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ABSTRACT

In this work we present an exhaustive analysis of the use of Quantized State Sys-
tems (QSS) algorithms for the discrete event simulation of Leaky Integrate and Fire
models of spiking neurons. Making use of some properties of these algorithms, we
first derive theoretical error bounds for the sub-threshold dynamics as well as esti-
mates of the computational costs as a function of the accuracy settings. Then, we
corroborate those results on different simulation experiments, where we also study
how these algorithms scale with the size of the network and its connectivity.

The results obtained show that the QSS algorithms, without any type of op-
timization or specialization, obtain accurate results with low computational costs
even in large networks with a high level of connectivity.
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1. Introduction

The presence of discontinuities in systems of Ordinary Differential Equations (ODE)
has been always a challenge for the numerical integration algorithms used for their
simulation. Steps that integrate through discontinuities usually introduce unaccept-
able large errors and for this reason they must be avoided. For this purpose, it is
necessary to detect the precise instant of time at which each discontinuity occurs in
order to advance the simulation up to that time. Then, the integration can be restarted
from the situation after the event occurrence (Cellier & Kofman, 2006). This process,
known as zero crossing detection and handling, effectively avoids integrating through
discontinuities at the price of large computational costs: the detection of the disconti-
nuity times usually requires iterations (Park & Barton, 1996) and then restarting the
simulation implies using a small step size.

Models of spiking Integrate and Fire neurons are a particular case of discontinuous
ODEs. There, when some variable (usually the membrane potential) reaches a thresh-
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old, the neuron fires producing a spike that not only resets some internal variables but
that is also propagated through synaptic connections to other neurons in the network.
When the size of a spiking neural network (SNN) growths, the time between succes-
sive spikes on the whole network becomes smaller, and consequently the maximum
step size that can be used by the numerical algorithms is reduced. In addition, the
computational cost of each step growths with the number of neurons.

Thus, simulating large SNN with standard zero crossing detection and handling
algorithms becomes impractical and different solutions have been proposed to over-
come that problem (Brette et al., 2007; Hansel, Mato, Meunier, & Neltner, 1998;
Morrison & Diesmann, 2007; Shelley & Tao, 2001). Most of these solutions involve
using a fixed small step size and whenever one or more spikes are detected within an
integration step, instead of reducing the step size to the time instant of the first spike,
some correction procedure is executed.

In the last two decades, a family of numerical ODE algorithms that replaces the
classic time discretization by the quantization of the state variables was developed.
These algorithms, called Quantized State Systems (QSS) methods (Cellier & Kofman,
2006; Kofman, 2002; Kofman & Junco, 2001; Migoni, Bortolotto, Kofman, & Cellier,
2013), approximate the ODEs in an event driven fashion where each step only involves
local computations around a state variable that experiences a significant change. QSS
methods, besides having strong theoretical properties regarding stability and error
bounds, are particularly efficient to integrate discontinuous models (Kofman, 2004a)
since zero crossing detection is straightforward and the occurrence of a discontinuity
only provokes local computations similar to those of a normal step.

In this work, we first analyze different theoretical properties of QSS methods applied
to the simulation of Leaky Integrate and Fire (LIF) spiking neurons that establish up-
per bounds for different errors (synaptic current, membrane potential, and firing times)
and also estimate the expected computational costs. We also perform an exhaustive
comparison of computational costs and errors for the different QSS algorithms in the
simulation of a single neuron model. This analysis is then scaled up to a neural net-
work level, studying the way the computational costs increase with the growth of the
network and its connectivity.

We shall see that out-of-the-box QSS methods, without any optimization or special-
ization, offer a promising alternative for the simulation of SNNs, providing accurate
results with low computational costs.

The article is organized as follows. Section 2 provides the background in which the
rest of the work is based, including the description of LIF models and QSS algorithms.
Then, Section 3 contains the main theoretical results and Section 4 reports and ana-
lyzes the simulation results. Finally, Section 5 presents the conclusions and the future
work.

2. Background

In this section we introduce different ODE models of spiking neurons and the numer-
ical methods used to simulate them. We then present the QSS family of methods and
we continue by recalling the core concept of activity that allows analyzing the com-
putational costs of QSS simulations. Finally, we introduce the software tool we have
used to run the different experiments throughout this work and we discuss previous
results where these methods were used to simulate spiking neurons.
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2.1. Modeling and Simulation of Spiking Neurons

Spiking neurons are usually described by systems of ODEs with discontinuities asso-
ciated to the firing times. Among the different models that have been proposed, we
can mention the following ones:

• Hodgkin–Huxley (HH) model (Hodgkin & Huxley, 1952): this detailed model,
developed in the 1950s, describes the electrical action potentials of neurons ac-
counting for ion channel potentials. The main drawback of this model is that
its simulation is computationally expensive, since each neuron is represented by
four differential equations governed by 10 parameters. Thus, its usage is usually
limited to networks formed by few neurons (Izhikevich, 2003b).
• Leaky Integrate and Fire (LIF) model (Lapicque, 1907; Stein, 1967): this simpli-
fied model, introduced by Lapique in 1907, is also based on an electrical represen-
tation. The circuit consists of a resistor and a capacitor in parallel, representing
the leakage and capacitance of the membrane (Burkitt, 2006), respectively. The
membrane capacitor is charged until it reaches a certain threshold, after which
it discharges producing an action potential (spike). This behaviour is modeled
by the differential equation

v̇(t) = I(t) + a− bv(t), if v(t) ≥ vu then v ← c,

where v(t) is the membrane potential, I(t) is the input current and a, b, c, and
vu (the threshold) are the model parameters.

Several modifications have been proposed to improve the LIF model, such as the
inclusion of a quadratic term on v(t) (quadratic integrate and fire (Ermentrout,
1996)), or the addition of a second state variable in order to represent more
complex behaviors (integrate and fire or burst (Izhikevich, 2003b)). Other vari-
ants are the exponential integrate-and-fire neuron (Fourcaud-Trocmé & Brunel, 2005;
Fourcaud-Trocmé, Hansel, Van Vreeswijk, & Brunel, 2003), the generalized integrate-
and-fire neuron (Brunel, Hakim, & Richardson, 2003; Richardson, Brunel, & Hakim,
2003) and the noisy LIF (Gerstner, Kistler, Naud, & Paninski, 2014). Izhikevich’s
model (Izhikevich, 2003a, 2007), that consists of a second order nonlinear system
(with states representing the membrane potential and the membrane recovery), can
also be regarded as an extension of the LIF model.

The above presented models can be simulated with classic numerical methods
(Brette et al., 2007), although some problems often appear since every time a neuron
emits or receives a spike a discontinuity occurs. This constitutes a difficulty for con-
ventional (time discretization-based) numerical methods because they cannot integrate
across discontinuities since the polynomial approximations on which these numerical
schemes are based are not valid on discontinuous functions. To overcome this problem,
the methods must detect each discontinuity, then advance the simulation time to that
instant, and finally restart the simulation from the new situation (Cellier & Kofman,
2006).

This whole process, which usually involves iterations to find the precise instant of
the discontinuity occurrence, is computationally expensive. Moreover, in a model like
that of a spiking neural network, the rate of occurrence of discontinuities (i.e., spikes)
growths with the number of neurons and then the maximum step size is limited to a
smaller value as the size of the system grows.

To overcome these problems, different strategies have been implemented. A
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simple solution is to use a small fixed step size that introduces a small er-
ror in the spiking times. A more precise and sophisticated approach is that of
(Hanuschkin, Kunkel, Helias, Morrison, & Diesmann, 2010a) in which synapses com-
municate between neurons at discrete time instants (usually larger than the integration
step size) making use of a correction mechanism to take into account the late arrival
of incoming spikes.

A different approach is followed in (Zheng, Tonnelier, & Martinez, 2009), where the
authors propose a numerical integration method for generic simulations of nonlinear
spiking neuron models called voltage-stepping. This approach is based on the dis-
cretization of the voltage values in order to simulate with a local event-driven method
and to take advantage of its properties. Then, in (Kaabi, Tonnelier, & Martinez, 2011)
this approach is scaled up to a neural network level using the Discrete Event System
Specification (DEVS) (Zeigler, Kim, & Praehofer, 2000).

Another approach also related to event-driven techniques is the one presented in
(Mascart, Scarella, Reynaud-Bouret, & Muzy, 2022), where the authors modeled only
the time of the spikes by a point processes and they developed a specific algorithm
called Activity Tracking with Time Asynchrony (ATiTA).

2.2. Quantized State System Methods

QSS methods are a family of numerical integration algorithms that replace the time
discretization of classic numerical integration algorithms by the quantization of the
state variables.

Given a time invariant ODE in its State Equation System (SES) representation:

ẋ = f(x(t), t) (1)

where x(t) ∈ R
n is the state vector, the first order Quantized State System (QSS1)

method (Kofman & Junco, 2001) solves an approximate ODE called Quantized State
System:

ẋ = f(q(t), t). (2)

Here, q(t) is the quantized state vector. Each component of the quantized state qi(t)
follows a piecewise constant trajectory that only changes when its difference with the
corresponding state xi(t) reaches the quantum ∆Qi.

