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Robustness of the Data-Driven Identification algorithm
with incomplete input data

Marie Dalémat, Michel Coret, Adrien Leygue, and Erwan Verron

Institut de Recherche en Génie Civil et Mécanique (GeM), UMR CNRS 6183, École Centrale de Nantes, France

Identifying the mechanical response of a material without presupposing any constitutive equation is
possible thanks to the Data-Driven Identification algorithm developed by the authors. It allows to measure
stresses from displacement fields and forces applied to a given structure; the peculiarity of the technique is
the absence of underlying constitutive equation. In the case of real experiments, the algorithm has been
successfully applied on a perforated elastomer sheet deformed under large strain. Displacements are
gathered with Digital Image Correlation and net forces with a load cell. However, those real data are
incomplete for two reasons: some displacement values, close to the edges or in a noise-affected area, are
missing and the force information is incomplete with respect to the original DDI algorithm requirements.
The present study proves that with appropriate data handling, stress fields can be identified in a robust
manner. The solution relies on recovering those missing data in a way that no assumption, except the
balance of linear momentum, has to be made. The influence of input parameters of the method is also
discussed. The overall study is conducted on synthetic data: perfect and incomplete data are used to prove
robustness of the proposed solutions. Therefore, the paper can be considered as a practical guide for
implementing the DDI method.

Keywords Data Driven Identification, Digital Image Correlation, incomplete data, stress measurement

1 Introduction

Constitutive equations are historically essential in Mechanics of Materials to perform analytical
or numerical calculations: they close the problem when combined with mechanical equilibrium.
In practice, the identification procedure consists in choosing or deriving a constitutive model
that describes well the material response. Then, the calibration of the model parameters has to
be done ideally considering multiple deformation states (uniaxial tension, pure shear, biaxial
tension...), which renders difficult the experimental process. These steps are often done iteratively
to end up with a robust and well-calibrated constitutive model. With the evolution of full-field
measurement techniques such as Digital Image Correlation (Sutton et al. 2009), identification
methods are constantly being improved, specifically with non-standards tests. For example, Avril
et al. (2008) and Roux et al. (2020) proposed an overview of identification techniques such as the
Virtual Fields Method or the Finite Element Model Updating Method. Concomitantly, with the
emergence of Data Sciences, other methods are proposed: for example, Furukawa et al. (1998)
and Yang et al. (2019) trained a neural network for identification purposes.

Here, a new path is chosen: identifying the material response with no underlying constitutive
equation. Indeed, it is possible to use the previous techniques (full-field methods and Data
Sciences) to create rich databases that can be used for identification but also for simulation.
It overcomes the difficulties in getting a robust identification of the model parameters. This
has been introduced in (Kirchdoerfer et al. 2016) where the constitutive equation is replaced
by a discrete database of strain-stress couples. The corresponding approach is referred to as
Data-Driven Computational Mechanics (DDCM). Slightly different formulations of this solver are
proposed in (Ayensa-Jiménez et al. 2018; Kanno 2018; Kirchdoerfer et al. 2017; Nguyen et al. 2018)
and several extensions are discussed in (Kirchdoerfer et al. 2018; Conti et al. 2018; Eggersmann
et al. 2019).

Concerning material characterization, non-parametric approaches are proposed in (Latorre
et al. 2020; Crespo et al. 2019) in which the strain energy function of a hyperelastic material is not
presupposed but expressed with splines. In (Amores et al. 2020) splines are further used to build a
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structure-based non-parametric constitutive manifold of the material, using simple experimental
tests which explicitly provide the stress values. Furthermore, it is possible to account for the
thermodynamic consistency of the data-driven procedure through well established formalism as
proposed by González et al. (2019).

For more complex testing conditions, the stress field is heterogeneous and cannot be obtained
in a straightforward manner. In (Réthoré et al. 2018), a decomposition of the strain field obtained
with Digital Image Correlation is made in order to compute the stress field without constitutive
equation. In (Seghir et al. 2018), experimental dynamic measurements are used in the balance
equations so that stress fields can be directly computed. Additionally, several manifold learning
approaches have been proposed and validated on synthetic data to identify a material constitutive
manifold, see for example (Ibañez et al. 2017; Kanno 2021).

