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ABSTRACT
FcRγ-deficient natural killer (NK) cells, designated as g-NK cells, exhibit enhanced antibody-dependent 
cellular cytotoxicity (ADCC) capacity and increased IFN-γ and TNF-α production, rendering them promis
ing for antiviral and antitumor responses. g-NK cells from peripheral blood (PB) are often associated with 
prior human cytomegalovirus (HCMV) infection. However, the prevalence, phenotype, and function of 
g-NK cells in umbilical cord blood (UCB-g-NK) remain unclear. Here, we demonstrate significant pheno
typical differences between UCB-g-NK and PB-g-NK cells. Unlike PB-g-NK cells, UCB-g-NK cells did not 
show heightened cytokine production upon CD16 engagement, in contrast to the conventional NK (c-NK) 
cell counterparts. Interestingly, following in vitro activation, UCB-g-NK cells also exhibited elevated levels 
of IFN-γ production, particularly when co-cultured with HCMV and plasma from g-NK+ adults. 
Furthermore, g-NK+ plasma from PB even facilitated the in vitro expansion of UCB-g-NK cells. These 
findings underscore the phenotypic and functional heterogeneity of g-NK cells based on their origin and 
demonstrate that components within g-NK+ plasma may directly contribute to the acquisition of an adult 
phenotype by the “immature” UCB-g-NK cells.
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1. Introduction

Natural killer (NK) cells, as cytotoxic innate lymphocytes, 
rapidly respond to malignancy or viral infection without 
prior antigen (Ag) sensitization.1 Congenital NK cell deficiency 
can lead to complex infections, including difficulties in con
trolling herpesviruses like human cytomegalovirus (HCMV).2 

Adoptive expanded NK (eNK) cell infusion can reduce HCMV 
infection incidence.3 Despite lifelong HCMV infection, many 
individuals remain asymptomatic.4 Emerging evidences chal
lenge traditional immune memory paradigms, revealing adap
tive features within innate immune cells, exemplified by 
adaptive NK or FcRγ-deficient NK (referred to as g-NK) cells 
from prolonged HCMV infection.5

In humans, adaptive NK cells represent a heterogeneous 
concept, encompassing subsets characterized by NKG2C+ 

and g-NK, which show substantial overlap.6 The selection of 
human adaptive NK clones with versatile functions could be 
driven by NKG2C or other unidentified receptors due to lim
ited gene rearrangement capacity, and possibly by the forma
tion of a convergent inflammatory memory signature and 
epigenetic memory repertoire.7 These subsets comprise g-NK 
cells expressing higher CD57 and lower NKG2A, SYK, PLZF, 
DAB2, and EAT25,8 g-NK cells also express self-specific KIRs 
for education and clonal-like expansion.9–11 Compared to 

conventional NK (c-NK) cells, g-NK cells demonstrate super
ior responsiveness to CD16 activation.5,12 They also exhibit 
antibody (Ab)-dependent expansion and response to HCMV 
stimulation, indicating potential engagement of the CD16 
pathway in HCMV recognition.11

g-NK cells are primarily observed in peripheral blood (PB) 
or liver resident NK cells,12,13 with limited reports in umbilical 
cord blood (UCB). Intrauterine transmission can lead to con
genital HCMV infection, with a transmission rate of 50% in 
women with primary HCMV infection during pregnancy.14 

Vertical transmission and HCMV seropositivity in UCB may 
lead to the generation of UCB-g-NK cells. Baek et al. investi
gated 13 UCB samples that are anti-CMV IgG+/IgM−, and only 
one sample show 33% of g-NK cells.15 However, there remains 
an insufficiency of functional investigations concerning UCB- 
g-NK and comprehensive reports on the phenotypic and func
tional disparities between PB-g-NK and UCB-g-NK cells.

Here, we conducted a comparative analysis of PB-g-NK and 
UCB-g-NK cells, focusing on their distribution, phenotype, cyto
kine production ability, and expression of cytotoxic molecules. 
Our findings unveiled distinctive traits of UCB-g-NK cells com
pared to classical PB-g-NK cells, especially the pattern of CD16 
pathway response. Our findings indicate that the heightened 
CD16 pathway response resulting from FcRγ deficiency is con
tingent on the origin of NK cells, and g-NK cells from different 
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sources potentially exhibit unique intracellular signaling events 
or thresholds in response to CD16 pathway activation.

