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• The noisy-OR (NOR) model and various derivatives that are available
in the literature, including recursive-NOR (RNOR), adaptive RNOR
(ARNOR), improved ARNOR (IARNOR), extended RNOR (ERNOR),
are evaluated for the prediction of integrated circuit failures due to elec-
tromagnetic interference at up to 10 simultaneous frequencies.

• A new model called super-NOR (SNOR) is proposed to eliminate the
limitations of the existing NOR derivatives (i.e., invalidity, inconsis-
tency, or both).

• Given inter-causal dependence information, the multi-causal effect pre-
diction accuracy of the SNOR model is found to be superior to the
NOR and its existing derivatives.
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Abstract

In multi-causal analysis, the independence of causal influence (ICI) assumed
by the noisy-OR (NOR) model can be used to predict the probability of the
effect when several causes are present simultaneously, and to identify (when
it fails) inter-causal dependence (ICD) between them. The latter is possi-
ble only if the probability of observing the multi-causal effect is available
for comparison with a corresponding NOR estimate. Using electromagnetic
interference in an integrated circuit as a case study, the data corresponding
to the probabilities of observing failures (effect) due to the injection of indi-
vidual (single cause) and simultaneous electromagnetic disturbances having
different frequencies (multiple causes) were collected. This data is initially
used to evaluate the NOR model and its existing derivatives, which have been
proposed to reduce the error in predictions for higher-order multi-causal in-
teractions that make use of the available information on lower-order interac-
tions. Then, to address the identified limitations of the NOR and its existing
derivatives, a new deterministic model called Super-NOR is proposed, which
is based on correction factors estimated from the available ICD information.

Keywords: Noisy-OR (NOR), inter-causal dependence, Bayesian networks,
electromagnetic interference (EMI), multi-frequency disturbances,
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integrated circuits (ICs).

1. Introduction

Bayesian networks (BN) are directed acyclic graphs that have been used
in many domains for modelling a set of variables and their conditional depen-
dencies. One such application of BN is to capture the relationship between
multiple causes and a common effect. The fundamental limitation of using
a discrete BN for multi-causal analysis is the exponential growth of condi-
tional probability table (CPT) entries that are required for the effect node as
the number of causal nodes rises. Nevertheless, using the popular noisy-OR
(NOR) model introduced in [1, 2], this exponential growth can be reduced
to a linear problem. The NOR model assumes independence of causal influ-
ence (ICI) [3], i.e., simultaneously occurring causes contribute independently
to produce the effect, hence the probability values of each individual cause
leading to the effect are sufficient to estimate the probability of observing
the effect for higher-order combinations of these causes. Applications of the
NOR model to make such predictions can be found in [4, 5, 6, 7].

However, when there is inter-causal dependence (ICD) between simulta-
neously occurring causes [3], the NOR model is no longer valid and can lead
to prediction errors, i.e., overestimation or underestimation, when compared
to the true probability distribution for the multi-causal effect [8, 9, 10]. The
ICD information can be obtained from data reflecting the effects of multiple
causes. For the case study discussed in this paper, we are using numerical
data derived from simulations carried out using industry-standard physics-
based simulation tools. We can do this because of the nature of the problem
that we are studying. The advantage of this approach is that the results are
more robust than expert opinion, and reproducible. Based on the classifica-
tion provided in [11], ICD between simultaneous causes is described in terms
of two types of interactions: positive causality and inhibition. The former is a
condition when additional causes always increase the probability of achieving
an effect, whereas the latter corresponds to the case when positive causality
condition is not true.

To increase the CPT accuracy of a common-effect node variable, the
recursive-NOR (RNOR) rule was proposed in [11]. In the RNOR model,
available probabilities corresponding to positive causality were included as
an extension to the NOR model. However, probability values estimated us-
ing the RNOR rule can be invalid when inhibition interactions are involved.
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Models that were subsequently proposed to accommodate both inhibition
and positive causality include the non-impeding noisy-AND (NIN-AND) tree
[12], the inter-causal cancellation model [3], the adaptive recursive NOR
(ARNOR) rule [13] and the improved-ARNOR (IARNOR) rule [8]. Addi-
tionally, the RNOR rule also suffers from the asymmetry problem, which was
identified in [3] and has been addressed in [13] by proposing the extended-
RNOR (ERNOR) model. Collectively these models are referred to as the
NOR derivatives.

This paper evaluates the performance of the deterministic NOR deriva-
tives using simulations of the failure of an integrated circuit (IC) under elec-
tromagnetic interference (EMI) due to up to ten frequencies as a case study of
multi-causal analysis for electrical and electronic systems. In recent studies
[8, 9], the comparison made between the probability of IC failures obtained
from simulations of two- and three-frequency disturbances and their corre-
sponding NOR estimates has revealed that multi-frequency interactions can
be of type synergy, asynergy or inhibition. The IARNOR model proposed
in [8] for the prediction of three-frequency failure probabilities based on two-
frequency causal dependence information was found to provide more accurate
predictions than the NOR, RNOR and ARNOR models. In this paper, the
asymmetry problem of the NOR derivatives RNOR, ARNOR and IARNOR,
is first resolved by using the ERNOR theory. Furthermore, a new model with
increased prediction accuracy (SNOR) is proposed, and validated using data
from the simulation-based IC case-study.

