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Abstract
Previous genetic studies of pollinator wasps associated with a community of strangler 
figs (Ficus subgenus Urostigma, section Americana) in Central Panama suggest that 
the wasp species exhibit a range in host specificity across their host figs. To better 
understand factors that might contribute to this observed range of specificity, we 
used sticky traps to capture fig-pollinating wasp individuals at 13 Ficus species, sam-
pling at different phases of the reproductive cycle of the host figs (e.g., trees with 
receptive inflorescences, or vegetative trees, bearing only leaves). We also sampled 
at other tree species, using them as non-Ficus controls. DNA barcoding allowed us to 
identify the wasps to species and therefore assign their presence and abundance to 
host fig species and the developmental phase of that individual tree. We found: (1) 
wasps were only very rarely captured at non-Ficus trees; (2) nonetheless, pollinators 
were captured often at vegetative individuals of some host species; (3) overwhelm-
ingly, wasp individuals were captured at receptive host fig trees representing the fig 
species from which they usually emerge. Our results indicate that wasp occurrence 
is not random either spatially or temporally within the forest and across these hosts, 
and that wasp specificity is generally high, both at receptive and vegetative host trees. 
Therefore, in addition to studies that show chemicals produced by receptive fig inflo-
rescences attract pollinator wasps, we suggest that other cues (e.g., chemicals pro-
duced by the leaves) can also play a role in host recognition. We discuss our results in 
the context of recent findings on the role of host shifts in diversification processes in 
the Ficus genus.
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1  |  INTRODUC TION

Pollinators affect diversification in many plants (Grant,  1949; 
Kay & Sargent, 2009; Van Der Niet et al., 2014). In species with 
animal pollen vectors, genetic isolation of plant populations or 
species can be maintained, or broken down depending on whether 
the degree of pollinator specificity is high or low, respectively 
(Kiester et al., 1984; Moe & Weiblen, 2012; Moreira-Hernández & 
Muchhala, 2019). With greater host specialization, pollinators limit 
the opportunities for hybridization between plant species (Ayasse 
et al., 2010; Byers et al.,  2014; Wang et al.,  2016; Whitehead & 
Peakall,  2014). Pollinator-mediated speciation is therefore ex-
pected to be a relatively more common process in plant groups that 
are associated with more specialized pollinators (Moe et al., 2013; 
Schiestl, 2012).

One example of a functionally diverse and species-rich plant 
genus with highly specific pollinators are fig trees (genus Ficus; 
around 850 species globally, Berg et al.,  2005). The genus Ficus 
appears to have originated roughly 60–80 MYA and is defined 
by the enclosed inflorescence (syconium = “fig”). Fig trees rely 
completely on minute and highly specialized fig-pollinating wasps 
(Agonidae) to correctly recognize an appropriate receptive host, 
enter a syconium, and pollinate the flowers within it. For their 
part, the fig wasps can only reproduce inside the reproductive 
structures of figs (Galil & Eisikowitch, 1968). Female wasps polli-
nate and lay eggs in female flowers that then form galls in which 
wasp offspring develop (Galil  & Eisikowitch,  1968). Due to the 
synchronized development of syconia within flowering individuals 
in nearly all Ficus species, there are usually no receptive flowers 
available for fig wasps at eclosion in their natal tree (Janzen, 1979). 
Given this synchronized development within a host tree and the 
short lifespan of adult pollinator wasps (around 2–3 days; Kjell-
berg et al., 1988; van Kolfschoten et al., 2022), most wasps need 
to travel great distances to encounter a receptive host and find-
ing a suitable receptive host is challenging, especially when the 
density of host trees is low, as in monoecious neotropical figs 
(McKey, 1989; Todzia, 1986).

Large dispersal distances have been reported for fig pollinators 
(Ahmed et al., 2009; Nason et al., 1998), but how precisely they can 
encounter appropriate hosts (e.g., a receptive individual of the fig 
species from which she emerged) across what can be very large dis-
tances remains unknown. One of the cues that allows a fig pollinator 
to recognize an appropriate fig host has been identified as volatile 
chemicals emitted by receptive syconia (Bronstein, 1987; van Noort 
et al., 1989; Ware & Compton, 1994a). These chemicals appear to 
provide reliable information about both species identity of the fig 
as well as the reproductive phase (Cornille et al., 2012; Grison-Pigé 
et al., 2002; Proffit & Johnson, 2009; Ware et al., 1993).

At a single location, in most cases, a single fig species seems to be 
pollinated by one or two wasp species, and each pollinator species is 
usually associated with only one fig species. However, an increasing 
number of examples of two fig species sharing a pollinator species 
are reported, allopatrically as well as sympatrically (Moe et al., 2011; 

Molbo et al., 2003; Yang et al., 2015). Further, population genetic 
studies have revealed that natural hybridization between Ficus spe-
cies is not uncommon (Moe et al., 2011; Parrish et al., 2003; Satler 
et al., 2022; Wang et al., 2016; Wei et al., 2014).

