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The innovation of liquid biopsy holds great potential to revolutionise cancer management through early diagnosis and timely
treatment of cancer. Integrative analysis of different tumour-derived omics data (such as genomics, epigenetics, fragmentomics,
and proteomics) from body fluids for cancer detection and monitoring could outperform the analysis of single modality data alone.
In this review, we focussed on the discussion of early cancer detection and molecular residual disease surveillance based on multi-
omics data of blood. We summarised diverse types of tumour-derived components, current popular platforms for profiling cancer-
associated signals, machine learning approaches for joint analysis of liquid biopsy data, as well as multi-omics-based early detection
of cancers, molecular residual disease monitoring, and treatment response surveillance. We also discussed the challenges and
future directions of multi-omics-based liquid biopsy. With the development of both experimental protocols and computational
methods dedicated to liquid biopsy, the implementation of multi-omics strategies into the clinical workflow will likely benefit the
clinical management of cancers including decision-making guidance and patient outcome improvement.

British Journal of Cancer (2023) 128:505–518; https://doi.org/10.1038/s41416-022-02048-2

BACKGROUND
Cancer is one of the leading causes of death worldwide and a
wide range of strategies have been developed to reduce cancer-
related morbidity and mortality. In particular, liquid biopsy is
becoming increasingly popular for early cancer detection and
monitoring based on the detection of tumour biomarkers
circulating in body fluids (e.g., blood) [1, 2]. Compared to
traditional tissue biopsy, liquid biopsy is less burdensome and
could enable faster and more cost-efficient evaluation of cancer
profiles in a real-time and non-invasive manner [1, 3]. Moreover,
conventional tissue biopsies may have sampling bias unless
different tumour areas are investigated simultaneously, while
liquid biopsy could provide more comprehensive cross-sectional
information on tumour heterogeneity [4, 5]. Furthermore, a
diversity of cancer-related components can be explored in body
fluids, such as circulating tumour DNA (ctDNA), circulating tumour
cells (CTCs), circulating tumour RNAs (ctRNAs), tumour-educated
platelets (TEPs), as well as tumour-derived extracellular vesicles
(EVs) (e.g., exosomes) (Fig. 1). These tumour-associated signals are
mainly shed from primary and/or metastatic cancer sites. As
reviewed previously, blood tests based on different types of
circulating biomarkers have different advantages and limitations
in cancer management [6–8]. Among them, ctDNA was the most
profiled component, which was mainly derived from apoptosis,
necrosis, and secretion of tumour cells, and was widely used as the
signal for cancer detection and monitoring [9–11]. For instance,
qualitative and quantitative ctDNA analysis of pre-operation could

effectively predict the prognosis and postoperative recurrence of
cancer patients, which may benefit the selection of appropriate
patients for treatment [12]. Mutation profiling based on ctDNA
before treatment can also provide useful guidance for the choice
of targeted drugs or immunotherapy [13–15]. Due to the
advantages of liquid biopsy, a shift from tumour biopsy to liquid
biopsy has begun in the clinical management of cancers [6–8].
The applications of liquid biopsy can span the entire journey of

tumour patients, including early cancer screening and diagnosis
[16–18], molecular residual disease (MRD) detection and monitor-
ing [19–21], surveillance of treatment response and resistance
[22], and various others. Early cancer detection could provide a
valuable time window for curative treatment and long-term
survival of patients [2], which may become a routine part of health
checks in the future. Moreover, MRD monitoring would allow the
detection of disease recurrence and treatment response earlier
than traditional methods (e.g., radiographic imaging), enabling the
guidance and earlier intervention of cancer management [6, 23].
However, liquid biopsy approaches must be accurate, sensitive,
and robust, because the concentrations of ctDNA and other types
of tumour-related components in peripheral blood are typically
low, particularly in patients with early-stage cancer or after
definitive treatment [24].
Initial liquid biopsy developments mainly focussed on the

detection of driver or pathogenic mutations in consideration of
the leveraged signals highly specific to cancers. But the
performance of those methods in the scenarios of early cancer
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detection and MRD monitoring is limited due to insufficient
biomarkers and related confounding factors (such as clonal
haematopoiesis of indeterminate potential (CHIP)) [1, 8]. Unlike
cancer-specific genetic variants, epigenetic alterations (e.g., DNA
methylation changes, post-translational histone modifications, and
nucleosome position changes) of tumours could be more prevalent,
providing great potential for liquid biopsy [17, 25–30]. Other types
of circulating biomarkers in blood, such as serum protein
biomarkers [31], DNA fragment sizes [32–34], end motifs of plasma
DNA [35], cell-free transcriptome [36], and even the microbiome
signatures [37] are also important cancer-related signals. Further-
more, recent studies also showed that the inclusion of clinical risk
factors (e.g., age and smoking history), and CT imaging can further
boost the sensitivity of blood-based assays [16, 29, 38]. Since
different omics layers are complementary for interrogating cancers
as discussed previously [39, 40], integrative analysis of distinct
modalities to improve the performance of liquid biopsy is
increasingly popular [8]. However, no reviews have comprehen-
sively summarised and discussed the progress of multi-omics-based
liquid biopsies for early cancer detection and monitoring.
Considering that blood-based biopsy is the most studied