The remainder of the paper is organised as follows. Section 2 provides
the background and related work on the theory and limitations of the NOR
model and its derivatives available in the literature. To overcome those lim-
itations, in Section 3, a new deterministic model has been proposed. This is
followed, in Section 4, by a discussion regarding the potential use of deter-
ministic models to overcome the practical limitations of multi-causal analysis
for a domain specific case-study. In Section 5, the NOR model is applied to
a case-study to identify the variation in the proportion of multi-causal inter-
action types with respect to increasing number of simultaneous causes. The
suitability of the noisy-OR derivatives (including the newly proposed SNOR
model) for multi-causal analysis is then evaluated for the case-study in Sec-
tion 6, which also assesses the prediction accuracy of SNOR for nth-order
multi-causal effect probabilities when using available lower-order ICD infor-
mation (i.e., positive causality and inhibition). The conclusions are provided
in Section 7.
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2. Background and Related Work

For the completeness of a multi-causal BN (see example in Fig. 1), each
node variable in the BN has to be assigned with a CPT, i.e., a probability
distribution table conditioned on the Cartesian product (all possible non-
repeating combinations) of the states of its parent node variables [14]. Hence,
with the increasing number of modelled causes, the CPT entries of the effect
node that are required grows exponentially, which is the main limitation
that has been focused in this paper. Various existing deterministic functions
that are available in the literature, to estimate the missing CPT entries of
the effect node in a multi-causal BN have been are discussed below, along
with their merits and limitations. Although other limitations (such as the
complexity of BN inferences for increasing numbers of causal nodes) are not
considered in this paper, they have been discussed elsewhere [14].

2.1. Noisy-OR

Consider a set of k binary-variables, X = {X1, X2, ..., Xk}, where each
variable Xi ∈ X represent the presence (Xi = xi) or absence (Xi = x̄i) of
an individual cause, and a binary-variable E, that corresponds to observing
an effect (E = e) or no effect (E = ē). Then, for k causes the CPT table
for the effect node E in Fig. 1 will have to be populated with 2k probability
entries of observing the effect, corresponding to the powerset of X , denoted
as Y. Using the ICI assumptions of the NOR model [2], the deterministic
function to estimate the conditional probability of observing an effect for a
given subset of causes X ⊆ X that are assumed to be present is given by:

N (e|X) = 1 − {(1 − λ))
n∏

i=1

[1 − P(e| xi)]} (1)

where n is an integer equal to the number of simultaneous causes (i.e., the
size of X), P denotes probability values obtained from the data,P(e| xi)

Figure 1: Multi-causal BN example.
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is the individual probability of each cause Xi ∈ X leading to the effect
and λ is the leak probability [15], which corresponds to the probability of
observing the effect when all modelled causes in the BN are absent. The
NOR estimated probability values are denoted using N . For the rest of the
paper, the conditional probability of observing an effect given the set X of
simultaneous causes, i.e., N (e| X) is denoted using the short-hand notation
NX (and similarly for other models).

Merits and Limitations: With the NOR model, only k CPT entries
(corresponding to the probability of observing the effect due to individual
causes, P(e| xi), or simply Pxi

, i = 1 to k) are required to estimate the
remaining 2k − k − 1 CPT entries of the effect node (note that 1 entry
corresponds to λ). Hence, the CPT elicitation is reduced from an exponential
to a linear problem.

In addition to the k CPT entries Pxi
, which the NOR model requires

to complete the CPT entries, the data corresponding to one or more CPT
entries of multi-causal effect PX, where X ∈ Y \ {xi} with ‘\’ denoting set
subtraction, may also be available. However, the available information of
those CPT values have no influence on the NOR estimates.

Since the NOR model estimates the probability of multi-causal effect
based on ICI assumptions, any difference between the multi-causal probabil-
ity PX and the corresponding NOR estimate NX indicates the existence of
ICD between the members of the set X of causes contributing to the effect.
Note that, using NOR model in cases of positive causality type interaction
leads to underestimation of the probability of multi-causal effect. On the
other hand, inhibition indicates overestimation when using the NOR model.

2.2. Recursive Noisy-OR

In 2004, the RNOR model was proposed in [11] as an extension of the
NOR model, in which any available CPT value of multi-causal effect, where
PX is of type positive causality (i.e., PX ≥ Px, x ⊂ X) can be used in
addition to the k individual causal-effect probabilities available, to determine
the missing CPT entries.

For n > 2, the RNOR rule is given by:
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RX =



PX,

if available and X: positive causality

1 −
n−1∏
j=0

[
1 −RX\{xj+1}

1 −RX\{xj+1,xmod (j+1,n)+1})

]
,

otherwise

(2)

where mod(a, b) denotes the modulo operation on integers a and b, ‘X\’
denotes set-subtraction from X, and RX indicates the probabilities that are
estimated using the RNOR. Use of the modulo function requires an index j
running from 0 in the product, but the resulting indices are incremented by
1 to maintain consistency with the cause numbering {X1, .., Xn}. Note that,
the RNOR rule simply reduces to the NOR if no additional information is
provided or if n = 2.

Limitations: The RNOR rule has two limitations. First, the RX esti-
mates can be out of range [0, 1] if the inter-causal dependence information
is of type inhibition, thus making it invalid according to probability theory.
The second limit is due to the asymmetry problem of the RNOR model dis-
cussed in [3, 13]. According to the RNOR deterministic function given in
(2), to predict the probability of an effect due to n causes, the probability
values corresponding to non-repeating combinations of (n− 1) causes in the
numerator and (n − 2) causes in the denominator have to be used. For ex-
ample, with the assumption that the probability values corresponding to the
lower-order combination of causes (n − 1, n − 2) are available, the RNOR
function for any four causes, X = {x1, x2, x3, x4} using (2) is given as:

Rx1, x2, x3, x4 =

1 −
[

(1 − Px1, x2, x3)(1 − Px1, x3, x4)(1 − Px1, x2, x4)(1 − Px1, x2, x3)

(1 − Px3, x4)(1 − Px1, x4)(1 − Px1, x2,)(1 − Px2, x3)

]
(3)

For n causes, the total number of all possible non-repeating combinations
of these causes, denoted by Cn

r , is given by:

Cn
r =

n!