From the tight and specific relationships generally observed 
between figs and their pollinators, scholars have inferred an evolu-
tionary history of co-diversification (Cruaud, Ronsted, et al., 2012; 
Ramirez, 1974; Wiebes, 1979). Indeed, on a macroevolutionary level 
studies show a co-divergence between figs and pollinating wasps 
(Cruaud, Ronsted, et al., 2012; Herre et al., 1996; Silvieus et al., 2008). 
However, increased sampling, collectioning of molecular data from 
multiple loci or genomic data, and improved co-phylogenetic anal-
yses, have eroded the support for this binary scenario of strict co-
adaptation and co-speciation (Cook & Segar, 2010; Cruaud, Cook, 
et al.,  2012; Hembry  & Althoff,  2016; Herre et al.,  2008; Satler 
et al., 2019, 2020, 2022). These more recent analyses indicate that 
pollinator and fig phylogenies are often incongruent at lower taxo-
nomic levels (species within Ficus sections or within wasp genera), 
and there is increasing evidence for regular hybridization between 
figs (Gardner et al., 2023; Jackson et al., 2008; Machado et al., 2005; 
Satler et al.,  2019, 2020, 2022; Wang, Zhang, et al.,  2021; Wilde 
et al., 2020). And a recent co-phylogenetic analysis of a well-studied 
community of Neotropical fig species and their associated pollinator 
species suggested that host-shift events have been as common as 
strict co-speciation events (Satler et al., 2019).

A key general question is what mechanism underlies different 
degrees of pollinator specificity, both within and across fig species. 
Evolutionary and ecological patterns found in the fig-wasp mutu-
alism suggest that this mechanism balances high specificity of and 
occasional errors by pollinators. An important part of the answer can 
be found in determining how volatile chemical signals can play an 
ecological role in guiding pollinators both temporally and spatially to 
their appropriate fig host. Studies on host recognition by fig wasps 
therefore need to be refined and focused to documenting patterns, 
especially in diverse, naturally occurring fig communities and guided 
by testable hypotheses. Here we document presence, relative abun-
dances, and species identities of pollinator individuals collected in 
a natural community of strangler figs (subgenus Urostigma, section 
Americana; pollinated by fig wasps from the genus Pegoscapus) in 
Neotropical forest in the vicinity of the Panama Canal. Our setup 
allows for testing the following two hypotheses.

H1. Host-searching pollinator individuals will be 
more abundant at (and presumably more attracted to) 
receptive fig trees belonging to the Ficus species from 
which it emerged than they are to: receptive trees be-
longing to other Ficus species, or vegetative trees of 
any Ficus species, or non-Ficus trees.

H2. In addition to volatiles produced by the recep-
tive syconia, other signals (e.g., volatiles produced by 
leaves or other plant parts) also promote pollinator 
wasp attraction.
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Combining these hypotheses, we predict that the number of 
Pegoscapus pollinator individuals that can be trapped within a forest 
containing a diverse community of fig trees increases dramatically 
from non-Ficus trees to vegetative Urostigma trees, with the great-
est number trapped on receptive Urostigma trees. We also predict, 
for any Pegoscapus species, the number of trapped individuals will 
routinely be highest on the fig species from which the pollinator 
emerged compared to other Urostigma species, regardless of the 
host developmental phase. We also predict that pollinators occa-
sionally make mistakes, and then are found either on vegetative in-
dividuals belonging to the Ficus species from which they emerged or 
on receptive individuals belonging to closely related Ficus species. 
Our predictions are summarized in Figure 1.

2  |  MATERIAL S AND METHODS

2.1  |  Fig species and research area

Pollinator trapping for this study was carried out at trees on the 
shores of lake Gatun in the Barro Colorado Nature Monument 
in Central Panama. These shores are covered in moist seasonal 
forest. Fig species occurring in this area belong to two subgenera 
of Ficus. Trees from the subgenus Urostigma (section Americana) 
are known as strangler figs and they are pollinated by wasps of 
the genus Pegoscapus. Trees from the subgenus Pharmacosycea 
(section Pharmacosycea) are known as free-standing figs and are 

pollinated by wasps of the genus Tetrapus. Pollinators were trapped 
at 13 Urostigma fig species (varying from 1 to 5 individual trees per 
fig species, see Table 2). From published and ongoing studies, the 
Pegoscapus species that commonly and successfully develop in and 
emerge from these fig species are well characterized. In most cases 
one pollinator species is strictly associated with a single fig species. 
However, Pegoscapus gemellus A has been consistently reared from 
two species of figure (F. bullenei and F. popenoei), and two species 
of pollinator have been consistently reared from F. obtusifolia 
(P. hoffmeyeri A and P. hoffmeyeri B) (Machado et al.,  2005; Molbo 
et al., 2003). More recently, P. insularis has been reared from syconia 
from both F. colubrinae and F. perforata (Satler et al., 2019), whereas it 
used to be reared only from F. perforata (Machado et al., 2005; Molbo 
et al., 2003). Either it was missed in older surveys, or this pollinator 
species has expanded to an additional host fig species. Furthermore, 
in recent years the pollinator of F. paraensis (P. herrei) seems to have 
been replaced by an unknown pollinator species (unpublished data 
from Herre, Machado, and Piatscheck). The current fig-pollinator 
associations are listed in Table 1.

