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Facial expression generation is one of the most challenging and long-sought aspects of character animation,
with many interesting applications. The challenging task, traditionally having relied heavily on digital
craftspersons, remains yet to be explored. In this paper, we introduce a generative framework for generating
3D facial expression sequences (i.e. 4D faces) that can be conditioned on different inputs to animate an
arbitrary 3D face mesh. It is composed of two tasks: (1) Learning the generative model that is trained over
a set of 3D landmark sequences, and (2) Generating 3D mesh sequences of an input facial mesh driven by
the generated landmark sequences. The generative model is based on a Denoising Diffusion Probabilistic
Model (DDPM), which has achieved remarkable success in generative tasks of other domains. While it can
be trained unconditionally, its reverse process can still be conditioned by various condition signals. This
allows us to efficiently develop several downstream tasks involving various conditional generation, by using
expression labels, text, partial sequences, or simply a facial geometry. To obtain the full mesh deformation,
we then develop a landmark-guided encoder-decoder to apply the geometrical deformation embedded in
landmarks on a given facial mesh. Experiments show that our model has learned to generate realistic, quality
expressions solely from the dataset of relatively small size, improving over the state-of-the-art methods. Videos
and qualitative comparisons with other methods can be found at https://github.com/ZOUKaifeng/4DFM. Code
and models will be made available upon acceptance.
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1 INTRODUCTION
3D facial expression synthesis is a fundamental, long-sought problem in face animation and
recognition. Due to the inherent subtlety and sophistication of facial expressions, as well as our
sensitivity to them, the task is extremely challenging yet highly beneficial to various multimedia
applications, such as creating virtual humans in games and films, developing virtual avatars in
immersive virtual and augmented reality experiences, implementing chatbots in digital marketing,
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and recognizing, managing, or tracking of emotional states for education and training purposes.
It has traditionally relied on time- and skill-intensive design work by trained CG (Computer
Graphics) artists, who utilized dedicated software equipped with geometric deformation and shape
interpolation. The prevailing shape and motion capture technology has shifted this paradigm,
allowing the algorithmic reconstruction of 3D face shape and motion of real people. Multi-view
acquisition systems or 4D (3D+time) laser scans have been employed to capture the dynamic
face geometry of the performer, even in real-time scenarios [5, 15, 17, 65]. Such motion capture
techniques have been supported by deformation transfer or animation retargeting [6, 60, 91, 99],
enabling the reuse of captured animations on new individuals or imaginary faces without having to
capture shapes specific to the new target face. This line of research has facilitated the construction
of 4D face datasets and the derivation of priors from the data. Consequently, this advance has greatly
amplified data-driven approaches to face modeling, paving the way for recent deep learning-based
methods. Reconstructive methods train the model to regress the 3D facial geometry from a 2D
video, often in a frame-by-frame manner [18, 25, 31, 88] without modeling the temporal aspect of
shape evolution. Generative models like Generative Adversarial Nets (GANs) [28] and Variational
Autoencoders (VAEs) [45] have been adapted to learn and sample the distribution of facial shapes
and expression poses. However, with a few exceptions [80, 94], most existing works focus on the
generation of 2D facial poses [69, 97], or expression videos [8, 61, 89, 94, 95], leaving the challenging
task of 4D geometry modeling largely unexplored.
In this paper, we address the challenging problem of 3D dynamic facial expression generation,

one that has not yet received a lot of attention. Most available 3D facial expression datasets
[12, 16, 24, 73, 101] come in the form of dense triangular meshes containing thousands of vertices.
It is computationally expensive to train a generative model directly using all the vertices. Therefore,
similarly to most successful models for 3D facial animation generation, we use a set of predefined
3D face landmarks to represent a face. Typically, landmarks are located on facial features that are
highly mobile during animation, such as the face outline, eyes, nose, and mouth. The specific aim
of the 3D facial animation generation is to learn a model that can generate facial expressions that
are realistic, appearance-preserving, rich in diversity, with various ways to condition it such as
categorical expression labels. Prior works that have attempted to model the temporal dimension
of the face animation [61, 62, 80, 93] mostly leverage auto-regressive approaches, such as Long
short-term memory (LSTM) [39] and Gated recurrent units (GRUs) [13]. Here, we propose to
use a Denoising Diffusion Probabilistic Model (DDPM) [36, 82, 85], a generative approach that
has achieved remarkable success in several domains. A DDPM has the nice property of being
trainable unconditionally whereas the reverse process can still be conditioned using, a classifier-
guidance [20], for instance. This allows us to define the following paradigm: a DDPM is learned
unconditionally and several downstream tasks associated with several conditional generations are
developed from the same learned model, such as expression control (with label or text), expression
filling (with partial sequence(s)), or geometry-adaptive generation (with facial geometry). This
makes the proposed approach highly flexible and efficient, benefiting from the generative power of
diffusion models while circumventing their limitations of being resource-hungry and difficult to
control.
We note that, concurrent to this work, several works have also adopted diffusion models for

human motion generation [43, 87, 100]. However, to the best of our knowledge, we are the first to
adapt diffusion models to 3D face expression generation. More importantly, although approaches
developed in [43, 87, 100] enable different forms of conditioning, they require the diffusion model
to be retrained for each way of conditioning.

While the task of 3D facial animation generation has been reduced to the estimation of a temporal
sequence of 3D face landmark sets, it is then necessary, in a second task, to compute a sequence of
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animated meshes. We use an encoder-decoder model similar to [62], which retargets the expression
of a 3D face landmark set to the neutral 3D face mesh by computing its per-vertex displacement, in
a frame-by-frame manner. Unlike [62], however, we take into account the different morphological
shapes of the neutral mesh to adapt the estimation of per-vertex displacements. Results thus
obtained validate the effectiveness of the proposed approach.

In summary, our key contributions are as follows: (1) We successfully use a DDPM to propose an
original solution to the conditional generation of 3D facial animation. To the best of our knowledge,
it is the first to adopt a diffusion-based generative framework in 4D face modeling. (2) We train a
DDPM unconditionally and develop several downstream tasks by conditioning the reverse process.
In addition to improving the efficiency of training, this paradigm makes the approach highly
versatile and easily applicable to other downstream tasks. (3) In various evaluations, the landmark
sequence generation and landmark-guided mesh deformation outperform SOTA methods.

2 RELATEDWORK
2.1 Denoising Diffusion Probabilistic Models
3D facial expression generation is achieved here by adapting a DDPM. The surge in popularity of
diffusion models is primarily due to this model [36], which has made significant advancements in
high-resolution image generation.