r!(n− r)!
(4)

where m! denotes the factorial of an integer m.
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In the example shown in (3), where n = 4, the number of non-repeating
combinations, Cn

r (where r is an integer denoting the number of lower-order
combinations of n) for any two of the four causes is Cn

r=n−2 = 6. Notice
that the two of those six possible combinations, i.e., {x1, x3} and {x2, x4}
are missing in the denominator of (3). Since the number of terms in the
numerator and denominator of (2) is always equal, for any integer n > 2,
the number of combinations that will not be included is equal to Cn

r=n−2 −
Cn

r=n−1. The asymmetry problem is because of the inconsistencies of RNOR
estimates arising due to the fact that the combinations that are not included
in (2) purely depend on the arrangement of causes in X. In the previous
example, if the arrangement of X = {x2, x1, x3, x4}, then the missing combi-
nations would have been {x2, x3}, {x1, x4} instead of the previously missing
terms {x1, x3} and {x2, x4}. So, unless the probabilities corresponding to all
non-repeating combinations of lower-order causes (r = n− 2) are equal, the
RNOR estimates will be inconsistent. For n = 3, C3

1 - C3
2 = 0, which means

there will be no missing combinations. Hence, the asymmetry problem of
RNOR rule exists for values of n > 3.

2.3. Adaptive-RNOR

In [16], the RNOR rule was validated for the application of asthma pre-
diction. In this work, the inhibition type interactions are replaced with cor-
responding NOR estimates when the RNOR predictions including the inhi-
bition information were found to be invalid. This simple approach is called
the adaptive-RNOR (ARNOR) rule, which is given by:

AX =



PX,

if available and X: positive causality

NX,

if PX is available; X: inhibition and 0 > RX > 1

RX,

otherwise

(5)

Limitation: The ARNOR-rule also shares the asymmetry problem of
the RNOR rule.

2.4. Improved-ARNOR

As previously discussed, the RNOR function in (2) considers the ICD
information of type positive causality, thus omitting valuable information
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on inhibition and potentially resulting in overestimation of the probability
of observing the effect. To avoid this, a correction factor was used in the
improved-ARNOR (IARNOR) model proposed in [8], which is based on those
values of a degree of synergy (DoS) metric that correspond to inhibition type
interactions. The DoS introduced in [8] is based on the NOR model, and has
been found to be useful as it provides:

• a means to identify the existence of ICD, thereby indicating where ICI
assumptions are inappropriate;

• a basis for distinguishing between the synergy, asynergy and inhibition
interactions;

• a foundation for deriving the correction factors used for the IARNOR
model and a further NOR derivative proposed in this paper.

The DoS is obtained from:

DoSX =
PX −NX

NX

(6)

Any non-zero DoS indicates the existence of ICD. More specifically, a pos-
itive DoSX indicates synergy between the causal mechanisms, which means
the probability of multiple causes leading to an effect is greater than the pre-
diction made with the NOR model. The ICD resulting in a negative DoSX,
indicates two types of interactions: asynergy, if interactions satisfy positive
causality i.e., PX ≥ P(e| x), where x ⊂ X, inhibition, otherwise. It should be
noted that asynergy and synergy type interactions belong to positive causal-
ity, as in both cases the probability of multi-causal effects is greater than
the probability of observing the effect due to all lower-order combinations of
causes.

Clearly, a negative DoSX indicates that the NOR estimates will lead to
overestimation. Hence, a correction that can reduce the overestimation of
the NOR model would improve the accuracy of the ARNOR model. The
correction is therefore assumed to be of the form NX(1 + WX) where the
correction factor WX is negative. The IARNOR rule using the correction
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factor WX is then:

IX =



PX,

if available and X: positive causality

NX(1 + WX),

if PX is available; X: inhibition and 0 > RX > 1

RX,

otherwise.

(7)

In (7), IX denotes the probability of multi-causal effect estimated using
the IARNOR function. The correction factor, WX adds the DoSX\{Cn

1 }j met-
ric corresponding to j unique (n − 1)-order combinations of type inhibition
and divides the sum by the total number of lower-order combinations {Cn

n−1}
to get an average inhibition value as the correction factor in range [-1, 0].
If the probability of observing the effect due to any of (n − 1)-order com-
binations, PX\{Cn

1 }j is unavailable to calculate DoSX\{Cn
1 }j , then PX\{Cn

1 }j is
replaced recursively with IX\{Cn

1 }j in (6). The correction factor is expressed
as:

WX =



1
Cn

n−1

∑Cn
n−1

j=1 DoSX\{Cn
1 }j ,

if PX\{Cn
1 }j is available and X \ {Cn

1 }j: inhibition
1

Cn
n−1

∑Cn
n−1

j=1

IX\{Cn
1 }j−NX\{Cn

1 }j
NX\{Cn

1 }j
,

otherwise

(8)

In the above expression, the upper-limit of the summation, Cn
n−1 corre-

sponds to the number of all non-repeating combinations of n−1 simultaneous
causes in X, and for every jth term of the sum ‘\{Cn

1 }j’ corresponds to the set
subtraction of a unique cause from X. Note that the summation in (8) always
reduces to zero for positive causality, thereby including only the inhibition in-
formation, which the ARNOR models may omit from multi-causal prediction.
The increase in prediction accuracy of the IARNOR model was validated and
compared with the existing NOR and ARNOR functions in [8, 10]. Further
evaluation of the improved prediction accuracy of the IARNOR model is also
provided in Section 6 of this paper.

Limitation: The IARNOR function in (7) inherits the asymmetry prob-
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lem of its original parent, i.e., the RNOR model, and hence the application of
IARNOR model to construct a CPT for an effect involving more than three
simultaneous causes will not be consistent. Since the multi-causal analysis
in [8, 17] was limited up to three simultaneous causes, the inconsistency due
to the asymmetry problem was not an issue.