The quantized state trajectory is related to the corresponding state trajectory xi(t)
as follows:

qi(t) =

{

qi(tk) if |xi(t)− qi(tk)| < ∆Qi

xi(t) otherwise

for tk < t ≤ tk+1, where tk+1 is the first time after tk at which |xi(t)−qi(tk)| = ∆Qi. In
addition, we consider that initially q(t0) = x(t0). This defines a hysteretic quantization
function generating trajectories like those depicted in Figure 1.

Since the quantized state trajectories qi(t) are piecewise constant, then, provided
that the system is autonomous (or that f(·, t) is piecewise constant with t), the state
derivatives ẋi(t) also follow piecewise constant trajectories and, consequently, the
states xi(t) follow piecewise linear trajectories. In non autonomous systems Eq. (2)
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Figure 1. Typical QSS1 state and quantized state trajectories.

can be rewritten as

ẋ(t) = f(q(t), t) = f̃(q(t),u(t))

for some input trajectories u(t) that are approximated by piecewise constant trajecto-
ries v(t) such that the difference vi(t)− ui(t) remains bounded by a certain quantity
(given by the input quantization). That way, the QSS1 approximation actually inte-
grates the system

ẋ(t) = f̃(q(t),v(t))

Due to the particular form of the trajectories, the numerical solution of Eq. (2) is
straightforward and can be easily translated into a simulation algorithm.

Since QSS1 is only first order accurate and a good accuracy cannot be obtained
without significantly increasing the number of steps, a second order accurate method
called QSS2 was proposed (Kofman, 2002).

QSS2 has the same conceptual definition as QSS1, except that the components
of q(t) are calculated to follow piecewise linear trajectories (rather than piecewise
constant, as in QSS1), as shown in Figure 2. Then, the state derivatives ẋ(t) are com-
puted as piecewise linear trajectories so that the states x(t) follow piecewise parabolic
trajectories.

Figure 2. Typical QSS2 state and quantized state trajectories.

The idea was also extended in a similar way to obtain a third order accurate QSS
method called QSS3, in which the quantized states qi(t) follow piecewise parabolic
trajectories while the states follow piecewise cubic trajectories.

An important advantage of the QSS methods is that they handle discontinuities in a
straightforward and very efficient manner (Kofman, 2004b). According to the order of
the method, the quantized state variables follow piecewise constant, linear or parabolic
trajectories. Then, detecting zero crossings is straightforward, as it involves solving a
quadratic equation in the worst case (QSS3). Once a discontinuity is detected, the
algorithm handles it as an ordinary step, in which only the state derivatives that are
affected by that discontinuity are recomputed.

The efficiency in the discontinuity handling and the fact that the computations
at each step are confined to the states that experience changes imply that these al-
gorithms are very efficient to simulate large systems with heterogeneous activity in-
volving discontinuities. The family of QSS methods also includes a set of algorithms
called Linearly Implicit QSS (LIQSS), which are appropriate to simulate some stiff
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systems (Migoni et al., 2013). LIQSS methods combine the principles of QSS meth-
ods with those of classic linearly implicit solvers. There are LIQSS algorithms that
perform first, second, and third order accurate approximations: LIQSS1, LIQSS2, and
LIQSS3, respectively. The main idea behind LIQSS methods is inspired by classic
implicit methods that evaluate the state derivatives at future instants of time.

2.3. Theoretical Properties of QSS Methods

The fact that the difference between the states xi and the corresponding quantized
states qi is bounded by the quantum ∆Qi allows to rewrite Eq. (2) as

ẋ = f(x(t) +∆x(t), t) (3)

where ∆x(t) , q(t)− x(t) is a perturbation term bounded by the quantum.
In consequence, the use of a QSS algorithm is equivalent to the addition of a

bounded perturbation to the original system and several properties regarding con-
vergence, stability, and global error bounds can be easily derived (Cellier & Kofman,
2006; Kofman & Junco, 2001) for linear and non-linear systems. One of those proper-
ties establishes that the use of QSS in stable linear time invariant systems of the form
ẋ(t) = Ax(t) +Bu(t) produces a global error that can be bounded by the formula 1

|x(t)− xa(t)| ≤ |V| · |Re{Λ}−1 ·Λ| · |V−1| ·∆Q (4)

where x and xa are the QSS and the analytical solutions, and Λ = V−1AV is the
Jordan decomposition of matrix A. That way, there is a linear dependence between
the quantum and the global error bound.

For these reasons, the quantum plays an equivalent role to that of the tolerance in
variable step size algorithms.

2.4. Activity and QSS Methods

The concept of activity associated to continuous signals was introduced
in (Jammalamadaka, 2003; Muzy, Jammalamadaka, Zeigler, & Nutaro, 2011) in or-
der to measure the rate of change of the signal. The formal definition of the activity
metrics for a continuous signal xi(t) between an initial time t0 and a final time tf is
given by:

Axi(t0,tf ) ,

∫ tf

t0

∣

∣

∣

∣

dxi(τ)

dτ

∣

∣

∣

∣

· dτ (5)

This definition measures the distance between successive maxima and minima of a
signal and results proportional to the number of segments used by a piecewise constant
approximation like that of Figure 1.

With the goal of considering higher order approximations like that of Figure 2, this
notion was extended in (Castro & Kofman, 2015), defining the concept of n-th order
activity that takes into account not only the values but also the derivatives of the

1The expression |x| denotes the component-wise absolute value of x ∈ R
n. Also, a � b expresses a set of

component-wise inequalities ai ≤ bi on all the components of a ∈ R
n and b ∈ R

n.
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trajectory. Formally, given a signal xi(t), its n-th order activity in the interval [t0, tf ]
is defined as

A
(n)
xi(t0,tf )

,

∫

tf

t0

∣

∣

∣

∣

∣

∣

∣

∣

dnxi(τ)

dτn

n!

∣

∣

∣

∣

∣

∣

∣

∣

1/n

· dτ (6)

Using this definition, it is possible to estimate the number of segments of polynomials
up to order n − 1 that are needed to approximate the signal xi(t) with an error less
than ∆Qi in the interval [t0, tf ] as

k
(n)
xi(t0,tf )

(∆Qi) ≈
(

1

∆Qi

)1/n
∫

tf

t0

∣

∣

∣

∣

∣

∣

∣

∣

dnxi(τ)

dτn

n!

∣

∣

∣

∣

∣

∣

∣

∣

1/n

· dτ =
A

(n)
xi(t0,tf )

(∆Qi)1/n
(7)

In QSS methods, using n equal to the order of the method (that uses polynomials
of order up to n−1 in the quantized states) this formula allows estimating the number
of steps performed in the i-th state variable when a quantum size ∆Qi is selected.

A simple consequence of Eq. (7) is that the number of steps grows linearly with the
accuracy (i.e., with the inverse of the quantum size) in the first order accurate QSS1
and LIQSS1 methods. It also grows with the square root of the accuracy in QSS2 and
LIQSS2 and with the cubic root of the accuracy in the third order schemes.

2.5. The Stand Alone QSS Solver

While some DEVS-based simulation tools have implementations of different
QSS algorithms (D’Abreu & Wainer, 2005; Quesnel, Duboz, Ramat, & Traoré, 2007;
Zeigler, Muzy, & Kofman, 2018), the most efficient and complete tool for the family
of QSS solvers is the Stand-Alone QSS solver (Fernández & Kofman, 2014).

The models in this solver are described using a subset of the Modelica lan-
guage (Mattsson, Elmqvist, & Otter, 1998) called µ-Modelica. The tool automatically
translates the models into a C language piece of code, containing the set of ODEs with
the corresponding zero crossing functions and event handlers for discontinuous cases.
The tool also extracts structure information (incidence matrices) and produces the
code for the symbolic evaluation of the Jacobian matrix. The C code produced is then
linked to the different QSS algorithms (QSS and LIQSS of order one to three) or to
classic ODE solvers like DOPRI (Dormand & Prince, 1980), DASSL (Petzold, 1982),
CVODE (Cohen, Hindmarsh, & Dubois, 1996) and IDA (Hindmarsh et al., 2005).

The fact that the tool provides all the information about the structure of the model
and the code for the symbolic evaluation of the sparse Jacobian matrices implies that
the results obtained by this tool using classic ODE solvers are noticeably faster than
the results obtained by other interfaces (Kofman, Fernández, & Marzorati, 2021). In
addition, the fact that the solver uses the same piece of code for computing the ODE
right hand side functions in the different algorithms (QSS and classic ODE integrators),
allows fair performance comparisons among them.
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2.6. QSS and SNN Simulation

There exist some previous related works applying state discretization to simulate spik-
ing neural network models. Among them, the already mentioned voltage-stepping
methods of (Kaabi et al., 2011; Zheng et al., 2009) are not formally QSS methods,
but use the same ideas and lead to event-driven simulations.

Also, in (Grinblat, Ahumada, & Kofman, 2012) the authors explored the use of
QSS algorithms in the simulation of spiking neuron networks based on Izhikevich’s
model (Izhikevich, 2003a, 2007) while in (Castro, Kofman, & Cellier, 2011) the Delay
QSS (DQSS) method was applied to simulate delayed cellular neural networks with
impulsive effects. However, those results were obtained using a less efficient implemen-
tation of QSS provided by the PowerDEVS toolkit.