A Denoising Diffusion Probabilistic Model (DDPM) is a Markov chain aimed at synthesizing data
(that resembles the training data) from noise within a finite number of sampling steps. The model’s
parameters undergo training via variational inference so as to reverse a diffusion process – a Markov
chain that gradually adds noise to the initial data. Such diffusion models have a wide range of appli-
cations across various fields. In computer vision, diffusion models have demonstrated impressive
capabilities for image generation[72, 75, 78], super-resolution [37, 48, 79], image inpainting [53],
image translation [68, 77], and semantic segmentation [4, 9, 29]. They also demonstrated capability
in handling 3D data to generate and complete point clouds [54, 55, 102], as well as handling time
series data for human motion generation [87, 100], time series forecasting and imputation [1],
and video generation [32, 35, 38, 98]. Additionally, diffusion models have demonstrated significant
potential in the realm of natural language processing with numerous applications and use cases
[2, 11, 21, 27, 51]. They find application in audio synthesis as well [46].
However, diffusion models involve a complex generation process and suffer from slow sam-

pling and have no encoding functionality. Several approaches have been proposed to address
the limitations of DDPM. One such approach is Denoising Diffusion Implicit Model (DDIM) [84],
which accelerates the sampling process by reducing the number of required sampling steps. DDIM
also allows for deterministic reverse processing, enabling various image editing possibilities [33].
However, DDIM inversion can result in instability and distorted reconstructions. To address this
issue, [92] proposes a novel approach inspired by the coupling layers in normalizing flow models
[22] providing mathematically exact inversion. In addition, several strategies exist to improve the
performance of DDPMs, such as learning the variances of the reverse diffusion process, using a
cosine noise schedule, and adding extra loss terms to optimize the variational lower-bound [59].
Note that each generative model has its own advantages and disadvantages. For example, VAE

[45] has nice encoding capabilities; however, it tends to lose high-frequency information of images.
On the other hand, GANs [28] have the ability to produce high-quality images, but they are
challenging to train and often prone to mode collapse. Therefore, each method has its own suitable
application scenarios. For instance, diffusion models are preferred when prioritizing image quality
over generation time. At the same time, efforts are underway to integrate different models aimed
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at overcoming their respective limitations, as seen in initiatives like DiffuseVAE [63] and Diffusion-
GAN [96].

2.2 Conditional generation
The conditional generation has been investigated since its inception, and its importance continues
to increase. The generation can be conditioned by various modalities, ranging from a simple label
to an image, or a sentence, which guides or controls the generation process. For example, image
translation involves creating images conditioned on other images. Text-to-image generation uses
text to control the characteristics of the generated images. In image captioning, conversely, the
image conditions the text generation.

The first approach to achieve conditional generation involves the use of conditional generative
models, which are trained by incorporating specific conditions. For instance, in the context of
diffusion models, a commonly used approach is to train a label embedding and combine it with
the time step embedding. The resulting combined information is then fed into the noise approxi-
mator, which generates the conditional noise samples [51]. Several models have been proposed
to accommodate various forms of label conditions for GANs or VAEs, such as CVAE [83], CGAN
[57], PPGN [58], and CVAE-GAN[3]. The neural network must include a mechanism to effectively
incorporate the conditional information. One straightforward approach is to concatenate the label
with an intermediate output of the model. In the context of conditional human motion generation
[64], learnable tokens are used. These tokens, of the same size as the latent representation, are
added as offsets to the latent space. We employ a comparable mechanism to integrate conditional
information in our landmark-to-mesh deformation task (Sec. 3.3), focusing on generating a sequence
of animated meshes from a sequence of landmarks, conditioned on the morphological shape of a
neutral mesh.

Another line of approach related to ours is conditioning models that were originally learned un-
conditionally. This enables us to perform conditional generation using high-performance pretrained
generative models. Note that the training data used for learning the “independent conditioning
task" is not required to be the same as the data used for training the generative model. Moreover,
this paradigm enhances training efficiency, especially when there are multiple ways to apply
conditioning. In this work, we unconditionally train a DDPM, after which we delve into several
downstream tasks by conditioning the reverse process in different ways. One commonly employed
approach in conditioning generation within diffusion models involves classifier-guided sampling
[20, 85]. To condition a pre-trained diffusion model, it leverages the gradients of an independent
classifier. This entails training a classifier on noisy data and subsequently using the gradients to
guide the diffusion sampling process towards a specific class label.
Note that conditioning an unconditional model can also be achieved with other generative

models than DDPM, especially through latent code manipulation [14, 81]. These methods begin by
computing the latent representation of an image, and then adjusting this representation in a way
that carries semantic meaning.

2.3 Facial expression generation
Deep generative models [28, 44, 45, 74, 82] have proven effective at high-quality image synthesis,
such as content-preserving image rendering with different styles, and the generation of images
depicting learned objects. For 2D images, these models have also shown to be beneficial to facial
expression transfer and expression editing tasks. However, the majority of existing solutions ad-
dress the problem of static expression synthesis. Here we review some recent advances achieved in
dynamic facial expression generation, i.e. modeling and predicting the temporal evolution of poses
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elicited by facial expressions.

2D facial expression video generation. Building on the achievements in deep image generation,
recent works have tacked the problem of generating 2D facial expression videos [8, 61, 89, 94, 95].
Methods like [42] focus on facial expression transfer, where the dynamics of the facial expression
is transferred from a source to a target face. In other works, the dynamics of facial expression is
encoded using recurrent generators. For example, Wang et al [93] proposed to generate sequence of
2D landmarks by a conditional LSTM, which is trained over a manifold of landmark images found
by a VAE. Addressing the one-to-many generation problem, they generate multiple sequences
given a neutral face image, which are translated to face videos. Recent methods seek to learn the
spatiotemporal embedding and generate all frames simultaneously, rather than generating frames
sequentially. G3AN [94] learns disentangled representations of the facial video, appearance and
motion by a three-steam generator, each taking into account appearance features, motion features,
and the fusion of the two toward video generation. Other works have investigated modelling and
learning the appearance and the motion in a disentangled manner. MoCoGAN [89] decomposes the
video into content and motion: An image-based generator generates the content, an image repre-
senting the identity of the person, while a GRU-based motion GAN generates the motion-dependent
appearance variations in videos through sequential sampling from the motion space. ImaGINator
[95] presents an image to video generation consisting of an image encoder and a video decoder. The
appearance extracted from the encoder is fused with motion feature in multi-level feature space via
a spatio-temporal fusion in the video decoder to simultaneously generate appearance and motion,
i.e. video. Two stream discriminator assesses the authenticity of the generated images and videos,
respectively. Such an encoder-decoder based approach has been also adopted in FEV-GAN[8],
where a an encoder is trained to extract identity- and spatial- features from the neutral face image,
and a video decoder utilizes them along with a label to generate realistic video.

Generative models for body animations. Several works have shown the sequence genera-
tion on the body motion [30, 47, 49, 64, 86]. This is mainly due to the compact, readily available
skeleton-based representation of the body [52], the relatively large set of action vocabulary, and
the availability of rich 3D body motion datasets [40, 47, 56, 66, 70]. Unfortunately it is not yet the
case with the 3D facial expression.

Dynamic 3D facial expression synthesis. To our knowledge, dynamic 3D facial expression
synthesis has not been fully explored. [67] synthesizes realistic high resolution facial expressions
by using a deep mesh encoder-decoder like architecture to estimate the displacements which are
then added to a neutral face frame. [80] deploys LSTMs to estimate the facial landmark changes,
which are then used to guide the deformation of a neutral mesh via a Radial Basis Function network.
However, both works focus on the displacement estimation for a given expression and do not
consider conditional generations. The closest work to ours is Motion3DGAN [62] which extends the
aforementioned MotionGAN [61] to model the dynamics of 3D landmarks. The learned distribution
of 3D expression dynamics by a WGAN over the hypersphere space is sampled with a condition to
generate landmark sequences, which are then fed into a mesh decoder to deform a neutral 3D face
mesh frame-by-frame. Our work has several advantages over their work. Benefiting from the power
of diffusion models, we model the input distribution without requiring any extra preprocessing, and
can learn from sequences of different lengths. Moreover, our framework offers a highly versatile
and efficient alternative, as we train a DDPM unconditionally and different conditional generations
can be performed solely during the reverse process in a plug-and-play manner.
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Given the scarcity of existing work on 3D facial animation generation, we compare our work with
some generator models originally dedicated to human motion synthesis, including Action2motion
[30] and ACTOR [64].