2.5. Extended-RNOR

More recently, the asymmetry problem of the RNOR model has been
resolved in [13] with the proposal of a new function called the extended-
RNOR (ERNOR). This is achieved by including all lower-order combinations
with respect to n, i.e., r = {n−1, ..., 1}. The ERNOR expression [13] is given
as:

EX =



PX,

if available,

1 −

[∏Cn
r=n−1

j=1 (1−EX\{Cn
1 }j )×

∏Cn
r=n−3

j=1 (1−EX\{Cn
3 }j )···∏Cn

r=n−2
j=1 (1−EX\{Cn

2 }j )×
∏Cn

r=n−4
j=1 (1−EX\{Cn

4 }j )···

]
while r > 0,

otherwise.

(9)

For the example discussed in Section 2.2, where X = {x1, x2, x3, x4} the
ERNOR function is given as:

Ex1, x2, x3, x4 =

1−
[

(1 − Px1, x2, x3)(1 − Px1, x3, x4)(1 − Px1, x2, x4)(1 − Px2, x3, x4)

(1 − Px3, x4)(1 − Px1, x4)(1 − Px1, x2,)(1 − Px2, x3)(1 − Px1, x3)(1 − Px2, x4)

]
× [(1 − Px1)(1 − Px2)(1 − Px3)(1 − Px4)] (10)

in which all the terms that were missing in the RNOR function in (3) are
now included.

Limitations: Although the asymmetry problem is resolved, the ERNOR
model does not make use of ICD information of type inhibition.

2.6. Other Models

For the application of multi-frequency immunity analysis discussed in the
next section, the above-detailed deterministic functions have been considered
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to obtain the conditional probability of observing the failures due to simul-
taneous disturbances. Although other models that rely on graphical struc-
tures for capturing multi-causal interactions are described the literature (e.g.,
[18, 19, 12]), these are not considered to be suitable for the multi-frequency
analysis of this work. For instance, the NIN-AND model proposed by [18] is
a tree that is constructed using the noisy-AND gates to include both positive
causality and inhibition type interactions. However, as argued in [12], it is
error-prone and non-trivial to construct the tree prior to the analysis.

In [19, 20, 21], causal nodes that inhibit and enhance the effect are
grouped separately when constructing the BN structure. However, it is
not possible to follow this grouping approach for applications such as multi-
frequency analysis, where an individual cause can have different causal inter-
actions depending on other simultaneously occurring cause(s).

The inter-causal cancelling model proposed in [12] is limited to causes that
inhibit each other. Additionally, when there is no awareness of the causal
mechanism(s) between simultaneously occurring causes, which is the case in
many domains, the CPT entries required for the inter-causal cancellation
model are usually unavailable.

There are other generalizations of the NOR models as mentioned in [11],
e.g., the noisy-MAX [15] or the generalized NOR (GNOR) [22], which can
consider variables with multiple states. However, since this paper is con-
cerned only with binary variables those models are not considered here.

2.7. Summary of NOR Derivatives

To increase the accuracy of the CPT entries of the effect node in a multi-
causal BN (as shown in Fig. 1), all existing NOR derivatives discussed in
Section 2 use ICD information. However, as summarized in Table 1, the
NOR model and all of its existing derivatives have limitations; either they
do not make use of all available information or they fail to provide consistent
CPT entries due to the asymmetry problem. The ERNOR model overcomes
the asymmetry problem of the RNOR model (and its derivatives, ARNOR
and IARNOR) for n > 3. However, the ERNOR model can lead to invalid
predictions for ICD of inhibition type interactions. A new model, called the
super-noisy-OR (SNOR) model, is therefore proposed in the next Section to
overcome the limitations of the NOR model and its existing derivatives.
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Table 1: Summary of advantages and limitations of the NOR model and its derivatives.

3. Super-NOR (SNOR) Model

The NOR prediction of multi-causal effect, NX is based on ICI assump-
tions and does not use available ICD information on lower-order combinations
of individual causes in X (i.e., X \ {Cn

r }, where r = 2 to n− 1). Hence, the
SNOR model is proposed to include both positive causality and inhibition
type ICD information available using two correction factors YX and ZX on
DoS metrics of (n − 1)-order combinations of X. The correction factor YX

and ZX are used to include positive DoS metrics corresponding to synergy
type interactions and negative DoS metrics corresponding to asynergy and
inhibition type interactions, respectively. The correction is therefore assumed
to be of the form NX(1 + YX)(1 + ZX), where YX is positive real number, R
and ZX is negative number in the range [-1,0]. Using YX to refine NOR esti-
mate can increase the probability value greater than one due to synergy type
interactions, in such cases the SNOR estimates that lead to values greater
than 1 is considered as 1.0. The SNOR equation is given as:
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SX =

{
1.0, if NX(1 + YX)(1 + ZX) > 1

NX(1 + YX)(1 + ZX), otherwise.
(11)

The correction factors in (11) are expressed as:

YX =


1

Cn
n−1

∑Cn
n−1

j=1 {DoSX\{Cn
1 }j > 0}, if PX\{Cn

1 }j is available

1
Cn

n−1

∑Cn
n−1

j=1 {
SX\{Cn

1 }j−NX\{Cn
1 }j

NX\{Cn
1 }j

> 0}, otherwise
(12)

ZX =


1

Cn
n−1

∑Cn
n−1

j=1 {DoSX\{Cn
1 }j < 0}, if PX\{Cn

1 }j is available

1
Cn

n−1

∑Cn
n−1

j=1 {
SX\{Cn

1 }j−NX\{Cn
1 }j

NX\{Cn
1 }j

< 0}, otherwise
(13)

Similar to the IARNOR correction factor, the SNOR correction factors
are recursive when the probability of any (n−1)-order combination, PX\{Cn

1 }j
is not available to calculate DoSX\{Cn

1 }j .

