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1.  Introduction
The baroclinic instability of large-scale ocean currents generates mesoscale eddies that strongly enhance heat 
and tracer transport. In the Antarctic Circumpolar Current (ACC), the resulting turbulent buoyancy transport 
contributes to setting the slope of the Southern Ocean density surfaces and therefore the deep stratification of 
the neighboring ocean basins (Nikurashin & Vallis, 2011, 2012; Wolfe & Cessi, 2010). Mesoscale eddies have 
a core size comparable to the Rossby deformation radius, a length scale of the order of 60 km at midlatitudes 
and 15 km in the Southern Ocean, smaller than the coarse resolution of most global climate models. Parameter-
izing the transport induced by mesoscale eddies in such global models is thus crucial to obtain realistic ocean 
states that quantitatively reproduce the sloping density surfaces of the Southern ocean and the deep stratification 
of ocean basins. Physically-based parameterizations are inferred from the study of an isolated patch of ocean, 
where baroclinic turbulence has homogeneous statistics in the horizontal directions. The parameterization prob-
lem then consists in determining the scaling behavior of the overall diffusivity in terms of the various control 
parameters (shear flow magnitude, background stratification, bottom friction coefficient, etc.) but also the verti-
cal structure of the various fluxes within the water column. Far more studies have addressed the former task 
(Arbic & Flierl, 2004a, 2004b; Arbic & Scott, 2007; Chang & Held, 2019; Gallet & Ferrari, 2020, 2021; Held & 
Larichev, 1996; Larichev & Held, 1995; Phillips, 1954; Salmon, 1978, 1980; Thompson & Young, 2006, 2007) 
than the latter (Stanley et al., 2020; Yankovsky et al., 2022; Zhang & Wolfe, 2022) in the ocean context. In the 
absence of a better theory many global models assume that the transport coefficients are depth-invariant in the 
ocean interior (see, e.g., Griffies et al., 2005), while other models consider surface-intensified coefficients with 
arbitrary prescriptions for their vertical structure (such as, e.g., assuming that the coefficients are proportional 
to the local squared buoyancy frequency, Danabasoglu & Marshall, 2007; Ferreira et al., 2005; Gent, 2011). The 
latter assumption of surface-intensified transport coefficients is at odds with idealized eddy-resolving channel 
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simulations, which point to a bottom-enhanced buoyancy transport coeffi-
cient instead (Abernathey et al., 2013) (the so-called Gent-McWilliams coef-
ficient, see below).

To improve upon this unsatisfactory state of the art, in this Letter we derive 
a parameter-free prediction for the vertical structure of the turbulent buoy-
ancy flux within the water column. We consider an idealized patch of ocean 
with arbitrary background zonal shear flow and stratification, and β ≠ 0, see 
Figure 1. Water occupies a volume (x, y, z) ∈ [0, L] 2 × [−H, 0] with a stress-
free boundary at z = 0 and a linear-friction boundary condition at z = −H, in a 
frame rotating around the vertical axis with a local Coriolis parameter f0 + βy, 
where y denotes the meridional (North-South) coordinate. The fluid layer is 
density-stratified with an arbitrary profile N(z) for the buoyancy frequency, 
and we restrict attention to a single stratifying agent. We focus on the 
quasi-geostrophic (QG) regime arising for fast rotation and strong stratification 
(Salmon, 1998; Vallis, 2017; Venaille et al., 2011). The base flow consists of an 
arbitrary zonal velocity profile U(z) in thermal wind balance with a z-dependent 
meridional buoyancy gradient ∂yB = −f0U′(z), where the prime symbol denotes 

a vertical derivative. We consider arbitrary departures from this base state with periodic boundary conditions in the 
horizontal directions. We denote as p(x, y, z, t) the departure from the base pressure field, with u = −py the departure 
zonal velocity, v = px the departure meridional velocity, b = f0 pz the departure buoyancy and w the subdominant 
(ageostrophic) vertical velocity. Non-dimensionalizing time and space using |f0| −1 and H, the dimensionless base 
flow is written as �∕|�0|� = ���(�) , where Ro = |U(0)/f0H| is the Rossby number associated with the surface 
speed of the base flow and �(�) denotes the base-flow profile normalized at the surface (|�(0)| = 1) . For brevity 
we use the same symbols for the dimensionless variables, except for the notation 𝐴𝐴 𝛽𝛽 = 𝛽𝛽𝛽𝛽∕𝑓𝑓0 .

Consider a tracer τ stirred by the 3D flow and subject to horizontally uniform gradients (at lowest order in Ro) 
𝐴𝐴 𝐴𝐴

(𝜏𝜏)
𝑦𝑦 (𝑧𝑧) and 𝐴𝐴 𝐴𝐴

(𝜏𝜏)
𝑧𝑧 (𝑧𝑧) in the meridional and vertical directions, respectively. The QG evolution equation for τ reads:

��� +���(�) �� + � (�, �) = −���(�)
� (�) −��(�)

� (�) +� ,� (1)

where the Jacobian is J(g, h) = gxhy − gyhx and 𝐴𝐴 𝜏𝜏 denotes small-scale diffusion.

Denoting with an overbar 𝐴𝐴 ⋅  a time average together with a horizontal area average, the eddy-induced meridional 
and vertical fluxes of τ are related to the background gradients by a Gent-McWilliams/Redi (GM/R) diffusion 
tensor (Gent, 2011; Gent & Mcwilliams, 1990; Griffies, 1998; McDougall & McIntosh, 2001; Redi, 1982):
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where the Redi diffusivity KR(z) encodes diffusion along the mean isopycnal direction, the GM coefficient 
KGM(z) encodes the advective (or skew-diffusive) transport, and we denote the isopycnal slope of the base 
state as (�) = ���′∕�2 . While (2) is often introduced based on physical intuition and educated guesses, we 
have recently proposed a direct derivation of this diffusion tensor from the QG dynamics of the present system 
(Meunier et al., 2023). For completeness we briefly recall a few results from this recent study.