In the present paper, a specific algorithm called Data Driven Identification (DDI) is considered;
it has been recently proposed in (Leygue et al. 2018). It allows to identify heterogeneous stress
fields from measured displacement fields and external forces, without constitutive equation. It
relies on the availability of heterogeneous and rich data which can be smartly clustered so that a
strain-stress database is built without constitutive equations. It has been validated with synthetic
data (Leygue et al. 2018) and its application to real data has been recently assessed (Dalémat et al.
2019). It is an innovative tool to measure stress fields, from DIC gathered displacement fields and
net forces measured by load cells.

The difficulty in applying the DDI algorithm to real data lies mainly in the incompleteness
and noisiness of data in some areas of the samples. Indeed, unlike a synthetic problem where
everything is perfectly known, neither all forces nor all displacements can be perfectly measured;
these difficulties are overcome by making preprocessing choices (both on the two intrinsic
parameters of the algorithm and on the experimental input data). The so-called preprocessing step
transforms raw input data to well-conditioned input data with consistent parameters for the DDI
algorithm. The present work demonstrates the robustness of the DDI algorithm when applied to
incomplete data: several possible preprocessing choices are compared so that the proper one
can be applied with confidence. It is to note that although the discussion is here illustrated
on a single non-linear hyperelastic case study, it stems from the experience accumulated in
applying DDI to many cases involving synthetic and real data, and linear and non-linear material
behaviors (Leygue et al. 2018; Dalémat et al. 2019; Stainier et al. 2019).

The paper is organized as follows. First, a brief recall of the algorithm is proposed in order to
highlight its optimal parameters and input data. Then, a case study is built to study several
preprocessing choices. Synthetic data are considered for which the reference stress response is
known. These synthetic data are modified to simulate incomplete data representative of reality.
Then, a parametric study is conducted to find the proper preprocessing choice. It focuses on:

(i) the intrinsic parameters (of the algorithm) when using the DDI with perfect data;
(ii) the preprocessing step for incomplete input data (missing displacements and forces);

Finally, the proper preprocessing choice is summarized so that the DDI method can be applied
with confidence on real (i.e. partial and noisy) data. It gives the reader the possibility to implement
him/herself the DDI method for real data.

2 Recall of the Data Driven Identification algorithm

This section is recalling the DDI algorithm so that its optimal parameters and input data are
highlighted. The Data Driven Identification (DDI) (Leygue et al. 2018) corresponds to the inverse
method of Data Driven Computational Mechanics (DDCM) derived in (Kirchdoerfer et al. 2016).
This method identifies the complete response of a structure without using constitutive equation,
from a large database.

2.1 Input data

We consider a 2D-meshed geometry, deformed over 𝑁𝑋 increments indexed by 𝑋 . For this
geometry, the following data are the inputs of the algorithm and are considered to be available:
(I-1) the nodal displacements u𝑋𝑗 , 𝑗 being the node number. The strain derived from the

displacements is the Hencky true strain tensor ln v. It is defined from b, the left Cauchy-
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Green strain tensor, by 2 ln v = ln b with b = FF⊤, F being the deformation gradient tensor.
In practice, a Digital Image Correlation software provides displacement fields on a grid. A
mesh with associated connectivity is built from it to compute F,

(I-2) the matrix B𝑋
𝑒 𝑗 which encodes both geometry and connectivity, 𝑒 being the quadrature

point number. In particular, the mechanical balance can be evaluated at all nodes by:∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 = f𝑋𝑗 ∀𝑋, 𝑗, (1)

where𝑤𝑋
𝑒 is the integration weight of point 𝑒 at loading step 𝑋 ,

(I-3) the nodal forces f𝑋𝑗 . These are zero in the absence of body forces, excepted for boundary
nodes. Additionally, the method has two intrinsic parameters:

(Inp-1) the size 𝑁 ∗ of the (stress-strain) database that samples the material response,
(Inp-2) the positive definite tensor C that defines the distance between two points in the phase

space (here, the stress-strain space).

