increasing East Asian summer monsoon during this period264

(W. Ding et al., 2021). In the Bay of Bengal (ODP 758), measurements of clays radiogenic265

isotopic composition, indicating undisturbed weathering patterns over the last 27 Ma, are266

interpreted as signs of stable South Asian summer monsoon activity since at least the late267

Oligocene (S. Ali et al., 2021).268

3.1.2 Late Eocene aridification in response to the Paratethys Sea retreat269

and global climate cooling270

Markers of arid to sub-humid climate are already widespread in inland Asia in the271

Eocene with, for example, many sites displaying pollen assemblages characteristics of steppe-272

desert environments such as in the Xining, Hoh Xil, Qaidam and Tarim basins (Q. Yuan et273

al., 2020; Miao, Wu, et al., 2016; X. Ma et al., 2012). During the mid-late Eocene (∼40-34274

Ma), inland Asia records an evolution toward drier conditions, as suggested by increased275

proportions of xerophytic plants such as Nitraria and Ephedra in Xining, Hoh Xil, Qaidam276

(Northeastern Tibet), Nangqian (central-eastern Tibet) and Tarim basins (Q. Yuan et al.,277

2020; Barbolini et al., 2020; Hoorn et al., 2012; Miao, Wu, et al., 2016), δ18O measurements278

from ostracod shells in the Tarim basin (Bougeois et al., 2018), clumped isotopes from279

pedogenic carbonates in the Xining basin (Page et al., 2019), compound-specific hydrogen280

isotope analyses (δ2H) applied to sedimentary leaf wax n-alkanes in the Qaidam basin (Wu281

et al., 2021) and by lipid biomarkers and compound-specific carbon isotopic compositions282

from bulk sediments in the Nangqian basin (J. Wei et al., 2022). The presence of detrital283

material attributed to Asian dusts is also recorded in sediments from Central North Pacific284

(GPC3 and ODP site 1215) since ∼40 Ma (Pettke et al., 2002; D. Rea et al., 1985; Ziegler285

et al., 2007).286

This late Eocene aridification stage is mostly interpreted as resulting from the reduced287

westerly moisture input during the two successive Paratethys Sea regression phases from288

the Tarim and the Tajik basins, recorded between ∼41-37 Ma (Carrapa et al., 2015; J. Sun289

et al., 2020, 2022; Bougeois et al., 2018; Bosboom et al., 2014b; Kaya et al., 2019). Highly290

resolved sediment deposits, such as those of the Xining basin (northeastern Tibet) display291

good correlation between wetter evaporite layers and Paratethys Sea transgressions phases292

into the Tajik and Tarim basins, and between arid mudstone intervals and regression phases.293

This confirms the key role played by the westerlies and the Paratethys Sea as a major294

moisture source for inland Asia in the Eocene, even over long distances (Meijer et al., 2019;295

Bosboom et al., 2014a). Additionally, a strong obliquity cyclicity is imprinted on the Xining296

evaporite/mudflat layers in the late Eocene (40-34 Ma), coeval with the appearance of loess-297

like dusts in the mudflat phases (Meijer et al., 2021; Licht et al., 2014). This hints a marked298

influence of high latitudes dynamics, such as incipient ice-sheets at the poles (Abels et al.,299
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2011; Xiao et al., 2010) and variations in the Siberian High intensity (Meijer et al., 2021),300

on inland Asian climate at that time.301

3.1.3 Oligocene climate fluctuations and inception of major modern Asian302

deserts303

The Oligocene evolution of inland Asian climate appears both regionally and timely304

contrasted. In the early Oligocene, a few sites situated within the westerly moisture re-305

gion tend to show increased humidity trends, recorded by δ18O isotopic measurements in306

pedogenic carbonates (Kent-Corson et al., 2009) in the Tarim and western Qaidam basins307

together with δ2H measurements in leaf waxes (Wu et al., 2021) and leaf fossil CLAMP anal-308

ysis suggesting wet environment with weak (not monsoonal) precipitation seasonality (Song309

et al., 2020) from western Qaidam. On the other hand, many testimonies for drier climate310

are reported within the eastern Asian monsoon domain by δ18O isotopic measurement in311

pedogenic carbonates from the eastern Qaidam basin (Y. Sun et al., 2020; Kent-Corson et312

al., 2009), Lanzhou basin in the Chinese Loess plateau area (B. Li et al., 2016), together with313

CLAMP analysis on fossil leaves advocating for an increased (and monsoon-like) precipita-314

tion seasonality in Lanzhou (Miao, 2013), and Markam basin in southeastern TP (T. Su,315

Spicer, et al., 2019), in agreement with records of increased monsoon-like precipitation sea-316

sonality in Eastern China introduced in the previous section. Interpretations nevertheless317

diverge and suggest that this aridification trend may indicate either weakened East Asian318

summer monsoon precipitation due to global cooling after the EOT (Wu et al., 2021), in-319

creased winter aridity due to the final Paratethys Sea retreat, global sea level fall after the320

EOT and/or global cooling (Miao, 2013; B. Li et al., 2016), or be due to TP uplift (T. Su,321

Spicer, et al., 2019).322

In the Taatsin Gol region, at the southern edge of the Hangay Dome and extreme323

north of the modern Gobi desert, isotope measurement from pedogenic carbonates indi-324

cate aridification since the early Oligocene (Caves Rugenstein et al., 2014). Finer resolved325

records reveal several bursts of aridification at ∼34-33, ∼31, ∼28 and ∼23 (Baldermann et326

al., 2021) and the presence of loess as soon as ∼34 Ma (J. Sun & Windley, 2015). Proposed327

mechanisms for such aridification involve increased continentality due to land-sea distribu-328

tion fluctuations at 34 Ma (J. Sun & Windley, 2015) and an early Hangay Dome uplift that329

would have acted as a barrier to moisture advection from Siberia to Mongolia as soon as330

the Oligocene (Caves Rugenstein et al., 2014). Better resolved records however highlight331

the good correlation in time between ice sheets expansion phases and these aridification332

pulses, and therefore propose that large scale climate fluctuations at that time were the333

main drivers of Mongolia hydrologic dynamics (Baldermann et al., 2021). Further south, in334

the Bayanhot basin (southern Gobi), two bursts of aridification inferred from environmental335

magnetic, mineralogical and geochemical study at ∼31 and ∼28 Ma seem to further confirm336

the influence of high latitude ice sheet fluctuation on Mongolian Oligocene climate (Wasiljeff337

et al., 2022).338

In the mid to late Oligocene, massive eolian dust deposits are reported in three major339

sites: in the Chinese loess plateau in Northeastern Tibet starting at ∼29 Ma (Garzione340

et al., 2005; Qiang et al., 2011) (see (Meijer et al., 2021) for a full review), in the Tarim341

Basin (hosting today the Taklamakan desert) at ∼27-22 Ma (Zheng et al., 2015) and in342

the Junggar basin at ∼24 Ma (J. Sun et al., 2010). Aridification is also inferred from δ18O343

isotopic measurements from ostracods and pedogenic carbonates from the Tarim basin at344

∼25 Ma (Bougeois et al., 2018; Kent-Corson et al., 2009) and from isotopic records in345

stromatolites from the Junggar basin loosely dated in the early Miocene (W. Yang et al.,346

2019). This second step of aridification is coeval with δ18O and δ13C isotopic measurements347

from pedogenic carbonates suggesting increased orographic precipitation in the Issyk Kul348

and Ili basins, both situated on the western side of the Tian Shan ranges (Hellwig et al.,349

2018; Macaulay et al., 2016). Collectively, these observations are interpreted as the sign350

that the Tian Shan-Pamir uplift had reached an elevation threshold that would have started351
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shielding the Tarim and Junggar basins from westerlies moisture input, thus favoring their352

aridification (Bougeois et al., 2018; W. Yang et al., 2019).353

This late Oligocene to early Miocene aridification phase seems to be recorded by sev-354

eral oceanic drillings, for example in Central North Pacific, with an increase in dust mass355

accumulation rate recorded at ∼25 Ma by (drilling site GPC3) (D. K. Rea, 1994; Pettke356

et al., 2002) and at ∼22 Ma (ODP site 1215) (Ziegler et al., 2007). These drillings are357

however situated far from the Asian coast and underwent important plate motion through-358

out the Cenozoic, making it difficult to disentangle variations due to inland Asia climate359

changes, possible global atmospheric/oceanic circulation patterns changes, and variations360

in the recorded signal due to plate motion. The presence of a proto winter monsoon wind361

circulation is also suggested by increased proportion of dusts, inferred from magnetic sus-362

ceptibility measurement in the Maldives (IODP sites U1467, U1468) at ∼ 24 Ma (Betzler363

et al., 2016), and by an increase in water column mixing and ventilation evidenced by a364

reduction in ∆ δ13C, increase in bulk sediment Mn/Fe and Mn/Ti and foraminiferal Mn/Ca365

in the eastern Arabian Sea (Beasley et al., 2021).366

3.2 Strengthening of summer and winter monsoon patterns in the Neogene367

3.2.1 An East-West gradation in Miocene South Asian summer monsoon368

variations and the expansion of grassland369

Despite a better coverage in both continental and marine records in the Neogene, sub-370

stantially diverging interpretations remain regarding the evolution of the monsoons winds371

and precipitation seasonality, especially during the late Miocene. Precipitation proxies from372

the South Asian Monsoon domain allow to highlight an East-West gradation in climate evo-373

lution throughout the Miocene, recorded in the Siwaliks deposits of the Himalayan foreland374

basin. In northeasternmost India (Arunachal Pradesh), modern-like monsoon precipitation375

seasonality is inferred from plant macrofossils since the middle Miocene (13 Ma) and dis-376

plays little variation in intensity when compared to early Pleistocene fossils from the same377

locality (Khan et al., 2014). Further west, plant macrofossils and pollen from Darjeeling,378

Nepal, northwestern India and Pakistan show a progressive replacement of middle Miocene379

evergreen forests by deciduous forests in the late Miocene, and finally a massive expansion of380

grassland in the latest Miocene (Hoorn et al., 2000; Bhatia et al., 2022; Bhatia, Srivastava,381

et al., 2021; Srivastava et al., 2018). This late Miocene floristic change is also accompanied382

by several shifts in δ13C toward more positive values, recorded between 10.5 and 6 Ma by383

isotopic measurements in pedogenic carbonates and organic matter and lipid biomarkers in384

the Central Siwaliks (Nepal) (Quade et al., 1995; Neupane et al., 2020; Dettman et al., 2001),385

and in the Western Siwaliks (northwestern India and Pakistan) (Sanyal et al., 2004; Vögeli386

et al., 2017; Quade & Cerling, 1995). Similar trends are also recorded in nearby marine387

basins by isotopic measurements from bulk sediments and leaf wax, pollen and macrofossils388

at ∼8-7 Ma in the Arabian Sea (ODP 722 and IODP U1457) (Feakins et al., 2020; Y. Huang389

et al., 2007) and at ∼7-6 Ma in the Bengal fan (Polissar et al., 2021).390

This marked carbon isotope excursion is observed in other localities of the globe and391

testify of an important ecological change, characterized by the replacement of plants using392

the C3 photosynthetic pathway by grasslands using the C4 photosynthetic pathway (Cerling393

et al., 1993; Tauxe & Feakins, 2020; Edwards et al., 2010). Recent re-calibration of these394

Asian continental carbon isotope records and comparison to other available records allow to395

show that C4 expansion occurred at distinct times: ∼10 Ma in Africa, ∼8 Ma in Pakistan,396

∼7 Ma in peninsular India, ∼6 Ma in Nepal and later during the Pliocene in Australia397

and South America (Tauxe & Feakins, 2020). Although a late Miocene pCO2 drawdown398

was initially proposed as the main driver for the C3/C4 transition, such distinct timing in399

ecological turnover over the globe is assumed to reflect the multiplicity of forcing factors at400

play in this major biome reorganization. In the Siwaliks, this East-West climate gradation401

likely reflects the crossing of a precipitation threshold somewhere in Nepal (Central Siwa-402
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liks), with northwestern India, Nepal and Pakistan experiencing drier winters and overall403

aridification in the late Miocene compared to the more stably humid northeastern Indian re-404

gion. The C4 grasslands expansion would thus possibly result from a combination of pCO2405

decrease, reduced moisture advection from the westerlies in this region, Tibetan Plateau406

and Himalayas uplift and to more frequent forest fire that would have favored grasses over407

trees (Sanyal et al., 2004; Vögeli et al., 2017; Quade & Cerling, 1995; Srivastava et al., 2018;408

Tauxe & Feakins, 2020; Polissar et al., 2021; Feakins et al., 2020).409

Precipitation proxies recovered from marine drillings offer contrasting information. In410

the central Bay of Bengal (ODP site 758), relatively undisturbed isotopic composition of411

clays issued from silicate weathering since the Oligocene (∼27 Ma) are interpreted as signs412

of a stable South Asian summer monsoon presence since that time (S. Ali et al., 2021).413

On the other hand, chemical weathering (CIA, K/Al ratio) and sediment accumulation414

rates from both the Indus Fan and the Bay of Bengal recording the physical erosion of the415

Himalayas and southern Tibet, suggest that SASM precipitation reached a maxima in the416

middle Miocene (∼10-16 Ma) before declining between ∼8-3 Ma (P. Clift et al., 2008). This417

decline was primarily interpreted as reflecting a weakened SASM precipitation (P. Clift et418

al., 2008), although other studies based on similar proxies from the Bay of Bengal argue it419

may rather reflect an intensification of the winter monsoon (S. Ali et al., 2021), possibly420

coupled to a weakening of the South Asian summer monsoon (J. Lee et al., 2020), which421

seem in better agreement with continental proxies, and with marine records from the South422

China Sea (Wan et al., 2010) (developed in the next section).423

Wind proxies retrieved from the Arabian Sea and the Bengal Fan pointing to the424

presence of seasonal wind reversal (hence of a winter monsoon) since the middle Miocene425

seem to corroborate this explanation, although some aspects of the SAM wind circulation426

evolution remain debated. In the Arabian Sea, the appearance of Globigerina Bulloides427

in the sediments had initially been used to infer an intensification (or an onset) of the428

South Asian summer monsoon wind circulation at ∼8 Ma (Kroon et al., 1991), based on429

the assumption that stronger SASM winds would translate into stronger upwelling activity.430

Those records have since then been extended back in time (Bialik et al., 2020; Zhuang et al.,431

2017; Gupta et al., 2015) and combined with analysis of current-controlled drift sediments432

and geochemical tracers from the Maldives archipelago (Betzler et al., 2016). These new433

studies now point to a settlement of a ”proto” South Asian monsoon wind circulation since434

the late Oligocene (∼25 Ma), and of its reinforcement in the middle Miocene (∼13-10 Ma)435

(Betzler et al., 2016; Zhuang et al., 2017; Bialik et al., 2020) and possibly also in the late436

Miocene (∼8-7 Ma) (Gupta et al., 2015). Nevertheless, increasing number of studies based437

on marine records from both the Arabian Sea and the Bengal Fan do not observe this latest438

Miocene (8-7 Ma) SASM peak (Bolton et al., 2021; Tripathi et al., 2017; Betzler et al., 2016;439

Y. Huang et al., 2007). Strong SAM wind circulation since at least 10 Ma is also supported440

by clay mineralogy, detrital isotopes, export productivity and sediments accumulation from441

records in the southern Bay of Bengal (IODP 1443) (Bolton et al., 2021; J. Lee et al., 2020))442

and the eastern Arabian Sea (IODP 1456) (Tripathi et al., 2017)).443

3.2.2 EASM in the Neogene444

Summer precipitation typical of the East Asian summer monsoon is assumed to occur445

throughout the Neogene (22-3 Ma), as attested by sediments exported to the South China446

Sea, such as weathering indices (P. Clift et al., 2008), δ13C measurements in black carbon447

(Jia et al., 2003), pollen, biomarkers, kerogen composition and clay mineralogy (W. Ding et448

al., 2021). On land, δ18O from paleosol carbonates in the CLP (Suarez et al., 2011) and most449

Chinese floras, studied with Coexistence Approach, CLAMP or Bayesian method applied450

to pollen, point to summer precipitation comparable to modern amounts (Q. Wang et al.,451

2021; Yao et al., 2011; Xing et al., 2012; Hui et al., 2021; B. Wang et al., 2021; Q.-g. Sun et452

al., 2002). Most of those studies nevertheless suggest wetter winters due to weaker winter453

monsoon until the latest Miocene, with a few exceptions, such as the mid-Miocene floras454
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from the Zhangpu biota in southeastern China characteristic of megathermal seasonal forest455

which CLAMP signature showing affinities with EAM and SAM floras (B. Wang et al., 2021).456