2. Materials and methods

2.1. Ethical statement

The human blood samples employed were exclusively for 
scientific research. Before commencing the experiments, 
necessary approvals were secured from the French National 
Ethics Committee (Approval No. BB-0033–00031 for UCB 
samples and Approval No. 21PLER2018–0069 for PB samples) 
and the Ethics Committee of the School of Basic Medical 
Sciences, Central South University, China (Approval No. 2020- 
KT61). All individuals participating in the study provided 
written informed consent.

2.2. Human blood samples

French UCB samples were obtained from the Biological 
Resource Center Collection of the University Hospital of 
Montpellier. PB samples were sourced from the French 
national blood center “EFS” and from health donors 
recruited at Central South University, China. Human per
ipheral blood mononuclear cells (PBMCs) and umbilical 
cord blood mononuclear cells (UCBMCs) were isolated 
using density gradient centrifugation with Ficoll-PaqueTM 

(Cytiva) followed by cryopreservation in FBS (Gibco) con
taining 10% DMSO (Miltenyi).

2.3. Stimulation of the CD16 signaling pathway using 
immobilized 3G8 abs

Prior to stimulating NK cells with PMA and Ionomycin (P/I) 
cocktail, 3G8, and target cells, we typically allowed thawed 
PBMCs or UCBMCs to recover in the incubator for 48 hours. 
The culture medium was RPMI1640 supplemented with 10% 
FBS, 5% human AB serum, 100 IU/ml IL-2. As expected, we 
observed that NK cells downregulated the expression of CD25 
after IL-2 pre-stimulation. Stimulation of the CD16 signaling 
pathway with immobilized 3G8 Abs followed the method out
lined by Liu et al.16

2.4. NK cell activation by mAbs-opsonized target cells

MDA-MB-468 cells (EGFRhigh) were seeded at 30,000 cells per 
well in a 96-well plate. The next day, culture supernatant was 
replaced with 100 μl of either 2 μg/ml cetuximab (CET) or 
SDH-CET. Fc-enhanced CET was produced by RD-Biotech 
(Besançon, France) via adding the following four amino acid 
substitutions in the upper CH2 of cetuximab: S239D/H268F/ 
S324T/I332E. This variant exhibits an enhanced affinity for 
IgGs and ADCC.17 The tumor cells were opsonized with the 
mAbs for 1 hour at 37°C. Following this, NK cells were stimu
lated for 6 hours and subsequently collected for phenotypic 
and functional analysis as supplementary experimental 
procedures.

2.5. Cell staining and flow cytometry (FCM) analysis

FCM for phenotypic characterization and cytokine secretion 
assays of NK cells detailed in the supplementary experimental 
procedures.

2.6. Statistical analysis

Statistical analysis was conducted using Excel and GraphPad 
Prism 8, with significance levels denoted as follows: ns 
(p > 0.05), *(p < 0.05), **(p < 0.01), ***(p < 0.001), and 
****(p < 0.0001). Paired or unpaired Student’s t-tests and two- 
way ANOVA test were applied to all measurements.

3. Results

3.1. Comparison of g-NK cells in PBMCs versus UCBMCs

g-NK cells were characterized by their low FcRγ expression in the 
CD56+ CD3−compartment (Figure 1a). T cells were used as an 
internal control for FcRγ-negative expression. The proportion of 
g-NK was very variable, with different donors displaying diverse 
patterns (Figure 1a, upper graphs). FcRγ expression in UCB-NK 
cells was more homogenous than in PB-NK cells (Figure 1a, lower 
graphs). This posed a challenge in identifying g-NK cells in certain 
donors. UCB tended to contain lower percentages of g-NK cells, 
although more donors expressed significant levels of g-NK cells 
(proportion >10%) (Figure 1b,c). In the classical scenario, FcRγ 
expression was positively correlated with high NKG2C expression 
and low PLZF expression in PB-NK cells (Supplementary Figure 
S1a and S1b). g-NK cells from PB, but not from UCB, co- 
expressed NKG2C in higher proportions than c-NK cells 
(Figure 2a).