2.2 Output of the method

After convergence is achieved, the 𝑁𝑋 mechanical problems are solved and the method provides:
(O-1) the stress fields 𝝈𝑋

𝑒 that satisfy the mechanical balance in each node 𝑗 according to
Equation (1). The stress 𝝈𝑋

𝑒 (calculated) and the strain ln v𝑋𝑒 (measured) are referred to as a
mechanical state, as they are mechanically admissible (balanced and compatible),

(O-2) the 𝑁 ∗ material states (ln v∗𝑖 ,𝝈∗
𝑖 ), 𝑁 ∗ being chosen by the user (Inp-1). These material

states can be interpreted as a sampling of the material strain-stress response surface. Their
distance from mechanical states is defined by a norm | | · | |2

C
defined in Equation (2) where

C is a fourth order positive definite tensor also chosen by the user (Inp-2).

2.3 Solver

The algorithm aims at finding material states that are as close as possible to statically and
kinematically admissible mechanical states (the latter being half known: the strain field is known,
the stress field not), according to the norm | | · | |2

C
defined by:

| | (ln v,𝝈) | |2C =
1
2 (ln v : C : ln v + 𝝈 : C−1 : 𝝈) . (2)

Although this norm has the form and the units of an energy density through C [Pa] it is not
related to any actual energy in the system: the magnitude of C simply allows to weight the
respective contributions of strain and stress.

The problem is formulated as follows:

solution = argmin
𝝈𝑋
𝑒 ,(ln v∗𝑖 ,𝝈∗

𝑖 )
E(𝝈𝑋

𝑒 , ln v∗𝑒
𝑋 ,𝝈∗

𝑒
𝑋 ), (3)

with

E(𝝈𝑋
𝑒 , ln v𝑋𝑒∗,𝝈

𝑋
𝑒∗) =

∑︁
𝑋 ′

∑︁
𝑒′

𝑤𝑋 ′
𝑒′ | | (ln v𝑋

′
𝑒′ − ln v𝑋 ′

𝑒′∗,𝝈
𝑋 ′
𝑒′ − 𝝈𝑋 ′

𝑒′∗) | |2C, (4)

and subject to the constraints:
• satisfy Equation (1),
• material state (ln v∗𝑒𝑋 ,𝝈∗

𝑒
𝑋 ) associated to the element 𝑒 of increment 𝑋 belongs to the

database (ln v∗𝑖 ,𝝈∗
𝑖 )𝑁

∗
𝑖=1.

Therefore, the DDI outputs are:
• the mechanical states,
• the database of material states, and
• the mapping between mechanical and material states.
In (Leygue et al. 2018), the validity of the method has been demonstrated with perfect

synthetic data, from (I-1) to (I-3).
In the experimental validation (Dalémat et al. 2019), the algorithm has been applied with

incomplete data that are well-preprocessed. The purpose of this paper is to carefully study the
preprocessing choices and their influence on the robustness of the algorithm.
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3 Building the case study

In this section, a case study is developed to study several preprocessing choices. First, features of
usual real data are presented then several preprocessing options are proposed, with a focus on
missing data. Finally, the methodology for the next section is summarized.

3.1 From idealized to realistic input data

Experimental data might have missing information and can be noisy. Here, the construction of
the actual realistic problem from perfect synthetic data is explained thanks to a 2D example.
Noise on the displacement field measurements has to be taken into account. The typical noise in
DIC is considered to have an amplitude of the order of 1 pixel, independently of the measured
displacement. The discussion of the effect of noisy displacement values is beyond the scope of
this paper and has already been partially addressed in the original DDI publication (Leygue et al.
2018).

3.1.1 Why are some data missing?

The DDI method is applied to a perforated hyperelastic membrane subjected to uniaxial tension.
The mechanical problem and the different notations are provided in Figure 1(a).