The variations in EASM intensity throughout the Miocene remain controversial in both457

continental and marine deposits, but two intensification peaks usually emerge, tentatively458

linked to the Middle Miocene Climatic Optimum (∼17-14 Ma) and to the Miocene-Pliocene459

boundary (∼8-5 Ma).460

The middle Miocene EASM peak is inferred from sediments from the South China Sea461

by chemical weathering proxies at 15-12 Ma (P. Clift et al., 2008), and δ13C in black carbon462

(Jia et al., 2003), although the latter rather point to a step-wise intensification of EASM in463

the course of the Neogene (at ca. 20, 15, 10, 6 and 2 Ma). On land, characterization of iron464

oxides from the Chinese Loess Plateau suggest an EASM peak at 16-14 Ma (H. Zhao et al.,465

2020). The proportion of Fupingopollenites, an extinct palynomorph supposed to be highly466

dependent on summer moisture, has also been used in an extensive compilation spanning467

available Miocene Chinese pollen records and point to an important penetration of EASM468

moisture, up to the eastern Qaidam basin, during the MMCO, before retreating to the East469

in the rest of the Neogene (Miao, Song, et al., 2016).470

A substantial increase in EASM strength is also robustly suggested by many lines of471

evidence in the late Miocene to Pliocene, although with notable variations in onset timing472

(10-4 Ma). In the South China Sea, it is inferred from δ18O and Mg/Ca derived temper-473

ature records of surface and sub-surface water (IODP U1501) (C. Yang et al., 2021), clay474

minerals, grain size, major and trace elements analysis from terrigenous sediments (ODP475

1146) (Wan et al., 2007, 2010) and by black carbon δ13C (Jia et al., 2003). In China, this476

EASM intensification is recorded through mineralogical, chemical and magnetic analysis of477

sedimentary deposits in the Chinese Loess Plateau (Ao et al., 2016, 2021; H. Zhao et al.,478

2020), and by pollen from the Tianshui (Hui et al., 2021) and the Weihe Basin (L. Zhao479

et al., 2020). The forcing factors responsible for these EASM intensification peaks remain480

debated, but are usually attributed to global warming (Ao et al., 2021; H. Wang et al.,481

2019) and/or to Neogene TP uplift phases (Hui et al., 2021; X. Ren et al., 2020; H. Zhao482

et al., 2020). Although EASM and EAWM evolution show few correlation during most of483

Cenozoic, this late Miocene EASM increase is notably accompanied with EAWM increase484

(described in next section).485

3.2.3 Miocene to Pliocene aridification pulses in response to regional up-486

lifts487

Throughout the Miocene, dust deposition continues in the Chinese Loess Plateau (Guo488

et al., 2002; Meijer et al., 2021), Tarim-Taklamakan (Kent-Corson et al., 2009; Zheng et489

al., 2015; Heermance et al., 2018) and Junggar basins (J. Sun et al., 2010). In parallel490

with previously mentioned indices for an increased EASM during the MMCO (∼17-14 Ma)491

(P. Clift et al., 2008; Jia et al., 2003; H. Zhao et al., 2020), a warmer and less arid climate492

interval is suggested by pollen showing relatively lower proportion of xerophytic taxa in the493

Junggar (J. Sun et al., 2010) and Qaidam basins (Miao et al., 2011). After the MMCO,494

a pronounced step-wise aridification is recorded in most of inland Asia until the Miocene-495

Pliocene boundary (Lu et al., 2010; Lu & Guo, 2014; Z.-H. Tang & Ding, 2013). Here again,496

the timing for aridification steps varies with the region and is usually tentatively explained497

by a combination of global cooling, ice-sheet expansion and multiple regional uplift episodes498

occurring at that time.499

In the eastern part of inland Asia, encompassing the Chinese Loess Plateau, central500

China and northeastern Tibetan Plateau, this aridification is attributed to northeastern TP501

uplift (Miao et al., 2012), Altai mountains uplift (Caves Rugenstein et al., 2014) and/or late502

Miocene cooling (Lu et al., 2010; Lu & Guo, 2014; Peng et al., 2016). Such aridification is503

supported by overwhelming evidences, such as pollen and biomarkers documenting a step-504

wise transition from sub-humid to arid environment starting at ∼15 Ma (J. Liu et al., 2016;505
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Miao et al., 2011; Jiang & Ding, 2008; Peng et al., 2016), massive grasses expansion at506

∼11-7 Ma (Suarez et al., 2011; Barbolini et al., 2020; Y. Ma et al., 2005; L. Zhao et al.,507

2020; H. Wang et al., 2019), widespread eolian deposition at ∼8-7 Ma (X. Ma & Jiang, 2015;508

Guo et al., 2002; Qiang et al., 2011; B. Li et al., 2016; Jiang et al., 2017), increased δ18O509

of pedogenic carbonates and terrestrial mammals tooth enamel at ∼14-13 and ∼7-5 Ma510

(B. Li et al., 2016; Kent-Corson et al., 2009; Wu et al., 2021; W. Liu et al., 2014; Y. Sun et511

al., 2020; Kaakinen et al., 2006; Y. Wang & Deng, 2005), n-alkanes analysis from Qaidam512

sediments since 13 Ma (Z. Liu et al., 2014) and dominance of cold-aridiphilous mollusks513

proportion in the CLP from 7-5 Ma (F. Li et al., 2008).514

The western part of inland Asia, comprising the Tarim and Junggar basins and several515

sites in eastern Kazakhstan, which all add to the body of evidence indicating mid to late516

Miocene aridification, as shown by increased xerophytic and grasses pollen proportions at517

∼7-5 Ma (J. Sun et al., 2010; J. Sun & Zhang, 2008; Z. Zhang & Sun, 2011; Barbolini et518

al., 2020; J. Sun et al., 2008), massive eolian deposition in the western Tarim at ∼12-7 Ma519

(Heermance et al., 2018) and permanent drying of lakes in the eastern Tarim at ∼5 Ma520

(W. Liu et al., 2014). The pedogenic carbonates δ18O record of these regions nevertheless521

offers diverging pattern evolution, that have been tentatively explained by their location522

with respect to the Tian Shan and Altai mountains (Caves Rugenstein et al., 2017). Regions523

today lying upwind of the Tian Shan and Altai mountains, such as the Issyk Kul (Macaulay524

et al., 2016), Junggar (Charreau et al., 2012) and Zaysan basins (Caves Rugenstein et525

al., 2017) show a decline in δ18O between 10-5 Ma (varying from ∼1.5 to 4 ‰) which526

was interpreted as a change in precipitation seasonality following the uplift of the Altai527

Mountains (Caves Rugenstein et al., 2017). On the other hand, increased δ18O values since528

∼15 Ma and peaking at ∼7-5 Ma in the Tarim basin, situated downwind of the Tian Shan529

ranges display trends similar as those of the Qaidam basin (Kent-Corson et al., 2009), which530

are interpreted as indicating aridification at that time.531

EAWM intensification peaks are also recorded offshore at ∼15-12, ∼8-5 and ∼3 Ma,532

in usually good coherence with continental data. In the South China Sea, it is suggested533

by increased black carbon concentration and accumulation (whose transportation to the534

Sea would be favored by stronger winter winds) (Jia et al., 2003), planktic and benthic535

δ18O records and mixed layer temperature (A. Holbourn et al., 2021; A. E. Holbourn et al.,536

2018), clay mineralogy and grain size analysis (Wan et al., 2007), and by indices of decreased537

chemical weathering (G. Wei et al., 2006). In the Sea of Japan, clay mineral assemblage538

and isotopic analysis of silicate fraction covering the last 15 Ma suggests a stepwise drying539

of Central Asia suggested at 12, 8 and 3.5 Ma (Shen et al., 2017). In the North Pacific,540

an increase in Asian dusts proportion is recorded at ∼10 and ∼4 Ma (D. Rea et al., 1985;541

Pettke et al., 2002). Last, brutal onset of SAM wind seasonality (and therefore occurrence542

of winter monsoon reversed winds) is inferred at ∼12 Ma in the Maldives (Betzler et al.,543

2016) and in the eastern Arabian Sea (X. Yang et al., 2020).544

3.3 Assessing forcings and mechanisms through climate models545

3.3.1 SAM forcings assessed by modeling experiments derived from mod-546

ern geography547

Major forcings proposed to explain multi-million year monsoon variability are global548

climate variations, changes in topography and changes in land-sea distribution. Attributing549

a specific change to one or several of these forcings is nevertheless complicated by the550

fact that they may vary at the same time, produce non-linear responses with potentially551

antagonizing effects and because they are sometimes poorly dated or quantified. Modeling552

experiments, first derived from modern geographies and boundary conditions, have helped553

better understanding the role played by these different forcings in shaping the regional554

monsoons.555
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The Tibetan Plateau has long been seen as instrumental in driving the South Asian556

monsoon circulation and precipitation, its elevated heated surface acting as a ”heat pump”557

driving the convergence of the surrounding air masses (Kutzbach et al., 1993; Zoura et al.,558

2019; Molnar et al., 1993). It seems now that it is rather the physical barrier created by559

the landform (the Himalayas or the Tibetan Plateau) that is essential to induce abundant560

orographic precipitation over northern India, through steering and lifting of moist air masses561

(Abbott et al., 2016; Boos & Kuang, 2010; Acosta & Huber, 2020). The condensation562

of moisture in these ascending air masses leads to important latent heat release in the563

high troposphere over northern India, which acts as a positive feedback sustaining summer564

convection and precipitation in South Asia (He, 2017). The large-scale monsoon circulation565

seasonal reversal resulting in the initial advection of these moist air masses over Asia in late566

spring and early summer, on the other hand, is essentially driven by surface ocean-continent567

temperature gradients and resulting pressure patterns (Acosta & Huber, 2020; Merlis et al.,568

2013).569

Smaller orographic features were also shown to play a critical role in shaping and570

strengthen the South Asian monsoon. By channeling the Somali Jet and insulating it from571

the subtropical dry westerly flow, the Anatolian-Iranian landform were shown to greatly con-572

tribute to enhance moisture transport towards India and Eastern Asia (Acosta & Huber,573

2020; He, 2017; H. Tang et al., 2013). The Eastern African highlands, positioned on the way574

of the ITCZ flow, are critical in shaping both African and South Asian climate (Bannon,575

1979; Rodwell & Hoskins, 1995; Sepulchre et al., 2006). Recent studies have specifically576

demonstrated that Eastern African highlands presence contribute greatly to strengthen and577

concentrate the Somali Jet, but that their absence would result, quite counter-intuitively,578

into higher summer precipitation over SAM region, due to increased advection directly from579

the ocean to the continent (H.-H. Wei & Bordoni, 2016; Chakraborty et al., 2009). This last580

aspect hints that strong upwellings, due to strong atmospheric circulation, may not correlate581

with strong precipitation on land. The effect of the Pamirs, Tian Shan and northeastern582

TP uplifts on SAM remains unclear. When these uplift together with Mongolian landforms,583

H. Tang et al. (2013) simulate increased moisture advection to eastern China but decreased584

precipitation over India, while the opposite effect is obtained when not modifying (mod-585

ern) Mongolian topography (R. Zhang et al., 2017). Apart from differences coming from586

the model and boundary conditions, this likely points to the complex interactions existing587

between the SAM and EAM regional monsoons.588

3.3.2 EAM forcings assessed by modeling experiments derived from mod-589

ern geography590

In contrast with the modest effect it has on the SAM, the Tibetan Plateau uplift is591

instrumental for the EASM, as the heating of the Plateau, induces a cyclonic circulation592

anomaly promoting advection of moist air masses towards Eastern Asia (Z. Zhang et al.,593

2007; H. Tang et al., 2013; R. Zhang et al., 2017). Additionally, simulations testing the594

effects of increased Asian continentality (to mirror a global sea level fall or the retreat of595

the Paratethys Sea, for example), have shown that it results in amplified summer moisture596

convergence from the Indian Ocean towards Asia, due to changes in surface temperature597

gradients deepening the continental low pressure belt (Z. Zhang et al., 2007).598

Although smaller than the HTP complex, the Pamir, Tian Shan and Mongolian land-599

forms are adequately situated in latitude to interfere both dynamically and thermally with600

planetary-scale atmospheric circulation. Their uplift was shown to enhance the aridity in601

inland Asia (actual Gobi and Taklimakan deserts), as it reinforces the EAWM circulation602

patterns (X. Liu & Yin, 2002; X. Liu, Sun, et al., 2015; Baldwin & Vecchi, 2016; Sato,603

2009). By creating a cold pool and deviating the westerlies towards northern Siberia, the604

Mongolian orography has been proposed to be responsible for the Jet Stream northward605

migration in summer and intensity in winter (White et al., 2017; Shi et al., 2015; Sha et al.,606

2020), and for most of the Siberian High location and intensity (Sha et al., 2015).607
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3.3.3 Modeling experiments derived from paleo boundary conditions608

Modeling studies based on modern geographies are nevertheless limited in to what609

extent they allow to understand past changes, especially for periods where very different610

geographies and climate prevailed. Paleoclimate simulations, using sets of realistic (as much611

as possible) paleo-boundary conditions are however rarer. Indeed, they usually imply high612

computational cost, and require important background knowledge on past constraints (pa-613

leogeography, CO2, solar constant, ice-sheets volume).614

More specifically, paleoclimate modeling has confirmed that increasing Asian conti-615

nentality during the Oligocene and the Miocene, mirroring either the Paratethys Sea retreat616

and/or global eustatic sea level fall, was a key leverage of increased moisture advection617

toward Asia in summer (Fluteau et al., 1999; Ramstein et al., 1997; Z. Zhang et al., 2014;618

Sarr et al., 2022). In Oligocene conditions, the uplift of the peripheral Tian Shan, Pamir619

and northeastern portions of the TP was also shown to promote inland Asian aridity, when620

compared to the sole uplift of the ”core” Tibetan plateau (R. Zhang et al., 2017). In late621

Eocene conditions, the latitude of the Tibetan Plateau was also shown to impact signif-622

icantly and non-linearly East Asian climate: with a TP uplifting in the tropics (∼11°N)623

inducing precipitation on the reliefs but aridification in most of China, while a TP uplifting624

at its modern latitude (∼26°N) would increase moisture advection to eastern China and625

aridification of inland Asia (R. Zhang et al., 2018).626

Although paleoclimate studies offer contrasted views regarding Eocene climate, some627

suggesting the presence of monsoons at that time (Huber, 2003) and others not (Tardif et628

al., 2020; Z. Zhang et al., 2012; R. Zhang et al., 2018), this divergence is most likely due to629

the very different paleogeographic reconstructions that were used. Indeed, as many features630

of the Eocene paleogeography remain highly controversial (height of the incipient Tibetan631

topography, shape of Indo-Asian collision zone, height of peripheral landforms, land-sea632

distribution, etc.), the geographic reconstructions may diverge widely from one study to633

another. Paleoclimate modeling have nevertheless allowed to emphasize the prevalence of634

geography impact on climate, rather than pCO2 variations or far-field ice-sheets effects635

when it comes to the SAM and EAM settlement and intensification over long time scales636

(Farnsworth et al., 2019; Thomson et al., 2021). Collectively, these information rather637

reinforce the need for good paleogeographic constraints, and for more sensitivity experiments638

in paleo context, which we aim at doing in the present contribution.639

3.4 Summary: a diachronous settlement of SAM and EAM seasonal fea-640

tures, potential forcings and mechanisms and remaining uncertainties641

The past decade have brought plenty of new analysis based on fossil material, both642

onshore and offshore. The history of SAM, EASM and EAWM settlement and intensification643

now clearly seem to have been diachronous and its evolution tightly linked to land-sea mask,644

topography and global climate evolution over long time scales. Some questions nevertheless645

remain to be answered.646

First, it is unclear whether Paleogene records of highly seasonal precipitations at low647

latitudes (<20°N) do describe an actual monsoon, given that no wind proxies can be pro-648

vided at this period, and that Eocene paleoclimate studies propose widely diverging scenar-649

ios. CLAMP (Climate Leaf Analysis Multivariate Program) paleobotanical analysis (Feng650

& Poulsen, 2016; Wolfe, 1993; Jacques, Su, et al., 2011) have brought interesting insight651

on this point. Generally, they show that, although strong precipitation seasonality was652

likely present since the Paleogene in broad parts of Southeastern Asia (Bhatia, Khan, et653

al., 2021; R. Spicer et al., 2017; Herman et al., 2017), these floras did not yet developed654

the characteristics of plants growing today in modern SAM or EAM regions until the mid-655

dle Miocene (∼13 Ma) (R. Spicer et al., 2017; Bhatia, Srivastava, et al., 2021). Instead,656

Paleogene Asian floras display a signature typical of the regions today dominated by the657