3 METHOD
At the core of our approach is a DDPM-based model to generate a 3D landmark sequence 𝑥 =

{𝐿1, . . . , 𝐿𝐹 } where a frame 𝐿𝑓 ∈ R𝑁×3 (for 𝑓 =1 to 𝐹 ) represents the 3D coordinates of 𝑁 landmarks.
Note that the 3D arrangement of a landmark set 𝐿𝑓 implicitly encodes the geometric information
specific to the facial anatomy of an individual, and can be viewed as a mixture of the facial identity
shape at a neutral pose 𝐿 and the pose-induced shape change, i.e. 𝐿𝑓 = Δ𝐿𝑓 + 𝐿. The method is
composed of two tasks: First, a DDPM is trained unconditionally (Sec.3.1), whereas conditional
generations are obtained by conditioning the reverse process. Different forms of conditioning can
be performed, leading to several downstream tasks (Sec.3.2). Afterwards, our landmark-guided
encoder-decoder (Sec.3.3) estimates Δ𝑀𝑓 at each frame (for 𝑓 =1 to 𝐹 ), using a target neutral face
mesh 𝑀 and Δ𝐿𝑓 as input. The desired animation mesh sequence {𝑀1, . . . , 𝑀𝐹 } is obtained by
adding the estimated displacement Δ𝑀𝑓 to 𝑀 at each corresponding frame, i.e. 𝑀𝑓 = 𝑀 + Δ𝑀𝑓 .
The overview of the proposed method is illustrated in Fig.1.

Note that directly training from and generating full meshes may be beneficial but raises technical
issues since the model becomes computationally and memory intensive. An alternative is to utilize
diffusion models directly in the latent space of autoencoders [75], or a pre-constructed parameter
space of 3D face. Our work can be viewed as akin to the latter approach, except that we use a
heuristically defined feature space, i.e., the landmark space, instead of a learned latent space. This
choice has been validated by the quality of the reconstruction obtained by the landmark-guided
encoder-decoder (Tab. 5).

3.1 Denoising Diffusion Probabilistic Models
DDPMs are latent variable models where the latent variables 𝑥𝑡 (for 𝑡 =1 to T) have the same
dimension as the original data 𝑥0 ∼ 𝑞(𝑥0). In our work, 𝑥0 is a landmark-based facial animation
data: 𝑥0 = {𝐿1, . . . , 𝐿𝐹 }. Note that it is contrary to most prior works which generate only the
displacements Δ𝐿𝑓 [61, 62, 80]. Training our model to generate 𝐿𝑓 directly allows it to learn to
produce quality expressions that are consistent with the inherent facial morphology.
DDPM consists of two distinct processes. The unparameterized diffusion process is a Markov

chain, that gradually adds noise to the initial data. Conversely, the parameterized reverse process
involves a Markov chain specifically designed to generate, within a limited number of sampling
iterations, data resembling the training dataset and originating from noise. The parameters of the
reverse process are trained so as to reverse the diffusion process.
More formally, the joint distribution 𝑝𝜃 (𝑥0:𝑇 ) from which we derive the likelihood 𝑝𝜃 (𝑥0) =∫
𝑝𝜃 (𝑥0:𝑇 )𝑑𝑥1:𝑇 is the reverse process whereas the approximate posterior 𝑞(𝑥1:𝑇 |𝑥0) is the forward

process or diffusion process. The diffusion process produces gradually noisier samples (𝑥1, 𝑥2, . . . 𝑥𝑇 )
by adding Gaussian noise to the initial data 𝑥0 according to a variance schedule 𝛽1, ..., 𝛽𝑇 [36]:

𝑞(𝑥1:𝑇 |𝑥0) =

𝑇∏
𝑡=1

𝑞(𝑥𝑡 |𝑥𝑡−1) (1)

𝑞(𝑥𝑡 |𝑥𝑡−1) = N(𝑥𝑡 ;
√︁

1 − 𝛽𝑡𝑥𝑡−1, 𝛽𝑡 𝐼 ). (2)
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Fig. 1. Overview of the proposed approach. Generally, the diffusion process is used to train the noise
approximator while the reverse process is used to sample 𝑥0 from the distribution 𝑞. But some tasks developed
in Sec. 3.2 require both processes for sampling. The bidirectional transformer takes as input the sum of the
outputs of three embedding layers: the temporal embedding layer (TE) that takes as input 𝑡 , the positional
encoding layer (PE) that takes as input an integer sequence from 1 to 𝐹 , and the feature embedding layer (FE)
that takes 𝑥𝑡 . The landmark-guided encoder-decoder retargets the expression of 𝐿𝑓 onto the input mesh𝑀

to estimate𝑀𝑓 at each frame.

We can derive from Eq. 2 the following property [36] which allows us to train the diffusion model
efficiently at an arbitrary time step 𝑡 :

𝑞(𝑥𝑡 |𝑥0) = N(𝑥𝑡 ;
√
𝛼𝑡𝑥0, (1 − 𝛼𝑡 )𝐼 ), (3)

where 𝛼𝑡 =
∏𝑡
𝑠=1 𝛼𝑠 and 𝛼𝑡 = 1 − 𝛽𝑡 .

𝑥𝑇 follows a near-isotropic Gaussian distribution provided that a well-behaved schedule is defined
and that 𝑇 is sufficiently large. DDPM [36] uses this property to sample the target distribution 𝑞

(𝑥0 ∼ 𝑞(𝑥0)). This is achieved by reversing the diffusion process: It begins by sampling 𝑥𝑇 from
N(0, 𝐼 ). Next, the reverse process generates progressively less-noisy samples 𝑥𝑇−1, 𝑥𝑇−2, . . . , 𝑥1
until 𝑥0 ∼ 𝑞(𝑥0) is obtained, by repeatedly sampling 𝑥𝑡−1 from 𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) by using Eq. 5. This
reverse process is formally defined as a Markov chain with learned Gaussian transitions whose
mean and variance are estimated by a neural network of parameter 𝜃 :

𝑝𝜃 (𝑥0:𝑇 ) = 𝑝 (𝑥𝑇 )
𝑇∏
𝑡=1

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) (4)

𝑝𝜃 (𝑥𝑡−1 |𝑥𝑡 ) = N(𝑥𝑡−1; 𝜇𝜃 (𝑥𝑡 , 𝑡), Σ𝜃 (𝑥𝑡 , 𝑡)), (5)

where 𝑝 (𝑥𝑇 ) = N(𝑥𝑇 ; 0, 𝐼 ). As in [36], we set Σ𝜃 (𝑥𝑡 , 𝑡) to 𝜎2
𝑡 𝐼 . This is a reasonable choice for

generating quality samples, provided that 𝑇 is chosen to be sufficiently large [59]. Note that
estimating Σ𝜃 (𝑥𝑡 , 𝑡) allows sampling with many fewer steps [59].