2.2  |  Pollinator trapping on Urostigma fig 
hosts and non-Ficus trees

Pollinator individuals were trapped in both receptive and vegetative 
Urostigma fig trees, as well as in non-Ficus controls (the latter dur-
ing one field season). We used sticky traps made of yellow plastic 

F I G U R E  1 Expected numbers of trapped Pegoscapus pollinator individuals at different Ficus species and host developmental phases based 
on our hypotheses. Widths of the arrows represent the hypothesized relative attractiveness of each type of tree. Arrows with dashed lines 
represent pollinator choices resulting in pollinator fitness zero. If pollinators are most abundant at receptive trees belonging to the fig species 
from which they emerged (H1) and are attracted to other volatiles than those from receptive syconia (H2), we expect that the number of trapped 
pollinators increases from non-Ficus trees, to vegetative Ficus, to receptive Ficus trees as well as from other Urostigma species to the Urostigma 
species from which it emerged. Parts in gray represent predictions that we do not directly address in this paper, based on the assumption that 
phylogenetic distance predicts similarity in fig volatile bouquets and thus to which pollinator species is more likely to be attracted.
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sheets (20 × 10 cm) which were covered with odorless non-drying glue 
(TangleTrap) on both sides. For each trapping event, four sticky traps 
facing haphazard directions were placed at a tree at the lake side with 
accessible branches reaching down. Within the tree they were placed 
as far apart as possible and as close to the leaves as possible (in these 
fig species leaves and syconia grow next to each other) and always be-
tween a height of 1 or 2 m above lake-level. For each trapping event, 
traps remained for at least 24 h up to a maximum of 6 days. After expo-
sure, the traps were taken to the lab where the Pegoscapus individuals 
were counted using a stereoscope. The Pegoscapus individuals could 
not be identified as pollinator species by eye but could be distinguished 
from Tetrapus individuals. The total number of Pegoscapus individuals 
collected per host tree per 24 h was calculated for each trapping event.

A fig tree was defined to be in the vegetative phase when it 
had no observable syconia but only green leaves. Fig trees bearing 
syconia are not always in the receptive phase, though. This is only 
when the female flowers are receptive, and pollination is possible. 
The ostiole, a layered entrance to the flowers, loosens and permits 
access during this developmental phase (Galil & Eisikowitch, 1968). It 
usually takes a few days or week for all receptive syconia to be polli-
nated, but this can take longer if pollinator availability is low (Anstett 
et al., 1996; Khadari et al., 1995). Whether a host tree was receptive 
at the moment of sampling was determined with hindsight and was 
done as follows. Each day, 10 syconia were collected haphazardly 
and checked for the presence of living pollinators or dead pollinators 
inside. When living fig pollinators were observed inside one or more 
syconia or when the number of syconia with dead pollinators inside 
had increased compared to the previous day, the host tree was de-
termined to be receptive. This is probably a conservative definition 

of receptivity, there may be more days during with a host tree is 
receptive. However, any other way of determining receptivity, for 
example, by observing the ostioles, was considered less objective.

For the non-Ficus control group, we haphazardly selected 15 
trees. We did not have the expertise to identify these non-Ficus trees 
to species, but they all belonged to different tree species. We further 
made sure that these trees bore only leaves, and no flowers or fruits 
during the trapping events. And we further assured that the distribu-
tion of the non-Ficus trees across the nature reserve was similar to 
that of the fig trees in this study. To reduce the probability of trapping 
Pegoscapus pollinators going to a nearby fig host at our control trees, 
we only chose non-Ficus trees for which the closest observable fig 
host was at least 30 m away. This distance was chosen based on a 
small pilot study in which we found no pollinators at a distance of 20 m 
from a fig host. A summary of the trapping events is found in Table 2.

2.3  |  DNA barcoding

For comparisons at pollinator species level, a subset of the trapped 
fig pollinators was collected for DNAbarcoding. Where possible we 
tried to collect up to 20 individuals per host for both the receptive 
and vegetative phase. The pollinators were cleaned of glue by rinsing 
them in synthetic turpentine for about 15 min and next in water with 
soap for 1 min. After cleaning, pollinators were stored in 90% etha-
nol until further processing. Fig wasp DNA from single individuals 
was extracted using the Gentra PureGene Tissue Kit (Qiagen) with 
minor modification.