among different body fluids, this Review mainly focusses on the
discussion of multi-omics-based liquid biopsy by integrative
analysis of ctDNA and other types of tumour-associated compo-
nents in blood. We first summarise different tumour-related
signals in plasma and currently popular platforms used in liquid
biopsy. Then we describe different machine learning (ML)
approaches employed to process blood-based biopsy data. Next,
we discuss the progress in multi-omics-based early cancer
detection, MRD monitoring, and treatment response surveillance
through joint analysis of multi-omics data. We also outline the
challenges and future directions of liquid biopsy.

TUMOUR-ASSOCIATED BIOMARKERS USED IN BLOOD-BASED
LIQUID BIOPSY
Peripheral blood contains a variety of circulating biomarkers,
including ctDNA, CTCs, ctRNAs, TEPs, circulating EVs, proteins,
metabolites, and even viral sequences (e.g., HBVs) (Fig. 1). At the
genomic level, various genetic alterations can be obtained from
ctDNA through DNA sequencing, including point mutations,
indels, copy number variations (CNVs), gene fusions, and other
types of structural variations (SVs) [2]. For epigenetic alterations,
DNA methylation is stable and highly frequent for specific
genomic regions [41], providing abundant signals for early cancer
detection and the determination of tissue of origin (TOO) [17]. The
cell-free transcriptome is valuable for gene expression analysis
and the identification of cancer-associated fusion transcripts and
alternative splicing events [36, 42]. Furthermore, the fragmenta-
tion differences between tumour-derived and normal cfDNA (e.g.,
DNA fragment size, end-motif of fragments, and start-stop
positions) were valuable biomarkers for liquid biopsy [8]. For
example, Cristiano et al. achieved high performance in tumour
detection and TOO identification for seven cancer types based on
the fragmentation feature inferred from low-coverage whole-
genome sequencing (WGS) [32]. Besides, some studies showed
that tumour-related proteome [43, 44] and metabolome [45] in
body fluids could provide important signals as well. These
different types of components in the blood are promising for
cancer detection and monitoring.
Initial liquid biopsy studies mainly focussed on the identification

of known driver gene mutations, since they likely have a causative
role in tumourigenesis, by employing PCR-based assays on plasma
cfDNA from cancer patients [46–48]. Subsequently, the application
of next-generation sequencing (NGS) technologies to targeted
regions or the whole exome or genome enable parallel detection
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Fig. 1 Overview of diverse tumour-associated components in the blood of cancer patients. These tumour-related signals can be profiled
with different approaches (e.g., targeted sequencing, WES, WGS, WGBS, among others), which are valuable for early cancer detection and MRD
monitoring.
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of abundant cancer-specific alterations [5, 49, 50]. One main
challenge is that the biological confounding factors (e.g., CHIP)
[51] and related technical noise may generate a marked effect on
mutation calling. By contrast, DNA methylation alterations in
cancer are much more prevalent than canonical mutations and
could promise a higher limit of detection [17]. Thus the
epigenomic analysis of ctDNA is becoming increasingly popular
in the liquid biopsy field [52, 53]. However, the ctDNA concentra-
tion is considerably low at the early stages of cancer and after
definitive treatment, the performance of those assays only based
on one type of data could be limited. Since different omics layers
are complimentary for cancer profiling, one effective way to
improve the performance of blood-based tests is the joint analysis
of multiple types of cancer-related signals [8].