Several possibilities can be considered to parameterize 𝜇𝜃 (𝑥𝑡 , 𝑡) in Eq. 5. [36] shows that approx-
imating the noise 𝜖 that appears in the following equation:

𝑥𝑡 =
√
𝛼𝑡𝑥0 +

√
1 − 𝛼𝑡𝜖, (6)
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is a suitable choice, especially when combined with a simple loss function (See Eq. 8). Note that Eq.
6 is a different way of writing Eq. 3 (𝜖 ∼ N(0, 𝐼 )). Finally, the term 𝜇𝜃 (𝑥𝑡 , 𝑡) can be computed from
the approximation of 𝜖 , denoted as 𝜖𝜃 (𝑥𝑡 , 𝑡):

𝜇𝜃 (𝑥𝑡 , 𝑡) =
1

√
𝛼𝑡

(
𝑥𝑡 −

𝛽𝑡√
1 − 𝛼𝑡

𝜖𝜃 (𝑥𝑡 , 𝑡)
)
. (7)

Diffusion models can be trained by optimizing the usual variational bound on negative log-
likelihood, but we adopt here the simplified objective function proposed in [36]:

E𝑡,𝑥0,𝜖 [| |𝜖 − 𝜖𝜃 (𝑥𝑡 , 𝑡) | |2], (8)

where the term 𝑥𝑡 is computed from Eq. 6.
Many previous works [20, 36, 59, 75], especially those for modeling 2D images, have utilized

a UNet-like structure[76] to model the mean 𝜇𝜃 (𝑥, 𝑡) or the noise 𝜖𝜃 (𝑥, 𝑡). Here we employ a
bidirectional transformer (BiT) [19] to efficiently capture the temporal characteristics of 𝑥𝑡 .

3.2 Downstream tasks
The DDPM is trained in an unconditional manner, and from this single trained model, various
downstream tasks can be derived. Here, we demonstrate expression control tasks through labels
or texts, and expression filling using partial sequence, offering tools for creators to explore new
expression sequences. The last downstream task, geometry-adaptive generation, enables us to
generate a landmark sequence conditioned to a facial anatomy.The pseudo code for each task can
be found in Appendix C.
Conditioning on expression label (label control). The task is to perform a conditional gener-
ation according to the expression label 𝑦. Conditioning the reverse process of an unconditional
DDPM is achieved by using the classifier-guidance [20, 51, 85]. First, we train a classifier that
predicts the label 𝑦 given a latent variable 𝑥𝑡 (and 𝑡 ). Here the classification is conducted with a BiT
by adopting the usual approach of adding an extra learnable classification token [19]. Note that the
BiT discussed here should be distinguished from the other BiT in the diffusion model and is used to
condition its reverse process. It is achieved by sampling 𝑥𝑡 according to the distribution:

𝑝𝜃,𝜙 (𝑥𝑡 |𝑥𝑡+1, 𝑦) ∝ 𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1)𝑝𝜙 (𝑦 |𝑥𝑡 ), (9)

where 𝜙 represents the parameters of the classifier. Sampling of Eq. 9 can be achieved approximately
[82] by sampling from a Gaussian distribution similar to the unconditional transition operator
𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1), but with its mean shifted by a quantity proportional to Σ𝜃 (𝑥𝑡 , 𝑡)∇𝑥𝑡𝑝𝜙 (𝑦 |𝑥𝑡 ).
Instead of sampling Eq. 9, we used an alternative way, as proposed in [51]: 𝑥𝑡 is computed

so as to maximize the 𝑙𝑜𝑔 of Eq. 9. A hyperparameter 𝜆 is used to adjust the trade-off between
fluency (𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1)) and control (𝑝𝜙 (𝑦 |𝑥𝑡 )), leading to a stochastic decoding method that balances
maximizing and sampling 𝑝𝜃,𝜙 (𝑥𝑡 |𝑥𝑡+1, 𝑦). As in [51], optimization is achieved by running 3 steps
of the Adagrad [23] update for each diffusion step (Alg. 1 of App. C).
Conditioning on text (text control). We also use in this task a BiT guidance, but instead of
estimating a label from 𝑥𝑡 and 𝑡 , the BiT outputs a vector of dimension 512 (the softmax layer is
removed). As in [86], the BiT is trained so as to increase the cosine similarity between its output
and the textual features extracted with CLIP [71] from the text associated with 𝑥0. Conditioning the
reverse process according to the text 𝑐 is then achieved (Alg. 2 of App. C) by adapting the procedure
presented for the label control: 𝑥𝑡 is computed so that it maximizes:

𝜆 · 𝑙𝑜𝑔(𝑝𝜃 (𝑥𝑡 |𝑥𝑡+1)) + 𝑐𝑜𝑠 (BiT(𝑥𝑡 , 𝑡),CLIP(𝑐)) . (10)
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Conditioning on partial sequence (expression filling). Similarly to inpainting whose purpose
is to predict missing pixels of an image using a mask region as a condition, this task aims to predict
missing frames of a temporal sequence by leveraging known frames as a condition. The sequence
𝑥0 is composed of 𝐹 frames, some of which are unknown. Let S𝐾 and S𝑈 denote respectively the
set of indices associated with known and unknown frames, and let 𝑥 |S denote the subsequence
containing only the frames of 𝑥 whose indices belong to S.

Since 𝑥0 |S𝐾 is known, note that 𝑥𝑡 |S𝐾 can be drawn according to Eq. 3. Indeed, each component
of 𝑥𝑡 can be drawn independently since 𝑞(𝑥𝑡 |𝑥0) is an isotropic normal distribution. Sampling from
the reverse process conditioned on a partial sequence can also be achieved as follows: 𝑋𝑇 is first
determined: 𝑥𝑇 |S𝑈 is drawn from N(0, 𝐼 ) and 𝑥𝑇 |S𝐾 according to Eq. 3. Then, computing 𝑥𝑡 from
𝑥𝑡+1 is achieved in two steps: First, a temporal sequence 𝑥𝑡 is simply drawn from 𝑝𝜃 (.|𝑥𝑡+1) (it is
the way to compute 𝑥𝑡 in the usual case). 𝑥𝑡 |S𝑈 is set to 𝑥𝑡 |S𝑈 , while for known frames, 𝑥𝑡 |S𝐾
is directly drawn according to Eq. 3 (Alg. 3 in App. C). Despite its simplicity, this strategy gives
satisfactory results as we will demonstrate through qualitative validation in later sections of this
paper, provided that the partial sequence is of sufficient length.
Geometry-adaptive generation. Given the facial geometry of a specific subject, a generation can
be performed as a special case of expression filling: S𝐾 is set to {1} or to {𝐹 } (𝐹 is the sequence
length) and the unique known frame associated with 𝑥0 |S𝐾 is set to the neutral face 𝐿 of the subject.
The remaining sequence is considered as unknown, for which the model performs an expression
filling.

However, we observed that the generated frames may not always smoothly connect to the given
frame, a problem that did not arise when the partial sequence remained long enough. In the context
of image inpainting, [53] also shows that the simple sampling strategy used for the expression
filling task may introduce disharmony. A more sophisticated approach has been proposed so as
to harmonize the conditional data 𝑥𝑡 |S𝐾 with the generated one 𝑥𝑡 |S𝑈 [53]. In order to achieve
better convergence properties of the algorithm while maintaining its simplicity, we derive the
sequence with five iterations, each with a slight modification: For the first iteration, 𝑥𝑇 |S𝑈 is drawn,
as previously, from N(0, 𝐼 ). For the following iterations, 𝑥𝑇 |S𝑈 , as 𝑥𝑇 |S𝐾 , is drawn according to Eq.
3 where 𝑥0 is the result obtained from the previous iteration. By doing so, we expect 𝑥𝑇 |S𝑈 and
𝑥𝑇 |S𝐾 to be harmonized progressively, thus leading to the improved harmonization of 𝑥𝑡 |S𝑈 and
𝑥𝑡 |S𝐾 along the iterations.