The QG potential vorticity (QGPV) 𝐴𝐴 𝐴𝐴 = Δ⟂𝑝𝑝 + 𝜕𝜕𝑧𝑧
[

𝑝𝑝𝑧𝑧∕𝑁𝑁2(𝑧𝑧)
]

 is governed by Equation 1 with τ = q, �(�)
� = 0 and 

𝐴𝐴 𝐴𝐴
(𝑞𝑞)
𝑦𝑦 = 𝛽𝛽 − 

′(𝑧𝑧) , while buoyancy is governed by Equation 1 with τ = b, 𝐴𝐴 𝐴𝐴
(𝑏𝑏)
𝑧𝑧 = 𝑁𝑁2 and �(�)

� = −���′ . Substitu-
tion of these background gradients into the flux-gradient relation (2) indicates that KGM(z) and KR(z) can alterna-
tively be thought of as the effective diffusivities associated with the meridional transport of b and q, respectively:

��� = − ��
�(�)

�

= ��
�� �′ , �� = −

��
�(�)

�

=
��

 ′(�) − �̃
.� (3)

Because the vertical velocity vanishes at the surface, the governing equations for q and b admit the same limiting 
form as one approaches the top boundary. Both tracers are advected by the surface horizontal flow, fluctuations 
being induced by distortions of a horizontally homogeneous background meridional gradient. The associated 

Figure 1.  An idealized patch of ocean. A layer of fluid is subject to global 
rotation at a rate that varies linearly with the meridional coordinate y. The 
fluid is density stratified with an arbitrary profile N(z) for the buoyancy 
frequency. The background zonal shear flow has an arbitrary profile U(z). 
This flow coexists with a background meridional buoyancy gradient. Friction 
damps kinetic energy on the ocean floor.
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meridional diffusivity is thus equal for b and q at the surface: 𝐴𝐴 𝑣𝑣𝑣𝑣(0)∕𝐺𝐺
(𝑏𝑏)
𝑦𝑦 (0) = 𝑣𝑣𝑣𝑣(0)∕𝐺𝐺

(𝑞𝑞)
𝑦𝑦 (0) . Provided the friction 

coefficient is small, the same holds near the bottom boundary, at a depth z = −1 + located just above the bottom 
Ekman layer: 𝐴𝐴 𝑣𝑣𝑣𝑣(−1+)∕𝐺𝐺

(𝑏𝑏)
𝑦𝑦 (−1+) ≃ 𝑣𝑣𝑣𝑣(−1+)∕𝐺𝐺

(𝑞𝑞)
𝑦𝑦 (−1+) (while the friction-induced vertical pumping velocity is 

crucial for damping kinetic energy through the stretching of planetary vorticity, it has a negligible direct contri-
bution to buoyancy transport for low drag coefficient). Using Equation 3 we recast these equalities as:

𝐾𝐾𝐺𝐺𝐺𝐺 (0) = 𝐾𝐾𝑅𝑅(0), 𝐾𝐾𝐺𝐺𝐺𝐺

(

−1+
)

≃ 𝐾𝐾𝑅𝑅

(

−1+
)

.� (4)

The two equalities in Equation 4 are illustrated numerically in Meunier et al. (2023). An additional constraint 
on KGM and KR is obtained by substituting the definition of q into the meridional QGPV flux 𝐴𝐴 𝑣𝑣𝑣𝑣 . After a few 
integrations by parts one obtains the Taylor-Bretherton relation 𝐴𝐴 𝑣𝑣𝑣𝑣 = d

(

𝑣𝑣𝑣𝑣∕𝑁𝑁2

)

∕d𝑧𝑧 (Bretherton, 1966; Dritschel 
& McIntyre, 2008; Smith & Marshall, 2009; Taylor, 1915; Young, 2012), and expressing the meridional fluxes 
using Equation 3:

𝐾𝐾𝑅𝑅

(


′ − 𝛽𝛽

)

=
d

d𝑧𝑧
(𝐾𝐾𝐺𝐺𝐺𝐺 ).� (5)

In the following we show that the constraints (4–5) allow for a perturbative derivation of the vertical structure of 
the eddy-induced buoyancy flux within the water column in two situations of interest.

2.  Case I: The Impact of Weak β on Eady Turbulence
The QG Eady model corresponds to depth-independent stratification N 2 and shear �′ (linear zonal velocity 
profile, �(�) = � + 1 ), together with β = 0. As discussed in Gallet et  al.  (2022), there is no background PV 
gradient in this setup and therefore a solution can be obtained by assuming q = 0 in the bulk of the domain. The 
meridional QGPV flux then vanishes, and from relation (5) we conclude that the meridional buoyancy flux, and 
thus KGM, are independent of z.

As established in Meunier et al. (2023), KR(z) is given by the Taylor-Kubo eddy diffusivity coefficient associ-
ated with the horizontal geostrophic flow. That is, at every depth z the coefficient KR(z) is given by the integral 
of the Lagrangian correlation function of the horizontal geostrophic flow. Because in the low-drag limit the 
Eady flow barotropizes, we expect the horizontal geostrophic flow to be depth-invariant, which leads to KR 
being independent of z. Using the boundary relation (4) we conclude that the GM and Redi coefficients are 
depth-invariant and equal to one another. The low-drag Eady model thus represents one limiting situation for 
which the depth-invariance and equality of the GM and Redi coefficients can be established. We stress the fact 
that the equality of the GM and Redi coefficients has been established based on the properties of the low-drag 
equilibrated state, namely barotropization, and the theory presented below is really a theory for such a low-drag 
equilibrated—or “turbulent”—state. By contrast, the theory would not hold to predict the vertical structure 
of an eigenmode obtained using linear stability analysis, whose transport properties typically display strong 
depth-dependence (see Supporting Information S1).