ITCZ seasonal migrations (referred to as Indonesian-Australian monsoon, or IAM in Fig-658
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ure 2). The reorganization from an ITCZ dominated to a monsoonal wind circulation may659

have initiated in the Oligocene (∼28-23 Ma), according to fossils from northeastern India660

displaying a mixture of SAM and IAM leaf signatures (R. Spicer et al., 2017). These typical661

monsoonal signatures likely emerged from a combination of both biotic and abiotic factors,662

although CLAMP method is unable to disentangle the forcings responsible for these spe-663

cific signatures. They however add to the body of evidence suggesting that precipitation664

seasonality and typical monsoonal wind circulation may have been decoupled in the past.665

Second, although modeling studies have started to explore localized landforms effect666

in paleo context, there is plenty of room for improvement. For example, many of these667

landforms have been tested collectively (eg. Tian Shan and Mongolia uplifting together),668

and analyzed within the scope of a single time period. Significant hypotheses remain to669

be tested in a paleo context, such as identifying the leverage for a Siberian High pressure670

development, and its actual impact on inland Asian aridity. Indeed, the presence of loess-671

like deposits since the Eocene, that were tentatively explained by the presence of an active672

Siberian High at that time (Meijer et al., 2021; Licht et al., 2014), question its actual673

dependence to the presence of Tian Shan and/or Mongolian orogens, which are usually dated674

later in the Oligocene to late Miocene. In addition, the notion of threshold elevation is a key675

point to tackle, as strongly non-linear responses of climate circulation with respect to this676

parameter are expected. These considerations highlight the need for a finer understanding of677

the actual drivers of today’s regional Asian monsoons. Given the demonstrated prevalence678

of geography in shaping the Asian Monsoons, an accurate representation of its evolution is679

therefore paramount to study their history over long time-scales.680

4 Cenozoic paleogeography evolution681

Simulations in this study have been performed with Eocene, Oligocene and Miocene682

paleogeographic configurations from previous studies (Poblete et al., 2021; Tardif et al.,683

2020; Sarr et al., 2022; Barbolini et al., 2020), which are coherent with geological history.684

The Eocene and the early Miocene paleogeographic configurations are from Poblete et al.685

(2021); Tardif et al. (2020) reconstruction at 40 and 20 Ma. The early Oligocene geography686

is based on the Eocene geography with an homogeneous sea level drop of 70 meters to687

account for sea level changes related to Antarctic ice-sheet building during the Eocene-688

Oligocene transition (Miller et al., 2020). The mid and late Miocene geographies are based689

on the PRISM4 (Dowsett et al., 2016) reconstruction used in PlioMIP2 (Haywood et al.,690

2020) with modifications to include a southward shift of the Australian continent and an691

emerged Sunda Shelf (see Sarr et al. (2022) for details). We in addition performed sensitivity692

experiments to test the impact of specific topographic features on different characteristics693

of the Asian monsoons.694

In this section, we provide an overview of the main landmarks and persistent uncer-695

tainties regarding the paleogeography evolution during the Cenozoic in our region of interest696

(see Fig. 2). The paleogeographic configurations used in our simulations are introduced, for697

each of these key regions (Fig. 3 and Table 1).698

4.1 Asia699

4.1.1 Indo-Asia collision and land-sea distribution uncertainties700

The initiation of the Indo-Asian collision, marking the closure of the Neotethys Ocean701

(J. R. Ali & Aitchison, 2008; Chatterjee et al., 2013), is dated around ∼50 Ma (C. Wang702

et al., 2014; D. J. J. van Hinsbergen et al., 2012; Dupont-Nivet et al., 2010; Jagoutz et703

al., 2015; Lippert et al., 2014; W. Huang et al., 2015), or alternately around ∼58 Ma704

(D. J. van Hinsbergen et al., 2019; Ingalls et al., 2016), via sedimentology and paleomagnetic705

evidence. The morphology of the Greater India portion (i.e. northern India) before collision706

remains unclear. Depending on the collision scenario considered (see Kapp and DeCelles707

–16–



manuscript submitted to Earth Science Reviews

Table 1. List of reference simulations (in bold) and sensitivity experiments used in this study.

Abbreviations stand for East Antarctic Ice Sheet (EAIS), Antarctic Ice Sheet (AIS) and Greenland

+ Antarctic Ice Sheet (G+AIS). The last column explains the relationship between the different

paleogeographic configurations, and therefore define the anomalies that can be tested (e.g. the

effect of a lowered TP will be studied through the ”LEo2 TP - LEo2 TPlow” difference, while the

effect of pCO2 halving in the Eocene is obtained with the ”LEo1 REF - LEo1 2X”. Likewise, all

paleogeography sensitivity experiment from the Middle to late Miocene will be compared to the

”LMio smallT” simulation.

Simulation pCO2 Ice sheets Paleogeography

LEo1 REF 1120 - from (Tardif et al., 2020)
LEo2 TP 1120 - from (Poblete et al., 2021)
LEo2 TPlow 1120 - from LEo2 TP, with TP lowered to 800 m
LEo2 TPhigh 1120 - from LEo2 TP, with TP raised to 4500 m
LEo2 TPsouth 1120 - from LEo2 TP, with TP shifted to the South (Poblete et al., 2021)
LEo2 BengalSea 1120 - from LEo2 TP, with a Bengal Sea (Poblete et al., 2021)
LEo1 2X 560 - from LEo1 REF, with pCO2 halved to 560 ppm
EOli REF 560 AIS from LEo1 REF, with 70m sea level drop

EMio REF 560 EAIS from (Poblete et al., 2021)
EMio TetSw 560 EAIS from EMio REF, with open Tethyan Seaway (120 m depth)
EMio EAfr 560 EAIS from EMio REF, with modern East African landforms

MMio REF 560 AIS from (Sarr et al., 2022)
LMio smallT 560 AIS from MMio REF, with a reduced Paratethys
LMio noAr 560 AIS from LMio smallT, with immersed Arabia
LMio noM 560 AIS from LMio smallT, with Mongolia lowered to 800 m
LMio noTS 560 AIS from LMio smallT, with Tian Shan lowered to 800 m
LMio noTSM 560 AIS from LMio smallT, with TienShan + Mongolia lowered to 800 m
LMio noTSP 560 AIS from LMio smallT, with TienShan + Pamir lowered to 800 m
LMio REF 560 G+AIS from (Sarr et al., 2022)
LMio 1.5X 420 G+AIS from LMio REF with pCO2 lowered to 420 ppm

(2019); Poblete et al. (2021) for a review), Greater India is represented as fully emerged708

(Ingalls et al., 2016; C. Wang et al., 2014), or partially flooded until the middle-late Eocene709

(D. J. J. van Hinsbergen et al., 2012; D. J. van Hinsbergen et al., 2019; W. Huang et al.,710

2015). From the Eocene onward, India’s progressive migration to the North, indentation into711

the Asian continent and counterclockwise rotation (Molnar et al., 2010) triggered widespread712

orography changes in Asia, which are summarized below. The most salient of these events713

is of course the Tibetan Plateau and Himalayas uplift, and the spreading of deformation714

and uplift to peripheral terranes.715

4.1.2 Himalayas-Tibetan Plateau uplift history716

The early uplift history of the Tibetan Plateau is highly debated. Oxygen isotopic717

paleoaltimetry studies suggest that the Gangdese (Southern TP, Lhasa terrane) and Qiang-718

tang mountains (Central TP) are already as high as ∼4000-5000 m during the early Eocene719

(Rowley & Currie, 2006; L. Ding et al., 2014; Xu et al., 2013; Xiong et al., 2020; C. Wang720

et al., 2014). The robustness of this method is however questioned by isotope-enabled cli-721

mate models demonstrating that other factors than elevation affect the δ18O precipitation722

signature, such as the air masses provenance, climate change, or water recycling (Poulsen723

& Jeffery, 2011; Botsyun et al., 2016). Considering these additional factors, a revised Ti-724
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Figure 3. paleogeographic configurations used in this study. (a,e,h,k,o) Reference paleogeo-

graphic configurations for the late Eocene (∼40 Ma), early Oligocene (∼34 Ma), early (∼20 Ma),

mid (∼12 Ma) and late Miocene (∼8 Ma) are aligned in the first column (red box). Alternative

configurations used for sensitivity tests are also presented, for the late Eocene (b,c,d,f,g), the early

Miocene (i,j) and the mid to late Miocene (l,m,n,p,q,r)
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betan Plateau paleo-elevation, most likely inferior to ∼3000 m in the Oligocene, is suggested725

(Botsyun et al., 2019). The presence of frost-intolerant fossil flora assemblage in Central726

TP in the middle Eocene (T. Su et al., 2020) and late Oligocene (T. Su, Farnsworth, et al.,727

2019), as well as clumped isotope measures (Xiong et al., 2022), advocating for a subtrop-728

ical climate in this region, seems incompatible with a TP exceeding 4000 m. Therefore, a729

more complex morphology for this proto-TP, with the presence of a low-elevated (∼1500730

m) valley dividing the almost fully uplifted (∼3000-4000 m) Lhasa and Qiangtang terranes731

until the late Oligocene has been proposed (T. Su, Farnsworth, et al., 2019; Xiong et al.,732

2020; R. Spicer et al., 2020; Xiong et al., 2022).733

In the periphery of the proto-TP, data collected from different basins offer contradic-734

tory information. In southeastern Tibet, at the extremity of the Qiangtang terrane, T. Su,735

Spicer, et al. (2019) use paleo-elevation calculated from the CLAMP method to suggest that736

the Markam Basin was already high in the late Eocene (∼3000 m) and could have reached737

its modern elevation (∼3900 m) by the earliest Oligocene. Alternately, paleo-elevation based738

on oxygen isotopic measurements of the nearby Jianchuan Basin (belonging to the Qiang-739

tang terrane as well) could have not exceeded ∼1200 m in the late Eocene (Gourbet et al.,740

2017). The northern TP is proposed to remain relatively low (maximum ∼2000 m) in the741

Eocene before uplifting in the Oligocene or the early Miocene, based on δ18O measurements742

from the Hoh Xil Basin (Cyr et al., 2005; C. Wang et al., 2014). An early uplift of the743

northeastern TP is however suggested as early as the late Eocene by increased coniferous744

pollen proportion in the Xining Basin (Hoorn et al., 2012), although cooling and Paratethys745

Sea retreat were also shown to promote coniferous trees expansion in this region (Barbolini746

et al., 2020).747

The history of the TP build-up from the Miocene onward is less controversial. The748

Central TP would have reached modern elevation by the early Miocene, while the northern749

TP uplift is completed by the late Miocene (C. Wang et al., 2014). Stratigraphy and detrital750

zircon analysis indicate that the western TP (Pamir-Karakoram-Hindu Kush) may have751

underwent several phases of uplift between the mid Eocene to latest Miocene (Bershaw752

et al., 2012; L. Li et al., 2021; Blayney et al., 2016; Carrapa et al., 2015). Finally, the753

Himalayas start uplifting in the early Miocene (∼20 Ma) and reach their modern elevation754

by the mid-late Miocene (∼15 Ma) (Gébelin et al., 2013; L. Ding et al., 2017; Xu et al.,755

2018; C. Wang et al., 2014; Webb et al., 2017).756

4.1.3 Inland Asia and Myanmar mountain building757

Asian terranes located in the vicinity of the HTP complex are impacted by the Indo-758

Asian collision. In Myanmar, the Sino and Indo-Burman Ranges have distinct uplift histo-759

ries. Indo-Burma ranges build-up in a three-step process in the late Eocene, at the Oligo-760

Miocene boundary and Pliocene respectively (Najman et al., 2020; Morley, 2018; Maurin &761

Rangin, 2009; Westerweel et al., 2020; Licht et al., 2018), as a result of the progressive in-762

dentation of the Burma block into the Eastern Himalayan collision zone. The Sino-Burman763

Ranges inherited old landforms from previous collisions between Indochina and Sibumasu764

terranes (Metcalfe, 2013) and experienced major uplift in the mid-late Miocene (∼13-9 Ma)765

(Cook & Royden, 2008; Clark et al., 2005), as a result of the Tibetan crustal flow eastward766

propagation.767

North of the Tibetan Plateau, the collision propagated through reactivated pre-existing768

tectonic structures and triggered the uplift of the inland Asia orogenic belt: the Tian Shan769

and the Mongolian (Altai, Hangay and Sayan) landforms (Jolivet et al., 2010). The south-770

western and Central Tian Shan uplift initiation is very loosely constrained, either in the771

middle to late Miocene (∼15 Ma, (Käßner et al., 2016)), late Oligocene to early Miocene772

(∼25 Ma, (Bande et al., 2017; Macaulay et al., 2016, 2014)), or in the Eocene-Oligocene773

(D. Liu et al., 2017; Tapponnier & Molnar, 1979). The northeastern Tian Shan, together774

with the Sayan and Altai regions (in western Mongolia), likely remained quiescent until the775
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late Miocene (Bullen et al., 2003; Caves Rugenstein et al., 2017). After a global pulse of776

uplift at the latest Miocene (∼8 Ma) for the whole Tian Shan, Sayan and Altai mountains777

(W. Yuan et al., 2006; Caves Rugenstein et al., 2017; Charreau et al., 2005), regional land-778

forms would have reached their full elevation after a last Pliocene uplift phase (∼5-3 Ma,779

(Bullen et al., 2003; Caves Rugenstein et al., 2014; De Grave et al., 2007, 2009; Jolivet780

et al., 2007; Vassallo et al., 2007)). The Hangay Dome uplift (in central Mongolia) began781

in the mid-Oligocene (Caves Rugenstein et al., 2014; Cunningham, 2001), but the date of782

completion of the uplift remains debated, either in the mid-Miocene (∼13 Ma, (Smith et783

al., 2016)), or the Pliocene (∼3 Ma, (Yarmolyuk et al., 2008)).784

4.1.4 Evolution of Asia in our reference paleogeographic configurations785

and sensitivity experiments performed786

Our late Eocene reference paleogeography (LEo1 REF, ∼40 Ma, Fig. 3 a), previously787

introduced in (Tardif et al., 2020), displays a fully emerged Greater India and a TP elevation788

set to ∼3000 m. Considering the persistent controversy surrounding the extension of India789

and the TP morphology at that time, other configurations are tested to better understand790

the sensitivity of our results to these features. LEo2 TP (Fig. 3 b) is an alternative late791

Eocene paleogeography, with a slightly different Tibetan Plateau shape (obtained with the792

”double collision model” in Poblete et al. (2021)), from which we derived sensitivity tests793

with a lowered Tibetan Plateau (∼800 m, LEo2 TPlow, Fig. 3 c) and a high Tibetan794

Plateau (∼4500, LEo2 TPhigh, Fig. 3 d). Two additional tests are performed, with a795

Tibetan Plateau translated more to the South (LEo2 TPsouth, Fig. 3 f), obtained with796

the collision model from Jagoutz et al. (2015) and the presence of a remaining Bengal Sea797

(LEo2 sea, Fig. 3g), obtained with the collision model from D. J. J. van Hinsbergen et al.798

(2012); D. J. van Hinsbergen et al. (2019).799

The early Oligocene simulation (EOli REF,∼33 Ma, previously introduced in Barbolini800

et al. (2020)), is designed to represent the Asian climatic state right after the Eocene-801

Oligocene Transition (Fig. 3 e). We use the same late Eocene paleogeography from802

LEo1 REF, in which the sea level is lowered by 70 m to account for an ice sheet over803

Antarctica with a modern extent (it is an end-member scenario). This leads to important804

changes in terms of land-sea distribution, principally in the Paratethys Sea region, detailed805

in section 4.2.3.806

The early Miocene paleogeography (EMio REF, ∼20 Ma, Fig. 3 h) (previously in-807

troduced in Sarr et al. (2022) and Burls et al. (2021), from Poblete et al. (2021)) displays808

an Indian subcontinent translated 5° further north compared to the Eocene, and an uplifted809

Central TP close to its present elevation (∼5000 m), while western and northeastern TP810

portions are lower (∼2000-3000 m). In the middle (MMio REF, ∼12 Ma, Fig. 3 k) and811

late Miocene (LMio REF, ∼8 Ma, Fig. 3 o) paleogeographic configurations, the Himalayas812

and Tibetan Plateau have reached their present day configuration, along with the peripheral813

landforms in Myanmar and inland Asia (Fig. 3). Sensitivity tests are performed on inland814

Asian landforms, lowering to ∼800 m the elevation of Mongolia (LMio noM, Fig. 3 p),815

the Tian Shan (LMio noTS, Fig. 3 q), both Mongolia and Tian Shan (LMio noTSM,816

Fig. 3 n), and finally, the Tian Shan and Pamir (LMio noTSP, Fig. 3 r).817

4.2 The Peri-Tethys region evolution under the complex interplay of tec-818

tonics and global sea level changes819

Throughout the Cenozoic, global sea level fluctuations in an active tectonic convergence820

context have lead to a profound paleogeographic reorganization and a general increase in821

continentality of the regions encompassing the Mediterranean Sea, Middle East and inland822

Asia. We resume here the main paleogeography changes (in terms of sea connections between823