CURRENT POPULAR PLATFORMS AND MACHINE LEARNING
APPROACHES FOR LIQUID BIOPSY
At present, PCR-based and NGS-based approaches are commonly
used for liquid biopsy. PCR-based assays include sensitive qPCR-
based methods (e.g., ARMS [54], Intplex [55], and COLD-PCR [56]),
digital PCR-based techniques (e.g., ddPCR [57] and BEAMing [58]),
among others [59, 60], having advantages in terms of very high
sensitivity (0.01%~0.001%), rapidness, and cost-effectiveness.
However, these approaches largely depend on the known
mutations of primary tumours and can only track a limited
number of variants. Contrariwise, NGS-based strategies allow the
interrogation of both hot-spot and non-hot-spot areas, as well as
different omics layers of the tumour. Targeted and untargeted
sequencing are two main categories. Targeted approaches
generally focus on a set of predefined genes/regions (e.g., gene
panels regarding mutations or DNA methylation) [61], while
untargeted ones can profile the entire exome/genome/methy-
lome, such as whole-exome sequencing (WES), WGS, and whole-
genome bisulfite sequencing (WGBS). With the help of prior
knowledge of known cancer-specific markers, targeted methods
may achieve higher sensitivity in a cost-effective way than
untargeted ones [1]. But they cannot identify de novo tumour
alterations like untargeted strategies. However, untargeted
approaches often require higher DNA input and are more
expensive than targeted strategies [62]. Thus, targeted and
untargeted strategies have their own strength and weakness for
liquid biopsy.
It has been suggested that the assays based on DNA

methylation could outperform mutation-based sequencing stra-
tegies (e.g., WGS and targeted sequencing panels) in early cancer
detection [63, 64]. One main reason could be that genome-wide
DNA methylation profile enables to interrogate more abundant
tumour-related signals compared to the relatively limited number
of cancer-specific mutations [52]. Of note, both WGS and WGBS
can provide other informative modalities besides mutations and
DNA methylation level changes, such as DNA fragment sizes,
nucleosome position maps, fragment end motifs, etc [8, 32, 34].
Joint analysis of those different types of omics data from the
plasma to enhance the assay performance holds great promise for
improving cancer detection and monitoring [8, 59].
Liquid biopsy studies often involve a large number of samples

and many features, generally producing large-scale, high-dimen-
sional, and complicated data sets. ML approaches can easily
identify the trends and patterns within large volumes of data,
which are very suitable for the setting of liquid biopsy. Many
studies have shown that traditional ML algorithms, such as linear
models [65], support vector machine (SVM) [66], and random
forest (RF) [67], performed well in the data analysis of cancer
detection [18, 34, 68–71]. However, traditional ML algorithms
often heavily rely on the representation of the selected
informative features which are difficult to obtain in certain
scenarios [72]. Furthermore, most of the previous studies

regarding liquid biopsy were mainly based on one type of data.
Integrative analysis of multi-omics data with ML methods is
increasingly popular to enhance the performance of liquid biopsy
[8]. Advanced methods like ensemble learning can combine the
outputs resulting from multiple ML models to improve decisions,
it is appealing to improve the model performance and robustness
by compensating the weaknesses of one learning model with the
strengths of another one [73]. Besides, deep learning (such as the
multilayer perceptron, also known as neural network) approaches
can efficiently learn features from unprocessed, unstructured, and
high-dimensional data [74, 75], holding promise to process the
increasing scale of liquid biopsy data. Nevertheless, it is worth
noting that if the sample size of the dataset is small, ML models
are vulnerable to overfitting, especially for deep learning methods.
A series of detailed suggestions regarding the preparations before
model building, model evaluation, model comparison, and result
reporting were proposed recently [76]. Such guidelines could be
valuable for avoiding the ML pitfalls in liquid biopsy. Thus, the
implementation of ML models for integrating multi-modal, multi-
scale, as well as longitudinal data from liquid biopsies may greatly
benefit the detection of weak cancer-related signals in the blood
[77].

EARLY CANCER DETECTION BASED ON MULTI-OMICS DATA
Detecting cancers as early as possible is crucial and valuable for
reducing tumour-associated morbidity and mortality when the
malignancies are easy to be cured. Compared to traditional
strategies (e.g., radiological imaging), liquid biopsy offers a non-
invasive means for improving the adherence of clinicians,
detection sensitivity, and cost-effectiveness of cancer diagnosis
and screening [78–80]. Moreover, blood-based assays for early
cancer detection are also promising to identify the tumour when it
is small and before symptoms appear, which could make the
disease more curable and provide a better chance for the long-
term survival of patients [81]. Generally, early cancer detection can
be further divided into single-cancer early detection (SCED) and
multi-cancer early detection (MCED) according to the number of
cancers investigated (Fig. 2 and Table 1).
Multi-omics-based SCED could effectively improve the sensitiv-