Note that this process can also be easily guided by a classifier (as in the label control) so as to
generate a desired facial expression starting from a given facial anatomy (See Alg. 4 in App. C).

3.3 Landmark-guided mesh deformation
To obtain the full mesh sequence {𝑀1, . . . , 𝑀𝐹 } from {𝐿1, . . . , 𝐿𝐹 }, one could use existing fitting
methods such as FLAME [50] or DL-3DMM [26] so as to preserve both the facial anatomy and
the expression encoded in the landmark frames. However, the meshes generated through the
linear blending models tend to lack intricate details of facial geometry, resulting in dull, lifeless
shapes. Thus, in our work, we retarget the expression encoded in 𝐿𝑓 to the facial geometry given
as a (realistic) input mesh 𝑀 , as in [62]. The mesh 𝑀 is assumed to be at its neutral pose with a
predefined topology [50]. Each mesh frame𝑀𝑓 should retain the facial identity shape𝑀 , combined
with the expression-driven shape change encoded in Δ𝐿𝑓 = 𝐿𝑓 − 𝐿 (Δ𝐿𝑓 represents landmark
displacements at 𝑓 -th frame). This is achieved by our encoder-decoder network that takes both 𝑀

and Δ𝐿𝑓 as input and predicts Δ𝑀𝑓 at each frame, which is respectively added to𝑀 to obtain the
final mesh sequence:𝑀𝑓 = 𝑀 + Δ𝑀𝑓 . This is similar to the Sparse2Dense mesh decoder proposed
in [62], except that only Δ𝐿𝑓 (and not𝑀) is used to predict Δ𝑀𝑓 in their work. In our approach, on
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the other hand, we take into account the different morphological shapes of the neutral mesh𝑀 to
adapt the estimation of per-vertex displacements Δ𝑀𝑓 .

In order to benefit from the consistent and quality expressions adapted to the facial morphology
by the DDPM, one can extract a landmark set 𝐿𝑀 from a mesh𝑀 , perform the geometry-adaptive
task on it to generate a sequence involving 𝐿𝑀 , and target it to𝑀 by the landmark-guided mesh
deformation.
Encoder & decoder. Inspired by the Sparse2Dense mesh decoder of [62], we develop an encoder-
decoder architecture based on spiral operation layers. The encoder contains a backbone consisting of
five spiral operation layers [7] that extracts the features of𝑀 . In addition, we propose to incorporate
a cross-attention mechanism [90] to account for the possible influence of the characteristics of𝑀
on the impact of Δ𝐿𝑓 on each vertex of𝑀 : It enables us to find the relevant features of the mesh
𝑀 that can help predict a latent representation (of Δ𝑀𝑓 ) according to Δ𝐿𝑓 . More specifically, the
query is derived from a linear embedding of Δ𝐿𝑓 (computed by a fully-connected layer 𝐹𝐶) and the
key, value pairs from the output of the backbone (i.e. features of𝑀) denoted as 𝐹𝑒 . The output of
the attention layer writes:

𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝐹𝐶 (Δ𝐿𝑓 ) · 𝐹𝑇𝑒√

𝑑

)
𝐹𝑒 , (11)

where 𝑑 is the dimension of 𝐹𝑒 . Then a linear layer maps the vector of Eq. 11 to the identity-aware
representation 𝑧𝑖𝑑 , which is further shifted by the landmark displacement Δ𝐿𝑓 to obtain the final
latent representation: 𝑧 = 𝜆𝜃 · 𝑧𝑖𝑑 + Δ𝐿𝑓 , where the weight parameter 𝜆𝜃 is a learnable parameter.
We use the same decoder as [62]. It consists of a linear layer and five spiral operation layers. It

takes the latent representation 𝑧 as input and outputs the per-vertex displacement Δ𝑀𝑓 .𝑀𝑓 is then
set to𝑀 + Δ𝑀𝑓 . The model is learned using the loss function proposed in [62].

4 EXPERIMENTAL SETTING
As proposed in [36], we set a linear noise schedule starting from 𝛽1 = 1𝑒 − 4 to 𝛽𝑇 = 0.02, and 𝜎2

𝑡 is
set to 𝛽𝑡 .𝑇 is set to 2000. We train the model on 200K iterations with a learning rate of 1𝑒 − 4 and a
batch size of 256. The hyperparameter 𝜆 that is used to guide the sampling of the reverse process is
set to 0.01 as in [51].
CoMA dataset [73] is a commonly used 4D facial expression dataset in face modeling tasks

[7, 41], consisting of over a hundred 3D facial animation sequences captured from 12 subjects, each
performing 12 facial actions (“high smile”, “mouth up”, etc.). Each data is composed of a triangular
mesh of 5023 vertices undergoing some deformation elicited by an expression.
BU-4DFE dataset [101] contains a total of 606 sequences of 83 landmarks extracted from a

sequence of 3D facial scans. Six basic emotional expressions (“anger”, “disgust”, “fear”, “happy”,
“sad”, and “surprise”) of 101 subjects have been recorded.

To efficiently capture the essence of expressions while maintaining a small data size, we use 68
landmarks defined by FLAME[50] for both databases. The different sequences have been manually
divided into sequences of around 40 frames. Some of them start from the neutral pose and end
with a maximal expression intensity (we call them sequences of type N2E), while others evolve
from the maximal expression intensity to the neutral face (they are called of type E2N). Since a
majority of the methods utilized for comparison necessitate the sequences to share a same length,
linear interpolation has been carried out so as to obtain sequences of length 40. Note, however,
that our method can deal with sequences of various lengths (See App. A). As a result, our dataset
comprises 689 sequences from the CoMA dataset and 1, 212 sequences from the BU-4DFE dataset,
totaling 1, 901 sequences with 18 facial actions. Different sequences have been used depending on
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the specific task at hand. Unless otherwise specified, solely the sequences from the CoMA dataset
have been utilized.

5 RESULTS INVOLVING VARIOUS CONDITIONAL GENERATIONS
Here we describe the results we obtained on the various conditional generations. Throughout
this section, a classifier that predicts the expression from a sequence independently of its type
(see Section 4) is called a classifier of type I (order-Insensitive), whereas a classifier of type S
(order-Sensitive) predicts both the expression class and the expression type (either N2E or E2N).

To assess the fidelity of the generated expressions in relation to the control, an independent
classifier (which we denote as IC) is trained to predict the label from a sequence 𝑥0. We use one
LSTM layer followed by a linear layer, as in [62]. The model’s ability to generate a desired expression
is assessed by the classification accuracy of the IC tested on the generated expressions. Additionally,
the quality and the diversity of the generated sequences are assessed by using the Frechet Inception
Distance (FID) score [34], a widely used metric for comparing the distribution of fake data with
that of real data. It is computed from the output of the linear layer of the IC.

5.1 Label control
The proposed approach is compared with several SOTA methods that perform conditional sequence
generation: Action2Motion [30], Motion3DGAN [62] and ACTOR [64]. The BiT-based classifier is
used to guide the reverse process, as well as the IC are of type I. Quantitative evaluation results as
measured by the classification accuracy and the FID score are summarized in Table 1, which confirms
that the proposed approach outperforms all SOTA methods. Fig. 2 shows some illustrative results:
Our model generates various realistic and quality expressions adapted to different facial geometries.
Videos presented in the project website (https://github.com/ZOUKaifeng/4DFM) demonstrate the
generated expressions and offer qualitative comparisons among these methods. Visual observation
of these videos confirms that sequences generated by our approach are more expressive. The
diversity of the generated sequences in terms of both expression and facial anatomy is illustrated
in Appendix B.