In (Fernandez, Kofman, & Bergero, 2017) QSS simulations of a SNN model adapted
from (Vogels & Abbott, 2005) are presented showing that QSS algorithms are not only
efficient but they can be also efficiently parallelized.

3. Main Theoretical Results

In this section we describe first the Leaky Integrate and Fire (LIF) model used along
this work, taken from (Schmidt et al., 2018). We use two equivalent descriptions of
that model, with one and two state variables. Then we derive theoretical properties of
their QSS approximations including error bounds and computational complexity.

As expected, we will see that all the error bounds depend linearly on the quantum
size and that the computational costs estimations depend on the 1/n-th power of the
quantum where n is the order of the algorithm.

3.1. Model Description

The LIF model used in this work corresponds to that of (Schmidt et al., 2018) repre-
senting the synapses with instantaneous jumps and exponential decay. In this case the
state variable is the membrane potential V (t) and the corresponding sub-threshold
dynamics is described by the following differential equation:

dV

dt
= −V (t)− EL

τm
+

Is(t)

Cm
(8)

where EL is the leak potential, τm is the membrane time constant, and Cm is the
membrane capacity and

Is(t) = Is(tl) · e−(t−tl)/τs (9)

is the synaptic current which is represented as an exponentially decaying signal that
was restarted after receiving a spike. Here, tl is the instant of time in which the neuron
received the last incoming spike and τs is the postsynaptic current time constant.

When the neuron receives a spike, the synaptic current is updated according to the
following law

Is(t
+)← Is(t) + ∆I , Is(t) + J (10)
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where J is the excitatory synaptic strength.
Whenever the membrane potential reaches the firing threshold θ, a spike is emitted

by the neuron and the potential is reset to the resting potential Vr.
In addition, the neuron enters a refractory period of duration τr in which the mem-

brane potential keeps the value V (t) = Vr. After that period, the neuron comes back
to the sub-threshold dynamics described by Eq. (8).

We shall consider two equivalent representations for the synaptic current. In the
first one we directly use Eq. (9) to compute its evolution so that the entire neuron has
a single state variable V (t). We shall refer to this model as the single-state model.

In the second representation we shall compute Is(t) from an additional differential
equation given by

dIs
dt

= −Is(t)

τs
(11)

such that the neuron model has now two states (V (t) and Is(t)).
Although both representations are equivalent, their numerical solutions will differ.

The single-state model is a time-varying ODE and the accuracy of the approximation
given by the QSS methods will depend not only on the quantum, but also on the order
of the method and on the rate at which incoming spikes are received. The subthreshold
dynamics of the two-state model is linear time-invariant and we shall see that stronger
properties and simpler error bounds can be established. For this reason, more accurate
results can be expected.

We analyze next the different theoretical properties of the QSS approximation of
each representation.

3.2. QSS Sub-Threshold Error Bounds

QSS algorithms have a global error bound formula for linear time invariant systems
depending on the quantum size ∆Qi used in each variable, given by Eq. (4). Here, we
shall specialize that formula for a particular case where the evolution matrix has a
triangular structure, as it is the case of the two-state LIF model used in this work. We
shall also extend the existing results to take into account the presence of impulsive
input dynamics.

Theorem 1. Error Bound.
Consider an LTI system of the form

dz1
dt

(t) = −az1(t) + bz2(t) + u1(t)

dz2
dt

(t) = −cz2 + u2(t)

(12)

with a > 0, b > 0, c > 0, and consider its QSS approximation

dx1
dt

(t) = −aq1(t) + bq2(t) + u1(t)

dx2
dt

(t) = −cq2(t) + u2(t)

(13)

If a quantum ∆Qi is used for variable xi, then the maximum difference between the
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solutions of both systems is given by

|x1(t)− z1(t)| ≤ ∆1 , ∆Q1 +
2b

a
∆Q2 (14)

|x2(t)− z2(t)| ≤ ∆Q2 (15)

provided that the initial state verifies Eqs.(14)-(15).

This theorem, whose proof can be found in A.1, provides a bound for the error in
both states of the model of Eq. (8) and Eq. (11) taking z1(t) = V (t) and z2(t) = Is(t).
However, it does not take into account the eventual presence of impulsive inputs like
those that occur when an input spike is received. In order to overcome this difficulty,
we extend next the results to that case.

Theorem 2. Error bounds under impulsive input sequences.
Consider an LTI system of the form

dz

dt
(t) = Az(t) +Bu(t) + E

N
∑

j=1

δ(t− tj) (16)

where
∑N

j=1 δ(t− tj) represents a sequence of input impulses with tj being independent

of the solution of Eq. (16). Consider also the QSS approximation given by

dx

dt
(t) = Aq(t) +Bu(t) + E

N
∑

i=1

δ(t− ti) (17)

Suppose that in absence of input impulses the condition |x(t0)− z(t0)| � emax implies
that |x(t)−z(t)| � emax for all t ≥ t0. Then, in presence of an arbitrary impulse input
sequence the condition |x(t0) − z(t0)| � emax implies that |x(t) − z(t)| � emax for all
t ≥ t0.

With the result of this theorem, whose proof can be found in A.2, we can ensure that
the error in the QSS approximation of the synaptic current Is(t) = z2(t) computed
from Eq. (11) is bounded according to Eq. (15) even in presence of an input sequence
of impulses. Taking into account that the firing of a neuron does not have any effect
on its synaptic current Is, this error bound is also valid beyond the sub-threshold
dynamics provided that the sequence of input spikes received does not change.

Taking also into account the single-state model, we also derive the next result that
establishes an upper bound for the error in a time-varying system.

Theorem 3. Error bound in a linear time-varying system Consider a first order ODE

dz1
dt

(t) = −az1(t) + u(t) (18)

with a > 0 and u(t) being a piecewise continuous trajectory. Let

dx1
dt

(t) = −aq1(t) + v(t) (19)
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be a QSS approximation of order N where v(t) and u(t) verify

|v(t)− u(t)| ≤ c(t− tk)
N (20)

where tk is the time of the last QSS step. Then, assuming that x1(t0) = z1(t0), it
results that

|z1(t)− x1(t)| ≤ ∆Q1 +
c

a
∆tNmax (21)

where ∆Q1 is the quantum and ∆tmax is the maximum interval between successive
steps.

This result, whose proof can be found in A.3, establishes that the error bound
depends not only on the quantum but also in the order n of the approximation and in
the maximum time ∆tmax between successive steps.

In the context of the single-state model of the neuron given by Eqs.(8) and (9), the
condition of Eq. (20) is verified since a QSS method of order N will approximate the
synaptic current Is(t) using polynomial segments of order n − 1 and the error term
will result proportional to ∆tn where ∆t is the time elapsed since the last update of
the approximated signal.

In this case, we can expect the error to decrease not only with the quantum size
and method order, but also as the input spike rate grows. Anyway, as the quantum
becomes smaller, the time between successive changes in V (t) results smaller than the
time between input spikes. In that case, ∆tmax is inversely proportional to the total
number of changes in the quantized state. From the activity formula of Eq. (7) the
number of steps is inversely proportional to ∆Q1/n. Then, ∆tmax is proportional to
∆Q1/n and (∆tmax)

n is proportional to ∆Q. This implies that the error in Eq. (21)
becomes proportional to the quantum size.

3.3. QSS Firing Time and Firing Rate Error Bounds

The most important feature of a spiking neuron is the time at which the output spikes
are produced. Thus, it is crucial to analyze the error that the QSS approximations
introduce in the firing times. The following theorem provides an upper bound for this
error

Theorem 4. Firing Time Error Bound.
Consider the LTI system of Eq. (12) and its QSS approximation of Eq. (13).
Let tθ be the instant of time at which the analytical solution z1(t) crosses the thresh-

old θ. Let t̃θ be the instant of time at which x1(t) crosses θ.
Suppose also that x1(0) = z1(0) = Vr, u1(t) = ū1, and assume that z2(t) is constant

and it verifies

z2(t) = z̄2 >
a(θ +∆1)− u1

b
(22)

for all t ∈ [0, tθ] with ∆1 defined in Eq. (14). Then, the maximum difference between
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the firing times of both systems is given by

|tθ − t̃θ| <

∣

∣

∣

∣

∣

∣

∣

∣

1

a
log









1 +
∆Q1 +

2b

a
∆Q2

θ − bz̄2 + u1

a









∣

∣

∣

∣

∣

∣

∣

∣

(23)

A straightforward consequence of this theorem, whose proof can be found in A.4,
is that the difference between the analytical firing period of a two-state neuron with
constant synaptic current and that of its QSS approximation is equal to the bound in
the firing time.

Corollary 1. Firing Period Error Bound
Consider an LTI system of Eq. (12) and its QSS approximation of Eq. (13) with

u1(t) = ū1, and assume that z2(t) is constant and it verifies Eq. (22). Suppose also
that z1(t) and x1(t) are reset to the value Vr whenever they reach θ.

Let T be the time period between two consecutive resets of z1(t), and let T̃ be the
time period between two consecutive resets of x1(t).