A total of 503 base pairs of CO1 were PCR amplified using the 
primers NewCOI_DEG_668_F (CTC TGG RGG KGG TGA TCC AA) 
and NewCOI_DEG_1171_R (AAA ATW GCA TAN ACW GCN CCT 
A). These degenerate primers were designed using assembled tran-
scriptomes from two species of pollinator (Pegoscapus sp. ex. F. du-
gandii, and F. petiolaris; C. A. Machado, unpublished). Transcriptomes 
were assembled using Trinity (Grabherr et al., 2011) and previously 
published COI fig wasp sequences (Machado et al.,  2001, 2005; 
Molbo et al., 2003) were blasted to the assembly to identify mtDNA 
scaffolds that included COI. Those scaffolds were then used to gen-
erate a battery of primer pairs for COI that were tested to identify 
pairs that worked consistently across multiple species. Primers New-
COI_DEG_668_F and NewCOI_DEG_1171_R were the best pair that 
generated consistent clean PCR bands across all species tested. PCR 
reactions were performed in 20 μL containing Buffer 1×, 0.25 mM 
of each dNTP, 1 mM of MgCl2, 0.25 μM of each primer, 1 U of Taq 
polymerase QIAGEN, and 1 μL of genomic DNA. Amplifications were 
carried out in a thermal cycler programmed as follows: 3 min at 95°C 
for 1 cycle; 30 s at 95°C, 45 s at 57°C (decreasing 1°C per cycle), and 
1 min at 72°C for 15 cycles (Touchdown PCR); 30 s at 95°C, 45 s at 
47°C, and 1 min at 72°C for 20 cycles; 5 min at 72°C for one terminal 
cycle. 5 μL of each PCR reaction mixture were electrophoresed in a 
1% agarose gel. Gels were stained with GelRed® and bands visual-
ized under ultraviolet illumination. Amplified products were purified 
and sequenced in both directions at Macrogen (Korea).

TA B L E  1 Overview of the Urostigma fig species at which 
pollinators were trapped. For all fig species, the Pegoscapus 
pollinator species that develop in and emerge from them are 
known. A section sign (§) indicates Pegoscapus species known to 
develop in two host species. A minus sign (−) indicates a Pegoscapus 
species that have become rare over past 20 years. A plus sign (+) 
indicates a Pegoscapus species that have become more common in 
this Urostigma species over the past 20 years.

Urostigma Ficus species Pegoscapus pollinator species

F. bullenei P. gemellus A§, P. gemellus C

F. citrifolia P. tonduzi

F. colubrinae P. orozcoi−, P. insularis§+

F. costaricana P. estherae

F. dugandii P. longiceps

F. near trigonata P. lopesi

F. nymphaefolia P. piceipes

F. obtusifolia P. hoffmeyeri A, P. hoffmeyeri B

F. paraensis P. herrei−, P. ‘ex paraensis’+

F. perforata P. insularis§

F. pertusa P. silvestrii

F. popenoei P. gemellus A§, P. gemellus B

F. trigonata P. grandii
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Barcoding was conducted using phylogenetic analyses 
(Figures S1–S11). The pollinator CO1 sequences were aligned using 
a reference data matrix composed of all Pegoscapus sp. and Tetrapus 
sp. COI sequences found in the NCBI GenBank database (Benson 
et al., 2005). Aligned sequences from each pollinator individual were 
first translated using the invertebrate mitochondrial genetic code to 
confirm they were coding sequences and not nuclear pseudogenes. 
None of the sequences showed evidence of pseudogenization or 
frame shifts. Aligned fig pollinator data from each fig species was 
then analyzed in Geneious Prime v2021.2.2 using the neighbor-
joining algorithm with Tamura-Nei distances (Tamura & Nei, 1993). 
DNA sequences were assigned the species name associated with 
GenBank reference sequences they clustered with within the phy-
logeny, typically corresponding to sequences from the GenBank 
reference with <2% divergence. In cases where sequences did not 
cluster with any GenBank reference sequence, they were named 
“new sp.” and their closest reference sequence or clade was noted. 
COI sequences were deposited in GenBank (accession numbers 
OR288903—OR289513). The total number of identified individuals 
per fig species is listed in Table 2.

2.4  |  Statistical analyses

R was used for all statistical analyses and estimates obtained (R ver-
sion 4.3.1). First, the number of trapped Pegoscapus pollinators on dif-
ferent non-Ficus trees, vegetative Urostigma fig trees, and receptive 
Urostigma fig trees were compared using zero-inflated Poisson mixed 
models (glmmTMB package; Brooks et al., 2017). These models assume 