Consider now the impact of a weak planetary vorticity gradient on Eady turbulence, that is, a Charney model 
with weak β. Within QG, the impact of β is characterized by the product of β with the squared deformation 
radius over the typical velocity of the background shear flow (Chang & Held, 2021; Charney, 1947; Gallet & 
Ferrari,  2021; Thompson & Young,  2007). We thus define the (z-invariant) parameter 𝐴𝐴 𝐴𝐴∗ = 𝛽𝛽𝛽𝛽2∕𝑅𝑅𝑅𝑅 . In the 
perturbative regime β* ≪ 1 the correction to the z-invariant β* = 0 situation is small, and a standard expan-
sion leads to 𝐴𝐴 𝐴𝐴𝑅𝑅(𝑧𝑧) = 𝐾𝐾𝐺𝐺𝐺𝐺 (𝑧𝑧)[1 + (𝛽𝛽∗)] , where the 𝐴𝐴 (𝛽𝛽∗) correction vanishes both at the top and at the 
bottom boundary in the low-drag weakly diffusive regime, see Equation 4. Substitution into Equation 5 yields 

𝐴𝐴 𝐴𝐴 ′
𝐺𝐺𝐺𝐺

(𝑧𝑧) = −𝛽𝛽∗𝐾𝐾𝐺𝐺𝐺𝐺 (𝑧𝑧) + 
(

𝛽𝛽2
∗

)

 and, neglecting the 𝐴𝐴 
(

𝛽𝛽2
∗

)

 correction, 𝐴𝐴 𝐴𝐴𝐺𝐺𝐺𝐺 (𝑧𝑧) = const. × 𝑒𝑒−𝛽𝛽∗𝑧𝑧 . Substituting this 
expression for KGM(z) into Equation 3 and denoting the overall buoyancy flux as 𝐴𝐴 ⟨𝑣𝑣𝑣𝑣⟩ = ∫

0

−1
𝑣𝑣𝑣𝑣(𝑧̃𝑧)d𝑧̃𝑧 , we obtain a 

parameter-free prediction for the vertical structure 𝐴𝐴 𝑣𝑣𝑣𝑣(𝑧𝑧)∕⟨𝑣𝑣𝑣𝑣⟩ of the meridional buoyancy flux:

𝑣𝑣𝑣𝑣(𝑧𝑧)

⟨𝑣𝑣𝑣𝑣⟩
=

𝛽𝛽∗

𝑒𝑒𝛽𝛽∗ − 1
𝑒𝑒−𝛽𝛽∗𝑧𝑧.� (6)

To test this perturbative prediction, we have performed numerical simulations of this setup in the QG regime with 
periodic boundary conditions in the horizontal directions. As detailed in Supporting Information S1 (see also 
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Meunier et al. (2023)), our numerical approach consists in time-stepping a set of primitive-like equations with 
tailored β terms that are compatible with the horizontal periodic boundary conditions. Importantly, these tailored 
terms reduce to the standard β terms in the QG limit. Because we focus on parameter values that are strongly 
QG,  this approach is equivalent to (but more convenient than) directly solving the QG system. In Figure 2 we plot 
the vertical structure of the meridional buoyancy flux, 𝐴𝐴 𝑣𝑣𝑣𝑣(𝑧𝑧)∕⟨𝑣𝑣𝑣𝑣⟩ , for increasing β*. The numerical profiles are 
in excellent agreement with the parameter-free prediction (6) for low β*. As expected, the perturbative prediction 
deteriorates somewhat as β* increases up to β* = 1. In the next section we show that the perturbative regime accu-
rately captures the typical oceanic situation, characterized by surface-intensified baroclinic turbulence.

3.  Case II: Surface-Intensified Shear and Stratification
The perturbative approach developed in the preceding section is based on the small value of the background 
meridional PV gradient: when low-drag baroclinic turbulence is subjected to a weak meridional PV gradient, the 
profile of KGM(z) can be inferred by inserting KR(z) ≃ KGM(z) into the Taylor-Bretherton relation (5).

The meridional PV gradient associated with β is modest in a typical oceanic setting, which may suggest that 
one can again use the approximate relation KR(z) ≃ KGM(z) in the bulk of the domain. However, the PV gradient 
associated with the z-dependent shear profile is much greater (see Figure 6 of Smith and Marshall (2009)). Fortu-
nately, ocean baroclinic turbulence is surface-intensified and the largest shear-induced meridional PV gradient 
arises in the upper region of the fluid column, where the approximate equality KR ≃ KGM holds by virtue of the 
near-surface relation (4). Once again, one can thus substitute the approximate relation KR(z) ≃ KGM(z) into the 
Taylor-Bretherton relation (5) to compute the profile of KGM, this time perturbatively in distance from the upper 
boundary. We conclude that a useful approximation to the vertical dependence of KGM should be obtained by 
substituting KR(z) ≃ KGM(z) into Equation 5 throughout the entire water column. As for Case I, one way to derail 
this procedure would be to have a surprisingly large meridional PV flux arise in the interior of the domain despite 
the very weak PV gradient. This typically happens for a nearly marginal eigenmode, but not for the present 
low-drag equilibrated—or “turbulent”—states. In that respect the theory below is really a theory for such equil-
ibrated baroclinic turbulence.

After re-arranging, the substitution of KR(z) ≃ KGM(z) into Equation 5 leads to the following ODE for the vertical 
structure of the GM coefficient:

d

d𝑧𝑧
ln𝐾𝐾𝐺𝐺𝐺𝐺 = −

𝛽𝛽

(𝑧𝑧)
.� (7)

Figure 2.  An illustrative example: the Charney model with weak β. (a) Snapshot of the departure buoyancy field b for β* = 0.5 (large values in red, low values in 
blue). (b) Vertical structure of the meridional buoyancy flux in the equilibrated state for increasing β* (solid line: DNS, dashed line: perturbative prediction (6)). The 
agreement with the prediction is excellent in the perturbative regime β* ≪ 1 and deteriorates somewhat as β* reaches 𝐴𝐴 (1) values. The perturbative prediction performs 
always better than the common practice of parameterizing turbulent transport using a depth-invariant KGM, which corresponds to depth-invariant 𝐴𝐴 𝑣𝑣𝑣𝑣 for the present 
setup. The prediction (6) also performs better than using the meridional flux associated with the most unstable eigenmode, computed perturbatively for weak β* and 
represented for β* = 0.1 as a green dash-dotted line.
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This relation points to the crucial role of β in setting the vertical structure of the eddy-induced buoyancy flux: 
according to Equation 7 the common assumption of a depth-invariant GM coefficient is valid for β = 0 only. For 
arbitrary β Equation 7 can be integrated into:

𝐾𝐾𝐺𝐺𝐺𝐺 (𝑧𝑧) = const. × exp

[

−
∫

𝑧𝑧

0

𝛽𝛽

(𝑧̃𝑧)
d𝑧̃𝑧

]

.� (8)