3.1. Properties of SNOR

Three main properties of the SNOR model in (11) include:

• if Xκ = ∅ the SNOR reduces to NOR, i.e., in the absence of ICD
information YX, ZX = 0, such that SX = NX;

• the SNOR probability estimates are always valid i.e., in range [0, 1]
regardless of the type of ICD information provided;

• the SNOR probability estimates are independent of the number of
causes (n) in X because it takes account of the ICD information of
all possible lower-order (n − 1) combinations, hence does not suffer
from the asymmetry problem.

Because of the above properties, the SNOR model overcomes the limita-
tions of the NOR model and its derivatives, as outlined in Table 1.
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4. Case Study: Multi-causal Analysis for Electromagnetic Inter-
ference

All electrical and electronic systems give rise to electromagnetic distur-
bances that have the potential to disrupt the operation of the system itself
and/or other electrical and electronic systems in its operating environment.
Such electromagnetic interference (EMI) can occur at frequencies that range
from a few Hz up to many GHz, with the result that multiple frequencies
may contribute to real-world EMI-related system failures. The conventional
approach is to investigate EMI phenomena using simple single frequency (i.e.,
single cause) analysis. However, as electronic systems are increasingly used
to provide safety-related functions there is increasing interest in analysing
the impact of more realistic multi-frequency (i.e., multi-causal) EMI threats.

4.1. Practical Considerations

Depending on the frequencies, relative phases and amplitudes of the con-
tributing electromagnetic disturbances, there is an infinitely large number of
possible EMI waveforms that could be considered. Recent studies involving
both simulations [9] and experimental measurements [10] of multi-frequency
EMI have demonstrated the possibility of both positive causality (synergy
and asynergy) and inhibition type interactions in multi-frequency EMI caus-
ing IC failures. Positive causality may mean that ICs that pass a single
frequency test may still fail under multi-frequency EMI, whereas inhibition
may mean that ICs are less likely to fail under multi-frequency EMI than
for single frequency EMI, which could lead to over-engineering. Hence, the
significance of multi-causal EMI analysis is very clear for all systems that
must operate in a multi-frequency environment.

With respect to the number of frequencies considered, single frequency
EMI testing is a linear problem in terms of cost and measurement time,
whereas multi-frequency testing (by analogy with the application of BN for
multi-causal analysis shown in Fig. 1) is an exponential problem. For in-
stance, if n different frequencies are considered as the set of causes, then
all possible non-repeating combinations of r simultaneous frequencies, i.e.,∑

nCr, for r = 2 to n, would require 2n − n − 1 additional immunity tests,
making multi-frequency EMI testing economically impracticable. A possible
way to limit total number of tests required for multi-frequency analysis with-
out compromising the number of frequencies analysed could be to predict
the impact of untested frequency combinations from the tested ones. The
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deterministic functions discussed in Section 2 and 3 for the elicitation of CPT
entries for the effect node in multi-causal BNs can therefore be used for this
purpose.

4.2. Case-Study Description

The case-study considered in this paper is a voltage-controlled ring os-
cillator (RO) circuit that is intended to generate a sinusoidal output at a
frequency of FT = 955 MHz when biased with a constant voltage [23]. For
the purposes of this study, the behaviour of the oscillator circuit is simulated
with the EMI signals (single or multi-frequency) superimposed on the bias
voltage while the oscillator output in monitored for a time period of 700 ns.

At any time-step of 1.057 ns, a relative frequency deviation of ±5% from
FT due to EMI is considered as a failure. The probability of failure is cal-
culated by dividing the number of failures by the total number of time-steps
over which the output frequency was recorded. For example, the output fre-
quency recorded during the injection of a single frequency disturbance X1

at 100 MHz is shown in Fig. 2, where the red dashed lines indicate the ac-
ceptable FT variation of ±5% and blue circles and green triangles indicate
failures and non-failures, respectively.

Figure 2: Simulated RO output for single frequency EMI at 100 MHz.

In this example, the probability of failure (effect) due to the presence
of a 100 MHz disturbance (single cause, X1 = x1) is 0.819. As the re-
maining disturbances (i.e., Xj = x̄j, for j = 2 to 10) are absent in this
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case, the conditional probability of failure for this example is expressed as
P(E = e| X = {x1, x̄2, x̄3, . . . , x̄10}), or more simply as P(e| X = {x1}).
Applying the failure criterion to simulation results corresponding to all other
single frequency disturbances and possible combinations of multi-frequency
disturbances, a complete CPT for observing the failure was obtained. Due
to space constraints, it is not possible to include the CPT in this paper.

5. Analysis of Multi-causal EMI

The probability of failure due to all possible combinations of single and
multi-frequency disturbances is available from the simulated case study data.
In addition, the NOR function (1) is used to estimate the probability of each
multi-frequency combination using the single frequency probability values
given in Table 2. To avoid calculations using existing NOR derivatives leading
to invalid CPD entries [11], any probability values greater than 0.9999 and
less than 0.0001 are approximated as 0.9999 and 0.0001, respectively (and
displayed as 1.0 and 0.0). This means that complete failure and no failure
are indicated by 1.0 and 0.0, respectively. In the absence of EMI, the RO
is assumed to have no failures, hence the leak probability, λ in the NOR
function, is 0.0 for this case study.

Table 2: Probability of failure due to single frequency EMI

Frequency
(MHz)

X1

(100)
X2

(200)
X3

(300)
X4

(400)
X5

(500)
X6

(600)
X7

(700)
X8

(800)
X9

(900)
X10

(1000)

PX 0.819 0.813 0.788 0.980 0.977 1.0 1.0 0.178 0.064 0.002

5.1. Identification of Inter-Causal Dependence

The estimated DoS values and interaction types for all combinations of
2 to 9 causes are shown in Figs. 3 and 4. From Figs. 3 and 4 it can be
seen that the DoS values associated with some frequency combinations are
relatively large. For example, DoS (X = {x8, x9}) = 120% and DoS (X =
{x2, x8, x9}) = −94.65%. Such large DoS values indicate strong ICD, leading
to significant prediction errors when using the ICI assumptions of the NOR
function (which are clearly invalid for these cases).