that observations are draws of mixtures of additional zero counts and 
counts following Poisson distributions (of which a fraction of observed 
counts will be zero as well). The mixing proportions are determined 
by probabilities which are modeled with logistic regressions. These 
regressions are called the zero-inflation model. The Poisson model 
is called the conditional model. The most elaborate mixed model fit-
ted to our data contained a zero-inflation model with a fixed effect of 
tree type and random fig species effects. The conditional model for 
mean counts contained an offset for the number of days a trap was put 
(the offset was log; number of days), a fixed categorical effect of host 
type and random species and date effects. This model and simplified 
models with fixed and random effects removed were compared using 
AIC (Claeskens & Hjort, 2008). We report tail probabilities of hypoth-
esis tests on the significance of tree type fixed effects in the model 
with the lowest AIC. Likelihood ratio tests where we simulated the 
null hypothesis distribution using parametric bootstrap were impos-
sible because simplified null models required did not fit the data. We 
therefore report z-tests on the difference parameters of the tree type 
effect in the model with lowest AIC. Using the model with the lowest 
AIC we computed 95% confidence intervals for model parameters and 
of differences between predicted counts on different host types using 
Tukey-corrected confidence intervals for pairwise differences.

Second, we also wanted to inspect the difference between 
non-Ficus, vegetative, and receptive trees at the level of fig spe-
cies, and we did this for the four Ficus species at which we found 
pollinators during the receptive and vegetative phases and with at 
least one observation for each reproductive phase during which 
we counted more than a single pollinator (Ficus bullenei, F. citrifolia, 
F. obtusifolia, and F. popenoei). Here we used zero-inflated Poisson 

TA B L E  2 Overview of the number of trapping events (event = 4 sticky traps up for an “x” number of days), and the number of 
barcoded pollinator individuals per fig species per developmental phase. Note that the number of identified pollinators from traps is not 
representative of the total number of trapped pollinators which are presented in the results.

Fig species

Sticky trap sampling DNA-barcode sampling

Number of trees Number of trapping events Number of trees
Number of identified 
pollinators

Receptive Vegetative Receptive Vegetative Receptive Vegetative Receptive Vegetative

Ficus bullenei 3 7 10 231 2 3 35 55

F. citrifolia 3 5 14 29 2 1 45 27

F. colubrinae 2 3 8 87 1 0 16 0

F. costaricana 1 1 3 3 0 0 0 0

F. dugandii 1 1 10 5 1 0 28 0

F. near trigonata 3 1 9 2 2 1 15 9

F. nymphaefolia 3 3 12 46 0 0 0 0

F. obtusifolia 5 5 11 25 2 3 40 76

F. paraensis 1 1 4 5 1 0 26 0

F. perforata 1 2 12 49 1 1 32 3

F. pertusa 1 1 8 4 1 0 10 0

F. popenoei 3 7 22 76 3 3 51 45

F. trigonata 1 2 3 40 2 0 18 0

Total 28 39 126 602 18 12 316 215

Non-Ficus trees 15 60 0 0
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mixed models as well (with random date effects, glmmTMB pack-
age; Brooks et al., 2017). However, these did not reach convergence. 
We therefore used zero-inflated Poisson generalized linear models 
using the zeroinfl() function of library pscl (Jackman, 2020; Zeileis 
et al., 2008). Models with joint fixed tree type and date effects were 
usually singular or failed to fit. At the level of Ficus species, the num-
ber of days on which receptive and vegetative trees were sampled 
was limited, such that effects were not well crossed. Models with 
fixed date effect would contain large numbers of parameters tending 
to overfit the data and had very low precision of individual parame-
ter estimates due to separation. Therefore, in the models compared, 
date effects were removed. The zero-inflated model which had low-
est AIC for each species contained tree type effects in the logistic 
regression for zero-inflation and the conditional Poisson model. For 
each fig species, this model was used to calculate 95% confidence 
intervals for the difference between tree types for each fig species.

Third, we used the barcoding results to compare the specificity of 
pollinators on different vegetative and receptive fig trees using bino-
mial generalized linear mixed models (lme4 package; Bates et al., 2014) 
for the probability that a pollinator was found on its preferred host, 
with random pollinator species effects and a fixed effect interaction 
of tree type and host species. Models with random effects did not 
converge and therefore binomial generalized linear models were used 
with the same fixed effects and fixed effects of pollinator species. We 
compared this model with simplifications of it using AIC. Inspection of 
the parameter estimates revealed that pollinator species effects had 
to be removed because they overfitted the data (separation and no 
precision of parameter estimates). Among the models with tree type 
and host species fixed effects, the one with lowest AIC was used to 
report likelihood ratio tests and calculate 95% confidence intervals 
for the differences between receptive and vegetative trees.

Finally, we wanted to obtain predictions of counts at pollinator 
species level, which were not directly measured. For this the barcod-
ing results, and the counts of trapped Pegoscapus pollinators were 
jointly used. Bootstrap resampling from both datasets was used to 
generate 200 count datasets, and 200 relative abundance datasets. 
Multiplying these datasets yielded 200 datasets of the number of 
pollinators per Ficus species for receptive usual hosts, receptive 
other hosts, vegetative usual hosts, and vegetative other hosts. The 
95% confidence intervals based on these resampled datasets were 
used to compare numbers of pollinators. These intervals were made 
for six species that are known as the associated pollinators of the fig 
species we analyzed at the level of fig species.