Then, the difference between both periods is bounded by

|∆T | = |T − T̃ | ≤ ∆Tmax ,

∣
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∣

∣

∣

∣

∣

1

a
log
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a









∣

∣

∣

∣

∣

∣

∣

∣

(24)

The bound given by Eq. (24) can be simplified if we compute the relative error in
the period assuming that the synaptic current z2(t) is large. The following proposition
states this result:

Proposition 1. Relative Error of the Firing Period
Consider an LTI system of Eq. (12) and its QSS approximation of Eq. (13) under

the same assumptions of Corollary 1. Assume also that z2(t) verifies

|bz̄2 + u1| >> a(θ − Vr) (25)

Then, the relative error between the firing periods of both systems is bounded by

∣

∣

∣

∣

∆T

T

∣

∣

∣

∣

≤ ∆Tmax

T
≃

∣

∣

∣

∣

∆1

θ − Vr

∣

∣

∣

∣

(26)

The proof of this proposition can be found in A.5.
This last result implies that when the synaptic current of the two-state neuron is

sufficiently large, the relative error in the period is bounded by a magnitude that
becomes independent on that current. Moreover, that error depends linearly on the
quantum used in both variables.

Regarding the single-state neuron, very similar results can be easily derived based on
the fact that the error in the membrane potential results proportional to the quantum
size as analyzed after Theorem 3.

12



3.4. Activity and Computational Complexity

As introduced in Section 2.4, the activity of order n of a signal allows estimating the
number of steps performed by a QSS algorithm in order to approximate that signal.
In the context of the QSS approximation of a two-state neuron model, we shall exploit
this idea to have a theoretical estimation of the computational costs associated to the
simulation with QSS algorithms of different orders and different quantum sizes. For
that goal, we shall compute the n-order activity of the synaptic current on a synapse
s, Is(t), since this is the state that experiences more sudden changes. The reason is
that a neuron usually receives many more spikes than it produces.

We consider then a neuron receiving a train of input spikes with a constant rate
1/Ts. In order to compute the activity of the signal Is between two consecutive input
spikes, we can express the analytical solution of z2(t) in Eq. (12) as

z2(t) = (I0 +∆I)e−ct = Ime−ct

where

Im = I0 +∆I (27)

is the synaptic current z2(t = 0) at the beginning of each period, ∆I = J is the
increment in the synaptic current after receiving a spike, and I0 is the synaptic current
at the end of the period, i.e.,

z2(Ts) = (I0 +∆I)e−cTs = I0 (28)

Thus, we can express I0 depending on ∆I and Ts as

I0 =
∆I · e−cTs

1− e−cTs
(29)

The activity of order n of z2(t) in a period can be then expressed as

A
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=
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From Eq. (28) we have

e−cT =
I0

I0 +∆I
=

I0

Im
(30)

and then

A
(n)
0,Ts

=

(

Im

n!

)

1

n
n






1− (

I0
Im

)

1

n






= n · I

1/n
m − I

1/n
0

n!1/n
(31)

where Im and I0 can be computed from the system parameters using Eqs.(27) and
(29).

Then, from Eq. (31) and using the estimate of the number of steps of Eq. (7), we
can estimate the number of steps required by a QSS method of order n to approximate
one period of the synaptic current as:

k
(n)
xi(t0.tf )

(∆Qi) ≈
A

(n)
0,Ts

(∆Qi)1/n
= n

I
1/n
m − I

1/n
0

(n!∆Qi)1/n
(32)

Equation (32) shows that the number of steps per period in Is is inversely propor-
tional to the 1/n-th power of the quantum in the current ∆Qi.

Regarding the number of steps in the membrane potential V (t), we can take into
account that its variation is mainly driven by the synaptic current. During a QSS sim-
ulation, each step in the synaptic current will change the derivative of the membrane
potential, which will possibly shorten the time of its next change. Thus, unless a very
large or a very small quantum is used in V , we can expect that the number of steps
in the membrane potential is similar to that on the synaptic current.

Regarding the single-state model of Eq. (8) and Eq. (9) it results more involved
to compute the n-th order activity since the analytical solution for V (t) has a more
complex expression. Anyway, it is still valid that the number of steps will be inversely
proportional to the 1/n-th power of the quantum size as established by Eq. (7).

4. Simulation Results and Performance Analysis

In this section we compare the performance of different numerical algorithms under
different accuracy settings in the simulation of a single neuron. Then, we extend the
analysis to populations of neurons with and without synaptic connections between
them.

In all the simulations we used the Stand Alone QSS Solver
tool (Fernández & Kofman, 2014) running on an Intel Core i5-9400 CPU @
2.90GHz Intel i5 desktop computer under Ubuntu 20.04 OS. We considered both,
the single and the two-state representations of the neuron model as presented in
Section 3.1 with the set of parameters described in Table 1.

The models used in this section can be downloaded from
https://fceia.unr.edu.ar/~kofman/files/SNNmodels.zip and the results
reported can be reproduced using the Stand Alone QSS Solver, available at
https://github.com/CIFASIS/qss-solver.
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Model parameters
Value Description

τm = 10 ms membrane time constant
τr = 2 ms absolute refractory period
τs = 0.5 ms postsynaptic current time constant
Cm = 250pF membrane capacity
Vr = −65mV reset potential
θ = −50 mV fixed firing threshold
EL = −65 mV leak potential
J = 87.8 pA excitatory synaptic strength

νbg = 8 spikes/s average external spike rate
kext = 940 external inputs per population

Table 1. Model parameters taken from (Potjans & Diesmann, 2014).

4.1. Single Neuron Model

We simulated the models presented in Section 3.1 with different QSS methods (QSS,
QSS2, QSS3)2 changing the quantum value for the state variables (V (t), and Is(t)
in the two-state model). The quantum values were chosen from around one order
of magnitude below the variation of the corresponding signals up to four orders of
magnitude below, that is, we changed ∆QIs from 10−1nA to 10−4nA and ∆QV from
10−1mV to 10−4mV.

In order to measure the errors, we also computed a reference solution using the
classic DASSL solver with a very low tolerance (five orders of magnitude below the
minimum tolerance settings used for the QSS algorithms). In addition, we simulated
the models using DOPRI5 algorithm under different accuracy settings in order to com-
pare the performance of QSS methods with that of a classic ODE solver. Among the
different classic solvers that can be selected in the Stand Alone QSS Solver (DOPRI5,
DASSL, CVODE, and IDA), DOPRI5 was the one exhibiting the best performance.

Besides using the parameters of Table 1, we adopted the following initial conditions:
V (0) = −65 mV and Is(0) = 0.4 nA in all the experiments. The input spike train of
the neuron is a Poisson process with stationary rate νext = kextνbg generated from a
pseudo-random number generator3 with fixed seed such that the different simulation
runs can be compared under identical conditions.

The final simulation time was set to 1 second, after which the neuron received a
total of 7, 513 input spikes and emitted 10 output spikes.

Based on the results obtained, we analyze next the different errors and computa-
tional costs associated to each simulation.

4.1.1. Error Analysis

We computed errors in two different ways associated to each simulation:

• Maximum absolute error emax: is the largest absolute value of the difference
between the reference and the approximate solution.
• Mean absolute error emean: is the mean value of the absolute difference between
the reference and the approximate solution.

2We did not include Linearly Implicit QSS Methods because the models are not stiff.
3The QSS Solvers uses the standard stdlib C library for generating pseudo-random sequences.
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For the membrane potential V we measured these errors up to the first emitted spike
(sub-threshold dynamics) and only the mean absolute error for the whole simulation.
We did not report the maximum membrane potential error because it will be always
equal to the voltage jump between the threshold and the reset potential (even if the
difference in the firing times is infinitely small).

For the current Is we measured the maximum and the mean absolute errors during
the whole simulation, only in the model with two state variables. In the single-state
model, we also report the number of emitted spikes in each simulation (we do not
report it in the two-state model because it was always correct).

Regarding the firing times, we measured the error between the time of the i-th firing
in the reference solution and the time of the i-th firing of each numerical solution,
reporting the mean firing time error (only for the simulations that give the correct
number of emitted spikes). For the two-state model, we also reported the theoretical
error bound given by Eq. (23).

All these errors are reported in Table 2 (two-state model) and Table 3 (single-state
model). In all the tables, the column labeled as Tol. represents the quantum ∆Q
used in QSS methods and the Relative and the Absolute Tolerance used in DOPRI5
algorithm.

The errors reported correspond to those obtained using a particular pseudo-random
sequence for the Poisson input spike train. In Appendix B we also report the mean
and the standard deviation of these errors after using 30 different pseudo-random
sequences. Those results show that the errors obtained using different sequences are
very similar, a fact that can be explained from the high rate at which input spikes
are received. Thus, in the rest of the work we shall analyze the results obtained using
single pseudo-random sequence.