Table 1. Performance of different methods for generating desired expressions has been evaluated bymeasuring
the classification accuracy and the FID score. We report as ground truth the FID and the accuracy computed
on the test dataset, assuming that an ideal method could have generated it.

CoMA BU-4DFE

Model Acc FID Acc FID
Ground truth 83.78% 2.77 99.51% 6.02
A2M [30] 52.36% 29.44 80.83% 19.64
MoGAN [62] 80.76% 7.72 99.26% 13.29
ACTOR [64] 81.40% 7.11 99.13% 14.56
Ours 84.97% 6.79 99.89% 12.37

5.2 Text control
To demonstrate this task, we have increased the vocabulary of our dataset by merging CoMA
and BU-4DFE. In the first experiment, the raw text label is used to condition the animation (we
call it raw text task) and the IC used for the evaluation is of type I. In the second experiment, the
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Fig. 2. Animated mesh sequences guided by the label “mouth side” (top), “mouth extreme” (middle), and
“cheeks in” (bottom). The meshes are obtained by retargeting the expression of the generated 𝑥0 on different
neutral faces.

description of a sequence is enriched to be a short sentence such as “from the neutral face to the
raw text label”, or “from the raw text label to the neutral face” (we call it enriched text task) and the
IC used for the evaluation is of type S.

We compare our results with those of MotionClip [86]. Quantitative results are shown in Table
2. Classification accuracies obtained with the proposed method are slightly higher than those of
MotionClip, with FID scores significantly lower. Sequences created by MotionClip are actually
realistic but the FID scores are high, due to the lack of diversity in the generated sequences.
Fig. 3 shows illustrative examples obtained with the proposed approach. Note that our model

is able to create animated meshes that combine different types of expressions by compositing a
text combining different types of expressions. For the complete sequences as well as the qualitative
comparisons, readers may refer to the project website.

Table 2. Quantitative evaluation of the text control task. Classification accuracy and FID are computed for
the raw text task (rtt, left) and for the enriched text task (ent, right).

Acc (rtt) FID Acc (ent) FID
Ground truth 86.02% 3.67 74.40% 4.56
MotionClip 80.67% 42.19 58.33% 38.83
Ours 82.01% 9.46 64.38% 11.34

5.3 Expression filling
Given a partial sequence of an expression, the model can fill up the missing frames. Three exper-
iments have been conducted: In the filling from the beginning (FFB) or the filling from the end
(FFE) cases, the length 𝑙 of the partial sequence is drawn uniformly in [10, 30]. In the filling from
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Fig. 3. Text-driven generation results obtained by the enriched text task (“from neutral face to bareteeth”
(top)), and by the raw text task (“angry mouth down” (middle), “disgust high smile” (bottom)). The input texts
used for the raw text task are the combinations of two terms used for training. For instance, “disgust high
smile” is a new description that hasn’t been seen before, which combines “disgust” and “high smile”.

the middle (FFM) case, 𝑙 frames have been given at the beginning and at the end of the sequence,
respectively. 𝑙 is uniformly sampled in [5, 15].
The proposed approach for expression sequence filling is compared with a mean imputation

strategy. To evaluate the result, an IC (of type I) is trained, so as to check if the filled data has
the same expression class as the original one. Results are shown in Table 3. The expression label
of the partial sequence is well-captured and reflected in the filled part, leading to an improved
classification accuracy especially for the FFM case, where the classification accuracy is comparable
to that obtained for the ground truth (Table 1). Classification accuracies obtained in the FFE and
FFB cases are lower due to the content of the sequences. As an example, when the partial sequence
is associated with the beginning of a sequence of type N2E, it may be composed, at worst, of neutral
faces only, or at best of less expressive faces. This is worsened by the fact that sometimes certain
expressions appear only at the end of the sequences. This is contrary to the FFM case, where the
partial sequence contains both the neutral and the most expressive poses.

Finally, there is a significant improvement of FID score after filling with the proposed approach.
Furthermore, our videos presented on the project website illustrate that the generated sequences
are smoothly connected to the given partial sequence.

5.4 Geometry-adaptive generation
We have conducted the geometry-adaptive generation task by using classifier guidance so as to
generate a desired facial expression from a given facial anatomy (Alg. 4 of App. C). The BiT used
for guidance and the IC used for evaluation are both of type S. S𝐾 is set to {1} if the chosen label is
associated with N2E sequences, and to {𝐹 } otherwise.

Quantitative results are shown in Table 4. The classification accuracy is close to the ground truth,
and the visual inspection of the video sequences on the project website shows no gap between the
generated frames and the enforced one.
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Table 3. Quantitative evaluation of the expression filling task for three different locations of the missing part.
Accuracy and FID are computed on the sequences obtained by the mean imputation strategy, and by our
diffusion model. Note that accuracy is 83.78% and FID is 2.77 for the ground truth in all cases (FFE, FFM, FFB).

Mean Imputation Ours

Acc FID Acc FID
FFE 60.15% 25.67 67.18% 5.51
FFM 56.25% 17.68 85.93% 5.06
FFB 53.90% 27.32 70.31% 5.22

Table 4. Quantitative evaluation of the geometry-adaptive generation task.

Acc FID
Ground truth 71.01% 5.57
Geometry-adaptive 70.43% 9.26

While App. B illustrates the diversity of generated expressions when the model is conditioned
on the expression label, we study here the same type of diversity but when the facial geometry
of a specific subject is enforced in the conditioning process. To this end, a landmark set 𝐿𝑀 has
been extracted from a given mesh𝑀 . The geometry-adaptive generation task is performed so as to
generate a sequence containing 𝐿𝑀 , and exhibiting an expression corresponding to a given label 𝑦.
Then, the generated sequence is targeted to𝑀 with the landmark-guided mesh deformation.

Fig. 4 illustrates the variety of expressions we thus obtained by using a same facial anatomy 𝐿𝑀
and a same label 𝑦 (either “eyebrow” or “high smile”), which confirms that the proposed approach
is able to generate expression sequences with sufficient level of diversity, even if a same facial
anatomy is used for conditioning.

Fig. 4. Diversity of expressions generated with the label “eyebrow” (left), and “high smile” (right) in the
geometry-adaptive generation task. All illustrated sequences are of type N2E. Note that eyebrows can be
either lowered (the second and third rows) or raised (the first row). Although the poses of maximal expression
intensity look all similar in the three sequences of “high smile”, their temporal properties are significantly
different.
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6 RESULTS RELATED TO LANDMARK-GUIDED MESH DEFORMATION
To the best of our knowledge, only [62] and our work estimate𝑀𝑓 from𝑀 and Δ𝐿𝑓 . Note that both
approaches use spiral convolution. For the comparative experiments, we also adapt two autoen-
coders: CoMA [73], which uses Chebyshev convolution and a mesh pooling, and the autoencoder
proposed in [10] (the encoder and decoder consisting of three layers of linear, nonlinear, and linear
activation units, respectively). Both decoders, which originally take the latent representation of
the input mesh as input, have been modified so as to consume the concatenation of the latent
representation with Δ𝐿𝑓 .
We conducted two series of experiments: Either 3 expressions (expression split) or 3 subjects

(identity split) have been excluded from the training set, and the performance of the model is
evaluated on the excluded data. The mean per-vertex Euclidean error between the generated meshes
and their ground truth has been measured to assess the performance.