3  |  RESULTS

3.1  |  Pollinator presence at receptive and 
vegetative Ficus host trees, or at non-Ficus controls

Pegoscapus pollinators were abundantly trapped at receptive Uro-
stigma trees; we carried out 126 trapping events lasting 150 days 
in total during which 7580 pollinators were trapped (Figure  2). 

Pegoscapus pollinators were rarely trapped on non-Ficus trees; dur-
ing the 60 trapping events lasting 287 days in total only four pollina-
tors were caught (Figure  2). On vegetative Urostigma fig trees we 
trapped an intermediate number of Pegoscapus pollinators; during 
602 trapping events lasting 1198 days 580 Pegsocapus pollinators 
were trapped (Figure 2). The model with the lowest AIC (i.e., with 
largest efficiency, best capacity to predict) combined conditional and 
zero-inflated modeling. We found a significant fixed effect differ-
ence between tree receptive and non-Ficus trees (z = 2.96, p = .003), 
and random effects of fig species and trapping date in the condi-
tional model and a fixed tree type effect in the logistic regression 
for the zero inflation (difference receptive vs. non-Ficus z = −4.20, 
p < .001). The 95% confidence intervals for receptive Urostigma trees 
were 1.00 to 2.48 for the conditional model parameters, and −5.46 
to −2.47 for logistic regression parameters, making the number of 
trapped pollinators at receptive Urostigma trees to be significantly 
higher compared to both non-Ficus trees, and vegetative Urostigma 
trees. The statistical analyses show no difference in the number of 
trapped pollinators at non-Ficus trees and vegetative hosts (95% c.i. 

F I G U R E  2 Pegoscapus pollinator individuals trapped across 
three types of trees. Far more Pegoscapus individuals are trapped 
at receptive Urostigma trees. Significant differences based on 
95% confidence intervals of the model are indicated with “*,” 
and non-significant differences with “NS.” Note the pseudolog 
transformation; a transformation mapping numbers to a signed 
logarithmic scale with a smooth transition to linear scale around 0.
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    |  7 of 16OLDENBEUVING et al.

for conditional model parameters non-Ficus = −6.00 to 0.09, veg-
etative Urostigma trees = −2.08 to −0.454, and for logistic regres-
sion parameters: non-Ficus = −0.52 to 3.73, vegetative Urostigma 
trees = 0.42 to 1.05).

Nearly all Pegoscapus pollinators that were trapped at vegeta-
tive Urostima trees were caught in traps on one of the following four 
fig species: Ficus bullenei, F. citrifolia, F. obtusifolia, and F. popenoei. 
We therefore specifically inspected these species for differences 
between receptive, vegetative, and non-Ficus trees  (Figure 3). The 
95% confidence intervals of the model parameters are summarized 
in Table  3. In each fig species, we found, as predicted, that more 
Pegoscapus pollinators were trapped at receptive trees compared 
to both non-Ficus, and vegetative trees. Besides, in these four fig 
species the number of trapped pollinator individuals in vegetative 
trees is higher than the number of trapped pollinator individuals at 
non-Ficus trees as well.

3.2  |  DNA barcoding, species identification, and 
species specificity

In total 531 pollinator individuals trapped at 11 Urostigma fig spe-
cies were barcoded and identified to species (Table 2, and Figure 4, 
Figures  S1–S11). The barcoded pollinator individuals belong to 25 
genetically distinguishable species, 16 of which were found in pre-
viously published and unpublished barcoding studies (Machado 
et al., 2001, 2005; Molbo et al., 2003). For these pollinator individu-
als (covering >98% of the barcoded individuals) the Urostigma spe-
cies from which they usually emerge is known (Table 2).

284 of 316 of the pollinators caught at receptive Urostigma fig 
trees belong to the pollinator species that is commonly reared from 
such host (see Figure 4). Furthermore, a large majority (138 of 215) 
of pollinator individuals trapped on vegetative Urostigma trees were 
found at the fig species they usually emerge from (Figure 4). Binomial 

F I G U R E  3 Pegoscapus pollinators trapped at four target Urostigma fig species. The number of trapped individuals at the non-Ficus trees 
also plotted in each panel for comparison. More pollinators are trapped at vegetative Ficus trees compared to non-Ficus controls. Significant 
differences, based on 95% confidence intervals calculated from the model for the number of trapped pollinators (see upper half of Table 2), 
are indicated with “*.” Note the pseudolog transformation; a transformation mapping numbers to a signed logarithmic scale with a smooth 
transition to linear scale around 0.
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GLM were fitted to these data and found significant additive effects 
of tree type (χ2(1) = 66.98, p < .001) and host species (χ2(10) = 102.84, 
p < .001), and 95% confidence intervals were calculated. The results 
show that pollinator individuals trapped at receptive Urostigma trees 
belong more often to the pollinator species that emerged from it 
compared to individuals trapped on vegetative Urostigma trees (c.i. 
receptive = 1.14 to 2.59 and c.i. vegetative = −1.27 to −0.22). In each 
fig species except Ficus citrifolia, Pegoscapus pollinators were also in-
cidentally trapped on receptive trees belonging to a fig species from 
which it not usually emerges. Also, seven Tetrapus pollinators, who 
are associated with fig species from a different fig section (Phar-
macosycea), were caught on Urostigma trees (~2% of the barcoded 
individuals).