Method Tol
[nA,mV]

QSS 1E-1
1E-2
1E-3
1E-4

QSS2 1E-1
1E-2
1E-3
1E-4

QSS3 1E-1
1E-2
1E-3
1E-4

DOPRI5 1E-1
1E-2
1E-3
1E-4

Is [nA] Vsub [mV] V [mV] tθ [s]
emean emax emean emax emean emean etheor
2.38E-2 7.25E-2 3.95E-2 1.41E-1 5.15E-2 7.17E-5 6.38E-4
2.51E-3 5.26E-3 4.36E-3 1.45E-2 5.12E-3 8.10E-6 6.20E-5
2.49E-4 6.01E-4 4.90E-4 1.68E-3 5.44E-4 9.65E-7 6.18E-6
2.51E-5 8.14E-5 4.58E-5 1.57E-4 4.85E-5 5.62E-8 6.18E-7
9.32E-3 8.53E-2 3.44E-2 1.18E-1 5.93E-2 9.41E-5 6.38E-4
3.52E-3 1.34E-2 4.33E-3 1.49E-2 5.99E-3 6.32E-6 6.20E-5
2.68E-4 1.27E-3 2.74E-4 1.46E-3 2.76E-4 3.24E-7 6.18E-6
2.53E-5 1.30E-4 2.58E-5 7.15E-5 3.04E-5 5.99E-8 6.18E-7
1.28E-2 8.65E-2 2.82E-2 8.79E-2 4.01E-2 6.21E-5 6.38E-4
3.67E-3 1.16E-2 3.73E-3 1.34E-2 5.57E-3 5.17E-6 6.20E-5
2.78E-4 1.14E-3 2.84E-4 1.19E-3 2.98E-4 4.58E-7 6.18E-6
2.47E-5 1.14E-4 2.24E-5 1.10E-4 2.68E-5 4.09E-8 6.18E-7
5.92E-2 4.56E-1 5.91E-2 8.67E-2 7.82E-2 1.17E-4 -
5.86E-2 4.42E-1 6.95E-3 1.03E-2 3.55E-2 1.02E-4 -
5.89E-2 4.39E-1 6.96E-4 1.16E-3 1.24E-2 4.60E-5 -
5.89E-2 4.39E-1 6.68E-5 1.35E-4 3.29E-3 1.21E-5 -

Table 2. Errors in the two-state model.

A noticeable feature is that the errors in all the simulations with the two-state
model, irrespective of the quantum size, are small enough to preserve the qualitative
features of the reference solution (for instance the number of emitted spikes, the length
of the period between spikes, the signal shape). This fact was expected from the
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Method Tol
[nA,mV]

QSS 1E-1
1E-2
1E-3
1E-4

QSS2 1E-1
1E-2
1E-3
1E-4

QSS3 1E-1
1E-2
1E-3
1E-4

DOPRI5 1E-3
1E-4
1E-5
1E-6

Vsub [mV] V [mV] Output tθ [s]
emean emax emean spikes emean

2.02E+0 1.34E+1 4.06E+0 27 -
4.32E-1 7.72E-1 2.23E+0 17 -
9.76E-2 2.59E-1 7.24E-1 12 -
6.85E-2 1.95E-1 7.80E-2 10 7.99E-5
3.17E-1 5.05E-1 1.22E+0 7 -
6.20E-2 9.49E-2 1.25E-1 10 1.90E-4
4.59E-3 7.22E-3 1.05E-2 10 1.39E-5
4.80E-4 6.74E-4 7.49E-4 10 1.19E-6
5.50E-2 1.85E-1 7.96E-2 10 7.38E-5
1.89E-2 3.17E-2 3.76E-2 10 3.68E-5
3.92E-3 5.53E-3 7.32E-3 10 7.78E-6
4.39E-4 6.10E-4 6.49E-4 10 9.40E-7
3.19E-1 4.46E-1 1.56E+0 13 -
3.98E-2 5.78E-2 7.42E-2 10 1.20E-4
2.71E-3 3.65E-3 2.59E-2 10 8.58E-5
2.26E-4 2.97E-4 9.34E-3 10 3.07E-5

Table 3. Errors in QSS Simulation of the single-state model. Note that the number of output spikes in the
reference solution is 10.

distinctive theoretical properties of QSS methods which are not shared by classic
numerical integration schemes. In discrete time algorithms, for instance, increasing
the step size may result in unstable solutions and/or unacceptable errors due to the
missing of zero crossings (Cellier & Kofman, 2006).

In the single-state model the errors are significantly larger (particularly for lower
order algorithms, which is consistent with Theorem 3). As a consequence, some features
of the qualitative behavior are not properly preserved, resulting, for instance, in a
different number of emitted spikes.

An example of this is illustrated in Figure 3 where the evolution of the membrane
potential is shown for QSS2 varying the accuracy (∆Q = 1E-1 and ∆Q = 1E-2)
along with the reference solution (DASSL). Here we can observe an almost perfect
trajectory for the smallest quantum, where the trajectories cannot be distinguished
with the naked eye. However, for the largest quantum, a small sub-threshold error in
the membrane potential causes a spike in an instant where the reference solution does
not actually reach the threshold.
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Figure 3. Membrane potential trajectories with QSS2 and the reference high accuracy solution (DASSL).
Full simulation (left) and partial details (right).

4.1.1.1. Synaptic Current. The maximum error in Is (in the two-state model)
resulted very similar to the quantum size. According to Theorem 2, that error should
be bounded by the quantum itself. However, due to numerical inaccuracies caused by
round off errors these maximum errors result slightly larger. Measured mean absolute
errors were about one order of magnitude less than the quantum size.

The classic algorithm DOPRI5, in turn, produces results in the current that are very
similar irrespective of the tolerance, and the errors result larger than those obtained
with QSS in all cases.

4.1.1.2. Sub-Threshold Membrane Potential. In the two-state model, the max-
imum sub-threshold error was in all cases very similar to the quantum size. According
to Eq. (14) in Theorem 1, the maximum sub-threshold error is |eV | ≤ ∆QV +

2b
a ∆QIs =

∆QV + 8 · 107∆QIs = 81∆QV since we are using in all cases4 ∆QV = 106∆QIs . This
shows that the theoretical estimate was conservative for this state. Like in the previous
case, the mean absolute errors were always below the quantum size. DOPRI5 produces
similar errors to those of QSS methods in the membrane potential.

In the single-state model simulations, in all cases the errors were larger that those
obtained in the other model with the same accuracy. As expected from Eq. (21) the
lower order algorithms present larger errors. In the first order method (QSS) these
errors can even affect some qualitative features (like the number of emitted spikes),
except for the highest accuracy settings. The second and third order schemes obtain
errors that are in the order of the quantum size. The best results in terms of accuracy, as
expected, are obtained with the third order schemes since they approximate better the
time varying input signal Is(t). QSS3, in particular, preserves the number of emitted
spikes for all the considered quantum sizes.

Here, DOPRI5 produces significantly larger errors than QSS2 and QSS3 algorithms
so the tolerances were reduced by two orders of magnitude to obtain similar results in
terms of accuracy.

4The quantum was expressed in mV and nA in the different tables, but the model considers that the membrane
potential and the synaptic current are measured in SI units (V and A, respectively).
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4.1.1.3. Complete Membrane Potential Trajectory. In the two-state model,
since the spikes are emitted with a very small time error, the resulting mean error of
the membrane potential is in the order of the quantum size.

In the single-state model, there are several situations in which the spikes are not
correctly emitted producing a large mean absolute error in the membrane potential
(notice the situation shown in Figure 3). As expected, third order schemes are the
most accurate.

Regarding DOPRI5, the errors in the membrane potential resulted larger than those
of QSS methods in all cases.

4.1.1.4. Firing times. The firing time errors observed in the two-state model were
almost negligible. Taking into account that the firing period of the neuron is on the
order of 1

10 = 0.1 sec., the observed errors varied from 0.1% to 0.0001% of this period
according to the quantum size.

The observed firing time errors were about one order of magnitude smaller than
the theoretical error bound obtained from Eq. (23) that does not take into account
the accumulation among different periods and considers a constant input. Thus, the
behavior of the QSS algorithms regarding the firing times, which is a crucial feature
of a spiking neuron simulation, was even better than what could be expected.

In the single-state model the errors were larger, and in some cases they could not
be measured because the number of emitted spikes did not coincide with that of the
reference solution. Anyway, the higher order schemes still obtained small errors at
least for high accuracy settings.

DOPRI5 firing time errors resulted larger than those produced by QSS algorithms,
even when using smaller tolerance settings.

4.1.2. Computational Costs

The results regarding computational costs are summarized in Table 4. A simple ob-
servation of these results shows that the number of steps performed by each algorithm
grows with the accuracy settings. This is, the number of steps grows with the inverse
of the quantum. This growth, as expected, is inversely proportional to the quantum in
QSS, inversely proportional to the square root of the quantum in QSS2 and inversely
proportional to the cubic root of the quantum in QSS3. Execution times change ac-
cordingly.