Indian, Atlantic and Arctic Oceans).824
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4.2.1 Retreat of the Paratethys Sea and closure of the Neotethys Ocean825

During the Paleocene-Eocene, Eurasia is largely flooded by the proto-Paratethys, an826

epicontinental sea connected to the Arctic Ocean via the Turgai Strait and to the Neotethys827

Ocean (Meulenkamp & Sissingh, 2003; Golonka, 2009). Paleoenvironmental analysis suggest828

a maximal extension of the proto-Paratethys Sea reaching the Tajik and Tarim Basins, in829

inland Asia, at the Paleocene-Eocene transition (∼56 Ma), followed by a long-term westward830

retreat, punctuated by marine transgressions of decreasing magnitude (Kaya et al., 2019;831

Bosboom et al., 2014b, 2017; Carrapa et al., 2015). In Central Asia, the shrinkage of the832

proto-Paratethys Sea during the Eocene is attributed to far-field effect of the Indo-Asia833

collision and to the early indentation of the Pamir and TP, leading to the progressive basins834

infilling with sediments (Kaya et al., 2019; Carrapa et al., 2015). The build-up of the835

Antarctic ice-sheet initiated in the late Eocene, resulted in a sea-level drop that culminated836

at the EOT (∼33.5 Ma, sea-level fall estimated at ∼70 m by Miller et al. (2020)), which837

drastically reduced the extent of the Paratethys and favored its isolation (Kaya et al., 2019;838

Bosboom et al., 2014b, 2017). Water exchanges between the Paratethys and global oceans839

are progressively restricted, as attested by δ18O and δ13C of foraminifera shells diverging840

increasingly from global oceanic signals at that time (Ozsvárt et al., 2016). The Paratethys841

Sea is fully isolated from the Mediterranean Sea at ∼12 Ma, with the final uplift of the842

Dinarides belt (Harzhauser & Piller, 2007). A connection with the Mediterranean Sea is843

restored between 6.9–6.1 Ma when the Aegean region subsides during the latest Miocene844

(Krijgsman et al., 2020).845

The Tethyan Seaway (or Mesopotamian Seaway) which connected Indian and Atlantic846

Oceans remained fully open before the Miocene (Straume et al., 2020). εNd data suggest847

that it became strongly restricted around ∼22 Ma (Bialik et al., 2019), with intermittent848

periods of closure, as attested by evidence of mammal exchanges between Eurasia and849

Africa through the Gomphotherium landbridge (Rögl, 1999; Harzhauser & Piller, 2007).850

The Tethyan Seaway permanently closed at ∼14 Ma (Bialik et al., 2019), due to combined851

effect of Arabian-Eurasian plates collision and glacio-eustatic sea level fall associated with852

the cooling following the Mid-Miocene Climatic Optimum (MMCO).853

4.2.2 Middle-East: Eastern Anatolian-Iranian Plateau and Zagros Moun-854

tains855

The Middle-East experienced multiple changes in land-sea distribution and topogra-856

phy, forced by the collision of the Arabian plate with Eurasia, which drove the uplift of857

the Zagros mountains and of the Iranian Plateau. The exact timing of the Arabia-Eurasia858

collision in eastern Anatolia remains highly debated with estimated date ranging from the859

Eocene-Oligocene (Karaoğlan et al., 2016; Darin et al., 2018; McQuarrie & Hinsbergen,860

2013; Pirouz et al., 2017), the early Miocene (Okay et al., 2010; Gülyüz et al., 2020), to861

the late Miocene (H. Su & Zhou, 2020; Z. Zhang et al., 2017). Most studies however pro-862

pose an early Miocene age (∼20 Ma) for the hard collision related to the arrival of thick863

Arabian crust along the Bitilis suture zone (Okay et al., 2010; Cavazza et al., 2018; Gülyüz864

et al., 2020). After the collision, the Zagros orogen built up during three successive pulses865

occurring within the last ∼20 Ma (Agard et al., 2011; Mouthereau, 2011).866

The Alborz mountains uplift (northwest of the Zagros) is dated during the middle867

Miocene (∼17.5-13 Ma), according to sediments stable isotopic signatures (Ballato et al.,868

2010, 2015) and may have continued until the latest Miocene (Mouthereau et al., 2012).869

A Miocene age for the commencement of the eastern Anatolian Plateau growth has been870

estimated based on the youngest marine unit of the eastern Anatolian Plateau (∼17 Ma)871

(Gülyüz et al., 2020) and apatite fission-track data (18-13 Ma) (Okay et al., 2010; Karaoğlan872

et al., 2016). Stratigraphic evidence suggest a rise due to crustal shortening and thickening873

occurring between 15 and 12 Ma (Mouthereau et al., 2012). Numerical simulations suggest874

a buildup of the Plateau within ∼15-20 Ma after the continental collision, likely sustained875
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by slab break-off, mantle flow disruption and associated changes in dynamic topography,876

followed by isostatic adjustment (François et al., 2014). With this mechanism, the modern877

elevation (∼1500 m.a.s.l) is only reached during the late Miocene (∼7-10 Ma).878

4.2.3 Evolution of the Peri-Tethys region in our reference paleogeographic879

configurations and sensitivity experiments performed880

Our paleogeographic reference configurations are consistent with the geological history881

of the Paratethys Sea demise and with uplift phases in the region. In our late Eocene882

geography (LEo1 REF, Fig. 3 a) the proto-Paratethys Sea fills the Tarim Basin ; it is still883

connected to the Neotethys and Indian Oceans, but not to the Arctic, as the Turgai Strait884

is already closed. In the Oligocene reconstruction (EOli REF, Fig. 3 e), the 70 m sea885

level drop (Miller et al., 2020)) leads to the emergence of continental portions in Arabia and886

North-Africa, and to the drying of the Tarim Basin and lowlands north of the Turgai Strait,887

which all conspire to increase greatly Asian continentality. The former shallow connection888

between the Paratethys and the Tethys ceases in the Pamir-Zagros region at that time. In889

the early Miocene geography (EMio REF, Fig. 3 h), an emerged land-bridge interrupts890

the Tethyan seaway that previously connected the Mediterranean Sea and the Indian Ocean,891

but shallow sea persists at the location of the present-day Arabian Peninsula. Given the892

uncertainty surrounding the precise closure time of the seaway, an alternative early Miocene893

configuration is also tested, with a 120 m deep Tethyan seaway (EMio TetSw, Fig. 3 i).894

In the middle Miocene reference simulation (MMio REF, Fig. 3 k), the Iranian Plateau895

and Zagros mountains are halfway uplifted (∼1000 m) compared to present-day and the896

Paratethys extends up to 60°E. By the late Miocene (LMio REF, Fig. 3 o), the Paratethys897

is strongly reduced and the Iranian landforms have reached their modern elevation. An898

intermediate reconstruction is proposed, testing the impact of the Paratethys retreat only,899

in the mid-late Miocene (LMio smallT, Fig. 3 l). Note that LMio smallT is the mid-late900

Miodene paleogeography to which all others late and middle Miocene simulations can be901

compared to, to single out the effect of regional changes.902

4.3 East Africa and Arabian Peninsula evolution903

While much attention has been paid to the Eastern African topography evolution in the904

Neogene due to its implication on early hominins development, its history fits in a broader905

paleogeographic context rooted in the late Eocene to early Oligocene times (see Couvreur906

et al. (2021); Guillocheau et al. (2018) for a synthesis). Landforms in East Africa (Kenyan907

and Ethiopian plateaux) developed during the late Cenozoic, triggered by a combination908

of tectonics, basaltic flooding, and large wave-length deformation related to the African909

superswell activity (Moucha & Forte, 2011; Faccenna et al., 2019; Roberts et al., 2012).910

Uplift in the Ethiopian region would have began during the Eocene, with doming event911

sustained by dynamic topography (Roberts et al., 2012; Faccenna et al., 2019) that then912

propagates to Kenya during the middle Miocene. In the early Oligocene, basaltic flooding913

in Ethiopia would have contributed to the formation of these large-scale elevated features914

(Sembroni et al., 2016). Rifting initiated during the middle Miocene, with main uplift of915

rift shoulders (Wichura et al., 2015). Overall, past elevations in the course of the Cenozoic916

are poorly constrained in East Africa, but modern elevations were most likely reached by917

the late Miocene to early Pliocene (Couvreur et al., 2021).918

4.3.1 Arabian Peninsula919

The Arabian Peninsula records successive marine and freshwater environments from920

the early Oligocene to the late Miocene, as attested by paleo-ichthtyofaunas (Otero &921

Gayet, 2001). Before the Neogene, the Arabian plate is assumed to be flat and low ele-922

vated (Daradich et al., 2003), making it particularly sensitive to sea-level changes. It is923

therefore largely submerged during the Eocene, and its southwestern part becomes par-924
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tially emerged after the sea-level fall at EOT (Barrier et al., 2018). During the Miocene,925

the Arabian plate is tilted when transiting over the East-Africa mantle plume (Vicente de926

Gouveia et al., 2018), leading to the uplift of the Red sea margin, and the flooding of its927

northeastern corner, due to mantle convective drawdown (Daradich et al., 2003; Moucha928

& Forte, 2011). This mechanism favored temporary transgression phases in the subdued929

northeastern region in early Miocene times (Barrier et al., 2018), until its full emergence in930

the late Miocene, possibly favored by global sea-level fall after the MMCT (Golonka, 2009;931

Harzhauser & Piller, 2007; Miller et al., 2020).932

4.3.2 Evolution of East Africa and Arabia in our reference paleogeographic933

configurations and sensitivity experiments934

Our reference paleogeographic configurations (Fig. 3 a,e,h,k,o) display a low East935

Africa during the Eocene-Oligocene, which rises to ∼750-1,000 m in the early Miocene and936

a modern-like elevation in the mid and late Miocene reconstructions. Given the large uncer-937

tainties on east African topography precise elevation, we perform a sensitivity experiment on938

an early Miocene paleogeography, with fully uplifted east African landforms (EMio EAfr,939

Fig. 3 j). Additionally, a mid-late Miocene configuration displaying an almost fully flooded940

Arabian Peninsula is tested (LMio noAr, Fig. 3 m), to account for its high sensitivity to941

sea level fluctuations at that period.942

5 Materials and Methods943

5.1 IPSL-CM5A2 model944

We performed the simulations with the IPSL-CM5A2 Earth System Model (Sepulchre945

et al., 2020), an updated version of the IPSL-CM5A model (Dufresne et al., 2013) suitable946

for deep-time paleoclimate simulations. It is composed of the atmospheric model LMDz5A947

(Hourdin et al., 2013), the land surface and vegetation model ORCHIDEE (Krinner et al.,948

2005) and the oceanic model NEMO (v3.6) (Madec, 2016) that also includes the LIM2949

model (Fichefet & Maqueda, 1997) for sea-ice. OASIS coupler ensures synchronization950

between the different model components (Valcke et al., 2006). Atmospheric component951

has a nominal horizontal resolution of 96x95 grid points (3.75◦ in longitude by 1.9◦ in952

latitude) with 39 irregularly distributed vertical levels from the surface to 40 km high.953

The land surface ORCHIDEE model is coupled with LMDZ5a and redirects runoff water954

toward the ocean. The vegetation cover is represented through 11 Plant Functional Types955

(PFTs), including one describing bare soil. NEMO uses a tripolar grid, with two poles in956

the Northern hemisphere to avoid singularity (Madec & Imbard, 1996). It has a resolution957

of 2◦ by 2◦ refined at 0.5◦ in the equatorial region, with 31 vertical levels, whose thickness958

span from 10 meters near the surface to 500 meters in the deep ocean. Full description of959

IPSL-CM5A2 can be found in Sepulchre et al. (2020); Dufresne et al. (2013).960

IPSL-CM5A2 has been previously used for paleoclimatic simulations of the Miocene961

(Burls et al., 2021; Sarr et al., 2022) and the Eocene (Toumoulin et al., 2020; Tardif et962

al., 2020; Barbolini et al., 2020; Tardif et al., 2021; Toumoulin et al., 2022). The ability963

of the model to simulate the modern Asian climate was previously assessed (Sepulchre et964

al., 2020; Tardif et al., 2020) and a comparison with observations is provided (SI, Fig. 15).965

While general atmospheric circulation patterns are well reproduced, IPSL-CM5A2 overall966

underestimates precipitation amounts and delays inland monsoonal precipitation onset by967

about a month, a feature shared with IPSL-CM5A version (Sepulchre et al., 2020; Valdes968

et al., 2017).969

5.2 Experiments design970

The boundary conditions are summarized in Table 1. Experiments at Late Eocene971

are considered ice-free, as pCO2 is above the threshold for permanent Antarctic glaciation972
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(Ladant et al., 2014; DeConto & Pollard, 2003). Unipolar glaciation, with Antarctic ice-973

sheet only, is used for the Oligocene and early Miocene and both Greenland and Antarctic974

ice-sheets are accounted for in the late Miocene (Bierman et al., 2016) configurations. CO2975

concentration varies from 1,120 ppm for the late Eocene to 560 ppm in the late Miocene976

(Table 1) Foster et al. (2017); Rae et al. (2021), while other greenhouse gases are kept at977

preindustrial values. Given the persistent uncertainties regarding precise pCO2 concentra-978

tion during the Cenozoic, we performed two additional sensitivity tests on this parameter,979

in the late Eocene (LEo1 2X, 560 ppm), and in the late Miocene (LMio 1.5X, 420 ppm).980

The solar constant was adjusted according to Gough (1981) and set to 1360.19 W.m-2 for981

late Eocene and early Oligocene simulations, to 1362.92 W.m-2 for early Miocene simu-982

lations and to 1364.30 W.m-2 for late and middle Miocene simulations. Although orbital983

variations are known to impact monsoonal circulation (Zhisheng et al., 2015; P. Wang et984

al., 2005; Tardif et al., 2021), we prescribed a modern-like configuration to focus on the985

impact of paleogeography on the monsoon system. Considering the lack of congruent global986

vegetation reconstruction over the Cenozoic, the same PFT map was used throughout the987

experiments, prescribing latitudinal bands of idealized vegetation cover based on modern988

distribution, as done in previous studies (Tardif et al., 2020; Laugié et al., 2020). The989

reference experiments have been run for 3000 years and deep ocean layers reached quasi-990

equilibrium after ∼2000 years of integration. Sensitivity experiments were restarted from991

there reference experiments an run for 300 to 500 years until reaching stable sea surface992

temperatures. Model outputs are averaged over the last 50 years.993

5.3 Monsoon metrics994

The evolution of Asian monsoons back in time is assessed through specific markers995

that are characteristic of the present-day phenomenon. We favored SAM and EAM features996

offering means of comparison with paleoclimate records, which typically involve precipitation997

amounts, seasonality and wind direction and strength. Several features of the monsoons,998

however, are not recorded by proxies, or in a very indirect way. This is for example the case999

of the pressure patterns, and of all mid-to-high tropospheric features associated with the1000

modern monsoons. In that aspect, numerical simulations are a valuable tool to grasp the1001

full signature of eventual paleo-monsoons.1002

For both SAM and EAM, we evaluated the evolution of precipitation seasonality using1003

the Monsoon Precipitation Index (MPI) (B. Wang & Ding, 2008), expressed as follow:1004

MPI =
Seasonal range of precipitation

Mean annual precipitation

where the seasonal range of precipitation is the difference between May to September1005

(MJJAS) precipitation minus November to March (NDJFM) precipitation. Regional oc-1006

currence of a monsoon-like seasonality is considered providing a seasonal range superior to1007

300 mm and a majority of precipitation falling during the extended summer season (MPI1008

> 0.5). This criteria has the benefit of not being exclusive (with or without monsoon), as1009

it proposes a discrete metric for seasonality amplitude (from 0 to 1). It also imposes the1010

wet season to be in summer, as in the present-day monsoon region, as opposed to other1011

existing precipitation metrics (such as the ratio of the 3 wettest month over the 3 driest1012

month precipitation, commonly used in paleobotanic studies), which enables us to test the1013

presence of modern-like climate patterns.1014

The wind patterns, described through their shape and strength, are the second funda-1015

mental characteristic observed. The latitudinal migration of the Somali Jet is tracked over1016

the Arabian sea (Fluteau et al., 1999). The wind shear between low and high troposphere1017

over India, that describes the vigor of the SASM zonal circulation and its inclusion in the1018

Walker circulation, is calculated through the Webster-Yang Index (U850-U200, calculated in1019

an area from 0°:20°N to 40°E:110°E) (Webster et al., 1998). The positive thermal anomaly1020
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observed at 200-300 hPa over northern India in summer has additionally been used as a1021

marker of the deep convection characterizing the modern SASM (Boos & Kuang, 2010;1022