One remarkable find was that 32 of the 52 pollinator individuals 
identified from traps at vegetative F. bullenei trees belong to P. lo-
pesi (Figure 3) a species that is known to pollinate F. near trigonata. 
Nearly all other barcoded individuals from P. lopesi had been trapped 
at F. near trigonata, and the pollinator seems to be very rare on other 
fig species, for example, one individual on F. perforata and one on 
F. popenoei. These 32 P. lopesi individuals were caught on two con-
secutive days at the same individual tree, and therefore we think we 
should be careful when interpreting these observations. We might 
have overlooked a nearby F. near trigonata tree releasing pollinators 
during our observation at F. bullenei. We included these wasps in 
the analyses because overall results were not significantly different 
when they were left out.

3.3  |  Pollinator abundances at species level

As summarized in Figure 1 we expected that Pegoscapus pollinators 
would be trapped most often on trees belonging to the fig species 
they emerged from, but also with some frequency on other recep-
tive Urostigma trees as well as at vegetative Urostigma trees due 
to overlap in volatile bouquets. The bootstrap estimates for six 
Pegoscapus pollinator species at receptive and vegetative trees that 
either do or do not belong to the species from which they emerged 
are plotted in Figure 5. For each Pegoscapus species, highest num-
bers were estimated for receptive trees of the fig species from which 
they emerged and lowest for vegetative trees belonging to another 
Urostigma species (Figure  5). As expected, intermediate estimates 
of pollinators were found at vegetative hosts belonging to the fig 
species from which they emerged as well as at receptive fig trees 
belonging to other Ficus species. While the same trend is observed 
for all wasp species, only some of the differences were statistically 
significant (Figure 5 and Table 4).

4  |  DISCUSSION

With some exceptions, pollinating wasps exhibit high fig host speci-
ficity, though increasingly host sharing and host switching have been 
documented (Moe et al., 2011; Molbo et al., 2003; Satler et al., 2019). TA
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    |  9 of 16OLDENBEUVING et al.

F I G U R E  4 Species identifications of fig pollinators trapped at receptive and vegetative tree individuals belonging to 11 Urostigma 
fig species. The colored squares on the left side indicate the pollinator species usually emerging from these fig species. The majority of 
the pollinators identified at vegetative fig trees (right side) were trapped at their usual host species, and pollinators at receptive fig trees 
(left side) show an even higher specificity. The upper section represents six Urostigma fig species that have one associated Pegoscapus 
pollinator. The lower sections represent fig species that diverge from the 1-to-1 pattern. Note that, due to sampling bias, bar lengths are not 
representative of the number of trapped Pegoscapus individuals at the host trees.
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10 of 16  |     OLDENBEUVING et al.

F I G U R E  5 Estimates of the presence of six Pegoscapus pollinator species at four types of Urostigma fig trees. Pollinator estimates are 
highest for receptive fig trees belonging to the Urostigma species from which they regularly emerge. Besides, there seems to be a trend of 
higher pollinator estimates for other receptive fig trees as well as for vegetative fig trees that belong to their usual host species compared 
to other vegetative trees from other species. Estimates are based on bootstraps of the results presented in Figures 1 and 3. Note that 
Pegoscapus gemellus A, marked with (**), is associated with two fig species. P. gemellus C was not found on receptive individuals of other Ficus 
species than the species it emerged from, so no estimates were possible here. Significant differences are indicated with a line, and all other 
comparisons are not significant. Confidence intervals can be found in Table 4.

TA B L E  4 95% confidence intervals of the estimated numbers of pollinator at receptive or vegetative trees belonging either species from 
which it either emerged or not. Since most confidence intervals start at zero most estimates do not significantly differ.