3.2. Phenotypic analysis of c-NK and g-NK cells: 
contrasting markers and variations between PB and UCB

Phenotypic analysis encompassed both c-NK and g-NK cells 
from both PB and UCB sources, probing into 10 distinct NK 
cell markers. Notably, g-NK cells from both PB and UCB 
exhibited lower expression levels of CD16 and SYK compared 
to their c-NK counterparts (Figure 2a and Supplementary 
Figure S2a). PB-g-NK cells displayed reduced levels of NKp30 
and Siglec-7, while showing an increase in CD57 expression. In 
contrast, UCB-g-NK cells expressed significantly lower levels 
of NKp44, CD2, NKp46, CD7, and NKG2A compared to UCB- 
c-NK cells (Figure 2a and Supplementary Figure S2a).

Killer cell immunoglobulin-like receptors (KIRs) are essen
tial in dictating the education, maturation, and function of NK 
cells.18 Further examination revealed that UCB-NK cells exhib
ited decreased expression levels of KIR2DL2/L3 but elevated 
expression of KIR3DL1 when compared to PB-NK cells 
(Figure 2b and Supplementary Figure S2b). Additionally, 
UCB-g-NK cells demonstrated higher expression levels of 
KIR2DL1 than PB-g-NK cells, while the reverse pattern was 
observed in the c-NK subsets (Figure 2c). Overall, g-NK cells 
displayed distinct phenotypes between PB and UCB samples.

Classically, the phenotypic profile of adaptive NK cells 
encompasses various subsets, including NKG2A− NKG2C+, 
NKG2C+ CD57+, NKG2A− CD57+, and FcRγ− NKG2C± 
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subsets.19 To assess the heterogeneity in the expression of 
adaptive NK cell markers between PB- and UCB-NK cells, 
we employed tSNE dimensionality reduction analysis 
(Figure 3a). Notably, in mature PB-NK cells, the deep 
green cluster characterized by NKG2C+ NKG2A− was clo
sely aligned with the NKG2C+ FcRγ− cluster, the CD57+ 

NKG2A− cluster, and the NKG2C+ CD57+ cluster, repre
senting the classical adaptive NK cell subsets. However, 
intriguingly, these four subsets did not completely align 
in UCB-NK cells, with CD57 expression notably absent in 
UCB-g-NK cells (Figure 2a and Figure 3b). Additionally, it 
was noted that UCB-g-NK and PB-g-NK cells did not 
exhibit clustering, suggesting significant distinctions 
between these two populations (Figure 3a; Supplementary 
Figure S3a and S3b).

3.3. PB-g-NK and UCB-g-NK differ in CD16 signaling 
response and cytotoxicity

To assess potential differences in functional responses between 
g-NK cells from PB and UCB, we stimulated PBMCs or UCBMCs 
with P/I cocktail. Compared to PB-c-NK cells, PB-g-NK cells 
exhibited an elevated capability in generating IFN-γ and TNF-α, 
as well as expressing CD107a (Figure 4a). However, P/I did not 
increase UCB-g-NK cell cytokine production compared to UCB- 
c-NK cells (Figure 4b), indicating distinct responses of g-NK cells 
from both sources to the same stimulation.

P/I stimulation bypasses membrane events; hence, we next 
stimulated cells with immobilized anti-CD16 3G8 Abs, which 
induces CD16 pathway-mediated NK cell activation 
(Figure 4c,d). PB-g-NK cells demonstrated higher production 
of IFN-γ and TNF-α than PB-c-NK cells, but not CD107a, 
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indicating stronger CD16 signaling leading to cytokine pro
duction in this g-NK subset (Figure 4c). Again, UCB-g-NK 
cells did not show variations compared to UCB-c-NK cells 
(Figure 4d).

Under a more physiological condition, PB-g-NK cells 
demonstrated comparable IFN-γ and TNF-α production to 
PB-c-NK cells when encountering MDA-MB-468 cells 
(Figure 5a). However, when the anti-EGFR mAb CET was 
present, PB-g-NK cells demonstrated greater cytokine produc
tion than PB-c-NK cells, resembling the impact of CD16 path
way activation through 3G8. Consistently, when we employed 
SDH-CET to opsonize target cells before adding PB-NK cells. 