Quantitative results are shown in Table 5. While the three methods based on spiral convolution
generally yield effective results, our approach outperforms the others, thus confirming the advantage
of the cross-attention layer, in particular.

Table 5. Per-vertex reconstruction error (mm).

Method Expression split Identity split
Linear [10] 0.67 ± 0.76 0.73 ± 0.77
CoMA[73] 0.58 ± 0.63 0.63 ± 0.67
S2D [62] 0.52 ± 0.59 0.55 ± 0.62
Ours(w/o attention) 0.54 ± 0.59 0.57 ± 0.64
Ours 0.45 ± 0.51 0.50 ± 0.58

We propose to complement our quantitative analysis by a qualitative comparison of the different
methods. As the "Expression split" and "Identity split" experiments yield very similar results, we
focus solely on the "Identity split" experiment in the following.

Fig. 5 depicts the ground truth mesh (a) as well as the meshes generated with several approaches
(b-e). Each vertex of a generated mesh is assigned a color representing the Euclidean distance to
its counterpart on the ground truth mesh. As expected, the errors appear mainly on the regions
that have been deformed to attain the expression. In Fig. 5, targeting an expression close to the
neutral pose (first row) leads to tiny errors, whereas targeting an expression “mouth extreme” leads
to errors that are mostly located near the mouth. Our approach achieves the best performance in
this qualitative error measure, confirming the quantitative results described above.
Here we were able to deploy the reconstruction error as evaluation metric, since Δ𝐿𝑓 and 𝑀

pertain to the same individual. Besides, our encoder-decoder is also capable of retargeting landmark
sequences to different facial meshes, a task previously shown by S2D [62]. As demonstrated in
the videos on the project website, it produces results that are visually pleasing and qualitatively
comparable to S2D. However, defining an evaluation metric for this task remains a challenging
future endeavor.

7 CONCLUSION
We have presented a generator model to synthesize 3D dynamic facial expressions. The dynamics
of facial expressions is first learned unconditionally, from which a series of downstream tasks are
developed to synthesize an expression sequence conditioned on various condition signals. Also
proposed is a robust face deformation scheme guided by the landmark set, which contributes
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Fig. 5. Qualitative comparison of our method (b) with S2D (c), CoMA (d), and Linear (e) in the landmark-
guided deformation of a given mesh. The ground truth meshes are given in the first column (a). The expression
of the first row is close to the neutral face and that of the second row is taken from a sequence labeled as
“mouth extreme”.

to a higher reconstruction validity. Experimental results show that the proposed method can
produce plausible face meshes of diverse types of expressions on different subjects. In addition,
it outperforms SOTA models both qualitatively and quantitatively. As has been demonstrated,
our expression generation framework is versatile and can be used in many application scenarios
including, but not limited to, label-guided generation, text-driven generation, geometry-adaptive
generation, or expression filling.
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A TRAININGWITH AND GENERATION OF SEQUENCES OF ARBITRARY LENGTH
Since our noise approximator is a bidirectional transformer, it can take sequences of arbitrary
length as input —It can be trained using sequences of any length, and we can sample from the
resulting model to obtain sequences of desired lengths (The length of 𝑥0 will be that of 𝑥𝑇 ). In the
same way, as a bidirectional transformer is used also to guide the reverse process, it can guide the
reverse process with any length for 𝑥𝑡 . Consequently, tasks related to label control, text control,
and geometry-adaptive generation can generate sequences of any desired length. Furthermore,
the sequences that have to be filled with the expression filling task can be of any length. For the
sake of simplicity, we describe here only the label control task. The noise approximator and the
classifier used for the guidance are either trained using sequences of a fixed length (𝐹 = 40) or
variable lengths (𝐹 is uniformly distributed in the interval [35, 45]).

The performance of both models is evaluated when outputting sequences of length in [35, 45].
The performance is evaluated as in Sec. 5.1, except that the independent classifier is trained with
sequences of variable length (𝐹 is uniformly distributed in [35, 45]). Results are shown in Fig.6.

Fig. 6. Quantitative evaluation of the label control task for models trained with sequences of a fixed length
(𝐹 = 40) or variable lengths. Performance is evaluated on generated sequences of different lengths using, as
in Sec. 5.1, the classification accuracy (left) and the FID score (right).

When generating sequences of different lengths is required, training with variable lengths helps
the model to perform better. Moreover, the results obtained with the model trained with sequences
of variable length are satisfactory: the achieved accuracy is similar to that of the ground truth.
Moreover, the FID obtained for a length frame of 40 is similar to that calculated with the model
dedicated to output sequences of length 40.

B DIVERSITY OF THE GENERATED SEQUENCES WHEN CONDITIONING ON
EXPRESSION LABEL

We study in this section the diversity of the generated sequences both in terms of facial anatomy
(𝐿) and in terms of expression (Δ𝐿𝑓 ) in the label control task. As a reminder, the 3D arrangement of
a landmark frame 𝐿𝑓 can be regarded as the combination of the facial anatomy (at a neutral pose 𝐿)
and the expression-driven shape change applied to it, i.e. 𝐿𝑓 = Δ𝐿𝑓 + 𝐿.
Since the proposed landmark-guided mesh deformation retargets the expression Δ𝐿𝑓 = 𝐿𝑓 − 𝐿

onto a new face anatomy given as a mesh𝑀 , it is used hereafter to illustrate the diversity of the
generated expressions but it is not adapted to analyze the facial anatomy of the generated 𝐿. To
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show the diversity of facial anatomy generated by our model, we use the FLAME model[50] to
compute the facial mesh from the landmark set of neutral pose1.
Fig. 7 presents three illustrative neutral faces 𝐿 that we generated by conditioning the reverse

process on the same expression label “mouth open”. Both landmark set and the FLAME-fitted
mesh are shown, for each face. (The neutral face 𝐿 associated with a generated sequence 𝑥0 is set
to either 𝐿1 or 𝐿𝐹 , depending on the sequence type.) Additionally, the diversity in the generated
expression is illustrated in Fig. 8. The apparent distinction among these results demonstrate that the
proposed approach is able to generate sequences of rich diversity, both in terms of facial anatomy
and expression (This is due to the input noise 𝑥𝑇 that is sampled from N(0, 𝐼 )).

Fig. 7. Diversity of facial anatomy in the generated expressions. We use FLAME model to compute facial
meshes from the landmark sets, for the visualization purpose.

Fig. 8. Diversity of expressions generated with the label “mouth side” (left), and “mouth open” (right) in the
label control task. Note that generated sequences can be either of type E2N or N2E.

1We can note that the meshes generated from FLAME lack certain details of the facial geometry, resulting in dull, lifeless
shapes. Furthermore, FLAME takes about 470s to fit one sequence, while the proposed landmark-guided mesh deformation
needs only about 1.30s.
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C PSEUDO CODE FOR EACH DOWNSTREAM TASK

Algorithm 1 Label control
Input: Label 𝑦.
Output: Sequence 𝑥0 (corresponding to label 𝑦).