We have obtained an explicit expression for the vertical structure of the GM coefficient in terms of the verti-
cal profiles of background stratification and shear. Using Equation 3, the expression (8) can be recast into a 
parameter-free prediction for the vertical structure of the meridional buoyancy flux:

��(�)
⟨��⟩

=
�′(�) exp

[

− ∫ �
0

�̃
(�̃)

d�̃
]

∫ 0
−1 �

′(�) exp
[

− ∫ �
0

�̃
(�̃)

d�̃
]

d�
.� (9)

To test the prediction (9) we have performed numerical simulations of surface-intensified baroclinic turbulence 
with parameter values typical of the ACC. The dimensionless stratification profile is linear in z and surface 
intensified, N 2(z) = a0 + a1 z, with constant coefficients a0 and a1. The shear flow has an exponential profile 
�(�) = � ��∕� with an e-folding scale ℓ (in units of H) and a sign prefactor s = +1 for an eastward flow and 
s  =  −1 for a westward one. We perform a base run with dimensionless QG parameter values similar to the 
situation addressed by Smith and Marshall (2009): dimensional magnitude |f0| = 1.23 × 10 −4 s −1 for the Cori-
olis parameter and β = 1.23 × 10 −11 m −1 s −1 for the planetary vorticity gradient (corresponding to a latitude of 
57.5°S), depth of fluid equal to H = 4,000 m, eastward shear flow with surface speed U(0) = 0.15 m s −1 and 
e-folding scale of 2,000 m. The dimensional buoyancy frequency ranges from 8.7 × 10 −4 s −1 at the bottom to 
2.46 × 10 −3 s −1 at the surface, which corresponds to a Rossby deformation radius λ ≃ 19 km based on the rough 
WKB estimate 𝐴𝐴 𝐴𝐴∕𝐻𝐻 = ∫

0

−1
𝑁𝑁(𝑧𝑧)d𝑧𝑧∕𝜋𝜋 (recalling that N(z) is non-dimensionalized with |f0|). In terms of dimen-

sionless parameters, these values translate into a Rossby number Ro = 0.3, a vertical scale ℓ = 0.5 for the shear 
flow, a dimensionless planetary vorticity gradient 𝐴𝐴 𝛽𝛽 = 4.0 × 10−4 and stratification coefficients a0 = 400 and 
a1 = 350. To ensure that the base numerical run indeed corresponds to the fully QG regime, we have used values 
for Ro and 𝐴𝐴 𝛽𝛽  that are smaller by a factor of 10 (i.e., we use Ro = 0.03 and 𝐴𝐴 𝛽𝛽 = 4.0 × 10−5 ), which leaves invariant 
the dissipation-free  QG dynamics.

Together with this base run we have performed a run without β and a run with β > 0 and a westward base flow. 
These additional runs are performed with slightly larger stratification (a0 = 800 and a1 = 700) using the inferred 
values Ro = 0.3 and 𝐴𝐴 𝛽𝛽 = 4.0 × 10−4 for the dimensionless buoyancy and planetary vorticity gradients. Finally, 
we have repeated similar runs using the larger value ℓ = 1 for the e-folding scale of the shear (see Supporting 
Information S1 for the values of the other parameters).

In Figure 3 we provide snapshots of the buoyancy and velocity fields in the equilibrated state of the base run. 
As expected the turbulence is surface intensified and so is the meridional buoyancy flux 𝐴𝐴 𝑣𝑣𝑣𝑣 , provided in the 
upper-right panel of Figure 4. Substituting the linear profile for N 2(z) and the exponential profile for �(�) into 
expression (9), the theoretical prediction for the vertical structure of the meridional buoyancy flux becomes:

𝑣𝑣𝑣𝑣(𝑧𝑧)

⟨𝑣𝑣𝑣𝑣⟩
=

exp

{

𝑧𝑧

𝓁𝓁

+
𝑠𝑠 𝛽𝛽𝓁𝓁2

𝑅𝑅𝑅𝑅
[𝑎𝑎0 + 𝑎𝑎1(𝑧𝑧 + 𝓁𝓁)]𝑒𝑒

−
𝑧𝑧

𝓁𝓁

}

∫
0

−1
exp

{

𝑧𝑧

𝓁𝓁

+
𝑠𝑠 𝛽𝛽𝓁𝓁2

𝑅𝑅𝑅𝑅
[𝑎𝑎0 + 𝑎𝑎1(𝑧𝑧 + 𝓁𝓁)]𝑒𝑒

−
𝑧𝑧

𝓁𝓁

}

d𝑧𝑧

.� (10)

We compare this prediction to the numerically determined meridional flux profiles in Figure 4. The agreement is 
very good for both values of ℓ, both with and without β, and for both eastward and westward flows. For β = 0 the 
theoretical prediction is that of a depth-invariant GM coefficient, and thus a meridional buoyancy flux that inher-
its the vertical structure �′(�) of the background shear. The good agreement with the numerical profiles validates 
this prediction and indicates that a depth-invariant GM coefficient is indeed an excellent parameterization when 
β = 0. For β ≠ 0, however, the prediction (10) departs from the common practice of using a depth-invariant GM 
coefficient. In all cases the prediction (10) better captures the vertical structure of 𝐴𝐴 𝑣𝑣𝑣𝑣 , without adjustable param-
eters (see Figure 4). The difference between the two predictions—Equation 10 versus uniform KGM—is modest 
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for ℓ = 0.5 and greater for ℓ = 1.0. In particular, using a uniform KGM would lead to the same vertical structure 
for the buoyancy flux regardless of whether the base flow is directed eastward or westward. By contrast, the 
numerical data indicate that the vertical structure strongly depends on the direction of the base flow: for ℓ = 0.5 
the bottom-to-top meridional flux ratio, evaluated as 𝐴𝐴 𝑣𝑣𝑣𝑣(−0.95)∕𝑣𝑣𝑣𝑣(−0.05) , is 12% for a westward flow and 24% 
for an eastward flow. For ℓ = 1 this ratio is 15% for a westward flow and 73% for an eastward flow. To illustrate 
these differences, we represent in Figure 4 the uniform-KGM prediction as an orange dotted-line for comparison 
with the present prediction, demanding that the two predictions be equal at the top surface z = 0.