ity of cancer detection than the approaches using single modality
data (such as somatic mutations) by integrating at least two types
of data (Table 1). For example, Chen et al. combined four genomic
features (e.g., 5-Hydroxymethylcytosine, NF, motif, and fragmenta-
tion) for early detection of HCC in cirrhotic patients, yielding an
AUC > 0.99 [18]. They first randomly divided the 3,204 enrolled
participants into training, validation, and test cohorts, then built
the model using SVM and integrated the results with the LR
approach. Qu et al. achieved 85% sensitivity and 93% specificity in
discriminating (HCC) from an asymptomatic cohort with unknown
HCC status by integrating cfDNA features (e.g., SNV/indel
mutations and cfDNA concentration), protein marker levels (e.g.,
AFP and DCP), and clinical information (e.g., age and gender) [70].
They constructed the model with the LR algorithm and evaluated
the model performance both in the training (65 HCC and 70 non-
HCC individuals) and validation (331 individuals) cohorts. More-
over, Chalasani developed a blood-based multi-target HCC panel
containing several methylated DNA (e.g., HOXA1, EMX1, TSPYL5,
and B3GALT6) and protein markers (e.g., AFP and AFP-L3), their
analysis based on LR model showed an AUC of 0.92 for detecting
any stage of HCC [68]. These three studies integrated different
types of tumour-associated signals in blood using LR algorithms
for early detection of HCC, and all of them demonstrated that
multi-omics strategies could outperform single-omics methods.
Besides, Chabon et al. robustly detected early lung cancers by
joint analysis of cfDNA mutations, background artifacts, cfDNA
fragment size, the likelihood of clonal haematopoiesis, and copy-
number variants (CNVs) with a multi-tiered ML approach [82]. They
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performed model training in the discovery cohort (160 subjects)
with a leave-one-out cross-validation framework and tested the
model performance in the validation cohort (94 subjects) in terms
of sensitivity, specificity, and AUC. In comparison, Mathios et al.
showed that the integration of fragmentation features, CEA levels,
clinical risk factors (e.g., age and smoking history), and CT imaging
through an LR model with a LASSO penalty can significantly
improve the non-invasive detection of lung cancer [38]. Their
predictive ML model was tested with fivefold cross-validation for
discriminating lung cancer patients from non-cancer individuals
and the model performance was assessed with a fifth held-out
fold. Uehiro et al. successfully discriminated breast cancer patients
from healthy volunteers by integrating methylation markers (e.g.,
RASGRF1, ST3GAL6, CPXM1, SHF, JAK3, DACH1, P2RX3, DNM3,
CAV2, HOXA10, B3GNT5, and chr8:23572595) and DNA concentra-
tion (e.g., CREM, GLYATL3, ELMOD3, and KLF9) with SVM model
based on the testing of different variable combinations [69].
Additionally, Putcha et al. achieved high sensitivity and specificity
for early detection of colorectal cancer (CRC) by combining the
signals from WGS, bisulfite sequencing, and protein quantification
in plasma [83], which employed a machine learning-based
classifier to integrate different tumour- and immune-derived
signals from epigenetic, cfDNA, and protein biomarkers. Ma et al.
accomplished early detection of advanced CRC through integra-
tive analysis of the ratio and distribution fragment sizes, end motif,
breakpoint motif, as well as CNVs inferred from plasma cfDNA

WGS data with an ensemble stacked model [84]. They implemen-
ted different ML methods (e.g., RF, generalised linear model,
XGBoost, gradient boosting machine, and deep learning) in their
ensemble strategy and performed 10-fold cross-validation for
criteria optimisation. Therefore, these studies showed that a
diversity of tumour-associated signals can be combined to
enhance the assay performance for different types of cancers.
Notably, because of the very low incidence of individual cancers

in the general population, a large number of patients are needed
for developing single cancer detection approaches. Moreover,
currently reported single-cancer screening tests often values
sensitivity over specificity to detect as many cancers as possible,
which may lead to overdiagnosis. If different cancer types can be
screened together, a higher overall positive predictive value (PPV)
could be achieved due to the increase in aggregate prevalence
[85, 86].
Compared with SCED, detecting multiple cancers simulta-