In all cases the CPU times using the single-state model are less than the ones using
the two-state model for the same accuracy settings. However, under identical accuracy
settings, the errors obtained using the single-state model are larger. This fact can be
observed in Figure 4, that plots the CPU time against the mean error in the sub-
threshold membrane potential for both models and for all QSS methods. The plot also
shows that QSS2 offers the best trade-off in the two-state model (unless a very small
error is requested) while QSS3 obtains the best performance in the single-state model
(unless a large errors are accepted).
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Method Tol
[nA,mV]

QSS 1E-1
1E-2
1E-3
1E-4

QSS2 1E-1
1E-2
1E-3
1E-4

QSS3 1E-1
1E-2
1E-3
1E-4

DOPRI5 1E-1
1E-2
1E-3
1E-4

Two-state model
Simulation Steps CPU Time
Is V [ms]

11,308 3,753 2.5
70,536 42,140 12.6
670,681 434,965 116.7
6,672,923 4,373,657 1,115.3
8,150 1,982 2.0
11,167 9,361 3.6
35,176 37,937 10.7
90,798 114,655 28.9
7,841 2,970 4.4
11,352 7,151 7.4
18,683 14,403 12.0
31,047 28,452 20.9
7,609 7,609 2.9
7,651 7,651 2.9
7,880 7,880 2.9
8,554 8,554 3.1

Single-state model
Simulation Steps CPU Time

V [ms]
5,118 1.8
44,874 6.8
435,617 48.7
4,328,986 463.7
2,036 1.6
9,299 2.6
37,224 6.4
11,3969 17.3
3,164 3.3
7,597 4.5
12,555 6.2
22,356 9.7
7,683 3.0
7,648 3.3
7,747 3.0
8,241 3.1

Table 4. Computational costs in the simulation of the two-state and the single-state models

Figure 4. CPU Times vs. Mean Error in the sub-threshold membrane potential (Vsub) using different QSS
algorithms.
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In order to check that the mean number of steps performed by each method between
consecutive spikes is in agreement with the analysis of Section 3.4, we compute next
the activity of orders one to three and the expected number of steps per period of the
synaptic current for the different accuracy settings in the two-state model.

The synaptic current variation is ∆I = J = 8.78 · 10−2 nA. Then, from Eq. (29)
with c = 1

τs
and T = 1

νext

it results I0 ≈ 0.519nA and Im = I0+∆I ≈ 0.607 nA. Thus,
according to Eq. (31) and Eq. (32), the activity of orders 1 to 3 and the expected
number of steps5 in each period of the synaptic current for the different quantum
values are those reported in Table 5.

Order A(n) [nA] ∆Qi [nA] k(n)(∆Qi) + 1 QSSn

1 Im − I0 = 0.0878

1E-1 1.878 1.51
1E-2 9.78 9.39
1E-3 88.8 89.28
1E-4 879 888.3

2
2(
√
Im −

√
I0)√

2!
= 0.083

1E-1 1.26 1.08
1E-2 1.83 1.49
1E-3 3.62 4.68
1E-4 9.28 12.09

3
3( 3
√
Im − 3

√
I0)

3
√
3!

= 0.071

1E-1 1.15 1.04
1E-2 1.33 1.51
1E-3 1.71 2.49
1E-4 2.53 4.13

Table 5. Act. of order n, estimated and measured number of steps per period in Is.

A very close agreement can be noticed for all methods. A final remark is that it
is impossible to simulate with less than one step per period without missing input
spikes. Table 5 shows that the number of steps per period in second order methods
(up to ∆Qi = 1E-2) and third order methods (up to ∆Qi = 1E-3) are close to that
minimum.

4.2. Model of Multiple Neurons

We consider now a model formed by N unconnected instances of the neuron model in
order to analyze the growth of the computational costs with the number of neurons
when using QSS and classic numerical algorithms.

In these configurations (using the single-state and the two-state model), each neuron
has an independent input spike train following, as before, a Poisson distribution with
a constant rate vext generated from a pseudo-random sequence with a fixed seed.

For all neurons, the parameters were those of Table 1. The initial states were ran-
domly chosen with uniform distribution V (t = 0) ∼ U [−65,−64]mV, Is(t = 0) ∼
U [0.4, 0.5]nA.

We simulated both, the single-state and the two-state models varying the number of
neurons from 10 to 10, 000 until a a final simulation time of tf = 0.1 sec. We used QSS2
for the two-state model and QSS3 for the single-state model, as these methods offered
the best performance in terms of CPU-time vs. accuracy in Figure 4. We selected
different quantum values in order to measure the growth of the computational costs

5The expected number of steps is the result obtained from Eq. (32) plus one step corresponding to the arrival
of the input spike.
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with the accuracy settings and to check for convergence in the number of emitted
spikes. We also simulated the models using DOPRI5.

The results are reported in Table 6 and the growth of the simulation time (CPU
time) with respect to the number of neurons (N) is plotted in Figure 5.

Tol N Steps CPU Time Out
[ms] Spikes

Two-state model - QSS2

1E-1

10 9,589 2.0 10
100 95,622 23.8 59
1,000 955,748 329.4 660
10,000 9,532,780 5,538.3 6,280

1E-2

10 21,798 3.7 9
100 218,267 44.1 53
1,000 2,179,150 631.4 628
10,000 21,776,481 10,622.2 5,901

1E-3

10 73,694 10.0 9
100 736,682 116.6 52
1,000 7,360,380 1,778.2 623
10,000 73,541,327 29,225.3 5,839

1E-4

10 206,240 25.9 9
100 2,062,500 305.7 52
1,000 20,601,643 4,649.8 623
10,000 205,876,468 77,555.3 5,837

Two-state model - DOPRI

1E-4

10 7,607 12.7 9
100 75,450 1,081.4 52
1,000 754,199 108,660.0 624
10,000 7,523,758 1.104E+7 5852

Steps CPU Time Out
[ms] Spikes

Single-state model - QSS3
10,738 3.6 10
106,990 36.6 61
1,069,560 460.1 666
10,676,992 6,649.7 6,389
15,225 5.1 9
151,505 51.8 54
1,514,438 643.6 637
15,122,208 9,324.5 6,015
20,216 6.4 9
201,980 67.8 52
2,016,058 860.7 625
20,136,964 12,423.9 5,874
30,033 9.2 9
300,646 99.7 52
3,001,045 1,234.7 623
29,987,701 18,209.9 5,840
Single-state model - DOPRI
7,599 14.3 9
75,410 1,211.1 52
753,749 120,215.0 624
7,520,462 1.20E+7 5,852

Table 6. Computational costs of the both models with N disconnected neurons

We can observe that:

• The number of steps growths linearly with the number of neurons N in QSS
methods for all accuracy settings. This is an almost obvious result since each
step is local to a state variable.
• In DOPRI5, the number of steps also growths linearly with N . This is due to
the fact that the rate of occurrence of discontinuities growths with N and thus
the maximum step size becomes proportional to 1/N .
• The CPU time growths with N log(N) in QSS methods. This is due to the fact
that the number of steps growths linearly with N and the simulation engine uses
a binary-tree scheduler to find the time of the next change, which adds a logN
extra cost per step.
• The CPU time in DOPRI5 growths quadratically. The reason is that the number
of steps grows with N and the cost of each step is also proportional to N since
DOPRI5 steps are computed on the whole system.
• When the number of neurons is large, the number of emitted spikes in QSS
methods differs depending on the quantum, but it eventually converges as the
quantum becomes smaller. The reason is that a situation like that of Figure 3,
where a very small error in the membrane potential can cause a spurious or a
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Figure 5. CPU Time vs Number of Neurons using different tolerance settings.

missing spike, becomes more likely as the number of neurons grows.
• DOPRI5 errors become negligible as the number of neurons grows. The rea-
son is that the step size becomes smaller (limited by the time elapsed between
discontinuities) and the numerical errors fall far below the accuracy settings.

4.3. Model of a Network of Neurons

We consider now a model of N = 10, 000 interconnected neurons, with 8, 000 of exci-
tatory type and 2, 000 of inhibitory type.

The structure of the network was formed such that each neuron has m randomly
chosen input synaptic connections, where 80% of these incoming connections are of
excitatory type following the parameters found in (Schmidt et al., 2018). That way,
each neuron has both, its own input spike train with the same Poisson distribution as
before, and the spike received from their incoming synaptic connections.

The synaptic strength of the excitatory connections were randomly chosen with
values uniformly distributed in the interval J±0.1J . Inhibitory synaptic strengths were
chosen with values gJ±0.1gJ with the scaling parameter g = 5. This scaling parameter
was selected such that the rate of the emitted spikes does not change significantly with
the number m of incoming connections. A synaptic delay τd = 1E-3 sec. was used.

We simulated the system varying the number of connections of each neuron m from
10 to 1, 000 in order to measure the growth in the computational costs as the network
increases its connectivity. We used QSS2 method for the two-state model and QSS3
for the single-state model. In both cases, we also changed the quantum size until
observing convergence in the number of emitted spikes. Like in the previous case, the
final simulation time was tf = 0.1 sec.