4.  Conclusion
The predictions (8) and (9) are based on a perturbative approach that holds in the near-surface and near-bottom 
regions of the fluid column for arbitrary meridional potential vorticity gradient, and throughout the entire fluid 
column when the meridional potential vorticity gradient is weak. The present perturbative framework is useful 
for baroclinic turbulence in the ocean, where the shear flow and meridional PV gradient are boundary-intensified, 
with weaker PV flux in the interior. One can then combine the Taylor-Bretherton relation between the buoyancy 
and PV fluxes with the near-equality of the GM and Redi coefficients in the vicinity of the boundaries. This 
leads to a prediction for the vertical structure of the buoyancy flux that agrees well with the profiles extracted 
from direct numerical simulations, see Figure 4. It would be interesting to further investigate the range of validity 
of the predictions (8) and (9) beyond the present oceanographically relevant situations. For instance, a system 
with a vanishing meridional buoyancy gradient at the bottom 𝐴𝐴

(

𝐺𝐺
(𝑏𝑏)
𝑦𝑦 (−1) = 0

)

 may emphasize the role of bottom 
friction and disrupt the relation KGM(−1 +) ≃ KR(−1 +). More generally, while surprisingly successful the present 
perturbative approach should probably be used with caution whenever the exponential factor in Equation 8 varies 
by much more than a factor of two within the water column.

For eastward shear flows (positive shear) the right-hand side of Equation 7 is negative: KGM(z) is greater at depth 
according to both the theory and the numerics, even though the turbulence is surface-intensified. This prediction 

Figure 3.  Surface-intensified baroclinic turbulence from the base run, meant to resemble a patch of the Antarctic 
Circumpolar Current (positive values in red and negative values in blue, background profiles in the upper-right panel).
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is fully compatible with the KGM-profile reported by Abernathey et al. (2013) and challenges models where the 
KGM-profile is assumed to be proportional to the profile of N 2(z) (Ferreira et al., 2005). The present results also 
seem to invalidate the idea that the vertical structure of the flux could be governed by a single baroclinic mode 
(Stanley et al., 2020). Indeed, the modal decomposition (Flierl, 1978) is the same for all panels of Figure 4 and 
yet the buoyancy flux profiles differ strongly between panels.

Another idea put forward in the atmospheric context is that the flux profiles in the equilibrated state resem-
ble those of the most unstable mode inferred from linear stability analysis (Chai & Vallis, 2014; Green, 1970; 
Held & O’Brien, 1992). An issue with this approach is that only the equilibrated state is governed by the diffu-
sion tensor (2), see the derivation in Meunier et al. (2023). In particular, Equation 2 indicates that the ratio of 
the vertical to the meridional buoyancy flux is given by the mean isopycnal slope 𝐴𝐴  (adiabatic transport). As 
discussed in Eady (1949) and Vallis (2017), this constraint does not hold for an unstable eigenmode because of 
the non-stationary terms, the associated profiles 𝐴𝐴 𝑤𝑤𝑤𝑤(𝑧𝑧) and 𝐴𝐴 𝑣𝑣𝑣𝑣(𝑧𝑧) being therefore incompatible with Equation 2 
(in other words, one would infer a different profile for KGM(z) based on 𝐴𝐴 𝑣𝑣𝑣𝑣(𝑧𝑧) or 𝐴𝐴 𝑤𝑤𝑤𝑤(𝑧𝑧) ). We have nevertheless 
computed the most unstable eigenmode of the present Charney model, perturbatively for weak β* (see Supporting 
Information S1). As shown in Figure 2, the associated meridional buoyancy flux overpredicts the variations of 

𝐴𝐴 𝑣𝑣𝑣𝑣(𝑧𝑧) with depth and compares unfavorably with the present prediction (6). The most-unstable-mode approach 
may be better-suited for weakly nonlinear atmospheric states characterized by a weak supercriticality ξ = 1/β*, as 
opposed to the present large-supercriticality oceanic situations (Jansen & Ferrari, 2012).

The success of the perturbative approximation KR = KGM throughout the entire water column for case II above 
may come as a surprise to the reader accustomed to channel simulations, where KR typically exceeds KGM in the 
interior (see e.g., Abernathey et al., 2013). The reason for this success is that the meridional QGPV gradient is 
small in the interior and around the so-called “steering levels” (Abernathey et al., 2010, 2013; Green, 1970; Smith 

Figure 4.  Vertical structure of the meridional buoyancy flux for an eastward flow, for a westward flow and for the case 
β = 0, using either ℓ = 0.5 or ℓ = 1. The solid line is the profile extracted from the numerical runs. The dashed line is the 
theoretical prediction (10). The orange dotted-line corresponds to the uniform-KGM model that matches the surface value of 
the full prediction (10) (see text for details). The prediction (10) reduces to a depth-invariant KGM when β = 0, which agrees 
accurately with the β = 0 numerical profiles. For β ≠ 0 the prediction (10) departs from a uniform KGM and agrees well with 
the numerical profiles.
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& Marshall, 2009; Tréguier, 1999), making the QGPV flux 𝐴𝐴 𝑣𝑣𝑣𝑣 negligible there (see e.g., Figure 6 of Smith and 
Marshall (2009)). One thus makes a negligible error by inferring the buoyancy and QGPV flux profiles using the 
approximation KR = KGM throughout the entire water column.

The perturbative prediction (8) for the vertical structure of the GM coefficient is simple to implement, it is easily 
extended to a patch of ocean subject both to zonal and meridional large-scale gradients and shear flows, it is 
free of adjustable parameters—except for the overall magnitude of the transport—and it compares very favora-
bly with the common practice of using a depth-invariant GM coefficient. The implementation of Equation 8 
in a global model should lead to a more accurate description of the stratification of the Southern Ocean, and 
therefore of neighboring ocean basins. Beyond this modeling application, the physically-based vertical structure 
(9) for the buoyancy flux could be of use to infer the buoyancy flux throughout the entire water column based 
on near-surface data. Indeed, Figure 4 shows that the prediction (9) allows one to propagate the value of the 
near-surface flux to the interior of the water column in a way that agrees closely with the full DNS profile. By 
contrast, propagating the near-surface information using a uniform GM coefficient would lead to the orange line 
in Figure 4, which at depth typically departs from the DNS profile by 40%–100% depending on the situation.