Acosta & Huber, 2020). This feature is due to the important latent heat release provoked1023

by the condensation of moisture in convecting air masses and in air masses ascending on the1024

southern flank of the Himalayas, which heat the high troposphere (see Fig. 14 c). Fewer1025

criteria exist to formally describe the EAM. In addition to the precipitation seasonality de-1026

scribed through the Monsoon Precipitation Index, we tracked the EASM via the description1027

of the latitudinal displacement of the Jet Stream with respect to Tibetan and inland Asia1028

landforms, and the surface wind patterns that constitute the Meiyu-Bayu front at present-1029

day. The EAWM is tracked principally through the evolution of temperature and pressure1030

gradients, leading to the Siberian High formation in winter, and of its associated wind pat-1031

terns. Here we used the EAWM index defined by L. Wang and Chen (2014) that accounts for1032

both the North-South (Siberia-Maritime continent) and West-East (Siberia-North Pacific)1033

pressure gradients and is expressed as follow:1034

IEAWM = (2xSLPS-SLPNP-SLPMC)/2

where SLPS, SLPNP and SLPMC is the area-averaged Sea Level Pressure (SLP) over1035

Siberia (40°:60°N, 70°:120°E), North Pacific (30°:50°N, 140°E:170°W) and the Maritime con-1036

tinent (20°S:10°N, 110°:160°E), respectively.1037

6 Results1038

We present the results obtained for the five reference simulations as well as for the1039

different sensitivity numerical experiments, first for the South Asian Monsoon, then for the1040

East Asian Monsoon domain. Main outcomes in terms of seasonal winds and precipitations1041

are qualitatively summed up in Table 6.1042

6.1 South Asian summer monsoon controlled by the orography surround-1043

ing the Indian Ocean1044

6.1.1 Spatial and seasonal precipitation patterns evolution1045

In the late Eocene a wide arid region (< 500 mm/yr) spreads from northern India1046

to north of the proto-Tibet (Fig. 4 a). High mean annual precipitation amounts (> 30001047

mm/yr) are simulated over equatorial regions, in southern India and southeastern Asia.1048

There is no monsoon-like seasonality according to the MPI index in India, because the1049

rainy season in this region occurs in winter (as previously described in Tardif et al. (2020)).1050

The precipitation pattern evolves from the early Oligocene onward, with the progressive1051

translation of the arid region to Arabia and Northern Africa (Fig. 4 e,i,m,q). This in1052

turn allows the penetration of rainfall in summer in South-Eastern Asia, and the onset1053

of a monsoon-like seasonality in this region, as well as a reinforcement of monsoon-like1054

seasonality in Eastern Asia.1055

In the course of the Miocene, as India drifts northward, its southern tip receives less1056

precipitation (∼1500 mm/yr in the late Miocene, Fig. 4 q), and the intensity and extent of1057

highly seasonal precipitation increases greatly over southern and eastern Asia (red dotted1058

regions in Fig. 4 e,i,m,q). Orographic precipitation over the southern flank of the Himalayas1059

initiate by the mid Miocene simulation (∼900 mm/yr, Fig. 4 m), and further increase in the1060

late Miocene (∼1200 - 1500 mm/yr, Fig. 4 q). These changes in precipitation patterns in1061

both space and time are triggered by a profound reorganization of surface pressure patterns1062

and winds throughout the Cenozoic.1063
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Figure 4. Evolution of the summer monsoon diagnostics since the Eocene. First column: Mean

Annual Precipitation (shading, mm/yr) overlain with regions where the Monsoon Precipitation
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6.1.2 Summer pressure and wind patterns reorganization1064

The summer (June to August, JJA) sea level pressure (SLP) patterns in Eurasia in1065

the late Eocene experiment (Fig. 4 b) contrast strongly with the modern ones (Fig. 14 d).1066

While a low-pressure center driven by extreme summer temperature forms over southeastern1067

Asia (up to 50°C over Greater India, Fig. 4 d), the Paratethys Sea and Neotethys Ocean are1068

the locus of a wide high pressure cell (Fig. 4 b). This induces low tropospheric anticyclonic1069

wind patterns, that counteract potential moisture advection from the Indian Ocean towards1070

South Asian regions. From the early Oligocene onward, the Paratethys Sea and Neotethys1071

shrinkage increase the Eurasian continentality and emerging landforms, such as Anatolia1072

and Arabia, become the locus of high summer temperature (35-45°C, Fig. 4 l,p,t). This1073

leads to the progressive widening of the South Asian low-pressure belt, while the Neotethyan1074

anticyclone gradually regresses westward (Fig. 4 f,j,n,r). This low pressure cell reaches its1075

modern-like extent in the mid Miocene simulation (Fig. 4 n), but only attains its current1076

values (∼-14 hPa over Arabia and northern India) by the late Miocene (Fig. 4 r).1077

Mirroring this progressive strengthening and widening of the summer low-pressure1078

belt over South Asia and Arabia, humidity-loaded air masses are gradually advected from1079

the Indian Ocean towards the continent over the Cenozoic. A weak cross equatorial flow1080

(<4 m/s against ∼25 m/s today), confined to low latitudes (<10°N, Fig. 5 a, simulations1081

LEo1 REF and EOli REF) is simulated over the Arabian Sea in the late Eocene and early1082

Oligocene experiments (Fig. 4 b,f). A proto-Somali Jet, mostly zonal and confined to1083

low latitudes (<11°N) is simulated in the early Miocene simulation (Fig. 5 b, simulation1084

EMio REF). From the mid Miocene onward, and following the reinforcement of the Asian1085

low-pressure belt, the now fully-formed Somali Jet increases in strength and migrates further1086

north over the Arabian Sea (∼18-24°N) (Fig. 4 n,r and Fig. 5 b, simulations MMio REF1087

and LMio REF).1088

The simulated tropospheric circulation above southern Asia deeply evolves since the1089

Late Eocene, as exemplified by the calculation of the Webster-Yang Index. This index1090

doubles between the late Eocene and the early Oligocene (from ∼5 to 11 m/s, Fig. 5 c,1091

reference simulations LEo1 REF and EOli REF), and keeps increasing through the Miocene1092

(from ∼16 to 21 m/s, Fig. 5 d, simulations EMio REF, MMio REF and LMio REF). Finally,1093

while heating of the high troposphere (∼300 hPa) due to deep convection is observed in most1094

experiments (Fig. 4 d,h,l,p,t), its settlement over Northern India is only reached by the mid1095

Miocene experiment, following the increase in summer convective precipitation in this region1096

driven by orographic lifting.1097

6.1.3 Limited effect of pCO2 drawdown and Tibetan Plateau changes on1098

South Asian summer monsoon evolution1099

The non-linearity in the response of the Somali Jet through time calls for a more1100

thorough analysis of the different forcing at stakes between each of these simulations. In1101

this section, we take advantage of our different alternative paleogeography reconstructions1102

and pCO2 to attribute the simulated changes to their respective underlying drivers. Overall,1103

the SASM presents a low sensitivity to pCO2 changes, when compared to paleogeographic1104

forcings. This is true for the late Eocene experiments, where a change from 1120 ppm to 5601105

ppm only induces minimal variations in the WYI (Webster-Yang Index) strength, summer1106

northward ITCZ migration (difference between experiments LEo1 2X and LEo1 REF in1107

Fig. 5 a,c), or monsoon-like seasonality extension (Fig. 7 f). This is also the case for the1108

late Miocene experiments, with a switch from 560 ppm to 420 ppm (difference between1109

experiments LMio 1.5X and LMio REF in Fig. 5 b,d).1110

The paleogeography of Greater India and Tibetan regions have been recurrently pro-1111

posed as a driver of monsoon onset or intensification (R. Zhang et al., 2012; Yu et al., 2018;1112

Molnar et al., 1993). While alternative TP configuration lead to slightly different results1113

(detailed below), their impact on the SASM large-scale wind circulation remains limited in1114
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Figure 5. Estimation of the South Asian monsoon strength evolution in all the simulations via:

(a,b) the calculation of the summer (JJA) cross-equatorial flow latitude over the Arabian Sea, after

Fluteau et al. (1999) and (c,d) the calculation of the Webster-Yang Index (850 hPa minus 200 hPa

zonal wind velocity, in the region 0:20 °N ; 40:110 °E, after Webster and Yang (1992)). For better

readability, the experiments are split into Eocene-Oligocene (a,c) and Miocene (b,d) simulations.

Reference simulations are highlighted in bold characters and full lines, while sensitivity tests are in

dotted lines.
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our simulations (Fig. 5 a,c and Fig. 6). In the late Eocene, increasing TP elevation strength-1115

ens the zonal wind shear over India (3000 m, WYI = ∼6 m/s, for experiment LEo2 TP,1116

Fig. 5 c), when compared to Eocene experiment with low topography in the region (800 m,1117

WYI = 1 m/s, LEo2 TPlow). Additionally, the magnitude of the WYI gradually increases1118

with the TP latitude, with values spanning from 3 m/s when its southern edge is at ∼20°N1119

(LEo2 TPsouth), 4 m/s (southern edge at ∼25°N in LEo2 TP), to finally 6 m/s (southern1120

edge at ∼30°N, experiment LEo1 REF). The sea inlet that flooded the northern Greater1121

India during the late Eocene, as sometimes suggested in the literature (D. J. J. van Hins-1122

bergen et al., 2012; D. J. van Hinsbergen et al., 2019), limits the northward migration of1123

the ITCZ in summer (from ∼7 to 3°N between experiments LEo2 BengalSea and LEo2 TP,1124

Fig. 5 c). It also produce a decrease in year-round precipitation, especially in South and1125

inland Asia (Fig. 6 m,n,o).1126

6.1.4 Continentality increase and East African and Iranian uplifts as ma-1127

jor drivers of the South Asian summer monsoon1128

The changes induced by the Tibetan plateau uplift or by its latitudinal location on the1129

South Asian climate are however out-competed by far by the effects of other paleogeography1130

changes, namely a global sea-level fall, reflecting the Antarctica glaciation at the EOT and1131

the uplift of peripheral terranes (Fig. 5). Indeed, the increase in continentality driven by the1132

sea level fall, together with the pCO2 halving, induces a colder and drier winter (Fig. 7 g) as1133

well as hotter and wetter summer (Fig. 7 h), which results into a monsoon-like seasonality1134

signal stretching over Southeastern Asia (Fig. 7 i). It also translates into a doubling of the1135

WYI (from 6 to 11 m/s between experiments EOli REF and LEo1 REF, Fig. 5 c) and a1136

strong reorganization of summer Jet Stream behavior (see dedicated section below).1137

Likewise, increasing continentality during the Miocene appears to be the key leverage1138

for inducing a more pronounced migration of the ITCZ over the Arabian Sea (from 18 to1139

21°N in more continental case, Fig. 5 b), as well as a slight increase of the WYI (Fig. 5 d).1140

This is achieved either with the emergence of the Arabian platform (Fig. 8 g,h,i), or with the1141

narrowing of the Neotethys Ocean and the shrinkage of the Paratethys Sea (Fig. 8 d,e,f). In1142

both cases, the amplification of the summer low pressure belt results into increased moisture1143

advection from the Arabian Sea, and therefore increased summer precipitation in SAM and1144

EAM domains. The overall precipitation seasonality increase is however not homogeneous,1145

because of contrasted effects on the winter season precipitation. Our results point that1146

the Arabian platform emergence, by amplifying the winter Siberian high pressure would1147

dry Eastern Asia and southeastern Tibet, which would increase precipitation seasonality1148

in parts of SAM but mostly in EAM domain (Fig. 8 d,f). The retreat of the Paratethys1149

Sea, on the other hand, would mostly increase precipitation seasonality in the South Asian1150

monsoon domain (Fig. 8 i). Moreover, a clear dichotomy emerges between Central Asia,1151

that becomes drier after the Paratethys Sea retreat, and all surrounding regions that become1152

wetter (Fig. 8 i).1153

Additionally, the successive buildup of both East African (difference between ex-1154

periments EMio EAfr-EMio REF) and Iran-Zagros landforms (difference between experi-1155

ments LMio REF-LMio smallT) is critical for the amplification of the ITCZ migration and1156

strengthening of SAM. Each uplift triggers a ∼4-5° northward migration of the ITCZ over1157

the Arabian Sea in summer, as well as a slight increase in July WYI (Fig. 5 b,d). The1158

uplift of East African landforms under Early Miocene conditions reinforces the Somali Jet1159

and brings moisture to Iran-Zagros and SAM domain in summer (Fig. 9 e), which results in1160

intensification of monsoon-like seasonality on the Himalayan foothills and in Southeastern1161

Asia (mainly Myanmar, Fig. 9 f). Iran-Zagros landforms final uplift under late Miocene1162

conditions promotes winter aridity and summer precipitation in SAM domain through a1163

strong strengthening of the Somali Jet, resulting in a reinforced monsoon-like seasonality1164

(Fig. 9 j,k,l). By preventing the advection of westerly mid-latitudes winds to lower lati-1165

tudes, it channels this humidity towards inland Asia in summer, thus reducing the aridity1166
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of the region. On the other hand, and although being sometimes put forward as a plausible1167

event contributing to modification of monsoon strength during the Miocene (Bialik et al.,1168

2019, 2020; Rögl, 1997; J. Sun et al., 2021), the mechanical effect of the Tethyan seaway1169

closure, without strong modification of land extension in the Arabian Peninsula region, re-1170

mains limited in our experiments (+1 m/s for the WYI between experiments EMio REF1171

and EMio TetSw in Fig. 5 d).1172

6.2 The Eastern Asian monsoon under the crossed influence of Asian orog-1173

raphy, continentality and pCO21174

6.2.1 EASM: precipitation patterns and summer Jet Stream position evo-1175

lution1176

As opposed to the South Asian region, monsoon-like precipitation seasonality is simu-1177

lated in Eastern Asia in all reference experiments, although it remains initially confined to1178

Northeastern China in the Eocene (Fig. 4 a). As this region of monsoon-like precipitation1179

regime expands to southeastern and inland China throughout the Cenozoic and reaches1180

modern-like extension in the mid Miocene experiment, the Paleogene broad zonal arid band1181

retreats from China (Fig. 4 m). Today, precipitation in eastern China are triggered by the1182

penetration of the Meiyu-Bayu front as it follows the migration of the Jet Stream north of1183

the Tibetan Plateau during summer (Kong et al., 2017). In our simulations, the summer Jet1184

Stream (approximated through the location of maximum zonal wind velocity in the tropo-1185

sphere in August), transits above the proto-Tibetan Plateau and Eastern China in a strong1186

zonal flux in the Eocene and Oligocene experiments (up to 30-35 m/s centered at ∼30°N1187

Fig. 4 c,g). It then weakens (10-20 m/s) and progressively migrates north of the Plateau in1188

the Miocene experiments (Fig. 4 k,o,s). The Jet also looses its very zonal configuration and1189

undulates towards Japan. This relocation of the Jet Stream is accompanied by increased1190

precipitation in eastern China, southeastern Siberia and Japan, reaching 200-300 mm in1191

August (Fig. 4 k,o,s), and locally accounting for up to 25% of the annual precipitation in1192

this sole month. These results suggest that the Jet Stream seasonal displacement indeed1193

amplifies the EASM rainy season, although seasonal precipitation have been observed in1194

this region in Late Eocene experiments.1195

6.2.2 Summer Jet Stream migration and associated EASM precipitation1196

driven by pCO2 decrease at the EOT and the Northern TP, Tian1197

Shan, Pamir and Mongolian uplift in the Miocene1198

To identify the drivers responsible for the Jet Stream seasonal migration about the1199

Tibetan Plateau, we here again take advantage of the available sensitivity experiments. All1200

1120 ppm (or 4X) late Eocene simulations display a behavior of the Jet opposite to its1201

modern counterpart, with a northward migration in winter, and a southward migration in1202

summer, below or over the proto-Central TP (Fig. 10 a). This tendency remains relatively1203

undisturbed with alternative TP configurations (Fig. 10 a and Fig. 6 e,h,k,n). The pCO21204

halving in the Eocene-Oligocene reverses this tendency (LEo1 2X and EOli REF, compared1205

to LEo1 REF). It induces a migration northward of the Tibetan landform in late summer1206

to early fall (Fig. 10 a and Fig. 7 e,h), and an important decrease in winter zonal speed1207

(∼50m/s against ∼70 m/s in other Eocene simulations, Fig. 10 a and Fig. SI 21 a to h).1208

This migration is however restricted to the TP region, and the Jet Stream remains at low1209

latitude over eastern Asia (∼35°N, Fig. 10 b and Fig. SI 19), with few summer precipitation1210

(100-150 mm/month).1211

All subsequent Miocene simulations display an important latitudinal migration of the1212

Jet along the year, both in the TP region (Fig. 10 c,e), and over eastern Asia (Fig. 101213

d,f). The northward migration of the Jet is comparable between early Oligocene and early1214

Miocene experiments (up to ∼38-40°N in September), despite a higher Central Tibet (from1215

3000 to 4000 m) and a wider Tibetan landform, due to the incipient uplift of Northeastern1216
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Figure 6. Sensitivity to the Tibetan configurations on Eocene climate: (a,d,g,j,m) winter

precipitation (shading), 850 hPa winds (vectors), jet stream speed (contour) ; (b,e,h,k,n) on

summer precipitation (shading), 850 hPa winds (vectors), jet stream speed (contour); (c,f,i,l,o)

mean annual precipitation (shading) and monsoon-like seasonality according to the MPI index (red

dots). Sensitivity tests are compared to the simulation LEo2 TP (a,b,c) and anomalies (d to o)

are expressed as ”test minus LEo2 TP”, except for the ”lowered TP effect” which is ”LEo2 TP

minus LEo2 TPflat”). Precipitation anomalies (shading) are expressed in % and normalized by the

averaged precipitation of both simulations (therefore, a change from or to zero mm/year accounts

for +/- 200%). In (f,i,l,o): four types of seasonality changes induced by uplift are displayed (e.g.

regions showing a decrease of monsoon-like seasonality after lowering the TP are in small black

dots) ; white and black topographic contours indicate the LEo2 TP and test topography.
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Figure 7. Influence of the pCO2 decrease and sea level drop at the EOT on: (a,d,g) winter

precipitation (shading), 850 hPa winds (vectors), Sea Level Pressure (contour) ; (b,e,h) on summer

precipitation (shading), 850 hPa wind (vectors), jet stream speed (contour); (c,f,i) mean annual

precipitation (shading) and monsoon-like seasonality according to the MPI index (red dots). Sensi-

tivity tests are compared to the simulation LEo1 REF (a,b,c) and anomalies (d to i) are expressed

in order to highlight the impact of the test (i.e. test-LEo1 REF). Precipitation anomalies (shading)

are expressed in % and normalized by the averaged precipitation of both simulations (therefore,

a change from or to zero mm/year accounts for +/- 200%). In (f,i): four types of seasonality

changes induced by uplift are displayed (e.g. regions switching from no monsoon to monsoon-like

seasonality after the sea level fall and pCO2 decrease in thick magenta dots) ; white topographic

contours indicate the LEo1 REF contour.
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Figure 8. Influence of continentality increase in a Mid-late Miocene context on: (a,d,g) winter

precipitation (shading), 850 hPa winds (vectors), Sea Level Pressure (contour) ; (b,e,h) on summer

precipitation (shading), 850 hPa winds (vectors), jet stream speed (contour); (c,f,i) and on mean

annual precipitation (shading) and monsoon-like seasonality according to the MPI index (red dots).