neously (MCED) may generate more value and greater impacts
on public health. Furthermore, if multiple single-cancer screening
tests were performed to determine the TOO, it may lead to a high
cumulative false-positive rate. By contrast, MCED can theoretically
minimise such influence by employing a low fixed false-positive
rate and benefit the overall cancer detection of investigated
population. Additionally, TOO dissection in MCED tests is valuable
for reducing unnecessary diagnostic workups and the anxiety of
patients, which is very useful for streamlining the diagnostic
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evaluation of cancer [85, 86]. Some studies have investigated the
feasibility of MCED and the localisation of TOO based on the
methylation profile of ctDNA alone [17, 87]. To further improve the
performance of liquid biopsy, multi-omics approaches are
increasingly been applied in MCED through integrative analysis
of different types of omics data (Table 1). For example, Cristiano
et al. revealed that combing fragmentation profiles (e.g.,
fragmentation size and coverage) with mutation detection in
cfDNA can increase the sensitivity of multicancer detection using
low-coverage WGS (9× coverage) [32]. They applied gradient tree
boosting machine learning to incorporate genome-wide fragmen-
tation features and mutations to distinguish cancer patients from
healthy individuals. Using a much lower WGS coverage (0.4×),
Mouliere et al. also showed that joint analysis of fragment length
and CNVs of cfDNA can boost the performance of MCED, which
employed LR and random forest algorithms to identify the best
predictor variables with recursive feature selection [34]. Both these
two studies demonstrated that joint analysis of the variants and
fragment information inferred from low-pass WGS of cfDNA hold
great potential for MCED. Furthermore, Cohen et al. developed an
effective blood test (called CancerSEEK) by taking into account
both cfDNA mutations and the abundance of protein biomarkers
(e.g., CA-125, CA19-9, CEA, HGF, Myeloperoxidase, OPN, Prolactin,
and TIMP-1) for MCED and TOO localisation based on 1005
patients with nonmetastatic cancers and 812 healthy controls [71].
They performed cancer type prediction using LR and RF models,
achieving a sensitivity of 69 to 98 and 99% specificity on eight
different cancers. Subsequently, Lennon et al. further showed that
the performance of CancerSEEK for MCED can be further
enhanced by integrating three data types of genetic mutations,
protein biomarkers (e.g., CEA, CA15–3, CA19–9, and CA125), and
PET-CT imaging based on 10,006 participants [16]. Accordingly,
multi-omics strategies are appealing to boost the performance of
MCED as well as the determination of TOO.
However, systematic evaluation of MCED in terms of perfor-

mance (e.g., sensitivity and specificity), analytical and clinical
validity, benefit-risk, safety, and clinical utility is crucial for
applying it in the healthcare system [2, 71, 81]. Moreover,
substantial efforts are still needed to overcome the technical
limitations, the complexity of tumour biology, and clinic features
to develop highly efficient screening approaches. Specifically, the
ctDNA level in early-stage disease is considerably low and the
somatic mutations (e.g., CHIP-associated mutations) of noncancer-
ous cells can also hinder the identification of real cancer-specific
mutations [88]. Age is one of the most important risk factors for
early cancer detection, where older individuals have a remarkably
higher CHIP mutation rate and higher cancer risk than younger
individuals [80, 89–91]. Furthermore, the amount of ctDNA shed
into the blood varies among different cancer types and tumour
stages, which could also influence the sensitivity of MCED [92].
Additionally, it is important to systematically examine the assay
performance using a large-scale cohort without cancer (including
the individuals with benign neoplasms and inflammatory condi-
tions) to ensure the feasibility in the real-world asymptotic
population [85]. On the other hand, since some existing
standard-of-care (SOC) screening approaches are already effective
for certain cancers, MCED is complementary to conventional SOC
methods for increasing cancer detection rates rather than
replacing them [16]. Overall, multi-omics-based strategies are
very promising to improve the performance of early cancer
detection and MCED may transform the landscape of cancer
screening.

MRD DETECTION OF LIQUID BIOPSY
Molecular/minimal residual disease (MRD) detection is another
important application in cancer management. MRD usually
denotes the small number of residual tumour cells left behind

after cancer treatment (e.g., surgery) that are not able to be
detected with current medical imaging modalities and may
eventually result in relapse or metastasis. Traditional methods
for surveilling disease relapse of patients often undergo imaging
scans of CT and/or PET and clinical assessment. Moreover,
adjuvant treatments (e.g., chemotherapy and/or radiotherapy)
are often provided to high-risk patients after surgery in many
cancer types to reach a complete cure. Although such decision-
making of adjuvant therapy is traditionally made based on several
clinical and pathological factors (e.g., node and metastasis (TNM)
staging system), none of these factors can effectively assess
the MRD.
If MRD can be early detected during a disease-free follow-up

period, it will open a valuable time window for identifying the
patients who will ultimately relapse to improve their outcomes
through tailored therapy [20]. Previous studies have revealed that
blood-based MRD detection could identify the disease at a low
level and provide multiple months of lead time prior to the
radiographic clinical relapse [19–21, 93, 94]. Moreover, ctDNA was
shown as the strongest prognostic marker compared with
conventionally used risk markers based on multivariable analysis
[20, 95]. Specifically, postoperative patients with detectable ctDNA
can be classified as high-risk, providing valuable guidance for the
following treatment decisions [96]. Therefore, MRD monitoring is
appealing to monitoring disease relapse and stratifying cancer
patients after treatment, which may revolutionise cancer manage-
ment. It could transform approaches for patient stratification and
recurrence prediction, as well as benefit precision oncology in
terms of guiding de-escalation or escalation of adjuvant therapy
and increasing the curable possibility while minimising unneces-
sary toxicities of treatment [97].