ΓH
Hole

Ω
Bulk

ΓT
Top

ΓS
Sides

ΓB
Bottom

(a)

Γ̃H
Ω̃

𝛾C

Γ̃T

Γ̃S

Γ̃B

(b)

Figure 1: Problem formulation: (a) theoretical and (b) real problems with three particular modified
boundaries: top boundary with grip, cluster of missing data and imperfectly defined edges close to hole.

Synthetic data are rendered incomplete according to usual experimental constraints:
• we cannot measure the nodal forces but a net force,
• displacements are sometimes missing in areas called clusters (which are larger than just a
few pixels): the latter are the DIC results when using a software that does not provide
the considered unreliable displacements (due to large strain, noise or loss of speckles for
example),

• displacements are also missing close to edges: both the camera and the DIC software which
works on a manually preselected region cannot resolve the edges of the part. In addition,
most correlation software use rectangular patterns that cannot account for curved edges.

The mechanical problem with real boundaries is thus depicted in Figure 1(b). Also, in
Figure 1, the theoretical boundaries are the top boundary (ΓT) where the force is applied, the sides
boundaries (ΓS) that are free edges, the displacement-free bottom boundary (ΓB) which is clamped
and the hole boundary which is stress-free (ΓH). In the real problem, all the boundaries are close
but not exactly identical to the actual ones. They are noted Γ̃T for the top, Γ̃S for the sides, Γ̃B for
the bottom and Γ̃H for the hole boundaries. Plus, the cluster of missing data is defined by its
boundary denoted 𝛾C.

3.2 Possible preprocessing options for missing data

The preprocessing choices concern both the intrinsic parameters of the DDI method and the way
of dealing with raw data. First, the preprocessing choices regarding the missing data are detailed.

With such experimental data, it is necessary to rewrite some equations of the initial DDI
algorithm given in Section 2. Indeed, handling properly the areas where data are missing is
fundamental to insure robustness. Several possibilities are proposed to deal with the missing data:
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• In the area near the grip, where the force is measured (in the following, the "t-" stands for
the top boundary):
(t-0) In the synthetic case, we know each nodal force f𝑋𝑗 at the top boundary ΓT;
(t-1) Using a load cell, only the sum of the forces f𝑋𝑗 on the top boundary ΓT in the loading

direction nsol is known:∑︁
𝑗∈ΓT

f𝑋𝑗 · nsol = 𝑓 𝑋cell ∀𝑋 . (5)

It is thus possible to define a global equilibrium condition on the boundary, by
combining Equation (1) and Equation (5):∑︁

𝑗∈ΓT

∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 · nsol = 𝐹𝑋cell ∀𝑋 . (6)

(t-2) In the real case, displacements close to the grips are not measured and the true
boundary cannot be considered in the algorithm. Thus, the boundary ΓT cannot be
considered and is replaced by Γ̃T. To deal with the force information, the simplest
solution is to assume that Equation (6) applies also on Γ̃T as follow:∑︁

𝑗∈ Γ̃T

∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 · nsol = 𝑓 𝑋cell ∀𝑋 . (7)

• For clusters of missing displacement values, the objective function Equation (4) cannot
be evaluated in some elements which should be removed from the problem along with
associated nodes (in the following, the “c-” stands for clusters).
(c-1) A simple and naive solution is to simply discard the equilibrium constraint for these

nodes.
(c-2) Another solution is to consider that the boundary of clusters is the boundary of a

mechanically balanced subset. Indeed, a global balance condition is prescribed on
the boundary 𝛾C. This is equivalent to consider a zero net force on this boundary.
This can be easily explained by the Ostrogradsky-Gauss theorem in the continuous
formulation:∫

ΩC

div𝝈 dV =
∫
𝛾C

𝝈 · n dS =
∫
𝛾C

f dS, (8)

which gives, for the discrete formulation:∑︁
𝑗∈𝛾C

∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 = 0. (9)

• For edges close to holes, the perfect case is the one where the mesh boundary coincides
with the real edge of the hole and the free edge condition applies. It is denoted (h-0) and
will be the reference case (in the following, the "h-" stands for the hole boundary). In the
real case, due to the imperfect edge definition, the displacement values in the vicinity of
holes edges are not known. Therefore, the data on the real boundary ΓH are not known and
Γ̃H must be considered instead. On this boundary, several assumptions can be made:
(h-1) The free edge assumption can be adopted if we consider that Γ̃H is really close to ΓH

so the edge is free. This incorrect assumption is likely to introduce a bias in the
predictions.