Data Availability Statement
The open-source numerical code is archived at https://doi.org/10.5281/zenodo.5458888 and documented in 
Miquel  (2021) (see also github.com/BenMql/coral). The plots can be reproduced using the data archived on 
figshare at https://doi.org/10.6084/m9.figshare.23864517.

References
Abernathey, R., Ferreira, D., & Klocker, A. (2013). Diagnostics of isopycnal mixing in a circumpolar channel. Ocean Modelling, 72, 1–16. https://

doi.org/10.1016/j.ocemod.2013.07.004
Abernathey, R., Marshall, J., Mazloff, M., & Shuckburgh, E. (2010). Enhancement of mesoscale eddy stirring at steering levels in the southern 

ocean. Journal of Physical Oceanography, 40(1), 170–184. https://doi.org/10.1175/2009jpo4201.1
Arbic, B., & Flierl, G. (2004a). Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: Application to 

midocean eddies. Journal of Physical Oceanography, 34(10), 2257–2273. https://doi.org/10.1175/1520-0485(2004)034<2257:bugtit>2.0.co;2
Arbic, B., & Flierl, G. (2004b). Effects of mean flow direction on energy, isotropy, and coherence of baroclinically unstable beta-plane 

geostrophic turbulence. Journal of Physical Oceanography, 34(1), 77–93. Retrieved from https://journals.ametsoc.org/downloadpdf/journals/
phoc/34/1/1520-0485_2004_034_0077_eomfdo_2.0.co_2.xml

Arbic, B., & Scott, R. (2007). On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies. Journal of Physical Oceanogra-
phy, 38(1), 84–103. https://doi.org/10.1175/2007jpo3653.1

Bretherton, F. P. (1966). Critical layer instability in baroclinic flows. Quarterly Journal of the Royal Meteorological Society, 92(393), 325–334. 
https://doi.org/10.1002/qj.49709239302

Chai, J., & Vallis, G. K. (2014). The role of criticality on the horizontal and vertical scales of extratropical eddies in a dry GCM. Journal of the 
Atmospheric Sciences, 71(7), 2300–2318. https://doi.org/10.1175/jas-d-13-0351.1

Chang, C.-Y., & Held, I. (2019). The control of surface friction on the scales of baroclinic eddies in a homogeneous quasigeostrophic two-layer 
model. Journal of the Atmospheric Sciences, 76(6), 1627–1643. https://doi.org/10.1175/jas-d-18-0333.1

Chang, C.-Y., & Held, I. M. (2021). The parameter dependence of eddy heat flux in a homogeneous quasigeostrophic two-layer model on a β plane 
with quadratic friction. Journal of the Atmospheric Sciences, 78(1), 97–106. https://doi.org/10.1175/jas-d-20-0145.1

Charney, J. (1947). The dynamics of long waves in a baroclinic westerly current. Journal of Meteorology, 4(5), 135–162. https://doi.
org/10.1175/1520-0469(1947)004<0136:tdolwi>2.0.co;2

Danabasoglu, G., & Marshall, J. (2007). Effects of vertical variations of thickness diffusivity in an ocean general circulation model. Ocean Model-
ling, 18(2), 122–141. https://doi.org/10.1016/j.ocemod.2007.03.006

Dritschel, D., & McIntyre, M. (2008). Multiple jets as PV staircases: The Phillips effect and the resilience of eddy-transport barriers. Journal of 
the Atmospheric Sciences, 65(3), 855–874. https://doi.org/10.1175/2007jas2227.1

Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1(3), 33–52. https://doi.org/10.3402/tellusa.v1i3.8507
Ferreira, D., Marshall, J., & Heimbach, P. (2005). Estimating eddy stresses by fitting dynamics to observations using a residual-mean ocean 

circulation model and its adjoint. Journal of Physical Oceanography, 35(10), 1891–1910. https://doi.org/10.1175/jpo2785.1
Flierl, G. (1978). Models of vertical structure and the calibration of two-layer models. Dynamics of Atmospheres and Oceans, 2(4), 342–381. 

https://doi.org/10.1016/0377-0265(78)90002-7
Gallet, B., & Ferrari, R. (2020). The vortex gas scaling regime of baroclinic turbulence. Proceedings of the National Academy of Sciences of the 

United States of America, 117(9), 4491–4497. https://doi.org/10.1073/pnas.1916272117
Gallet, B., & Ferrari, R. (2021). A quantitative scaling theory for meridional heat transport in planetary atmospheres and oceans. AGU Advances, 

2(3), e2020AV000362. https://doi.org/10.1029/2020av000362
Gallet, B., Miquel, B., Hadjerci, G., Burns, K. J., Flierl, G. R., & Ferrari, R. (2022). Transport and emergent stratification in the equilibrated Eady 

model: The vortex-gas scaling regime. Journal of Fluid Mechanics, 948, A31. https://doi.org/10.1017/jfm.2022.501
Gent, P.  R. (2011). The Gent–Mcwilliams parameterization: 20/20 hindsight. Ocean Modelling, 39(1–2), 2–9. 

https://doi.org/10.1016/j.ocemod.2010.08.002
Gent, P. R., & Mcwilliams, J. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155. https://

doi.org/10.1175/1520-0485(1990)020<0150:imiocm>2.0.co;2

Acknowledgments
This research is supported by the 
European Research Council under 
grant agreement FLAVE 757239. 
The numerical study was performed 
using HPC resources from GENCI-
CINES and TGCC (Grants 2021-
A0102A10803, 2022-A0122A12489, and 
2023-A0142A12489).