TUMOUR-INFORMED AND TUMOUR-NATIVE MRD
MONITORING BASED ON MULTI-OMICS DATA
Existing approaches developed for MRD detection can be mainly
grouped into tumour-informed and tumour-native/uninformed
methods according to whether the prior information is used.
Currently, most of the reported MRD detection assays are tumour-
informed. Those methods usually identified the tumour-derived
mutations specific to patients first based on tumour tissues and
related controls, then track these precise genomic alterations in
cfDNA [19–21]. The performance of MRD detection using single
omics is still limited, especially for cancer patients with a very low
tumour burden or ctDNA concentration. Same to the aforemen-
tioned early cancer detection, multi-omics strategies can also
improve the performance of MRD monitoring (Table 2). For
instance, Cai et al. revealed that integrative analysis of ctDNA
mutations and Des-Gamma-Carboxy Prothrombin (DCP) could
increase the sensitivity in MRD detection of resected patients with
hepatocellular carcinoma (HCC) [98]. It could generate better
prognostic value for both overall survival (OS) and relapse-free
survival (RFS) than using ctDNA or DCP alone. Furthermore,
Radovich et al. showed that the combination of ctDNA and CTCs is
also able to improve the performance of MRD detection for early-
stage Triple-Negative Breast Cancer patients after neoadjuvant
chemotherapy [99]. Their method could enhance the prediction of
disease recurrence and clinical outcomes of patients. Additionally,
Przybyl et al. found that the MRD detection confidence in
leiomyosarcoma patients could be substantially improved using
a combinatorial approach of CAPP-Seq for SNV and indel
identification, and genome representation profiling for CNA
detection [100]. Their strategy benefited from the detection of
different types of genomic alterations in ctDNA to increase the
number of molecular markers for plasma tracking. Therefore, these
tumour-informed studies demonstrated that multi-omics-based
methods outperform the approaches using only one type of
tumour signal for MRD monitoring.
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In contrast, tumour-naive assays aim to detect MRD using
plasma only and do not rely on any prior knowledge of tumour
tissues. For patients with insufficient or unavailable tumour
tissues, tumour-naive strategies are the preferred choice since it
is impracticable to employ a tumour-informed approach. Most of
the currently reported tumour-naive assays for MRD detection
were measured with a static panel based on preselected
actionable/hotspot mutations or DNA methylation of specific
genes in corresponding cancers. However, due to the tumour’s
inherent heterogeneity and a limited number of variants or DNA
methylation markers for tracking, the inherent limitations of those
tumour-naive methods may restrict the performance of MRD
detection. Thus, joint analysis of multi-omics data provides great
opportunities to improve tumour-naive MRD detection (Fig. 2,
Table 2). For example, Parikh et al. demonstrated that the
combination of genomic and epigenomic tumour signatures can
allow effective tumour-naive MRD detection in CRC patients [101].
Their multi-omics method could increase sensitivity by 25–36%
versus genomic signatures alone, producing similar sensitivity and
specificity to previously reported tumour-informed approaches.
Using a similar strategy, Burgener et al. showed that tumour-
uninformed detection based on joint analysis of genetic mutations
and methylation changes could facilitate MRD detection for head
and neck squamous cell carcinoma [102]. They showed that their
multi-omics approach was suitable for the scenario of low ctDNA
abundance. Therefore, integrative analysis of different types of
signals in the blood for tumour-naive MRD detection could also
improve the performance compared to using a single
modality alone.
Generally, tumour-informed and tumour-naive strategies have