Sensitivity tests are compared to the simulation LMio smallT (a,b,c) and anomalies (d to i) are

expressed in order to highlight the impact of the continentality increase (i.e. LMio smallT-test).

Precipitation anomalies (shading) are expressed in % and normalized by the averaged precipitation

of both simulations (therefore, a change from or to zero mm/year accounts for +/- 200%). In (f,i):

four types of seasonality changes induced by continentality are displayed (e.g. regions switching

from no monsoon to monsoon-like seasonality after continentality increase in thick magenta dots)

; white topographic contours indicate the test simulation.
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Figure 9. Influence of the East African uplift in the Early Miocene (a to f) and of Iran-Zagros

uplift in the late Miocene (g to l) on: (a,d,g,j) winter precipitation (shading), 850 hPa winds

(vectors), Sea Level Pressure (contour) ; (b,e,h,k) on summer precipitation (shading), 850 hPa

winds (vectors), jet stream speed (contour); (c,f,i,l) and mean annual precipitation (shading) and

monsoon-like seasonality according to the MPI index (red dots). East African (Iran-Zagros) uplift

is compared to the simulation EMio REF (LMio SmallT) (a,b,c and g,h,i) and anomalies (d,e,f

and j,k,l) are expressed in order to highlight the impact of upliftt (i.e. EMio EAfr-EMio REF and

LMio REF-LMio smallT respectively). Precipitation anomalies (shading) are expressed in % and

normalized by the averaged precipitation of both simulations (therefore, a change from or to zero

mm/year accounts for +/- 200%). In (f,i): four types of seasonality changes induced by conti-

nentality are displayed (e.g. regions switching from no monsoon to monsoon-like seasonality after

continentality increase in thick magenta dots) ; white topographic contours indicate the uplifted

area.
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and Northwestern TP portions in the early Miocene simulation (the Tian Shan is ∼1000 m1217

and the NE Tibet ∼2000 m high). We therefore suggest that the Jet Stream latitudinal mi-1218

gration is primarily triggered by pCO2 drawdown, and resulting tropospheric temperature1219

gradients, and that a significant threshold is crossed at the Greenhouse-Icehouse transi-1220

tion (EOT, ∼34 Ma). In contrast, the subsequent variations in the Jet Stream latitudinal1221

migration in the course of the Miocene, appear to be mainly driven by topography changes.1222

The opening of the Tethyan seaway in the early Miocene (comparing EMio REF and1223

EMio TetSw), the Iran-Zagros landform uplift (comparing LMio SmallT and LMio REF),1224

or a pCO2 decrease (comparing LMio REF and LMio 1.5X) in the late Miocene do not1225

appear to trigger important variations in the Jet Stream migration (Fig. 10 c to f). Other1226

experiments, on the other hand, induce notable variations in response to localized uplift1227

of specific landforms, especially in the mid-late Miocene. Sensitivity experiments removing1228

either Mongolia, Tian Shan, or a combination of both, or Tian Shan and Pamir show that1229

these landforms all contribute to amplify the northward migration of the Jet in summer,1230

both in the TP region and in Eastern Asia (from 39-41°N in LMio noTS, LMio noTSP,1231

LMio noTSM and LMio noM to 43°N in MMio REF and LMio REF, Fig. 10 e and Fig.1232

11 h,k,n). This is especially marked in the experiment removing specifically the Tian Shan1233

orogen, which results in the Jet staying above the TP, without passing its northern edge (Fig.1234

11 h,k,n). We therefore propose that the final uplifts of the Tian Shan, and in a lesser way1235

of the Pamir (from ∼1000 m in the early Miocene to ∼3000 m in the mid and late Miocene1236

experiments) and Mongolian mountains (from ∼500 m in the early Miocene to ∼1500 m in1237

the mid and late Miocene experiments) are critical to deviate the Jet northward in summer1238

(Fig. 11 e,h,k,n and Fig. SI 19 o to r). This relocation of the Jet Stream in summer induces1239

orographic precipitation on the uplifted landforms, aridification of the regions standing to1240

the west (-20 to -60% of summer precipitation in eastern Kazakhstan and Uzbekistan) and1241

increased precipitation in Eastern Mongolia (+20 to 60%). This translates into increased1242

monsoon-like seasonality in Northeastern Asia (magenta dots in Fig. 11 f,i,l,o).1243

6.2.3 East Asian winter monsoon: the Siberian High genesis1244

Modern EAWM is characterized by cold and dry climate, together with northwesterly1245

low tropospheric winds above 20°N and northeasterly winds below 20°N. This peculiar atmo-1246

spheric circulation is driven by the strong pressure gradients settling between the Siberian1247

High anticyclone, the Aleutian Low and the Maritime Continent Low (L. Wang & Chen,1248

2014; T. Ma & Chen, 2021). Our results suggest strong changes in surface temperature1249

gradients throughout the experiments, that induce an important remodeling of associated1250

pressure and wind patterns (Fig. 12 and Fig. 13). In our Eocene experiment, a high-pressure1251

band centered around 30°N is simulated, but it remains mainly zonal, following large-scale1252

Hadley winter descending branch driven by latitudinal surface temperature gradients (Fig.1253

12 b). Indeed, the temperature difference between Tibetan region (∼10°C) (located below1254

the high pressure cell) and neighboring North Pacific Ocean (∼30°C) remains relatively low1255

(∼20°C, Fig. 12 a), when compared to modern temperature difference at the same season1256

(∼40°C, Fig. 14). As a result, no significant pressure difference is simulated between the1257

Asian continent and the North Pacific in the Eocene and the calculated EAWM index is1258

low (<5, Fig. 13), reflecting only the North-South pressure gradient between Asia and the1259

Maritime Continent.1260

The extent of the Asian high pressure zone increases gradually in the early Oligocene1261

and early Miocene experiments (Fig. 12 d,f), but its modern-like Siberian High shape is only1262

simulated in the mid and late Miocene experiments, when its center relocates over Siberia1263

(∼40-60°N, Fig. 12 h,j). Additionally, the North Pacific low relocates 10° to the south1264

from the early Oligocene simulation onward and steadily decreases until the late Miocene1265

(from over ∼14 to 10 hPa anomaly). All these changes conspire to increase progressively1266

both North-South and East-West pressure gradients, and therefore the global EAWM in-1267

dex, which reaches maximal values in the mid and late Miocene experiments (∼15, Fig.1268
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Figure 10. Jet Stream behavior along the year over the Tibetan Plateau and eastern China for all

sensitivity experiments, divided into (up) Late Eocene, (mid) early Miocene and (bottom) mid to

late Miocene. (left) Jet Stream latitudinal migration and speed (shading) evolution along the year

in the Tibetan region (averaged over 80:90°E). Mean latitudes of the northern and southern bounds

of the Himalaya-Tibet and Mongolian landforms are indicated. (right) Jet Stream latitudinal

position and precipitation (shading) amounts along the year in East Asia (averaged over 100:120°E).

13). Following this reorganization in pressure patterns simulated during the Cenozoic, low1269

tropospheric winds transiting over China display a progressive change in orientation. While1270

their zonal component remains important in the Paleogene and early Miocene experiments1271

(Fig. 12 b,d), the development of the Siberian High triggers a marked increase in their1272

meridional component in the mid and late Miocene experiments (Fig. 12 h,j).1273

This profound atmospheric circulation reorganization is driven by temperature gradi-1274

ent changes, and mainly due to progressive cooling of the Tibetan, Mongolian and Siberian1275

regions, as illustrated by the ∼22° shift southward of the 0°C isotherm between the late1276

Eocene and the late Miocene simulations (Fig. 12 a,i). Several factors may be responsible1277
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Figure 11. Influence of Mongolia, Tian Shan and Pamir regional uplifts on (a,d,g,j,m) winter

precipitation (shading), 850 hPa winds (vectors), Sea Level Pressure (contour) ; (b,e,h,k,n) on

summer precipitation (shading), 850 hPa wind (vectors), jet stream speed (contour); (c,f,i,l,o)

mean annual precipitation (shading) and monsoon-like seasonality according to the MPI index

(red dots). Sensitivity tests are compared to the simulation LMio smallT (a,b,c) and anomalies

(d to o) are expressed in order to highlight the impact of the uplift (i.e. LMio smallT-test).

Precipitation anomalies (shading) are expressed in % and normalized by the averaged precipitation

of both simulations (therefore, a change from or to zero mm/year accounts for +/- 200%). In

(f,i,l,o): four types of seasonality changes induced by uplift are displayed (e.g. regions switching

from no monsoon to monsoon-like seasonality after uplift in thick magenta dots) ; white topographic

contours indicate the landforms that were added.
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for this important winter cooling, such as the pCO2 drawdown, local topography changes1278

or increased continentality.1279

6.2.4 Siberian High inception driven mainly by Mongolia uplift in the1280

Miocene and its impact on precipitation seasonality1281

The Eocene sensitivity experiments display a stable zonal high pressure pattern at mid1282

latitudes (Fig. SI 18 a to g), with weak response to changing Tibetan orography or pCO21283

values (Fig. 13). Likewise, our Miocene sensitivity experiments allow to highlight that the1284

winter pressure patterns in Asia (comprising the Siberian High, the North Pacific Low and1285

the Maritime Continent Low) are not impacted by African or Iran-Zagros landforms uplifts,1286

the Arabian platform configuration, the Paratethys extent, or a pCO2 drop from 560 to 4201287

ppm (Fig. 13 and Fig. SI 18 i to n and s,t).1288

On the other hand, sensitivity experiments reveal the impact of the Mongolian land-1289

form uplift in the mid-late Miocene (either Mongolia alone, or both Tian Shan and Mongo-1290

lia). Indeed, their settlement induces a strengthening of both the Siberian High (up to ∼61291

hPa, Fig. 11 d,g) and the North Pacific low, resulting in a reinforcement of the East-West1292

and North-South pressure gradients, and ultimately of the EAWM index (from ∼8 to ∼15,1293

Fig. 13). Mongolian (and/or Tian Shan and/or Pamir) uplift also results in increased pre-1294

cipitation localized over the landforms (Fig. 11 d to o), despite the overall dryness of inland1295

Asia region (SI Fig. 16). As Mongolian uplift deviates the winter westerlies flux northward,1296

Eastern China is swept by colder and drier winds coming from Siberia, which translates into1297

a marked decrease in winter precipitation (up to 80% decrease, Fig. 11 d). The uplift of1298

Tian Shan landforms, alone or together with the Pamir, has a lower impact on the global1299

winter pressure patterns (Fig. 13), but nonetheless provokes an almost complete drying on1300

its eastern flanks (modern Gobi and Taklimakan deserts), as it acts as an orographic barrier1301

to westerly moisture flux (Fig. 11 g,j,m).1302

These changes on winter wind circulation and precipitation amounts, combined to1303

those observed in summer and described above, produce contrasted responses in terms of1304

monsoon-like precipitation seasonality. As the Mongolian uplift generates a mixed response1305

on summer precipitation in eastern China (Fig. 11 e,h), but dries consistently the region in1306

winter (Fig. 11 d,g), it induces important spreading of new regions displaying monsoon-like1307

precipitation seasonality in eastern China (thick magenta dots in Fig. 11 f,i). At the oppo-1308

site, Tian Shan and Pamir uplift, let alone the important year-round increase in orographic1309

precipitation, triggers overall increased winter precipitation amounts in Southeastern Asia1310

(Fig. 11 j,m), which leads to widespread reduction of precipitation seasonality in the SAM1311

domain (Fig. 11 l,o).1312

7 Discussion1313

A long-standing debate opposes the effect of continentality against orography regarding1314

the Asian climate evolution (Prell & Kutzbach, 1992; Kutzbach et al., 1993; Ramstein et1315

al., 1997; Fluteau et al., 1999; Z. Zhang et al., 2007; Roe et al., 2016; Zoura et al., 2019;1316

R. Zhang et al., 2021). Our results hint that these two features most likely impacted different1317

climatic characteristics of the Asian Monsoons and all concurred to the settlement of current1318

Asian climate (see Table 6 for a sum-up of the main effects of each forcing on monsoonal1319

features). In the following sections we put our main findings in perspective with available1320

paleoclimatic indicators and previous modeling work.1321

7.1 A possible inception of monsoons in the Paleogene: which dependence1322

to pCO2, Tibetan paleogeography and continentality ?1323

Our late Eocene set of simulations follows a previous study, in which we introduced1324

the results from LEo1 REF, displaying no monsoon circulation, and discussed a possible dry1325

–39–



manuscript submitted to Earth Science Reviews

-30 -20 -10 0 10 20 30 40 50

0°

20°N

40°N

60°N

80°N

0 1.

0 1.

0 1.

0 1.

0 1.

01.

0 1.

0 1.

0

a

0°

20°N

40°N

60°N

80°N

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0

c

0°

20°N

40°N

60°N

80°N

0 1.

01.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

00

e

0°

20°N

40°N

60°N

80°N

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0

g

0°

20°N

40°N

60°N

80°N

30°E 60°E 90°E 120°E 150°E 180°

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0

i

-14 -10 -6 -2 2 6 10 14

0 1.

01.

0 1.

01.

0 1.

0 1.

01.

0 1.b

LE
o1

_R
EF

0 1.

0 1.

0 1. 01.

0 1.

01.

0 1.

0 1.

0 1.

d

EO
li_

R
EF

0 1.

01.

0 1.

0 1.

0 1.

01.

0 1.

0 1.

01.

f

EM
io

_R
EF

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

0 1.

01.

0 1.

h
M

M
io

_R
EF

30°E 60°E 90°E 120°E 150°E 180°

0 1.

0 1.

0 1.

0 1.

01.

01.