The simulation results for both models are reported in Table 7.
Analyzing the results, we can make the following remarks:

• The number of steps performed by each method (and the CPU-time) is similar
to that of the disconnected network of N = 10, 000 neurons in Section 4.2. It
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Two-state model - QSS2
Tol m Steps CPU Time Out

[ms] Spikes

1E-1
10 10,038,883 6,265.6 6,367
100 10,203,316 6,934.8 7,599
1,000 11,081,929 10,263.8 7,163

1E-2
10 20,579,013 11,262.5 5,950
100 20,892,009 12,528.5 6,967
1,000 24,148,242 17,226.2 6,481

1E-3
10 73,279,806 40,832.9 5,923
100 73,318,426 39,057.1 6,963
1,000 80,969,462 43,008.3 8,520

1E-4
10 205,737,401 88,732.6 5,923
100 204,734,130 93,031.9 6,956
1,000 214,334,158 100,814.0 7,112

1E-5
10 620,024,618 272,732.0 5,923
100 615,513,913 274,602.0 6,956
1,000 632,190,653 283,982.0 7,071

Single-state model - QSS3
Steps CPU Time Out

[ms] Spikes
10,700,559 7,307.3 6,472
10,798,311 7,290.1 7,342
11,365,275 9,106.4 7,449
15,164,106 9,678.8 6,096
15,483,527 10,317.5 7,234
18,869,024 14,067.2 8,087
20,181,053 13,537.3 5,952
20,523,676 13,167.6 6,733
23,996,908 16,744.9 5,642
30,017,686 21,058.2 5,923
30,245,928 23,277.5 6,917
34,979,710 23,924.3 7,610
51,816,833 32,689.3 5,923
51,796,598 34,278.3 6,956
56,367,979 39,815.5 7,023

Table 7. Computational Costs in a network of interconnected neurons (two-state and single-state models)

only grows by a small percentage for m = 1, 000. This can be explained by the
fact that the number of spikes that a neuron receives from the network (except
for m = 1, 000) is significantly smaller than the number of spikes it receives from
its Poisson-distributed input train.
• The number of emitted spikes converges only for a small quantum, particularly
when m is large. The reason is that now the error introduced by a missing or a
spurious spike is propagated through the network, and this propagation becomes
faster and wider as the connectivity growths.

In this case, the chaotic nature of the system makes impossible that two simulations
under different accuracy settings provide identical results in the long term. Thus, the
best quantum size selection would depend on the goals according to the application. A
network with N = 10, 000 neurons and m = 1, 000 incoming connections per neuron
can be simulated in about 9-10 seconds using a quantum size ∆Q = 0.1 and QSS2 or
QSS3 method or in about 40 seconds using QSS3 and a quantum size that produces
much less spurious or missed spikes.

5. Conclusions

We presented an exhaustive analysis of the performance of QSS algorithms in the
simulation of Leaky Integrate and Fire spiking neurons. We first derived theoretical
properties that established error bounds and computational cost estimates for the QSS
simulation of a single neuron. Such properties cannot be in general obtained for classic
numerical algorithms in these type of models.

Then, we performed comprehensive simulation experiments using different QSS
methods under different accuracy settings. The results of these experiments corrobo-
rated the theoretical analysis, exhibiting promising advantages of the QSS algorithms
with respect to classic numerical integration schemes. It is remarkable that the second
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and third order QSS methods integrate the model with very small errors performing
about one step per input spike period. It is also remarkable that the errors in the firing
times were almost negligible.

We then simulated networks with a growing number of neurons and with a growing
level of connectivity. As the number of neurons N growths, the computational costs
grow with N log(N) due to the logarithmic cost associated to the binary tree scheduler
while classic discrete-time algorithms grow with N2 due to the reduction of the time
between discontinuities.

When the level of connectivity growths, CPU times are not significantly affected
but the model becomes more chaotic and the effect of a missing or a spurious spike
(caused by a small error in the membrane potential) is rapidly and widely propagated
throughout the network.

A general conclusion of the analysis is that QSS methods (particularly QSS2 for
the two-state model and QSS3 for the single-state model) allow to simulate large
spiking neural networks with high accuracy and very low computational costs. This is
achieved without any modification or specialization of the algorithms, as it is a natural
consequence of the way the QSS methods work in the Stand-Alone QSS Solver.

We are currently working on specializing the simulation algorithm for the features
of this model. In particular, the presence of the synaptic delay implies that there is
no direct interaction between the different neuron during this period. This fact can
be exploited, as it was done in (Hanuschkin, Kunkel, Helias, Morrison, & Diesmann,
2010b), to perform a sequential simulation of the N neurons for that period of time
without taking care about the ordering in which the steps are performed. With this,
we can avoid the factor log(N) and reduce the computational cost to scale linearly
with the number of neurons N . We are also working on exploiting this idea in the
context of parallel simulation.

Future work can also be done to further specialize the QSS methods themselves. For
instance, in the two-state model we could enforce a step in the membrane potential
V whenever a step in the synaptic current Is is performed. That will synchronize the
steps in both states improving in this case the computational costs and the accuracy.

It is also worth exploring the possibility of using a smaller quantum size as the
membrane potential approaches the firing threshold to prevent spurious or missing
spikes. This can be easily done by using a membrane potential relative to the threshold
such that it is close to zero near the firing condition. That way, using logarithmic
quantization will reduce the quantum near the threshold.
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Appendix A. Proof of Theorems and Propositions

A.1. Theorem 1

Proof. Defining ∆xi , qi − xi, Eq. (13) can be rewritten as a perturbed equation

dx1
dt

(t) = −a(x1(t) + ∆x1(t)) + b(x2(t) + ∆x2(t)) + u1(t)

dx2
dt

(t) = −c(x2(t) + ∆x2(t)) + u2(t)

(A1)

Defining also the error as ei , xi − zi, and substracting Eq. (12) from Eq. (A1), the
error dynamics results

de1
dt

(t) = −a(e1(t) + ∆x1(t)) + b(e2(t) + ∆x2(t))

de2
dt

(t) = −c(e2(t) + ∆x2(t))

(A2)

Noticing that |∆xi| = |qi − xi| ≤ ∆Qi (from the definition of the quantum). Then,
it results that the condition e2 = ∆Q2 implies that |e2| ≥= ∆x2 and then e2(t) +
∆x2(t) ≥ 0, which means that de2

dt (t) ≤ 0 and thus e2(t) cannot become greater than

∆Q2. Similarly, the condition e2 = −∆Q2 implies that de2
dt (t) ≥ 0 and e2(t) cannot

become smaller than −∆Q2. Thus, Eq. (15) holds.
This also implies that

b|e2(t) + ∆x2(t)| ≤ 2b∆Q2. (A3)

On the other side, the condition

e1 ≥ ∆Q1 +
2b

a
∆Q2 =⇒ e1 +∆x1 ≥

2b

a
∆Q2

and then

−a(e1(t) + ∆x1(t)) ≤ −2b∆Q2

Thus, from Eq. (A3) and this last equation, we conclude that e1 ≥ ∆Q1 + 2b
a ∆Q2

implies that

− a(e1(t) + ∆x1(t)) + b(e2(t) + ∆x2(t)) ≤ −2b∆Q2 + |b(e2(t) + ∆x2(t))| ≤ 0 (A4)

saying that the error e1 cannot grow beyond ∆Q1 + 2b
a ∆Q2. An identical analysis

concludes that e1 cannot become less than −∆Q1 − 2b
a ∆Q2 showing that Eq. (14)

holds and completing the proof.
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A.2. Theorem 2

Proof. Let t1 be the time of the first input impulse. Then, from t0 to t1 we know that
|x(t) − z(t)| � emax. When the input event arrives, both the analytical solution z(t)
and the numerical solution x(t) are increased or decreased by the same quantity. Thus
|x(t+1 ) − z(t+1 )| � emax, which implies that the error bounds holds until the time of
the second impulse t2. Then, using induction, we conclude that the error bound holds
for all t ≥ t0 completing the proof.

A.3. Theorem 3

Proof. Defining ∆x1 , q1 − x1, Eq. (19) can be rewritten as a perturbed equation

dx1
dt

(t) = −a(x1(t) + ∆x1(t)) + v(t) (A5)

Defining also the error as e , x1 − z1, and substracting Eq. (18) from Eq. (A5), the
error dynamics results

de

dt
(t) = −a(e(t) + ∆x1(t)) + v(t)− u(t) (A6)

Then, considering e = e1 + e2, we can split the derivative of the error as:

de1
dt

(t) = −a(e1(t) + ∆x1(t)) (A7)

de2
dt

(t) = −ae2(t) + v(t)− u(t) (A8)

Noticing that |∆x1| = |q1 − x1| ≤ ∆Q1 (from the definition of the quantum).
Then, it results that the condition e1 = ∆Q1 implies that |e1| ≥ ∆x1 and then
e1(t)+∆x1(t) ≥ 0, which means that de1

dt (t) ≤ 0 and thus e1(t) cannot become greater

than ∆Q1. Similarly, the condition e1 = −∆Q1 implies that de1
dt (t) ≥ 0 and e1(t)

cannot become smaller than −∆Q1. Thus, |e1| ≤ ∆Q1.
Then, defining ∆t = (t − tk) and ∆tmax the largest ∆t, we can assure from the

hypothesis that |v(t)− u(t)| < c∆tn. This imply that if e2 =
c

a
·∆tnmax , then |ae2| ≥

v(t) − u(t), so de2
dt ≤ 0 and e2(t) cannot become greater than

c

a
·∆tnmax. Similarly, if

e2 = − c

a
· ∆tnmax , then de2

dt (t) ≤ 0 and e1(t) cannot become smaller than − c

a
∆tnmax.

Thus, |e2| ≤
c

a
·∆tnmax.