distinct advantages and disadvantages. The performance of MRD
detection for tumour-informed methods could be enhanced with
the known information on tumour-derived mutations [90, 91].
However, tumour-informed approaches may face several chal-
lenges and limitations. First, if the cancer patients are not eligible
for surgery or the surgical specimen is insufficient for sequencing
because of low tumour cellularity, quality, or DNA yield (e.g.,
neoadjuvant therapy influence), it would preclude the tumour-
informed approaches [103]. Second, tumour-informed
approaches may suffer from high costs and long turnaround
times because of the dissection of both tumour and plasma
samples. By contrast, tumour-naive methods for MRD detection
may possess several advantages, such as less turnaround time
due to no tumour tissue analysis, greater flexibility, and
potentially lower cost. It can be conducted just based on the
plasma draw of the patients no matter whether the tumour
tissue is sufficient or inadequate, or non-available. Thus, tumour-
naive assays provide an alternative approach for MRD detection;
however, they still lack enough performance validation and
breadth of supporting data [104]. Additionally, the specificity of
MRD detection is largely impacted by the biological noise
resulting from germline and CHIP mutations, tumour-naive
approaches could be susceptible to the background noise
owing to the lack of guidance information from primary
tumours. Therefore, tumour-informed and tumour-naive strate-
gies have distinct suitable scenarios for MRD detection.
Notably, the sensitivity of reported tumour-informed and

tumour-naive MRD approaches remains modest, great efforts are
needed to improve the assay performance. Increased sensitivity
for MRD detection can further avoid inappropriate selection of
high-risk patients to receive less intensive therapy or low-risk
patients to take unnecessary treatment. The low ctDNA concen-
tration is one main factor hindering MRD detection, which
requires the methods should be very sensitive. Strategies for
controlling sequencing artifacts could be useful, such as applying
UMIs to mitigate the PCR error effect and other approaches for
reducing background noise [5, 105–107]. For instance, Dai et al.
recently presented a convenient and versatile strategy for

accurate mutation quantitation below 0.01% VAF by integrating
variant enrichment into UMI quantitation [108].
On the other hand, serial blood testing should be conducted for

patients (including both relapsing and non-relapsing patients) to
establish the PPVs and negative predictive values (NPVs). Because
an effective assay needs to demonstrate that the results of MRD
positivity and negativity should remain reliable over time for
recurrence or response monitoring. Moreover, serial blood sample
analysis is an effective way to improve relapse prediction
compared to the single time point analysis. For example, recent
studies showed that serial ctDNA assessment for the patients with
surveillance draws achieved significantly higher sensitivity of MRD
monitoring compared to single ctDNA analysis in colorectal cancer
[20, 95]. Serial blood testing is also crucial for proving the lead
time from first MRD detection to radiographic recurrence (e.g., CT).
If an MRD test shows higher sensitivity than other assays, it is
expected to exhibit a longer lead time for detecting the
recurrence when the tumour burden is lower and more curative.
Additionally, the combination of ctDNA analysis and clinical risk
assessment after treatment could further benefit patients’ survival
prediction and decision-making guidance [95]. Besides, DNA
methylation and other epigenomic modalities, as well as DNA
fragmentation patterns and motifs are also appealing for
enhancing MRD detection [27, 32, 109] despite they are still not
well established. Consequently, we envision that the innovation of
experimental protocols and the development of multi-omics
methods will improve the performance of MRD monitoring for
both tumour-informed and tumour-naive tests.

TREATMENT RESPONSE AND RESISTANCE SURVEILLANCE
BASED ON MULTI-OMICS DATA
In addition, the liquid biopsy also holds great promise to monitor
treatment response and resistance. Specifically, treatment
response surveillance is valuable to prevent ineffective therapies,
avoid unnecessary side effects, and evaluate the efficacy of novel
therapeutics [22, 110]. Traditional approaches for treatment
response assessment often rely on serial imaging; however,
radiographic measurements are unable to accurately detect the
changes in tumour burden. It has been shown that serial changes
of ctDNA in plasma were superior to traditional CT imaging for
treatment response monitoring, having the potential to reflect
treatment response before imaging [22]. For example, Dawson
et al. observed that the increase of ctDNA level was closely
associated with the disease progression of breast cancer, which
could lead an average of 5 months to its discovery on
radiographic imaging [46]. Previous studies also revealed that
liquid biopsy could enable effective tracking of lethal clones
during CRC treatment with EGFR-targeted therapies [111, 112].
Moreover, blood-based NGS methods have been successfully
applied to track tumour evolution of metastatic cancers in
response to treatment with serial plasma samples in different
cancers (e.g., advanced lung, breast, and ovarian cancers) [113].
Besides, serial ctDNA analyses during and after adjuvant
chemotherapy (ACT) could allow the assessment of ACT efficacy
[95, 114]. Liquid biopsy was able to monitor the response of
diverse chemotherapeutic drugs, including palbociclib, bevacizu-
mab, and fulvestrant, among others [115–117]. Moreover, Qiu
et al. found that postoperative ctDNA status could guide ACT,
where postsurgical ctDNA positive patients benefited from ACT
rather than the ctDNA negative patients [118]. Accordingly, liquid
biopsy is valuable for promoting the surveillance of treatment
response.
Joint analysis of multi-omics data is also an appealing strategy