0 1.j

LM
io

_R
EF

Figure 12. Evolution of the winter monsoon diagnostics throughout the Cenozoic. Left col-

umn: December-February (DJF) mean 2m temperature (shading, Celsius), overlain with a white

contour line marking the 0°C isotherm ; Right column: DJF normalized Sea Level Pressure

anomaly (shading, hPa) and 850 hPa winds above 4 m/s (vectors). In all captions, topography is

overlain in gray contour each 1000 m. Yellow boxes indicate the regions over which are calculated

the sea level pressure gradients from the East Asian Winter Monsoon Index, presented in section

5.3
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Figure 13. Upper panel: Winter (DJF) Sea Level Pressure (hPa) evolution over Siberia,

North Pacific and the Maritime Continent ; lower panel: Evolution of the East Asian Winter

Monsoon index (purple) and of the East-West and North-South regional indexes throughout the

different reference and sensitivity experiments, after (L. Wang & Chen, 2014).
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bias in our simulations, when comparing our results to several proxy localities indicating1326

significantly wetter environments (Tardif et al., 2020). Indeed, while markers of arid to sub-1327

arid climate are widespread for the late Eocene for example in Northeastern TP (J. X. Li1328

et al., 2018; Meijer et al., 2019), Tajikistan (Carrapa et al., 2015) or on the Tarim Basin1329

shores (Bougeois et al., 2018), our Eocene experiment fails to render the wetter climate1330

inferred from fossil paleoflora and paleofauna in Northern India (Saxena & Trivedi, 2009)1331

and Tibet (T. Su et al., 2020; Sorrel et al., 2017). Asian overall aridity in this reference1332

Eocene simulation was interpreted as resulting from the hot surface temperatures simulated1333

in the region, together with strong mid-tropospheric subsidence that inhibits deep convection1334

and condensation, especially over Northern India (Tardif et al., 2020). Nevertheless, much1335

wetter and closer to monsoon-like summer climate patterns were simulated in both EAM and1336

SAM domains for the late Eocene with the same model and paleogeography, but with orbital1337

configurations inducing summer solar maxima (Tardif et al., 2021). This potential orbitally-1338

paced wet/dry climate dichotomy is, at least qualitatively, in agreement with stratigraphic1339

and paleobotanic evidence from Eastern China (C. Huang & Hinnov, 2019; Tong et al.,1340

2002). Another hypothesis for this mismatch was an eventual sensitivity of the simulated1341

climate to Asian paleogeography which, as introduced before, is still highly debated for this1342

period.1343

7.1.1 Late Eocene climate sensitivity to alternative paleogeographic config-1344

urations: persistent mismatch with paleoclimate indicators in SAM1345

domain1346

In this study, we explored the Asian climate sensitivity to different late Eocene Tibetan1347

configurations, which aimed at reflecting the main theories regarding the paleogeography at1348

that time. We also evaluated the effect of decreased pCO2 values (1120 to 560 ppm). Our1349

results reveal that the arid pattern previously described shows low sensitivity to the Tibetan1350

Plateau configuration or to a reduced pCO2, and is only disturbed by the presence of a1351

Bengal Sea (LEo2 BengalSea), which lowers the surface temperatures and slightly enhances1352

precipitation in this region (Fig. SI 16 f). This tendency is however opposite to similar1353

modeling studies comparing an early and a late Eocene paleogeography, and which suggest1354

increased precipitation after the drainage of this Bengal Sea (X. Li et al., 2017, 2018).1355

Comparing these different simulations is nevertheless hampered by the significant difference1356

between other boundary conditions that were used. Collectively, these results rather points1357

to the high sensitivity of late Eocene climate to surface temperature gradients, at least with1358

the IPSL-CM5A2 model, which is further emphasized by the changes induced by the sea1359

level fall tested in our Oligocene simulation and presented in the next section.1360

The EAM region displays higher sensitivity to the paleogeography changes that were1361

tested. We simulate that an uplift in the Tibetan region (compared to a low ∼800 m TP1362

in LEo2 TPLow) would result into an onset or increase in EAM monsoon-like precipitation1363

seasonality due to increased summer precipitation (up to 50, Fig. 6e, Fig. SI 16 b,c,d),1364

in agreement with previous modeling works (R. Zhang et al., 2018, 2017, 2021; Z. Zhang1365

et al., 2007; X. Liu & Yin, 2002; X. Li et al., 2017; Farnsworth et al., 2019; Thomson et1366

al., 2021). Likewise, the decreased EAM intensity and increased inland Asian aridity due1367

to the northern migration of the TP (its southern edge translating from ∼20 to 30°N) is1368

coherent with previous study testing the impact of the latitudinal position of the incipient1369

TP (R. Zhang et al., 2017).1370

7.1.2 Imprint of the Eocene-Oligocene transition on summer monsoon and1371

inland Asia aridification1372

Paleoclimatic indicators from inland Asia suggest increased precipitation seasonality1373

in EAM and SAM domains, wetter conditions localized in the Tarim and western Qaidam1374

basins and overall aridification everywhere else in inland Asia (described in section 3.1.3).1375

This aridification was attributed either to global cooling a the EOT (J. Sun et al., 2015;1376
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X. Li et al., 2017), to the Paratethys Sea retreat (Barbolini et al., 2020; Z. Zhang et al.,1377

2007), or both (J. Sun & Windley, 2015). Our sensitivity experiment testing the effect1378

of cooling alone (LEo1 2X) seems to better render wetter conditions in the Tarim-Qaidam1379

region and global drying in the Yunnan region (Fig. 7 f). Taking into account the EOT1380

global sea level drop in addition to global cooling (EOli REF) on the other hand, better1381

simulates the monsoon-like precipitation seasonality suggested by paleofloras in both EAM1382

(Vornlocher et al., 2021; R. Spicer et al., 2017; J. Ren et al., 2021; J. Huang et al., 2022;1383

Herman et al., 2017; Ling et al., 2021) and SAM domains (R. Spicer et al., 2017; Srivastava1384

et al., 2012), as well as precipitation amounts in Kazakhstan (Averyanova et al., 2021).1385

Although the comparison to existing modeling studies is limited by the many additional1386

parameters that may variate from our experiments (ice sheets, pCO2, etc.), those which1387

explicitly tested the effect of the Paratethys Sea retreat (R. Zhang et al., 2021; Z. Zhang et1388

al., 2007), tend to simulate similar SAM and EAM precipitation seasonality increase. Our1389

Oligocene experiment however still underestimates precipitation over Tibet (Deng et al.,1390

2021; Song et al., 2020) and does not simulate the drying trend indicated by proxies in the1391

Tajik and Junggar basins as well as in the Gobi region after the EOT (J. Sun & Windley,1392

2015; Baldermann et al., 2021; J. Sun et al., 2015, 2020), although simulated Oligocene1393

mean annual precipitation remain very low in these regions. We suggest this mismatch may1394

be due to the shape of the proto-Tibetan orogen or paleoshorelines used in LEo1 REF and1395

EOli REF, as all of these locations stand very close to the boundary between regions that1396

became indeed drier (Fig. 7). To further explore the impact of land-sea distribution change,1397

the Miocene experiments offer additionnal input.1398

7.1.3 Continentality increase as a potential driver of Paleogene wintertime1399

climate variability1400

The precocious observation of loess deposits in northeastern Tibet at 40 Ma was in-1401

terpreted as resulting from the periodical inception (or reinforcement) of the Siberian High1402

in winter due to enhanced continentality after the Paratethys Sea retreat (Meijer et al.,1403

2021). Other loess deposits are reported during the Oligocene in the Chinese Loess Plateau1404

and Mongolia, apparently coeval with periods of cooling and ice-sheets expansion (J. Sun &1405

Windley, 2015; Wasiljeff et al., 2022). These discoveries question the presence of a Siberian1406

High in the Paleogene, of its role in dust transport and accumulation, and of its forcing1407

factors. Indeed, most modeling studies so far focused on the link between regional uplift1408

and enhanced Siberian High and winter monsoon circulation rather than on the influence1409

of continentality or global climate cooling. Our results suggest that both increased conti-1410

nentality and regional uplift have concurred to the progressive inception of modern Siberian1411

High, while pCO2 fall had apparently little impact on its intensity (Fig. 13).1412

Oligocene global sea level fall increases winter sea level pressure by ∼2 to 4 hPa over1413

Siberia (Fig. 7 g) and induces the southward expansion of the North Pacific Aleutian1414

low, which altogether increase the pressure gradient between those two regions. Similar1415

trend is obtained, although in a lower magnitude, with our simulation testing the effect1416

of the Arabian platform emergence, while the final retreat of the Paratethys Sea tested in1417

Miocene configuration does not trigger changes (Fig. 13). A modern-like Siberian High with1418

typical EAWM wind patterns is however not simulated until our middle and late Miocene1419

simulations, when the current Tian Shan and Mongolian landforms are set to their present1420

elevations. Collectively, these results suggest that continentality increase may have induced1421

changes in wintertime pressure gradients and atmospheric circulation mostly before the1422

uplift of Tian Shan and Mongolian landforms, but would have had a decreasing importance1423

afterwards.1424

We also acknowledge that the Mongolian and Tian Shan uplifting history was likely1425

more complex than depicted here, with signs of early uplift in the Hangay region as soon1426

as the Oligocene. Performing additional experiments allowing to test the role of an up-1427

lifted Hangay dome in an Oligocene configuration should allow us to evaluate the potential1428

–43–



manuscript submitted to Earth Science Reviews

presence of a Siberian High at that time. This may help interpreting precocious loess-like de-1429

posits observed at that time in the Chinese Loess Plateau and Mongolia (J. Sun & Windley,1430

2015; Wasiljeff et al., 2022). The presence loess-like deposits in the Xining Basin at ∼40 Ma1431

however, seems too old to be attributed to the development of the modern Siberian High,1432

if its full development is conditional to uplift of the Mongolian and Tian Shan landforms.1433

This discrepancy suggest that additional mechanisms for dust transport over long distances1434

should be explored for this period, although testing this hypothesis would require further1435

investigation, likely with daily to hourly wind speed outputs (Aoki et al., 2005).1436

7.2 Peripheral landforms critical role in monsoon seasonal feature settle-1437

ment in the Miocene1438

7.2.1 Tian Shan, Pamir and Mongolia: small mountains, strong effect1439

The role played by Mongolian landform uplift in the inception of the Siberian High is1440

one of the most salient outcomes of these experiments. Previous modeling works based on1441

modern geography that have tested the effect of Mongolia uplift (Sha et al., 2015; Shi et al.,1442

2015; Yu et al., 2018) reproduce the same tendencies we have presented, namely a strong1443

increase of the winter sea level pressure over Siberia and typical deflation of the westerly flow1444

towards northern latitudes resulting in a pronounced drying of Eastern Asia and EAWM1445

amplification (Fig. 11 d). Other studies simulate increased EASM precipitation and wind1446

circulation, although they incorporate Tian Shan uplift together with Mongolia (Yu et al.,1447

2018; R. Zhang et al., 2012; H. Tang et al., 2013; Zhisheng et al., 2001), which remains1448

coherent with our findings testing the uplift of both features (Fig. 11 h). Paleoclimate1449

simulations using more realistic paleogeographic reconstructions (Eocene or Oligocene) tend1450

to confirm such tendencies, although the effect of Mongolian landforms was not explicitly1451

tested. Generally, we can observe that when a modern-like Mongolia was prescribed, the1452

simulated winds and precipitation were close to modern-like EAWM (Licht et al., 2014;1453

X. Li et al., 2017), while it is not the case with a reduced Mongolia elevation (Huber &1454

Goldner, 2012).1455

The effect of the Tian Shan ranges uplift on Asian climate is less conspicuous and1456

seems also more sensitive to the degree of uplift of other surrounding landforms (such as1457

the Pamir-Karakoram, the Hindu Kush or Iran-Zagros), likely owing to its lower latitude.1458

While a rigorous comparison between our results and previous studies is hampered by too1459

many diverging boundary conditions, all tend to point that the Tian Shan uplift would1460

have i) increased yearly orographic precipitation on the ranges, ii) decreased it in the Tarim1461

Basin located in their rain shadow and in inland Asia mid latitudes and iii) reinforced the1462

EAM through increased summer precipitation (Fig. 11 m,n,o) (Baldwin & Vecchi, 2016;1463

H. Tang et al., 2013; Yu et al., 2018; R. Zhang et al., 2017). The key role played by the1464

Tian Shan ranges, together with the Pamirs and Mongolian landforms in triggering the Jet1465

Stream northward migration in summer (Fig. 19e,f and Fig. 9e,h,k,n), as suggested by1466

previous modeling works derived from modern geography (Sha et al., 2020; Shi et al., 2015),1467

likely contributes to increase the EAM. Nevertheless, substantial differences are noted with1468

other modeling studies, especially regarding the effect on SAM domain: where we simulate1469

a weakening of SAM seasonality due to increased winter precipitation, opposite trend is1470

simulated in studies where the Iran-Zagros and Hindu Kush are fully uplifted and prevent1471

the westerly flux to bring moisture to India (Baldwin & Vecchi, 2016; H. Tang et al., 2013;1472

Yu et al., 2018; R. Zhang et al., 2017; X. Wang et al., 2020).1473

7.2.2 East Africa and Zagros-Anatolia: the Far West uplifts and SAM1474

evolution1475

Our set of simulation highlight in addition that paleogeographic evolution in the Middle1476

Eastern and East African regions have been important for the Neogene evolution of the1477

SASM as they strongly contributed to the settlement of modern-like atmospheric circulation1478
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as discussed by Sarr et al. (2022). The presence of intermediate to high elevation topography1479

in East Africa in the early Miocene is for example crucial for the ”early” bending of the1480

Somali Jet, before the closure of the West Tethys seaway and settlement of Iran-Zagros1481

topography with modern-like elevation (Fig. 9).1482

Increasing elevation in the East African region is also responsible, in our simulations1483

for increasing SAWM precipitation (Fig. 9), which contrast with previous studies that sim-1484

ulate reduced SASM precipitation instead (H.-H. Wei & Bordoni, 2016; Chakraborty et al.,1485

2009) as topography would block the advection of moisture from equatorial Africa towards1486

India. We hypothesize that such difference may come from these studies using present-day1487

paleogeography, and/or unchanged fixed SSTs for all the experiments, thereby neglecting1488

the potential effect of the East Africa uplift on Indian Ocean SSTs and SST gradients. These1489

studies however critically highlight that a reinforced Somali Jet may not be systematically1490

correlated with increased SAM precipitation, although this genetic relationship is commonly1491

found in the literature. Alongside, increasing land exposure in the Arabian platform region1492

in the middle Miocene, the uplift of the Iran-Zagros topography strongly reinforces the So-1493

mali Jet speed and northward migration, together with the summer precipitation amounts1494

(Fig. 5, Fig. 9), as previously suggested by (R. Zhang et al., 2017; Acosta & Huber, 2020;1495

H. Tang et al., 2013).1496

Given their respective impact in the SAM, knowledge of the evolution of those western1497

topographies, although seldom taken into account, is critical to interpret paleoenvironmental1498

indicators. This is especially true for inland Asia and northwestern India regions, because1499

of their key location with respect to the westerlies flux. Westerlies may indeed be deviated1500

either to the North or the South depending on the Zagros-Iran and Tian Shan respective1501

elevation. Indication of increased SAM precipitation during the Miocene (X. Yang et al.,1502

2020) could for example be, at least partly due to Zagros-Iran uplift, as geological evidences1503

indicate that the high topography settled at that time (Austermann et al., 2017; François1504

et al., 2014).1505

7.3 Miocene continentality increase as an amplifier of SAM, EAM and1506

inland aridity1507

The northward motion of the ITCZ over the Arabian Sea and the stronger SASM1508

precipitation in response to continentality increase in the Miocene is a feature clearly sim-1509

ulated in our experiments, and which is obtained with either the Paratethys Sea retreat or1510

the Arabian peninsula emergence (Fig. 8 e,h). The role of the Paratethys Sea retreat as1511

a vector of amplified summer low sea level pressure zone and resulting moisture advection1512

via strengthened Somali Jet is well established by modeling experiments (Ramstein et al.,1513

1997; Fluteau et al., 1999; R. Zhang et al., 2021; Z. Zhang et al., 2007). The Paratethys Sea1514

retreat also drastically dries the ”westerly corridor” (centered around 40°N, Fig. 8 h) which1515

overall results in increased inland Asian aridity and moderately increases EAM seasonality,1516

north and south of this latitudinal band (Fig. 8 i). These patterns are mostly coherent with1517

those obtained by previous modeling studies (R. Zhang et al., 2021; Z. Zhang et al., 2007),1518

although here again, important differences in the paleogeography and type of model that1519

were used prevent a rigorous comparison.1520

On the other hand, the effect of increased land exposure in the Arabian peninsula1521

region on Asian climate was, to our knowledge, significantly less explored by modeling1522

studies and is never mentioned as a potential forcing by field work. In most modeling1523

studies, the region usually evolves together with the global paleogeography, without being1524

specifically tested. We putatively attribute this to the lack of constraints and data in this1525

region. Given the shallowness and extension of the Arabian peninsula (∼3 million square1526

meters, roughly comparable to India area), it is very likely that the episodes of partial or1527

complete flooding that it witnessed from the Oligocene to the late Miocene (Barrier et al.,1528

2018; Otero & Gayet, 2001) may have had great consequences on atmospheric circulation1529
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patterns. Our results show that increased peninsula exposure reinforces the Somali Jet1530

in summer and enhances summer precipitation in SAM and EAM domains (Fig. 8 e).1531