We observed similar results with PB-g-NK cells exhibiting 
a more robust capacity to secrete cytokines (Figure 5a). In 
contrast, UCB-g-NK cells produced fewer cytokines after 
encountering target cells compared to UCB-c-NK cells, regard
less of the presence or absence of CET. Notably, even the 
replacement of CET with SDH-CET failed to effectively reverse 
this skewed difference in cytokine production between UCB- 
c-NK and UCB-g-NK cells (Figure 5b).

Analysis of CD16 expression revealed that PB-g-NK cells con
sistently displayed lower levels of CD16 compared to PB-c-NK 
cells; whereas UCB-g-NK cells showed elevated CD16 levels than 
UCB-c-NK cells (Supplementary Figure S4a and S4b). Stimulation 
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with P/I or 3G8 resulted in decreased CD16 expression in all NK 
cell types. Interestingly, encounters with target cells did not 
decrease CD16 expression in neither NK cell types. However, the 
addition of CET, particularly SDH-CET, led to reduced CD16 
levels (Supplementary Figure. S4a and S4b). These findings under
score the intricate regulation of CD16 and its distinct expression 
profiles in response to diverse stimuli across g-NK and c-NK 
subsets originating from different sources.

Finally, we analyzed perforin and granzyme (Gzm) 
B expressions. PB-c-NK and PB-g-NK cells exhibited similar 
perforin expression (Supplementary Figure S5a). However, 
UCB-g-NK cells showed lower perforin expression than 
UCB-c-NK cells. In contrast, PB-g-NK cells displayed lower 
levels of Gzm B expression than PB-c-NK cells, while UCB- 
c-NK and UCB-g-NK cells expressed similar levels of Gzm 
B (Supplementary Figure S5b).

3.4. Serum from g-NK+ donors and/or HCMV infection 
induce FcRγ downregulation and in vitro expansion of 
FcRγ−/low UCB NK subsets

Both PB-sourced NK and g-NK cells demonstrate a strong 
in vitro response to HCMV when exposed to plasma contain
ing anti-HCMV Abs.11 However, it is still uncertain whether 
NK and g-NK cells from UCB share similar characteristics with 

PB-sourced cells. We incubated UCB-NK or PB-NK cells with 
HCMV for 2 days. 6 hours prior to analysis, we introduced 
plasma from g-NK+ donors into the co-culture system. 
HCMV combined with this plasma increased IFN-γ and 
TNF-α production in UCB-NK and also in the UCB-g-NK 
subset (Figure 6a), whereas PB-g-NK, which already showed 
higher basal levels, did not respond as much as UCB-g-NK 
subset. These findings underscore the potent cytokine- 
secreting potential of UCB-sourced NK and g-NK subpopula
tions under appropriate stimuli and also suggest that UCB-NK 
cells possess distinct regulatory mechanisms or necessitate 
specific factors for achieving optimal cytokine releasing.

The production of g-NK cells is positively associated with 
a history of HCMV infection and this can promote the expan
sion of g-NK cells from PB sources.5,8,11 We also sought to 
validate if this phenomenon occurs in NK cells from UCB. To 
investigate the development of FcRγ−/low NK (g-NK-like) sub
populations in PB and UCB, we developed an in vitro co- 
stimulation system utilizing HCMV and the aforementioned 
plasma (Figure 6b). After 12–15 days of co-incubation, UCB- 
NK cells showed increased proportions of g-NK-like cells in 
the plasma alone, HCMV plus plasma, and doubled HCMV (+ 
+) plus plasma groups, as evidenced by changes in FcRγ mean 
fluorescence intensity (MFI) (Figure 6c). Plasma alone 
increased NK and g-NK-like cell numbers, but the presence 
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of HCMV was required to increase the frequency of g-NK-like 
subset (Supplementary Figure S6a; Figure 6c). Stimulation with 
g-NK+ plasma resulted in elevated expression of NKG2C in 
both the c-NK and g-NK-like subgroups, as well as in the 
FcRγ− NKG2C+ and NKG2C+ CD57− subgroups (Figure 6d; 
Supplementary Figure S6b and S6c). These findings indicate 
that the presence of g-NK+ plasma contributes to the expan
sion and activation of NK cells, specifically the g-NK-like 
subpopulation characterized by higher NKG2C expression. 
For PB-NK cells, both HCMV and g-NK+ plasma derived 
from PB led to a reduction in FcRγ expression 
(Supplementary Figure S7a). However, HCMV infection, 
whether it was a primary (×1) or secondary infection (×2), 
proved detrimental to the survival of PB-NK cells. The inclu
sion of g-NK+ plasma from PB-NK cells co-cultured with 
HCMV was able to rescue this cell death. It is noteworthy 
that in the group where only g-NK+ plasma was introduced, 
PB-NK cells exhibited efficient expansion, including c-NK and 
g-NK-like cells (Supplementary Figure S7b).