(h-2) A weaker assumption consists in applying a zero net force on this boundary. It is
verified as the missing matter should be mechanically balanced (like in (c-2)):∑︁

𝑗∈ Γ̃H

∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 = 0. (10)

These strategies to deal with missing data are summarized in Figure 2.
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Γ̃H

ΓH

ΓT

𝛾C

Γ̃T Top boundaryHole boundary

Cluster

ΓT

ΓT

Γ̃T

fcell

fcell

(t-0)

(t-1)

(t-2)

(c-1) (c-2)

(h-0)

(h-1)

(h-2)

ΓH

Γ̃H

Γ̃H

free

free

Figure 2: Summary of the possible preprocessing choices. They concern missing data for three particular
boundaries: top boundary with grip, cluster of missing data and imperfectly defined edges close to hole.

3.3 Methodology in practice

3.3.1 Inputs and parameters

The methodology to investigate the robustness of the DDI is to compare several cases of synthetic
input data that are deteriorated on purpose. The cases are studied with respect to the intrinsic
parameters of the DDI algorithm. As a recall, the inputs of the algorithm are:

• the algorithm parameters (intrinsic to the resolution method): 𝑁 ∗ and C,
• the measured data, especially displacements and forces, which can be incomplete.

Therefore, the discussion is organized as follows:
1. First, the effects of intrinsic parameters on a case where the input data are prefect are

analyzed;
2. Second, the influence of the incomplete measured data is analyzed: the cases of (t-0), (t-1)

and (t-2) related to the top grip are compared, the cases of (c-1) and (c-2) related to the
clusters of missing data are discussed, and finally the cases of (h-0), (h-1) and (h-2) related
to the edges close to the holes are considered.

3.3.2 Reference model

It is necessary to build synthetic data for which the reference response is known. Thus, a standard
Finite Element model (made with the software Abaqus™) is used. The geometry is indicated in
Figure 3 where both the initial and deformed meshes of the problem are presented. The initial
height is denoted ℎ0.

The Ogden model (Ogden 1972) is chosen with the corresponding strain energy density

𝑊 (𝜆1, 𝜆2, 𝜆3) =
𝑛∑︁
𝑖=1

𝜇𝑖
𝛼𝑖

(
𝜆𝛼𝑖1 + 𝜆𝛼𝑖2 + 𝜆𝛼𝑖3 − 3

)
. (11)

The parameters are listed in Table 1. They are identified in (Ogden 1972) to fit experimental
data of treloar𝑠𝑡𝑟𝑒𝑠𝑠 − 𝑠𝑡𝑟𝑎𝑖𝑛1944.N𝑒 = 6108 linear triangular finite elements under plane
stress condition are chosen. The displacements are prescribed using a (𝑥,𝑦) coordinate system
corresponding to the horizontal and vertical directions, respectively. They are given for the top
and bottom boundaries (denoted ΓT and ΓB) by{

𝑢𝑥 = 0 and 𝑢𝑦 = 2ℎ0 on ΓT

𝑢𝑥 = 0 and 𝑢𝑦 = 0 on ΓB.
(12)

The finite element computation is decomposed into 𝑁𝑋 = 21 increments under quasi-static
loading conditions. It gives the reference stresses in each element denoted 𝝈FE. The strain fields,
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Figure 3: Case study of a perforated hyperelastic membrane under uniaxial tension: (a) initial geometry,
(b) mesh after 200 % of total macroscopic strain. On the top nodes, information on force is available while
the bottom ones are clamped.

meshes and loading conditions are used as inputs in the DDI algorithm with the preprocessing
choices introduced in the previous section, resulting in an identified stress field, denoted 𝝈DDI.