to improve assay performance for treatment response surveillance
compared to the methods based on single modality data (Fig. 2,
Table 2). For example, Lapin et al. revealed that the combination
of cfDNA levels and cfDNA fragment size could enhance the
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prediction of disease outcomes for advanced pancreatic cancer
patients than using one type of data alone [119]. For NSCLC, Nabet
et al. showed that integrative analysis of ctDNA and circulating
immune cells could discriminate the patients with a durable
response to immunotherapy from those without a durable
response [120], while Anagnostou et al. found that both ctDNA
and T cell receptor dynamics were reflective for the pathologic
response to immune checkpoint blockade [121]. Using a different
strategy, Paoletti suggested that integrating CTC and ctDNA
biomarkers was superior to a single biomarker for patients’
outcome prediction and resistance mechanism exploration for
metastatic breast cancers with endocrine therapy [122]. Addition-
ally, Garlan et al. revealed that early change in ctDNA concentra-
tion measured by quantitative analysis of gene mutation (TP53,
KRAS, and BRAF) or hypermethylation (WIF1 and NPY) could
effectively predict the therapeutic efficacy in metastatic colorectal
cancer patients [117]. Thus, these studies showed that multi-
omics-based blood biopsy can effectively improve the surveillance
of treatment response and resistance to cancers. Notably, more
prospective studies are essential to further systematically evaluate
whether blood-based assays can accurately predict the efficacy of
therapy in real time.

CHALLENGES AND FUTURE DIRECTIONS
With the innovation of approaches for precise cancer detection
and monitoring, liquid biopsies will likely transform cancer
management and become a routine part of clinical practice in a
non-invasive and real-time way. However, many challenges
remain to be resolved to further improve the performance of
blood-based assays. First, the ctDNA levels of most solid tumour
types in blood plasma are generally low due to limited ctDNA
shedding, especially under the conditions of early-stage cancers
and after definitive treatment (e.g., tumour resection)
[5, 19, 47, 50]. Moreover, the half-life of ctDNA is short and the
contamination, loss, or degradation of ctDNA during sample
processing may lead to biased and inaccurate results and
conclusions [123, 124]. Therefore, it is crucial to standardise the
procedures of sample selection, collection, processing, enrichment
as well as analysis. Additionally, different somatic mosaicisms,
especially those cancer-unrelated CHIP mutations, could further
confound the performance of blood-based assays [91, 125]. It is
worth noting that CHIP mutations are age-related and often show
higher frequency in older people than younger individuals
without clinically apparent haematologic disease [126–129].
Accordingly, appropriate controls are essential to mitigate such
effects for identifying and tracking real cancer-specific mutations.
On the other hand, most of the published studies regarding

early cancer detection were mainly based on the case–control
cohort rather than the population without symptoms. Although
they achieved high performance, their results were not fully
representative of a real-world screening population. Before clinical
application, further large-scale prospective validation in an
asymptomatic population will be important and necessary [85].
Moreover, preanalytical considerations that could affect liquid
biopsy are worthy to be further explored, such as the type and
quantity of specimen, storage conditions, sampling time points,
clinical variables, as well as biological factors of patients [130].
Additionally, novel experimental strategies for reducing sequen-
cing artifacts and noise as well as more advanced bioinformatics
methods for improving joint analysis of different types of data are
also in urgent need.
Besides those commonly interrogated tumour-associated sig-

nals in liquid biopsy, other cancer-related features are also worth
to be systematically evaluated in the future, including TEPs,
tumour exosomes, ctRNAs, metabolites, and tumour microorgan-
isms [6]. The combination of different omics data with radiological
imaging and diverse clinical risk factors could further improve the

performance [6, 24]. Furthermore, the analytical validity (including
sensitivity, specificity, limit of detection, PPV, NPV, and robustness)
of distinct liquid biopsy approaches also need to be further
evaluated and optimised. Remarkably, liquid biopsy can comple-
ment conventional approaches for better improvement of cancer
management rather than fully supplant those traditional methods
with proved clinical efficacy [23].

CONCLUSION
Collectively, multi-omics-based liquid biopsy through integrative
analysis of different types of data is an appealing strategy to
improve the performance of early cancer identification and TOO
prediction, MRD monitoring, and surveillance of treatment
response and resistance. The innovation and advances of liquid
biopsy in both experimental protocols and bioinformatics
methods will gradually transform clinical management and reduce
the mortality and morbidity of various cancers.
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