The pie charts in Fig. 5 depict the variation in the proportion of causal in-
teraction types as the number of simultaneous frequencies is increased. It can
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Figure 3: DoS of multi-causal EMI generated from 2 to 5 frequency combinations.

be seen that more than 70% of the ICD for all higher-order multi-frequency
disturbances in the case study data are of type inhibition. Another useful
observation is the proportion of positive causality type interactions, which
reduces from 27% for 2-frequency combinations to zero for 6-frequency and
higher combinations. This means that the use of NOR function in multi-
frequency analysis will mostly overestimate the failure probabilities e.g., the
probability of failure corresponding to the 10-frequency combination was cal-
culated from the data as PX = 0.9518 and the NOR estimate from (1) as
PX = 1.0. Using (6), the DoS = −0.0482 and since there are multiple
lower-order combinations which have the probability of failure greater than
the 10-frequency combination, it is concluded that the ICD type of the 10-
frequency combination is inhibition.

The high proportion of inhibition observed with increasing number of
frequencies indicates that the NOR estimates can provide a safety-margin
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Figure 4: DoS of multi-causal EMI generated from 6 to 9 frequency combinations.

when predicting the multi-frequency failure probabilities, on the positive side,
but could also lead to over-engineering, on the negative side.

6. Evaluation of the Noisy-OR and its Derivatives

Assuming X as the powerset of X (with n causes) for which the multi-
causal effect probability is to be calculated, the multi-causal effect probabil-
ities of any κ ≤ 2n − (n + 1) subset(s) of X \ {∅, X, {xi} ∈ X} are denoted
as Xκ. Including the n individual cause-effect probabilities, all the known
probabilities are collectively denoted as Xκ,n.

For example, if X = {x1, x2, x3}, then X = {{∅}, {x1}, {x2}, {x3},
{x1, x2}, {x1, x3}, {x2, x3}, {x1, x2, x3}}. Assuming all second-order combi-
nations of X (κ = Cn=3

r=2 = 3) are available, in addition to the n = 3 individual
cause-effect probabilities, P{xi}, for i = 1 to 3, the available CPT information
is Xκ,n = {{x1}, {x2}, {x3},{x1, x2}, {x1, x3}, {x2, x3}}.

18



Figure 5: Change in the proportion of multi-causal interaction type with increasing number
of simultaneous disturbances.

For the case-study, the failure probabilities corresponding to all the 1013
multi-frequency combinations is available from data. Hence, in Section 6.2,
for assumptions of Xκ,10 = {

∑2
r=1 C

10
r ,

∑3
r=1C

10
r , ...,

∑9
r=1C

10
r }, the evalu-

ation of the NOR and its derivative models: RNOR, ARNOR, ERNOR,
IARNOR and SNOR, is done by comparing the errors in predicted higher-
order multi-frequency failure probabilities with corresponding actual failure
probability values obtained from the data. Due to space constrains, only the
distribution of errors corresponding to 3-frequency failure predictions is pro-
vided in Section 6.2, nonetheless, the mean and the standard deviation of the
prediction error distributions corresponding to 3 to 9-frequency combinations
are summarized in Tables 3 and 4, respectively. For this evaluation, failure
prediction of nth-order frequency combinations is done with the assumption
that the failure probability values of all lower-order frequency combinations
are known, i.e., κ = 2n − (n + 1).

With respect to the complexity of the prediction models, the NOR model
is always a linear model, i.e., it uses only the probability entries correspond-
ing to the single-cause effect to predict multi-causal effects, whereas, the
complexity of the NOR derivatives varies depending on the number of multi-
causal effect ICD information available. Hence, in Section 6.3, further eval-
uation of the NOR derivative models is done with the assumption that the
failure probability of different sets of lower-order frequency combinations are

19



available to predict failures due to higher frequency combinations.

6.1. Criteria for Comparing Prediction Capability

Bias and precision [24] are two different parameters that used for eval-
uating the quality of measurement and/or prediction populations. Bias is a
measure of the difference between the expected value (mean) of a number of
estimates from the true value, whereas, precision is a measure of how similar
the population of results are to each other, which reflects confidence in the
results. In this work the capability of NOR and its derivative models to
make reliable predictions is evaluated based on the standard deviation (indi-
cating precision) of the error population corresponding to difference between
the EMI failure predictions and measurements for the n-frequency combina-
tions, and the mean value of the error population, Which should ideally be
close to zero (the “true” value if the predictions accurately reflect the mea-
surements). These two parameters, however, may present in four possible
combinations:

• Precise and biased: small standard deviation of prediction errors but
mean value of prediction error population displaced from zero - poor;

• Imprecise and biased: larger standard deviation of prediction errors
with mean value of prediction error population displaced from zero -
poor;

• Imprecise and unbiased: larger standard deviation of prediction errors
but mean value of prediction error population closer to zero - better;

• Precise and unbiased: small standard deviation of prediction errors
with mean value of prediction error population close to zero - best.

As shown in Fig. 6 for illustration purpose, the best prediction model
would provide results with a distribution that is closely clustered (i.e., pre-
cise) around the true value (i.e., having low bias), as illustrated in Fig. 6.a).
Models that produce distributions of results that have notable bias are poor,
whatever their degree of precision, because the resulting mean value does
not adequately reflect the true value (see Figs. 6.c-d). Hence, models that
minimise the bias of the distribution are better than the latter, irrespective
of their degree of precision (e.g. Fig. 6.b).
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Figure 6: Criteria used to evaluate prediction models: (a) high precision and low bias, (b)
low precision and low bias), (c) high precision and high bias (d) low precision and high
bias.