 19448007, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103948 by French A

tom
ic A

nd A
lternative E

nergy C
om

m
ission, W

iley O
nline L

ibrary on [23/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.5281/zenodo.5458888
http://github.com/BenMql/coral
https://doi.org/10.6084/m9.figshare.23864517
https://doi.org/10.1016/j.ocemod.2013.07.004
https://doi.org/10.1016/j.ocemod.2013.07.004
https://doi.org/10.1175/2009jpo4201.1
https://doi.org/10.1175/1520-0485(2004)034%3C2257:bugtit%3E2.0.co;2
https://journals.ametsoc.org/downloadpdf/journals/phoc/34/1/1520-0485_2004_034_0077_eomfdo_2.0.co_2.xml
https://journals.ametsoc.org/downloadpdf/journals/phoc/34/1/1520-0485_2004_034_0077_eomfdo_2.0.co_2.xml
https://doi.org/10.1175/2007jpo3653.1
https://doi.org/10.1002/qj.49709239302
https://doi.org/10.1175/jas-d-13-0351.1
https://doi.org/10.1175/jas-d-18-0333.1
https://doi.org/10.1175/jas-d-20-0145.1
https://doi.org/10.1175/1520-0469(1947)004%3C0136:tdolwi%3E2.0.co;2
https://doi.org/10.1175/1520-0469(1947)004%3C0136:tdolwi%3E2.0.co;2
https://doi.org/10.1016/j.ocemod.2007.03.006
https://doi.org/10.1175/2007jas2227.1
https://doi.org/10.3402/tellusa.v1i3.8507
https://doi.org/10.1175/jpo2785.1
https://doi.org/10.1016/0377-0265(78)90002-7
https://doi.org/10.1073/pnas.1916272117
https://doi.org/10.1029/2020av000362
https://doi.org/10.1017/jfm.2022.501
https://doi.org/10.1016/j.ocemod.2010.08.002
https://doi.org/10.1175/1520-0485(1990)020%3C0150:imiocm%3E2.0.co;2
https://doi.org/10.1175/1520-0485(1990)020%3C0150:imiocm%3E2.0.co;2


Geophysical Research Letters

MEUNIER ET AL.

10.1029/2023GL103948

9 of 9

Green, J. (1970). Transfer properties of the large-scale eddies and the general circulation of the atmosphere. Quarterly Journal of the Royal 
Meteorological Society, 96(408), 157–185. https://doi.org/10.1002/qj.49709640802

Griffies, S. M. (1998). The Gent–Mcwilliams skew flux. Journal of Physical Oceanography, 28(5), 831–841. https://doi.
org/10.1175/1520-0485(1998)028<0831:tgmsf>2.0.co;2

Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J., Gerdes, R., Harrison, M. J., et al. (2005). Formulation of an ocean model for global 
climate simulations. Ocean Science, 1(1), 45–79. https://doi.org/10.5194/os-1-45-2005

Held, I., & Larichev, V. (1996). A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane. Journal of the 
Atmospheric Sciences, 53(7), 946–952. https://doi.org/10.1175/1520-0469(1996)053<0946:astfhh>2.0.co;2

Held, I., & O’Brien, E. (1992). Quasigeostrophic turbulence in a three-layer model: Effects of vertical structure in the mean shear. Journal of the 
Atmospheric Sciences, 49(19), 1861–1870. https://doi.org/10.1175/1520-0469(1992)049<1861:qtiatl>2.0.co;2

Jansen, M., & Ferrari, R. (2012). Macroturbulent equilibration in a thermally forced primitive equation system. Journal of the Atmospheric 
Sciences, 69(2), 695–713. https://doi.org/10.1175/jas-d-11-041.1

Larichev, V., & Held, I. (1995). Eddy amplitudes and fluxes in a homogeneous model of fully developed baroclinic instability. Journal of Physical 
Oceanography, 25(10), 2285–2297. https://doi.org/10.1175/1520-0485(1995)025<2285:eaafia>2.0.co;2

McDougall, T. J., & McIntosh, P. C. (2001). The temporal-residual-mean velocity. Part II: Isopycnal interpretation and the tracer and momentum 
equations. Journal of Physical Oceanography, 31(5), 1222–1246. https://doi.org/10.1175/1520-0485(2001)031<1222:ttrmvp>2.0.co;2

Meunier, J., Miquel, B., & Gallet, B. (2023). A direct derivation of the Gent-Mcwilliams/Redi diffusion tensor from quasi-geostrophic dynamics. 
Journal of Fluid Mechanics, 963, A22. https://doi.org/10.1017/jfm.2023.347

Miquel, B. (2021). Coral: A parallel spectral solver for fluid dynamics and partial differential equations. Journal of Open Source Software, 6(65), 
2978. https://doi.org/10.21105/joss.02978

Nikurashin, M., & Vallis, G. (2011). A theory of deep stratification and overturning circulation in the ocean. Journal of Physical Oceanography, 
41(3), 485–502. https://doi.org/10.1175/2010jpo4529.1

Nikurashin, M., & Vallis, G. (2012). A theory of the interhemispheric meridional overturning circulation and associated stratification. Journal of 
Physical Oceanography, 42(10), 1652–1667. https://doi.org/10.1175/jpo-d-11-0189.1

Phillips, N. (1954). Energy transformations and meridional circulations associated with simple baroclinic waves in a two-level, quasi-geostrophic 
model. Tellus, 6(3), 274–286. https://doi.org/10.1111/j.2153-3490.1954.tb01123.x

Redi, M. H. (1982). Oceanic isopycnal mixing by coordinate rotation. Journal of Physical Oceanography, 12(10), 1154–1158. https://doi.
org/10.1175/1520-0485(1982)012<1154:oimbcr>2.0.co;2

Salmon, R. (1978). Two-layer quasigeostrophic turbulence in a simple special case. Geophysical & Astrophysical Fluid Dynamics, 10(1), 25–52. 
https://doi.org/10.1080/03091927808242628

Salmon, R. (1980). Baroclinic instability and geostrophic turbulence. Geophysical & Astrophysical Fluid Dynamics, 15(1), 157–211. https://doi.
org/10.1080/03091928008241178

Salmon, R. (1998). Lectures on geophysical fluid dynamics. Oxford University Press.
Smith, K., & Marshall, J. (2009). Evidence for enhanced eddy mixing at middepth in the southern ocean. Journal of Physical Oceanography, 

39(1), 50–69. https://doi.org/10.1175/2008jpo3880.1
Stanley, Z., Bachman, S., & Grooms, I. (2020). Vertical structure of ocean mesoscale eddies with implications for parameterizations of tracer 

transport. Journal of Advances in Modeling Earth Systems, 12(10), e2020MS002151. https://doi.org/10.1029/2020ms002151
Taylor, G. I. (1915). Eddy motion in the atmosphere. Philosophical Transactions of the Royal Society of London. Series A, Containing Papers of 

a Mathematical or Physical Character, 215(523–537), 1–26. https://doi.org/10.1175/1520-0493(1915)43<315c:emita>2.0.co;2
Thompson, A., & Young, W. (2006). Scaling baroclinic eddy fluxes: Vortices and energy balance. Journal of Physical Oceanography, 36(4), 