Table 1: Ogden parameters to build the reference solution (Og-
den 1972).

Coefficient Value Units
𝜇1 6.18 · 105 Pa
𝜇2 1.18 · 103 Pa
𝜇3 −9.81 · 103 Pa
𝛼1 1.3 −
𝛼2 5.0 −
𝛼3 −2.0 −

3.3.3 Error in stress identification

As the purpose of the DDI is to measure stress field without constitutive equation, the global
error between the stress field identified by the DDI 𝝈DDI and the reference one 𝝈FE is computed
for all loading increments 𝑋 and all elements 𝑒 by

e =

∑
𝑋,𝑒

| |𝝈FE,𝑒𝑋 − 𝝈DDI,𝑒𝑋 | |2∑
𝑋,𝑒

| |𝝈FE,𝑒𝑋 | |2
. (13)

4 Results and discussion

This section presents the results obtained by comparing several cases of incomplete data. The aim
is to determine the proper preprocessing choices that ensure robustness and reliability for stress
identification. The influence of the intrinsic parameters of the DDI algorithm is first discussed
with perfect input data. Then, the incompleteness of input data and the preprocessing choices
associated are discussed.

4.1 Influence of intrinsic parameters

The number of material states 𝑁 ∗ is the parameter that allows to sample more or less finely the
response of the material. It is to be compared to the total number of degrees of freedom of the
problem: 𝑁𝑒 × 𝑁𝑋 = 128 268. We define the sampling ratio 𝑟 ∗ = (𝑁𝑒 × 𝑁𝑋 )/𝑁 ∗ and consider that
it varies between 2 and 104.

The distance to mechanical states (ln v𝑋𝑒 ,𝝈𝑋
𝑒 ) is defined by the norm | | · | |2

C
of Equation (2).

The simplest form for the tensor C is spherical with an amplitude 𝐶 , that is C = 𝐶I where I is the
fourth-order identity tensor. This form aims to equally weight all components of the strain and
stress fields. The tensor 𝐶 is defined accordingly to a pseudo-tangent elasticity modulus of the
behavior model used in finite element analyses: 𝐶0 = 2.3 × 106 Pa. It is computed by the slope of
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the straight line found by the least mean square method in the ( | | ln v| |VM, | |𝝈 | |VM) space (von
Mises norm). Practically, we choose values of 𝐶 ranging from 10−6𝐶0 to 106𝐶0.

Figure 4 shows the identification error after convergence. Figure 4(a) presents the error as a
function of the sampling ratio 𝑟 ∗ for different values of 𝐶 . For each 𝐶 value, the minimum error
(with respect to 𝑟 ∗) is reported. Then, the minimum error (for the optimal value of 𝑟 ∗) in relation
to 𝐶/𝐶0 is shown in Figure 4(b). The error is minimal for 𝑟 ∗ ≈ 20 (10 to 50 depending on the 𝐶
value). A large ratio (not enough material states) implies a sub-sampling of the response and
therefore a significant error. Conversely, a too small ratio (too many material states) does not
provide enough regularization to the stress estimation problem as the behavior is no longer
averaged sufficiently, which also leads to a significant error. It is therefore necessary to choose a
value between these two extrema; similar results are reported in (Leygue et al. 2018).

Figure 4: Influence of the intrin-
sic parameters 𝑁 ∗ (related to 𝑟 ∗)
and 𝐶 without missing data:
(a) error compared to 𝑟 ∗ and
(b) minimum error compared to
𝐶 .
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In addition it is shown that 𝐶 significantly contributes to the convergence of the method: the
higher it is (to a certain extent), the lower the error is. Indeed, the distance defined by the norm
influences the mapping between material and mechanical states. By choosing a large value of 𝐶 ,
the mapping based on strain values is favored, which is relevant since they are measured (and so
reliable) unlike stresses which evolve during the convergence of the algorithm. Finally, 𝑁 ∗ is
more influential than𝐶 : without missing data, a bad choice of 𝑁 ∗ will never be compensated by a
good choice of 𝐶 .