We next produced expanded and activated UCB eNK cells20 

and stimulated them with plasma from g-NK+ UCB or PB 
donors and HCMV. The plasma emanated from the PB 
group downregulated FcRγ expression and decreased all cyto
kines production (Figure 6e). However, plasma from UCB only 
reduced the expression of CD107a and IFN-γ. The altered 
cytokine production pattern of the overall NK cell population 
may be attributed to the generation of g-NK-like subset. 
Notably, despite the CD16 pathway was activated by 3G8, the 
expanded UCB-g-NK (UCB eg-NK) cells did not exhibit higher 
CD107a expression compared to the expanded UCB-c-NK 
(UCB ec-NK) cells (Supplementary Figure S8a). When UCB 
eNK cells responded to HCMV and/or g-NK+ plasma, their 
degranulation levels were elevated compared to stimulation 
with 3G8 alone. Interestingly, plasma obtained from the PB 
group nullified the differential CD107a expression between 
c-NK and g-NK-like cells, whereas this phenomenon was not 
observed with plasma from UCB donors (Supplementary 
Figure S8b). This indicates that g-NK+ plasma could poten
tially transmit distinct stimulatory signals to NK cells, leading 
to variations in phenotype and functional diversity of NK cells.

4. Discussion

The origin and development of g-NK cells remain unclear. 
NKG2C+ NK cells, crucial during HSCT, require active or sub
clinical HCMV Ag expression in recipients for clonal expansion.21 

Physiologically, HCMV infection or reactivation directly triggers 
the generation and expansion of NKG2C+ NK or g-NK cells,22–26 

or it may be the outcome of co-evolution. The causal link between 
FcRγ downregulation and the rise in the NKG2C+ NK fraction is 
still uncertain. Additionally, UCB is susceptible to HCMV 
infection.27,28 This suggests that NKG2C+ NK or g-NK cells 
induced by HCMV could potentially be generated in UCB. The 
discovery of NKG2C− g-NK cells warrants further research of 
g-NK heterogeneity.29,30 There was no discernible difference 
between UCB-c-NK and UCB-g-NK cells in terms of CD57 and 
NKG2C expression. Since g-NK cells also occur in NKG2C−/− 

donors, this observation may be expected.30 However, we lack 

HCMV serology data for correlation analysis with UCB-g-NK 
cell presence.

Phenotypic analysis revealed differences between PB-g-NK 
and UCB-g-NK cells, likely due to inherent disparities between 
UCB-NK and PB-NK cells. The expansion of NKG2C+ NK 
cells is often driven by the dominance of single KIR 
clones.10,31 The interplay between HLA-C1 and KIR2DL2/L3 
facilitates the expansion of KIR2DL2/L3 single-positive 
/NKG2C+ NK cells and is speculated to contribute to their 
education process.32 Conversely, the CD57+ NKG2Chi NK 
subset lacks expression of KIR3DL1.33 Our findings aligned 
with these previous studies, as PB-NK cells displayed higher 
expression of KIR2DL2/L3, while UCB-NK cells exhibited 
higher expression of KIR3DL1. PB-g-NK cells showed varying 
expression of KIR3DL1 or KIR2DL2/L3 or even no expression 
of KIR molecules, whereas UCB-g-NK cells were predomi
nantly KIR2DL1+.