720–736. https://doi.org/10.1175/jpo2874.1
Thompson, A., & Young, W. (2007). Two-layer baroclinic eddy heat fluxes: Zonal flows and energy balance. Journal of the Atmospheric Sciences, 

64(9), 3214–3231. https://doi.org/10.1175/jas4000.1
Tréguier, A.-M. (1999). Evaluating Eddy mixing coefficients from eddy-resolving ocean models: A case study. Journal of Marine Research, 

57(1), 89–108. Retrieved from https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=3310&context=journal_of_marine_research
Vallis, G. (2017). Atmospheric and oceanic fluid dynamics. Cambridge University Press.
Venaille, A., Vallis, G. K., & Smith, K. S. (2011). Baroclinic turbulence in the ocean: Analysis with primitive equation and quasigeostrophic 

simulations. Journal of Physical Oceanography, 41(9), 1605–1623. https://doi.org/10.1175/jpo-d-10-05021.1
Wolfe, C., & Cessi, P. (2010). What sets the strength of the middepth stratification and overturning circulation in eddying ocean models? Journal 

of Physical Oceanography, 40(7), 1520–1538. https://doi.org/10.1175/2010jpo4393.1
Yankovsky, E., Zanna, L., & Smith, K. S. (2022). Influences of mesoscale ocean eddies on flow vertical structure in a resolution-based model 

hierarchy. Journal of Advances in Modeling Earth Systems, 14(11), e2022MS003203. https://doi.org/10.1029/2022ms003203
Young, W. (2012). An exact thickness-weighted average formulation of the Boussinesq equations. Journal of Physical Oceanography, 42(5), 

692–707. https://doi.org/10.1175/jpo-d-11-0102.1
Zhang, W., & Wolfe, C. L. (2022). On the vertical structure of oceanic mesoscale tracer diffusivities. Journal of Advances in Modeling Earth 

Systems, 14(6), e2021MS002891. https://doi.org/10.1029/2021ms002891

References From the Supporting Information
Bouillaut, V., Miquel, B., Julien, K., Aumaître, S., & Gallet, B. (2021). Experimental observation of the geostrophic turbulence regime of rapidly 

rotating convection. Proceedings of the National Academy of Sciences, 118(44), e2105015118. https://doi.org/10.1073/pnas.2105015118
Burns, K., Vasil, G., Oishi, J., Lecoanet, D., & Brown, B. (2020). Dedalus: A flexible framework for numerical simulations with spectral methods. 

Physical Review Research, 2, 023068. https://doi.org/10.1103/physrevresearch.2.023068
Miquel, B., Bouillaut, V., Aumaître, S., & Gallet, B. (2020). On the role of the Prandtl number in convection driven by heat sources and sinks. 

Journal of Fluid Mechanics, 900, R1. https://doi.org/10.1017/jfm.2020.485
Miquel, B., Lepot, S., Bouillaut, V., & Gallet, B. (2019). Convection driven by internal heat sources and sinks: Heat transport beyond the 

mixing-length or “ultimate” scaling regime. Physical Review Fluids, 4(12), 121501. https://doi.org/10.1103/physrevfluids.4.121501

 19448007, 2023, 17, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023G

L
103948 by French A

tom
ic A

nd A
lternative E

nergy C
om

m
ission, W

iley O
nline L

ibrary on [23/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/qj.49709640802
https://doi.org/10.1175/1520-0485(1998)028%3C0831:tgmsf%3E2.0.co;2
https://doi.org/10.1175/1520-0485(1998)028%3C0831:tgmsf%3E2.0.co;2
https://doi.org/10.5194/os-1-45-2005
https://doi.org/10.1175/1520-0469(1996)053%3C0946:astfhh%3E2.0.co;2
https://doi.org/10.1175/1520-0469(1992)049%3C1861:qtiatl%3E2.0.co;2
https://doi.org/10.1175/jas-d-11-041.1
https://doi.org/10.1175/1520-0485(1995)025%3C2285:eaafia%3E2.0.co;2
https://doi.org/10.1175/1520-0485(2001)031%3C1222:ttrmvp%3E2.0.co;2
https://doi.org/10.1017/jfm.2023.347
https://doi.org/10.21105/joss.02978
https://doi.org/10.1175/2010jpo4529.1
https://doi.org/10.1175/jpo-d-11-0189.1
https://doi.org/10.1111/j.2153-3490.1954.tb01123.x
https://doi.org/10.1175/1520-0485(1982)012%3C1154:oimbcr%3E2.0.co;2
https://doi.org/10.1175/1520-0485(1982)012%3C1154:oimbcr%3E2.0.co;2
https://doi.org/10.1080/03091927808242628
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1080/03091928008241178
https://doi.org/10.1175/2008jpo3880.1
https://doi.org/10.1029/2020ms002151
https://doi.org/10.1175/1520-0493(1915)43%3C315c:emita%3E2.0.co;2
https://doi.org/10.1175/jpo2874.1
https://doi.org/10.1175/jas4000.1
https://elischolar.library.yale.edu/cgi/viewcontent.cgi?article=3310%26context=journal_of_marine_research
https://doi.org/10.1175/jpo-d-10-05021.1
https://doi.org/10.1175/2010jpo4393.1
https://doi.org/10.1029/2022ms003203
https://doi.org/10.1175/jpo-d-11-0102.1
https://doi.org/10.1029/2021ms002891
https://doi.org/10.1073/pnas.2105015118
https://doi.org/10.1103/physrevresearch.2.023068
https://doi.org/10.1017/jfm.2020.485
https://doi.org/10.1103/physrevfluids.4.121501

	Vertical Structure of Buoyancy Transport by Ocean Baroclinic Turbulence
	Abstract
	Plain Language Summary
	1. Introduction
	2. Case I: The Impact of Weak β on Eady Turbulence
	3. Case II: Surface-Intensified Shear and Stratification
	4. Conclusion
	Data Availability Statement
	References
	References From the Supporting Information