4.2 Influence of the incompleteness of input data

4.2.1 Force input

First, we consider preprocessing choices related to force information: either with all nodal
forces (t-0), or represented by their net value on the true boundary (t-1) or the net force on
the approximate boundary (t-2). The influence of 𝑁 ∗ on the error is reported in Figure 5 for
𝐶 = 103𝐶0. Global errors are similar: a sampling ratio 𝑟 ∗ from 20 to 100 is preferable. It shows
that the DDI results are only slightly influenced by the way these equilibrium conditions are
prescribed on the top boundary.

Figure 5: Influence of force inputs on the error as a
function of 𝑟 ∗ for (t-0) the given nodal forces, and (t-1) and
(t-2) the given net force on respectively the true boundary
and the approximate boundary.

nodal forces on ΓT, input (t-0) 
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For a local insight, Figure 6 presents the nodal forces computed with the stress identified with
the DDI in case (t-1). They are compared to the reference case (t-0). They are really similar which
means that stresses computed with the DDI are almost as perfect as the reference ones, even if
the input in force is the net force only.
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Figure 6: Nodal forces computed
with the identified stress for the case
(t-1) compared to the reference nodal
forces (t-0). Red arrows: nodal forces
recomputed from stress identified by
DDI, case (t-1); black arrows: refer-
ence nodal forces.

4.2.2 Cluster of missing data

We consider the influence of the preprocessing choices related to a cluster : by handling it naively
(c-1) and in a mechanically optimal way (c-2). The influences of 𝑟 ∗ and 𝐶 on the error are shown
in Figure 7.

In the case of a naively handled cluster (c-1), it is difficult to achieve a small error. Too many
or too few material states lead to more important errors. Here, the choice of 𝐶 is crucial: the
larger it is (within a certain limit), the closer we get to a mapping based on strains (which are
known). By simply adding the zero net force condition (c-2) on the boundary, as proposed in
Equation (9), a robustness similar to results without missing data is recovered. In this case, the
choice of 𝐶 is much less critical than that of 𝑁 ∗.

Figure 7: Influence of the prepro-
cessing choice with a cluster on the
error as a function of 𝑟 ∗ and 𝐶 for
(a) case (c-1) naive and (b) case (c-2)
mechanically optimal.

C = C
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101 104103102
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4.2.3 Imperfect resolution close to holes

Finally, we consider the influence of the preprocessing choices in the case of an imperfect
resolution close to the edges, on the boundary Γ̃H. The case of (h-1) the free edge assumption on
this boundary and the case of (h-2) zero net force over the boundary Γ̃H are compared to the
perfect case with no missing data close to the edge (h-0). Errors are plotted for a given 𝐶 with
respect to the sampling ratio 𝑟 ∗ in Figure 8. Considering the free edge assumption leads to a large
error, whereas the globally balanced assumption again induces a small error, close to the ideal
case. Then, it is interesting to study the stress distribution as one approaches the hole: the von
Mises stress is plotted along a line of the sample for the three cases, as depicted in Figure 9. For
the free edge assumption (h-0), the algorithm predicts a misplaced stress increase close to the
wrongly presumed free edge. Stresses are overestimated around the hole and this overestimation
propagates to the bulk by equilibrium relations which are global. Therefore, the best manner to
handle an imperfect edge consists in adopting a mechanically correct assumption: only a zero
net force condition must be enforced. In this case (h-2), the error is similar to the one with no
missing data. The optimal ratio 𝑟 ∗ is again between 20 and 100.
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Figure 8: Influence of preprocessing choice for the hole edge definition on the error as a function of 𝑟 ∗
for a given 𝐶 , for the cases of an imperfectly defined edge close to the hole (with (h-1) the assumption
of free edge, (h-2) the global balance condition) and of a perfectly defined edge (h-0) (left subfigure).
Nodes/elements used in the calculations (right subfigure).
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Figure 9: von Mises stress field (right) and reported values along a horizontal line going through the
sample (left), for the three cases.