6.2. Comparison of Prediction Capability

For Xκ,n =
∑2

r=1C
10
r , the distribution of failure prediction errors made by

the NOR and its derivatives corresponding to the 3-frequency combinations,
C10

3 are shown in Figs. 7 and 8, respectively. It should be noted that whereas
the NOR model uses only the 10 single-frequency failure probability entries
to predict the multi-frequency failures, the NOR derivatives can use any
available ICD information on lower-order frequency combinations.

It can be observed from Figures 7 and 8 that, using the NOR model leads
to over-estimation of most of the 3-frequency failures when compared to the
actual failure probability. On the other hand, in some cases, due to the pres-
ence of synergy between 3-frequency combinations the NOR model leads to
underestimation of the failure probabilities. The RNOR and ERNOR models
(for n = 3, both have the same function) use the positive causality type ICD
information, i.e., synergy between the 2-frequency combinations to predict a
relatively higher probability values when compared to the NOR model. A
comparison of distributions corresponding to the 3-frequency failure predic-
tions made by the NOR and the RNOR/ERNOR models from Figs. 7 and
8.a, respectively, show that the number of negative prediction errors can be
relatively reduced when RNOR or the ERNOR models are used instead of
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Figure 7: Distribution of failure probability errors for 3-frequency combinations - NOR:
µN = 0.1476;σN = 0.2335.

the NOR model.
Due to ICI assumptions, the NOR predictions are always of type positive

causality [11]. Hence, the NOR estimates for any multi-frequency combina-
tion involving at least one frequency with a probability of EMI failure close
to 1.0 (e.g., X4 to X7 in Table 2) would lead to almost zero prediction errors
for cases involving complete failures. That is the main reason for observing
the high peaks at zero in the distributions corresponding to NOR in Fig.
5. Similarly, the RNOR and ERNOR models consider only ICD information
of type positive causality to predict a relatively higher probability of failure
than the NOR models, hence, a relatively higher peak can be observed at
zero for the RNOR and ERNOR distribution shown in Fig. 8.a. For the case-
study, the probability of failure predicted by the RNOR and ERNOR models
for almost all four and higher-frequency combinations is 1.0, hence the dis-
tributions of prediction errors are identical to each other for frequency-order
combinations, n > 3. Note that RNOR and ERNOR models are equivalent
for n < 3.

For the case-study, as shown in Fig. 5, the proportion of positive causality
type interactions can be observed to reduce to 0% with the increase in the
number of frequency combinations, thereby increasing the inhibition type
information. The RNOR and ERNOR models do not consider inhibition
type information even it is known, to avoid invalid predictions. However, the
ARNOR, IARNOR and SNOR models provide valid predictions for any type
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Figure 8: Distribution of failure prediction errors for 3-frequency combinations failure
probabilities - (a) RNOR/ERNOR: µR, µE = 0.1644;σR, σE = 0.2414, (b) ARNOR:
µA = 0.1160;σA = 0.2813, (c) IARNOR: µI = 0.0071;σI = 0.2863, (d) SNOR:
µS = 0.0532;σS = 0.2730 .

information.
A possible drawback of considering inhibition type interactions in addi-

tion to positive causality is that the predicted failure values can be underes-
timated, which in most applications is undesirable compared to overestima-
tion. On the positive side, by considering the inhibition type interactions the
mean prediction error can be reduced in general. As observed from the dis-
tributions of ARNOR, IARNOR and SNOR shown in Figs 8.b, 8.c and 8.d,
respectively, for 3-frequency predictions, a lower bias i.e., a mean prediction
error closer to zero, can be achieved when compared to the NOR, RNOR and
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ERNOR models (see Tables 3 and 4).
The ARNOR model disregards the possibility of invalid predictions made

by the RNOR model when using the inhibition information, by simply re-
placing any invalid predictions with relevant NOR estimates, and as a conse-
quence excessive underestimated predictions are made by the ARNOR model
(see Figs 8.b). The IARNOR model includes the inhibition information dis-
carded by the ARNOR model to avoid invalid predictions using correction
factors derived from DoS metrics. From Table 3, it can be observed that the
mean prediction error of the IARNOR model significantly less than the other
models. Finally, the SNOR model, which uses correction factors to include
positive causality and inhibition type information has both lower mean pre-
diction error and comparatively less underestimation of failure probabilities
than the ARNOR and IARNOR models.

Table 3 provides the standard deviation of failure prediction errors corre-
sponding to 3 to 9-frequency for NOR and its derivatives. It can be observed
that the standard deviation of SNOR model predictions is slightly higher
than the NOR, RNOR and ERNOR models, however, for most orders it is
comparable. However, the standard deviation of ARNOR and IARNOR is
higher than the SNOR model.