Additionally, it drives the onset of upwelling in the Arabian Sea (see Sarr et al. (2022),1532

with the same set of simulations), which are traditionally used as proxies indicating the1533

establishment of a monsoon regime in South Asia. These findings imply that a proto-Somali1534

Jet and intense summer precipitation settled before the emergence the Arabian peninsula in1535

the middle Miocene, and therefore before the recording of upwelling in the Arabian Sea. In1536

any cases, the onset of upwellings in the Arabian Sea was likely decorrelated from potential1537

Miocene uplifts events in the Himalaya-Tibet region (Sarr et al., 2022).1538

7.4 Persistent uncertainties and directions for further works1539

Our study demonstrates the key role played by land-sea distribution and by all to-1540

pographic features surrounding the Indian Ocean in shaping the modern SAM, EAM and1541

inland Asia aridity. Nevertheless, additional work is required from both modeling and the1542

field research to help refine our understanding of the complex mechanisms at play through-1543

out the Cenozoic in Asia.1544

7.4.1 Opposite effect and thresholds crossings: the need for improved rel-1545

ative and absolute timing and elevation constraints on uplift events1546

Overall, our results highlight the strong crossed influence of the various sub-geographical1547

units on resulting monsoons and therefore the conceptual limitations of performing tests1548

based on modern geographies or assuming homogeneous Asian orography uplift in the course1549

of time to evaluate past monsoon evolution. In that aspect, it is not surprising that most1550

of such studies simulate somehow modern-like summer and winter monsoons when keeping1551

uplifted African, Mongolian and Iranian landforms, as well as an emerged Arabia (Roe et1552

al., 2016; Zoura et al., 2019; Acosta & Huber, 2020).1553

The need to better constrain the evolution in time, elevation and shape of the various1554

Asian, East African and Anatolian landforms, appears paramount, in order to refine our1555

understanding of Cenozoic paleoclimate evolution. Our results also suggest that some pa-1556

leogeographic events may have had contrary influences on either SAM or EAM, although1557

we might picture them as roughly coeval. This is for example the case of the Tien-Shan1558

and Pamir uplifts that weaken SAM seasonality, while Mongolian and Iran-Zagros uplifts,1559

together with continentality strengthen it. Here, we chose to perform our mid-late Miocene1560

sensitivity tests based on a halfway uplifted Iran-Zagros orogen (LMio SmallT), but it is1561

likely that we may obtain different results if testing the uplift on Mongolia (for example) in a1562

paleogeography with an already fully uplifted Iran-Zagros topography. Refining the relative1563

chronology of these various paleogeographic events is therefore critical to better interpret1564

the variations in monsoon intensity recorded by the proxies. Additionally, paleoelevation1565

thresholds are likely to be critical for constraining the Asian climate evolution, due to in-1566

teractions of the topography with either low level (e.g. the summer monsoon winds) or mid1567

troposheric (e.g. the Jet Stream) air masses (X. Liu & Yin, 2002; X. Wang et al., 2020;1568

Zhisheng et al., 2001; Prell & Kutzbach, 1992).1569

7.4.2 Land-sea distribution and gateway closure1570

A more precise view of land-sea distribution and regional seaways evolution is also1571

paramount. Indeed, they influence the surface temperature gradients, and therefore con-1572

dition sea level pressure patterns, low tropospheric circulation as well as oceanic surface1573

circulation. Although our results point to a minimal effect of the mechanical closure of the1574

Tethyan Seaway on regional results, other features need to be tested. For example, a better1575

understanding of the Indonesian Gateway and Indonesian throughflow evolution would be1576

of great interest, as they control part of Indo-Pacific Warm Pool SSTs distribution (Cane1577

& Molnar, 2001). While the final step of the gateway constriction likely occurs during1578
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the Pliocene (Auer et al., 2019), its paleobathymetric and geometric configuration remains1579

however largely undocumented between 17-3.5 Ma, due to difficulties in reconstructing the1580

complex configuration of the region (Kuhnt et al., 2004). Although no major tectonic defor-1581

mation is supposed to have occurred during this period, the shallow depth of the gateway1582

likely made it sensitive to middle Miocene sea level fluctuations (Sosdian & Lear, 2020),1583

with possible impact the Eastern Indian and Western Pacific oceans surface temperatures1584

and therefore on SST gradients.1585

8 Conclusions1586

In this study, we took advantage of the rich discoveries that have allowed to extend1587

the fossil record to the Paleogene in Asia, as well as the consolidation of the understanding1588

of the physical concepts underpinning the monsoons brought by modeling studies. Overall,1589

we simulate an intensification of all considered monsoon metrics throughout the Cenozoic,1590

in response to specific forcings. We find that, in agreement with paleoclimate indicators,1591

modern-like monsoons, in terms of atmospheric circulation, seasonality and precipitation1592

amounts, likely exist since at least the mid-late Miocene. We however show that high1593

seasonality in precipitation may have existed since the Paleogene in both SAM and EAM1594

domains, before the settlement of modern atmospheric circulation patterns. In agreement1595

with previous studies, our results highlight the rather limited effect of pCO2 when compared1596

to paleogeographic changes, with the notable exception of the effect of the pCO2 drawdown1597

at the EOT on the Jet Stream latitudinal migration over the year in the Tibetan region.1598

First, although the exact shape and extent of coastal shallow environments remain1599

poorly constrained, our results strongly hint that any variations in the land-sea distribution,1600

whether due to tectonic activity, or sea level fluctuations, would have strongly impacted the1601

Asian climate. Many episodes of increased continentality are documented in the course of the1602

Cenozoic, including the regional regressions of the Paratethys epicontinental Sea, periodical1603

exposure of the Arabian platform due to sea level fluctuations, and global sea level fall1604

at the Eocene Oligocene Transition. All of these events likely favored the enhancement of1605

summer moisture penetration into Asia, by promoting the extension of the wide subtropical1606

low pressure belt and thus amplifying the seasonal latitudinal migration of the ITCZ on1607

land.1608

Second, while the HTP complex was recurrently put forward as the leading mech-1609

anism in Asian climate evolution, our results rather points toward a shared responsibility1610

between all landforms surrounding the modern Indian Ocean. We also stress the fact that all1611

paleogeographic features do not bear the same importance on SASM, EASM or EAWM re-1612

spectively. The Tibetan Plateau uplift likely favored the onset of monsoon-like precipitation1613

seasonality in eastern Asia in the Eocene, by promoting the advection of moist air masses1614

in summer, and by partially shielding the region from westerly moisture input in winter.1615

The Miocene Eastern African and Iran-Zagros uplift were critical to intensify and redirect1616

the Somali Jet towards the Indian subcontinent, and thus develop the modern-like South1617

Asian monsoon summer circulation and amplify moisture advection to Asia in summer.1618

Additionally, Iranian-Anatolian uplift, by blocking moisture advection from the westerlies1619

to lower latitudes likely contributed enhance winter aridity in most of Southeastern Asia.1620

The Himalaya-Tibet complex then conditions the SASM precipitation distribution over the1621

South Asian region, triggers heavy orographic precipitation and upper atmosphere heating1622

over northern India.1623

We show that the uplift of the Tian Shan and the Mongolian mountains was key for1624

the settlement of the winter Siberian high pressure cell, and resulting aridification of inland1625

and eastern Asia in winter. The summer Jet Stream migration northward of the Tibetan1626

Plateau was likely amplified in the mid-late Miocene, as the Pamir and Tian Shan landforms1627

approached their modern elevation and contributed to its channeling toward higher latitudes.1628

This relocation of the Jet Stream amplifies the penetration of moist air masses over eastern1629

–47–



manuscript submitted to Earth Science Reviews

China, thus contributing to increase the EAM precipitation seasonality. Overall, our results,1630

in agreement with available paleoclimate indicators and most previous modeling studies,1631

show the fundamentally polygenetic history of monsoonal evolution, suggesting that the very1632

concept of a ”monsoon onset” is inappropriate. We also stress the need for more accurate1633

constrains regarding paleoshorelines evolutions, relative timing of uplift and landforms paleo-1634

elevations in order to propose better global climate evolution scenarios.1635

Acronyms1636

ITCZ Inter Tropical Convergence Zone1637

SASM South Asian Summer Monsoon1638

EASM East Asian Summer Monsoon1639

EAWM East Asian Winter Monsoon1640

HTP Himalaya-Tibetan Plateau1641

IGLLJ Indo-Gangetic Low Level Jet1642

MMCO Mid Miocene Climatic Optimum1643

EOT Eocene Oligocene Transition1644
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Figure 14. South Asian orography and main seasonal characteristics of South and East Asian

Monsoons subsystems from observations an reanalysis. (a) Modern geography and topography

(in m), with main seasonal winds: Westerlies (yellow arrow), Winter monsoon (blue arrow) and

Summer monsoon (green arrows) ; Somali Jet (SJ), Indo-Gangetic-Low Level Jet (IGLLJ) and

main geographic units mentioned in Section 4 highlighted: KD - Kenyan Dome, ED - Ethiopian

Dome, AIO - Anatolian and Iranian orogens, PK - Pamir-Karakoram, HK - Hindu Kush, CTP

- Central Tibetan Plateau, H-STP - Himalayas and Southern Tibetan Plateau, NETP - North-

eastern TP, TS - Tian Shan, IBR - Indo Burman Ranges, SBR - Sino Burman Ranges, ML -

Mongolian Landforms.; (b) Mean Annual Precipitation (shading, mm/yr), and regions where the

Monsoon Precipitation Index is over 0.5 (thin red dots) and 0.75 (thick red dots). The Mon-

soon Precipitation Index is defined in the Monsoon Metrics section 5.3 ; (c) JJA mean 2m

temperature (shading, Celsius) and 300 hPa atmospheric temperature (white contour, Kelvin) ;

(d) JJA normalized Sea Level Pressure anomalies (shading, hPa) and 850 hPa winds (vectors

over 4m/s). Yellow box highlight the region of calculation of the Webster-Yang Index, defined

in the Monsoon Metrics section 5.3 ; (e) DJF mean 2m temperature (shading, Celsius) ; (f)

DJF normalized Sea Level Pressure anomalies (shading, hPa) and 850 hPa winds (vectors over

4m/s). Yellow boxes highlight the regions of calculation of the Eastern Asian Monsoon Index,

defined in the Monsoon Metrics section. In all captions, topography (each 1000 m) is in gray

contour. Precipitation for 1979-2021 from the Global Precipitation Climatology Project (GPCP)

(Pendergrass, Angeline, Wang, Jian-Jian National Center for Atmospheric Research Staff (Eds).

Last modified 06 Nov 2020. ”The Climate Data Guide: GPCP (Monthly): Global Precipita-

tion Climatology Project.” Retrieved from https://climatedataguide.ucar.edu/climate-data/gpcp-

monthly-global-precipitation-climatology-project), sea level pressure and 300 hPa temperature from

ERAINT, 850 hPa winds and surface temperature from ERA40.

–81–



manuscript submitted to Earth Science Reviews

Reference
1 (Averyanova et al., 2021)
2 (Hellwig et al., 2018)
3 (Macaulay et al., 2016)
4 (Caves Rugenstein et al., 2017)
5 (Carrapa et al., 2015)
6 (J. Sun et al., 2022)
7 (J. Sun et al., 2010)
8 (J. Sun & Windley, 2015)
9 (Baldermann et al., 2021)
10 (Caves Rugenstein et al., 2014)
11 (Kent-Corson et al., 2009)
12 (Zheng et al., 2015)
13 (Meijer et al., 2021)
14 (Licht et al., 2014)
15 (Wasiljeff et al., 2022)
16 (Hoorn et al., 2012)
17 (X. Ma & Jiang, 2015)
18 (Guo et al., 2002)
19 (Guo et al., 2008)
20 (Q. Yuan et al., 2020)
21 (Ao et al., 2016)
22 (Ao et al., 2021)
23 (Shen et al., 2017)
24 (S. Li et al., 2018)
25 (C. Huang & Hinnov, 2019)
26 (Ling et al., 2021)
27 (R. Spicer et al., 2017)
28 (Herman et al., 2017)
29 (Vornlocher et al., 2021)
30 (J. Ren et al., 2021)
31 (Q. Wang et al., 2021)
32 (Fang et al., 2021)
33 (Zheng et al., 2022)
34 (Sorrel et al., 2017)
35 (Jacques, Guo, et al., 2011)
36 (Xia et al., 2009)
37 (Xing et al., 2012)
38 (Wan et al., 2007)
39 (Jia et al., 2003)
40 (P. Clift et al., 2008)
41 (P. D. Clift, 2020)
42 (Z. Ding et al., 2021)
43 (Srivastava et al., 2012)
44 (Bhatia, Khan, et al., 2021)
45 (Shukla et al., 2014)
46 (Khan et al., 2014)
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Figure 15. Comparison of monsoon diagnostics obtained in our control historical simulation

(Left column) with modern observations and reanalysis (Right column). (a,b) Mean Annual

Precipitations (shading, mm/yr), and regions where the Monsoon Precipitation Index is over 0.5

(thin red dots) and 0.75 (thick red dots) ; (c,d) JJA mean 2m temperature (shading, Celsius)

and 300 hPa atmospheric temperature (white contour, Kelvin) ; (e,f) JJA normalized Sea Level

Pressure anomalies (shading, hPa) and 850 hPa winds (vectors over 4m/s); (g,h) DJF mean 2m

temperature (shading, Celsius) ; (i,j) DJF normalized Sea Level Pressure anomalies (shading, hPa)

and 850 hPa winds (vectors over 4m/s). In all captions, topography in gray contour, each 1000

m. On the right column, precipitation are from GPCP, pressure and 300hPa temperature from

ERAINT, 850hPa winds and surface temperature from ERA40.–84–



manuscript submitted to Earth Science Reviews

0 300 600 900 1200 1500 3000 5000

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0 .1

0.1

0 .1

0 .1

0 .1

0 .1

0.1

0.1

0 .1

0 .1

0 .1

a

LEo1_REF

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0 .1

0 .1

0 .1

0.1

0 .1

0 .1

0.1

0 .1

b

LEo2_TP

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0 .1

0.1

0 .1

0 .1

0 .1

0.1

0 .1

0 .1

0.1

0 .1

c

LEo2_TPlow

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0 .1

0 .1

0 .1

0.1

0 .1

0 .1

0.1

0 .1

d

LEo2_TPhigh

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0 .1

0 .1

0 .1

0.1

0 .1

0 .1

0.1

0 .1

e

LEo2_TPsouth

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0 .1

0 .1

0 .1

0 .1

0 .1

0 .1

0.1

0 .1

f

LEo2_BengalSea

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0 .1

0.1

0 .1

0 .1

0 .1

0 .1

0.1

h

EOli_REF

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0 .1

0.1

0 .1

0 .1

0 .1

0 .1

0.1

0.1

0 .1

0 .1

0 .1

g

LEo1_2X

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0 .1

0 .1

0.1

0 .1

0 .1

i

EMio_REF

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0 .1

0 .1

0.1

0 .1

0 .1

j

EMio_TetSw

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0 .1

0.1

0 .1

0.1

0 .1

0 .1

0.1

0.1

0 .1

0.1

k

EMio_EAfr

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0 .1

0 .1

0.1

0 .1

0 .1

l

MMio_REF

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0 .1

0 .1

0 .1

0.1

m

LMio_smallT

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0 .1

0.1

0 .1

0 .1

0 .1

0.1

n

LMio_noAr

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0 .1

0 .1

0 .1

0.1

t

LMio_1.5X

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0 .1

0 .1

0 .1

0.1

s

LMio_REF

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0.1

0 .1

0 .1

o

LMio_noTSM

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0.1

0 .1

0 .1

p

LMio_noM

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0.1

0 .1

0 .1

q

LMio_noTS

0°

20°N

40°N

60°N

30°E 60°E 90°E 120°E

0.1

0.1

0.1

0.1

0 .1

0 .1

r

LMio_noTSP

Figure 16. Mean Annual Precipitation (shading, mm/yr), overlain with regions where the

Monsoon Precipitation Index (B. Wang & Ding, 2008) is over 0.5 (thin red dots) and 0.75 (thick

red dots), for all reference and sensitivity experiments.
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Figure 17. June-August (JJA) normalized Sea Level Pressure anomalies (shading, hPa) and

850 hPa winds over 4 m/s (vectors), for all reference and sensitivity experiments.
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Figure 18. December-February (DJF) normalized Sea Level Pressure anomalies (shading, hPa)

and 850 hPa winds over 4 m/s (vectors), for all reference and sensitivity experiments.
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Figure 19. Jet Stream velocity and localization over Asia in August (purple outline), for all

sensitivity experiments and precipitation for the month of August (shading, mm/month).
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Figure 20. Jet Stream August velocity and localization over Asia, for all sensitivity experiments.
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Figure 21. Jet Stream April velocity and localization over Asia, for all sensitivity experiments.
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