Then, |e| ≤ |e1|+ |e2| ≤ ∆Q1 +
c

a
·∆tnmax completing the proof.
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A.4. Theorem 4

Proof. The analytical solution of z1 is given by z1(t) = e−atv1 + v2 with

v1 = Vr −
bz̄2 + u1

a

and

v2 =
bz̄2 + u1

a
(A9)

Since at time tθ the state z1 reaches the threshold, we have z1(tθ) = e−atθv1 + v2 = θ,
and then

tθ =
1

a
log(

v1

θ − v2
)

In order to verify that the argument of the logarithm is positive, notice that, from
Eqs.(22) and (A9) it results

v2 =
bz̄2 + u1

a
>

b
aθ − u1

b
+ u1

a
= θ

and v1 = Vr − v2 < Vr − θ < 0.
Then, recalling that error bound between z1(t) and x1(t) according to Eq. (14) in

Theorem 1 is given by ∆1, we can assure that the numerical solution x1(t) will be able
to reach the threshold only after the analytical solution satisfies z1(t) ≥ θ−∆1, so the
minimum time at which x1(t) can reach the threshold is given by:

t̃min
θ =

1

a
log(

v1
(θ −∆1)− v2

)

So, the difference between the firing time of the analytical solution and the minimum
possible firing time of the numerical solution can be computed as

tθ − t̃min
θ =

1

a

(

log(
v1

θ − v2
)− log(

v1

(θ −∆1)− v2
)

)

=
1

a
log

(

v1

θ − v2
· (θ −∆1)− v2

v1

)

=
1

a
log

(

1− ∆1

θ − v2

)

=
1

a
log









1−
∆Q1 +

2b

a
∆Q2

θ − bx̄2 + u1

a









An identical analysis shows that the numerical solution x1(t) will not be able to
reach the threshold after the analytical solution satisfies z1(t) ≥ θ + ∆1. Thus, the
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maximum time in which x1(t) could reach the threshold is given by

t̃max
θ =

1

a
log(

v1
(θ +∆1)− v2

).

Then, the difference between the firing time of the analytical solution and the maxi-
mum firing time of the numerical solution is

|t̃max
θ − tθ| =

∣

∣

∣

∣

1

a
log

(

1 +
∆1

θ − v2

)∣

∣

∣

∣

. (A10)

Notice that, since
∆1

θ − v2
< 0 it results

|tθ − t̃min
θ | =

∣

∣

∣

∣

1

a
log

(

1− ∆1

θ − v2

)∣

∣

∣

∣

<

∣

∣

∣

∣

1

a
log

(

1 +
∆1

θ − v2

)∣

∣

∣

∣

= |tθ − t̃max
θ |

Then, |tθ − t̃θ| < |t̃max
θ − tθ| , completing the proof after replacing in Eq. (A10) with

the corresponding expressions for ∆1 and v2 .

A.5. Proposition 1

Proof. Since Vr ≤ z1(t) ≤ θ, then, from Eq. (12)

−aVr + bz̄2 + u1 ≤ ż1(t) ≤ −aθ + bz̄2 + u1 = −aVr + bz̄2 + u1 + aVr − aθ

Notice that |bz̄2 + u1| >> a(θ − Vr) implies bz̄2 + u1 + a(Vr − θ) ≈ bz̄2 + u1, and,

−aVr + bz̄2 + u1 ≤ ż1(t) ≤ −aVr + bz̄2 + u1 + a(Vr − θ) ≈ −aVr + bz̄2 + u1

implying that ż1(t) is almost constant, i.e., ż1 ≈ d1 , −aVr + bz̄2 + u1.
That way, the firing period of z1 is approximately

T ≈ θ − Vr

d1
(A11)

and taking into account that the error between x1 and z1 is bounded by ∆1, the
maximum error in the period is given by

|∆T | ≤ ∆Tmax ≈
∆1

d1
(A12)

and dividing Eq. (A12) with Eq. (A11) we obtain the bound of Eq. (26) completing
the proof.
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Appendix B. Statistical Error Analysis

In order to verify that the errors reported in Tables 2-3 do not change significantly
with the pseudo-random sequence that generates the input spike train, we repeated all
the simulations using 30 different seeds and we measured the different errors in each
case. Then, we computed the mean value and the standard deviation of each reported
error.

Table B1 shows the results corresponding to the synaptic current Is in the two-
state model, corroborating that the errors on that state are very similar for all the
simulations (the standard deviation is from one to two orders of magnitude below the
mean error value).

Method Tol
[nA,mV]

QSS 1E-1
1E-2
1E-3
1E-4

QSS2 1E-1
1E-2
1E-3
1E-4

QSS3 1E-1
1E-2
1E-3
1E-4

Is [nA]
µ emean σ emean µ emax σ emax

2.15E-2 1.10E-4 5.00E-2 2.24E-5
2.50E-3 1.37E-5 5.90E-3 6.27E-4
2.50E-4 1.33E-6 6.00E-4 7.28E-5
2.51E-5 1.55E-7 6.77E-5 6.42E-6
7.63E-3 1.34E-4 4.99E-2 7.14E-5
3.54E-3 2.87E-5 1.38E-2 3.66E-4
2.66E-4 2.54E-6 1.27E-3 8.45E-6
2.53E-5 1.68E-7 1.27E-4 3.25E-6
1.18E-2 1.55E-4 4.99E-2 7.81E-5
3.68E-3 1.92E-5 1.21E-2 5.02E-4
2.79E-4 3.04E-6 1.11E-3 2.51E-5
2.47E-5 1.89E-7 1.14E-4 1.18E-6

Table B1. Mean value and standard deviation of the measured errors in the synaptic current Is (two-state
model) over 30 simulations using different pseudo-random sequences.

Table B2 reports the results regarding the membrane potential, also for the two-
state model. There, all the sub-threshold errors have also a very small deviation. In
the case of the full trajectory of the membrane potential, the mean errors are still
similar to the quantum, but there is more variation due to some errors in the number
of emitted spikes for the largest quantum.

Table B3 repeats the results of Table B2 for the single-state model. The conclusions
are also very similar, except that this time the errors in the number of emitted spikes
are more frequent.
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Method Tol
[nA,mV]

QSS 1E-1
1E-2
1E-3
1E-4

QSS2 1E-1
1E-2
1E-3
1E-4

QSS3 1E-1
1E-2
1E-3
1E-4

Vsub [nA] V [nA] Out Spikes
µ emean σ emean µ emax σ emax µ emean σ emean µ emean

3.44E-2 3.54E-3 1.41E-1 1.86E-2 1.49E-1 1.46E-1 0.26667
4.00E-3 2.96E-4 1.54E-2 1.14E-3 4.02E-2 9.99E-2 0.066667
4.16E-4 3.84E-5 1.57E-3 9.84E-5 6.30E-3 3.10E-2 0.033333
4.24E-5 2.55E-6 1.59E-4 1.17E-5 5.05E-5 6.05E-6 0
3.54E-2 2.36E-3 1.11E-1 9.68E-3 2.51E-1 2.46E-1 0.53333
4.65E-3 3.22E-4 1.54E-2 1.15E-3 2.07E-2 5.81E-2 0
2.89E-4 1.23E-5 1.19E-3 2.02E-4 3.49E-4 3.49E-4 0
2.91E-5 1.12E-6 6.86E-5 1.90E-5 2.80E-5 2.38E-6 0
2.85E-2 1.63E-3 1.10E-1 2.07E-2 6.86E-2 9.21E-2 0.033333
3.67E-3 2.07E-4 1.29E-2 1.44E-3 8.24E-3 1.44E-2 0
2.81E-4 2.03E-5 1.10E-3 7.81E-5 3.59E-4 2.90E-4 0
2.52E-5 1.57E-6 1.13E-4 5.89E-6 2.69E-5 2.32E-6 0

Table B2. Mean value and standard deviation of the measured errors in the membrane potential V (two-state

model) over 30 simulations using different pseudo-random sequences.

Method Tol
[nA,mV]

QSS 1E-1
1E-2
1E-3
1E-4

QSS2 1E-1
1E-2
1E-3
1E-4

QSS3 1E-1
1E-2
1E-3
1E-4

Vsub [nA] V [nA] Out Spikes
µ emean σ emean µ emax σ emax µ emean σ emean µ emean

8.18E-1 1.47E-1 2.07E+0 2.38E+0 4.19E+0 2.52E-1 20.7333
1.89E-1 3.71E-2 9.61E-1 2.59E+0 2.53E+0 2.59E-1 7.5333
4.01E-2 1.59E-2 1.25E-1 6.15E-2 8.15E-1 2.97E-1 2.1
1.01E-2 1.20E-2 3.58E-2 3.67E-2 2.40E-1 2.40E-1 0.4
2.38E-1 3.66E-2 4.51E-1 5.67E-2 1.09E+0 3.09E-1 2.5
4.51E-2 4.83E-3 7.90E-2 8.24E-3 2.72E-1 2.10E-1 0.5
3.40E-3 3.54E-5 5.89E-3 2.89E-4 2.66E-2 5.23E-2 0.1
3.52E-4 2.40E-6 5.88E-4 1.42E-5 8.96E-4 5.73E-4 0
4.38E-2 2.05E-2 1.23E-1 4.53E-2 3.51E-1 2.89E-1 0.7
1.48E-2 2.16E-3 2.95E-2 5.48E-3 1.03E-1 1.27E-1 0.1
2.94E-3 2.13E-4 4.94E-3 3.92E-4 1.16E-2 2.20E-2 0
3.31E-4 7.61E-6 5.23E-4 1.35E-5 6.96E-4 3.66E-4 0

Table B3. Mean value and standard deviation of the measured errors in the membrane potential V (single-
state model) over 30 simulations using different pseudo-random sequences.
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