1: 𝑥𝑇 ∼ 𝑁 (0, 𝐼 )
2: for 𝑡 = 𝑇, ..., 1 do
3: ⊲ Estimation of 𝑝𝜃 (. |𝑥𝑡 )
4: Compute 𝜖𝜃 (𝑥𝑡 , 𝑡 )
5: Compute 𝜇𝜃 (𝑥𝑡 , 𝑡 ) : 𝜇𝜃 (𝑥𝑡 , 𝑡 ) = 1√

𝛼𝑡

(
𝑥𝑡 − 𝛽𝑡√

1−�̄�𝑡
𝜖𝜃 (𝑥𝑡 , 𝑡 )

)
6: ⊲ Sampling from 𝑝𝜃 (. |𝑥𝑡 )
7: 𝑧 ∼ 𝑁 (0, 𝐼 ) if 𝑡 > 1, 0 otherwise
8: Set 𝑥𝑡−1 to 𝜇𝜃 (𝑥𝑡 , 𝑡 ) + 𝜎𝑡𝑧
9: ⊲ Optimization: optimization procedure is initialized with 𝑥𝑡−1
10: 𝑥𝑡−1 = argmax

𝑥

[
𝜆𝑙𝑜𝑔 (𝑝𝜃 (𝑥 |𝑥𝑡 ) ) + 𝑙𝑜𝑔 (𝑝𝜙 (𝑦 |𝑥, 𝑡 − 1) )

]
return 𝑥0

Algorithm 2 Text control
Input: Text 𝑐 .
Output: Sequence 𝑥0 (corresponding to text 𝑐).

1: 𝑥𝑇 ∼ 𝑁 (0, 𝐼 )
2: for 𝑡 = 𝑇, ..., 1 do
3: ⊲ Estimation of 𝑝𝜃 (. |𝑥𝑡 )
4: Compute 𝜖𝜃 (𝑥𝑡 , 𝑡 )
5: Compute 𝜇𝜃 (𝑥𝑡 , 𝑡 ) : 𝜇𝜃 (𝑥𝑡 , 𝑡 ) = 1√

𝛼𝑡

(
𝑥𝑡 − 𝛽𝑡√

1−�̄�𝑡
𝜖𝜃 (𝑥𝑡 , 𝑡 )

)
6: ⊲ Sampling from 𝑝𝜃 (. |𝑥𝑡 )
7: 𝑧 ∼ 𝑁 (0, 𝐼 ) if 𝑡 > 1, 0 otherwise
8: Set 𝑥𝑡−1 to 𝜇𝜃 (𝑥𝑡 , 𝑡 ) + 𝜎𝑡𝑧
9: ⊲ Optimization: optimization procedure is initialized with 𝑥𝑡−1
10: 𝑥𝑡−1 = argmax

𝑥
[𝜆𝑙𝑜𝑔 (𝑝𝜃 (𝑥 |𝑥𝑡 ) ) + 𝑐𝑜𝑠 (𝐵𝑖𝑇 (𝑥, 𝑡 − 1),𝐶𝐿𝐼𝑃 (𝑐 ) ) ]

return 𝑥0

Algorithm 3 Sequence filling
Input: Partial sequence 𝑥0 |S𝐾
Output: Completed sequence 𝑥0

1: 𝑥𝑇 |S𝑈 ∼ 𝑁 (0, 𝐼 )
2: 𝑥𝑇 |S𝐾 =

√
𝛼𝑇 𝑥0 |𝑆𝑘 +

√
1 − 𝛼𝑇 𝜖, 𝜖 ∼ 𝑁 (0, 𝐼 )

3: for 𝑡 = 𝑇, ..., 1 do
4: ⊲ Estimation of 𝑝𝜃 (. |𝑥𝑡 )
5: Compute 𝜖𝜃 (𝑥𝑡 , 𝑡 )
6: Compute 𝜇𝜃 (𝑥𝑡 , 𝑡 ) : 𝜇𝜃 (𝑥𝑡 , 𝑡 ) = 1√

𝛼𝑡

(
𝑥𝑡 − 𝛽𝑡√

1−�̄�𝑡
𝜖𝜃 (𝑥𝑡 , 𝑡 )

)
7: ⊲ Sampling from 𝑝𝜃 (. |𝑥𝑡 )
8: 𝑧 ∼ 𝑁 (0, 𝐼 ) if 𝑡 > 1, 0 otherwise
9: Set 𝑥𝑡−1 to 𝜇𝜃 (𝑥𝑡 , 𝑡 ) + 𝜎𝑡𝑧
10: 𝑥𝑡−1 |S𝑈 = 𝑥𝑡−1 |S𝑈
11: if 𝑡 > 1 then ⊲ if 𝑡 = 1, 𝑥0 |S𝐾 is already properly set.
12: 𝑥𝑡−1 |𝑆𝐾 =

√
𝛼𝑡−1𝑥0 |𝑆𝑘 +

√
1 − 𝛼𝑡−1𝜖, 𝜖 ∼ 𝑁 (0, 𝐼 )

return 𝑥0
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Algorithm 4 Geometry-adaptive generation with label control
Input: Label 𝑦 and partial sequence 𝑥0 |S𝐾 . S𝐾 is either {1} or {𝐹 } and the unique frame associated with 𝑥0 |S𝐾 is a neutral one.
Output: Completed sequence 𝑥0 (corresponding to label 𝑦)

1: for 𝑖 = 1 to 5 do
2: if i == 1 then
3: 𝑥𝑇 |S𝑈 ∼ 𝑁 (0, 𝐼 )
4: 𝑥𝑇 |S𝐾 =

√
𝛼𝑇 𝑥0 |𝑆𝑘 +

√
1 − 𝛼𝑇 𝜖, 𝜖 ∼ 𝑁 (0, 𝐼 )

5: else
6: 𝑥𝑇 =

√
𝛼𝑇 𝑥0 +

√
1 − 𝛼𝑇 𝜖, 𝜖 ∼ 𝑁 (0, 𝐼 )

7: for 𝑡 = 𝑇, ..., 1 do
8: ⊲ Estimation of 𝑝𝜃 (. |𝑥𝑡 )
9: Compute 𝜖𝜃 (𝑥𝑡 , 𝑡 )
10: Compute 𝜇𝜃 (𝑥𝑡 , 𝑡 ) : 𝜇𝜃 (𝑥𝑡 , 𝑡 ) = 1√

𝛼𝑡

(
𝑥𝑡 − 𝛽𝑡√

1−�̄�𝑡
𝜖𝜃 (𝑥𝑡 , 𝑡 )

)
11: ⊲ Sampling from 𝑝𝜃 (. |𝑥𝑡 )
12: 𝑧 ∼ 𝑁 (0, 𝐼 ) if 𝑡 > 1, 0 otherwise
13: Set 𝑥𝑡−1 to 𝜇𝜃 (𝑥𝑡 , 𝑡 ) + 𝜎𝑡𝑧
14: ⊲ Optimization: optimization procedure is initialized with 𝑥𝑡−1
15: 𝑥𝑡−1 = argmax

𝑥

[
𝜆𝑙𝑜𝑔 (𝑝𝜃 (𝑥 |𝑥𝑡 ) ) + 𝑙𝑜𝑔 (𝑝𝜙 (𝑦 |𝑥, 𝑡 − 1) )

]
16: 𝑥𝑡−1 |S𝑈 = 𝑥𝑡−1 |S𝑈
17: if 𝑡 > 1 then ⊲ if 𝑡 = 1, 𝑥0 |S𝐾 is already properly set.
18: 𝑥𝑡−1 |𝑆𝐾 =

√
𝛼𝑡−1𝑥0 |𝑆𝑘 +

√
1 − 𝛼𝑡−1𝜖, 𝜖 ∼ 𝑁 (0, 𝐼 )

return 𝑥0
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