Table 3: Mean prediction error of nth-order multi-frequency disturbances

Frequency
order, n

NOR
(µN )

RNOR/ERNOR
(µR, µE)

ARNOR
(µA)

IARNOR
(µI)

SNOR
(µS)

3 0.1476 0.1644 0.1160 0.0071 0.0532
4 0.0961 0.1001 0.0348 -0.0170 -0.0721
5 0.1057 0.1062 0.0510 0.0037 0.0043
6 0.0726 0.0726 0.0282 -0.0398 -0.0353
7 0.0584 0.0584 0.0142 -0.0103 -0.0149
8 0.0597 0.0597 0.0097 -0.0169 0.0013
9 0.0449 0.0449 0.0153 -0.0247 -0.0147

6.3. Comparison of Model Complexity
Due to the ICI assumptions, the NOR model always requires 10 single-

frequency failure probability entries to predict multi-frequency failure prob-
abilities. To increase the prediction accuracy the NOR derivatives can addi-
tionally use available ICD information i.e., lower-order multi-frequency prob-
ability entries. To compare the duality of complexity (in terms of number
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Table 4: Standard deviation of nth-order multi-frequency disturbances

Frequency
order, n

NOR
(σN )

RNOR/ERNOR
(σR, σE)

ARNOR
(σA)

IARNOR
(σI)

SNOR
(σS)

3 0.2335 0.2414 0.2813 0.2863 0.2730
4 0.1345 0.1322 0.2214 0.2395 0.1856
5 0.1301 0.1304 0.2078 0.2121 0.1406
6 0.0738 0.0738 0.1503 0.1504 0.0910
7 0.0602 0.0602 0.1836 0.1834 0.0655
8 0.0516 0.0516 0.1708 0.1665 0.0553
9 0.0469 0.0469 0.0858 0.0692 0.0361

of entries used to make predictions) and the prediction accuracy, the aver-
age failure probability of n-frequency combinations obtained from the data,
the NOR and its derivatives have been compared for different values of κ,
i.e., number of multi-frequency probabilities known. For example, if all the
2-frequency combinations are assumed to be known, then κ = C10

2 = 45.
As shown in Fig. 9, the NOR rule overestimates the average probability of

failure when compared to actual data and the predictions converges towards
1.0 indicating that the NOR almost always predicts the effect as complete
failure with the increase in the number of frequencies. A similar observation is
found for the RNOR and ERNOR models, but the predictions converge much
faster towards 1.0 when compared to the NOR model. From Figs. 9—11,
it can be noted that increasing the number of multi-frequency probability
entries available, i.e., κ = {C10

1 ,
∑4

r=2C
10
r ,

∑6
r=2C

10
r }, does not have any

impact on the RNOR and ERNOR predicted values. Hence for the case-
study, RNOR and ERNOR models do not increase the prediction accuracy
even if additional ICD information is provided.

The magnitude of difference between the average failure probability ob-
tained from the actual data and the prediction models that consider inhi-
bition and positive causality type information, i.e., ARNOR, IARNOR and
SNOR is much lower compared to the NOR model. The least difference
in general was found when using the SNOR model. As shown in Fig. 9,
knowing the failure probability entries of 2-frequency combinations, κ = 45,
the SNOR model can predict the average failure probability due to 3 to 9-
frequency combinations with reduced difference from the actual values, when
compared to NOR and all existing derivatives. With increased complexity,
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Figure 9: Prediction accuracy of the NOR and its derivatives (with assumption: 10 single
and 45 multi-frequency κ = C10

2 probability values are available) in comparison to the
data.

i.e., with the assumption of more available multi-frequency failure probability
entries, the SNOR prediction accuracy can be further increased.

7. Conclusions

For the multi-frequency EMI case-study, analysis with NOR facilitates
prediction of failure probabilities of higher-order (n ≥ 2) multi-frequency
EMI using ICI assumptions, thus requiring only n single-frequency probabil-
ity entries to predict 2n multi-frequency combinations. Based on the results
shown in Fig. 9, the average failure probability of n-frequency combina-
tions estimated using the NOR is always higher than the average probability
obtained from corresponding data. Note that, the difference between the
average probabilities between NOR and data reduces as the order of multi-
frequency combinations increases.

With ICI assumptions, the NOR model mostly (and always for n > 6)
overestimates the probabilities of multi-frequency EMI failures. This is due
to the relatively small proportion (or nil) of synergy type interactions and
greater prevalence of inhibition type interactions observed in the results from
the case-study. If positive causality information is available, then the existing
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Figure 10: Prediction accuracy of the NOR and its derivatives (with assumption: 10 single

and 385 multi-frequency κ =
∑3

r=2 C
10
r probability values are available) in comparison to

the data.

NOR derivatives (the RNOR and ERNOR models) can be used to predict the
multi-causal effect much more reliably than the NOR model. However, the
RNOR and ERNOR models cannot be used to include available information
on multi-causal interactions of type inhibition. In such cases the ARNOR,
IARNOR and SNOR models, which can include any type of ICD information,
can be used.

The SNOR model proposed in this paper aims to eliminate the observed
limitations of the NOR model and its existing derivatives. Moreover, the
superior CPT prediction accuracy of the SNOR model is successfully vali-
dated using the case-study based on numerical simulations of EMI-induced
failure of a sample IC design when injected with up to ten simultaneous fre-
quencies. Hence, with the availability of ICD information, the SNOR model
predicts the n-cause effect probability (for n > 2) at a much lower mean er-
ror than the NOR model and its derivatives except the IARNOR. However,
the magnitude of the error reduction depends on the number of multi-causal
probability entries available, and is smaller when the order of the prediction
is close to the order of the available data. The SNOR predicted values are
equivalent to or converges towards the NOR estimates with an increasing
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Figure 11: Prediction accuracy of the NOR and its derivatives (with assumption: 10 single

and 847 multi-frequency: κ =
∑6

r=2 C
10
r probability values are available) in comparison

to the data.

difference between the order of ICD information available and the order of
multi-causal effect predicted.

In the multi-frequency EMI application, it seems unlikely that all com-
binations would not be collected in measurements for an achievable number
of concurrent frequencies, whereas the number of frequencies that can be
concurrently achieved in measurements is restricted by practical limitations.
Thus the interest in predicting effects for higher orders of causes from avail-
able data on lower orders is because measurements may not be practicable at
all orders of interest. However, if the lower-order information is incomplete,
requiring missing entries to be predicted with associated error, then an overall
accuracy penalty is to be expected. Further work could investigate aspects
such as whether the SNOR model may be of benefit in other application
domains, or extending the underlying BN to facilitate causal inference.
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