To investigate changes in cytokine expression, we have 
quantified the percentage of cells positive for each analyzed 
cytokine in NK cells. However, this method has the limitation 
that we are unable to quantify the amount of cytokine pro
duced by each subset of NK cells. We have presented some 
individual examples showing the relationship between the per
centage of cell expressing the cytokine and the MFI levels (see 
Figure 4 and supporting material Fig S2), which showed that 
the percentage of positive cells just indicated this percentage 
and did not reflect whether the cells express higher levels of the 
given cytokines. Therefore, this is a technical limitation of our 
approach. While quantifying MFI can provide qualitative 
results, it is not designed for precise quantification. Although 
the enzyme-linked immunosorbent assay (ELISA) would be 
a more accurate method for quantifying cytokine secretion, it 
is not suitable for our study as we need to differentiate between 
the different subsets; i.e. g-NK cells from the whole NK cell 
population, which is characterized by the absence of an intra
cellular adaptor, FcRγ. In summary, using the percentage of 
positive cells gives a relatively good feed-back of cytokine 
secretion by one NK cell subset. However, it does not allow 
for the precise quantification of production levels.

Functional analysis revealed that UCB-g-NK cells did not 
respond as strongly as PB-g-NK cells to CD16 pathway activation 
or P/I stimulation. PB-g-NK and UCB-g-NK cells possibly serve 
different effector functions due to differential expression patterns 
of key molecules. Previous research implicates signaling proteins 
like FcRγ, CD3ζ, SYK, SHP-1, ZAP-70, and PLZF in the g-NK 
phenotype and function.34 Knockout studies reveal nuanced 
effects: FcRγ deletion modestly increases TNF-α production, 
SYK elimination significantly boosts cytotoxicity and cytokine 
output, ZAP-70 deficiency weakens functionality, SHP-1 knock
out heightens cytotoxicity but reduces cytokine output, and PLZF 
knockout doesn’t enhance ADCC or cytokine production. SYK 
may indeed play a central role in augmenting their ADCC func
tion in comparison to FcRγ. If this shortcut exists, it may shorten 
the time it takes for an active CD16 signaling to reach downstream 
ZAP70. Understanding these molecular nuances will shed light on 
the functional diversity of NK cells, necessitating further 
investigation.

Lee et al. demonstrated that PB-g-NK cell expansion is achieved 
through CD16 pathway activation with specific virus-binding 
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antiviral sera or Abs.11 Furthermore, a robust correlation exists 
between the levels of Abs to HCMV-infected HFF cells and envel
ope gB whole-cell lysates and the proportion of g-NK cells. 
Moreover, there is a significant association between elevated levels 
of CXCL10 in the serum and g-NK cell proportion.35 In our 
in vitro expansion system, g-NK-like subpopulations from PB 
and UCB demonstrated superior expansion and downregulated 
FcRγ expression in response to HCMV and/or g-NK+ plasma 
stimulation. The impact of g-NK+ plasma on the viability of g-NK- 
like subpopulations highlights its crucial role in long-term survival. 
These observations emphasize the critical role of g-NK and 
HCMV-specific plasma, acquired subsequently to primary infec
tion, in the maintenance and control of HCMV reactivation. 
Nevertheless, the precise components of g-NK+ plasma that ulti
mately are responsible for the described effects remain elusive.

In summary, our study reveals the heterogeneity of g-NK 
cells from different sources, i.e. PB- and UCB-sourced. FcRγ 
downregulation’s impact on CD16 pathway responses varies by 
different NK cell source. However, our study has several lim
itations. Firstly, the uniform FcRγ expression in UCB-NK cells 
poses challenges in distinguishing UCB-g-NK from UCB-NK 
cells, affecting the precision of our assessments. Secondly, we 
have yet to fully understand the detailed regulatory mechan
isms of HCMV and g-NK+ plasma on UCB-NK cells, including 
the factors responsible for g-NK-like expansion and survival. 
Lastly, our study mainly focused on comparing the phenotypic 
and functional characteristics of PB- and UCB-g-NK cells, and 
further investigations are needed to elucidate their specific 
roles and regulatory mechanisms in in vivo immune responses.
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