4.2.4 Summary

To close this discussion on how to handle properly incomplete input data, Figure 10 presents the
three stress components identified considering the corrections depicted in the top? left-hand side
subfigure. The incomplete input data have to be completed smartly with only the mechanical
balance equation: (t-2), (c-2), (h-2). It leads to results similar to the perfect case: the global error is
less than 0.05.

The preprocessing choices with best robustness for missing data are summarized in Figure 11.
They are selected in the experimental validation of the DDI algorithm (Dalémat et al. 2019).

5 Closure: implementation of the DDI with real data

In this work, the input parameters of the DDI algorithm have been examined, with the objective
of identifying correctly the stress field without constitutive equation. A study of its intrinsic
parameters confirms our previous work. In particular, the consequences of incomplete data
(inherent to experimental data) is analyzed through two aspects: the availability of net forces
instead of nodal forces on the computational mesh, and the difference between the actual part
geometry and the computational mesh. This last aspect appears either through clusters of missing
data (areas of a few pixels/elements) and the imperfect edge definitions close to holes and
boundaries. We show that the robustness of the method is ensured when incomplete data are
managed under a strict mechanical point of view. Although these recommendations are here

10
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Figure 10: Comparison between reference stress fields and identified stress fields with DDI for a geometry
with the proper preprocessing choices for missing data. Colors in 2D histograms represent the histogram
bin probability for each stress component.

illustrated on a single example, they are drawn from our experience in applying DDI to many
cases involving synthetic and real data, linear and non-linear material behaviors (Leygue et al.
2018; Dalémat et al. 2019; Stainier et al. 2019).

To conclude, we propose to adapt the original DDI algorithm to real experimental data. The
boundaries defined in Figure 1 are considered. The solution of the problem is still defined as:

solution = argmin
𝝈𝑋
𝑒 ,(ln v∗𝑖 ,𝝈∗

𝑖 )
E(𝝈𝑋

𝑒 , ln v∗𝑒 ,𝝈∗
𝑒), (14)

with E defined in Equation (4), and subject to the (new) constraints:
• respecting the mechanical balance equations:

– locally:∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 = 0 ∀𝑋,∀𝑗 ∈ Ω̃ ∪ Γ̃B, (15)

– globally:∑︁
𝑗∈Δ𝑋

∑︁
𝑒

𝑤𝑋
𝑒 B

𝑋
𝑒 𝑗 · 𝝈𝑋

𝑒 = FΔ𝑋 ∀𝑋, (16)

with Δ𝑋 representing each boundary on which is applied the net force FΔ𝑋 , at the
increment 𝑋 i.e.:

∗ the top boundary Γ̃𝑋T on which the net force is the one measured by the load cell
𝐹𝑋cellnsol;

∗ the boundary around clusters of missing data 𝛾𝑋C on which a zero net force is
applied;

∗ the boundary around a hole Γ̃𝑋H on which a zero net force is applied;
• ensuring that the material state (ln v∗

𝑒𝑋
,𝝈∗

𝑒𝑋
) associated to the element 𝑒𝑋 belongs to the

database (ln v∗𝑖 ,𝝈∗
𝑖 )𝑁

∗
𝑖=1.

The implementation details can be found in (Leygue et al. 2018). For the intrinsic parameters, it is
advised to choose 𝑁 ∗ so that the sampling ratio 𝑟 ∗ is 100 and to choose C = 𝐶I with 𝐶 ⩾ 103𝐶0,
𝐶0 being the average stiffness of the material and I, the fourth-order identity tensor.
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∑
Γ̃𝐻

f𝑗 = 0

Ω̃
f𝑗 = 0

∑
𝛾𝐶

f𝑗 = 0

∑
Γ̃𝐻

f𝑗 = fcell
fcell

Γ̃𝑆f𝑗 = 0

Figure 11: Summary of the proper preprocessing choice to deal with three particular boundaries (top
boundary with a global force information, cluster of missing data and imperfectly defined edges close to a
hole).
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