Tree type
Pegoscapus 
gemellus A

Pegoscapus 
gemellus B

Pegoscapus 
gemellus C

Pegoscapus 
hoffmeyeri A

Pegoscapus 
hoffmeyeri B

Pegoscapus 
tonduzi

Receptive host species 
from which it 
emerged

0–54.9 0.825–1001.55 0–15.9 0.245–10.675 0.665–24.15 19.0–770

Receptive other 
Urostigma hosts

0–2.32 0–1.35 NA 0–1.65 0–3.3 0–5.565

Vegetative host 
species from which 
it emerged

0–0.075 0–1.825 0–1.475 0–1.353333 0–2.9025 0–10.615

Vegetative other 
Urostigma host

0–0.0225 0–0.02 0–0.02667 0–0.053333 0–0.165 0–0.06
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Host switching and sharing are consistent with genetic data indi-
cating that hybridization and introgression occur over ecological 
time scales and that these processes have occurred throughout 
the history of Ficus (Gardner et al., 2023; Satler et al., 2022; Wang, 
Zhang, et al., 2021). Host specificity will depend on fig host recogni-
tion and therefore identifying cues used by pollinators to identify 
an appropriate host within their ecological context is important 
(Bronstein, 1987; Compton, 1993). Many previous studies have sug-
gested that there is an “aerial pool” of pollinator wasps from which 
some locate their receptive hosts (e.g., Compton et al., 1988; Nason 
et al.,  1996). These studies, in turn, have motivated other studies 
that have focused on assessing pollinator attraction to detached re-
ceptive syconia, and volatile blends produced by these (Grison-Pigé 
et al., 2002, van Noort et al., 1989, Wang et al., 2013; Wang, Yang, 
et al., 2021; Ware & Compton, 1994a). This has established the role 
of chemical signals produced by receptive fig syconia in attracting 
wasp pollinators but does not give ecological context or describe 
how they find hosts in nature. Therefore, we put out sticky traps 
at non-Ficus trees and Ficus trees of 13 fig species and across two 
developmental phases (receptive and vegetative). We did this in a 
diverse tropical fig community for which there exists extensive ge-
netic data on both host fig species and pollinating wasp species. Spe-
cifically, previous studies suggest that across wasp species there is a 
continuum of specificity in which some pollinators species are very 
specific to certain fig host species, and in some cases, what appears 
to be the same wasp species are shared between host fig species 
(Cook & Segar, 2010; Machado et al., 2005; Molbo et al., 2003). It 
appears that host fig species that share wasp species often hybrid-
ize (Satler et al., 2022). We found: (1) wasps were only very rarely 
captured at non-Ficus trees; (2) nonetheless, at four of the Ficus spe-
cies pollinators were trapped often at vegetative tree individuals be-
longing to the Ficus species from which that wasp species routinely 
emerges; (3) overwhelmingly, wasp individuals were captured at re-
ceptive host trees that correspond to their usual fig host species.

Our results support for some fig species the hypothesis that 
volatiles produced by other than the receptive syconia promote 
pollinator attraction (Figure 3). We note that pollinator individuals 
that arrive at vegetative fig trees (Figures 2 and 3; also see Bron-
stein, 1987; Compton, 1993; Ware & Compton, 1994a) make costly 
mistakes since no reproduction is possible, given their short lives 
and usually great distances between conspecific Ficus trees, and 
female fig wasps will have little time left to search for a receptive 
host. Therefore, selection should favor female fig wasps that cue 
in on volatile signals that are only produced by the host tree when 
receptive. However, the signal from vegetative individual trees to 
which they respond seem to be attractive and even sufficient to 
distinguish from the species from which they emerged from other 
fig species (Figures 4 and 5). Like many other insects, for example, 
parasitoids, fig wasps may face a “reliability-detectability problem” 
(Vet & Dicke, 1992) in which an individual pollinator is able to detect 
an individual host of fig species from which it emerged from a dis-
tance, but must be relatively close to determine whether or not that 

host bears receptive syconia. Fig pollinators may therefore respond 
to different cues during different phases of host selection. Fig leaves 
would likely provide a large emission surface area for at least part 
of the pollinator-attracting signal with the potential to signal over 
large distance. The syconia are likely to produce additional volatile 
cues that reliably confer both the species identity and the develop-
mental phase of the tree over a shorter distance. After arrival on the 
host tree a combination of volatile and contact cues likely guide a 
pollinator to the ostiole of a receptive syconium. We note a study 
reporting fig pollinators arriving to monoecious Ficus burtt-davyi to 
land on leaves after which they started searching for, and investigat-
ing syconia (Ware & Compton, 1994b), which is consistent with the 
suggested mechanism outlined above.

To our knowledge, no studies have directly investigated the 
pollinator-attracting potential of vegetative fig parts. However, what 
we have found within this Panamanian Ficus community is consistent 
with other examples. For example, synergy between vegetative and 
floral volatiles can be found in the pollinating hawkmoth Manduca 
sexta which shows a stronger response to floral volatiles if they are 
presented against a conspecific leaf volatile background (Kárpáti 
et al., 2013). Similary, the European dwarf palm (Chamaerops humi-
lis) has been shown to emit pollinator-attracting compounds from its 
leaves and not from its flowers (Dufaÿ et al., 2003). We hypothesize 
that signaling by leaves is more likely to be found in monoecious than 
in dioecious fig species. Monoecious fig species generally have lower 
densities, and their pollinator species are thought to disperse above 
the canopy as opposed to pollinator species of dioecious figs that 
are thought to disperse within the forest (Compton et al., 2000; Har-
rison, 2003; Harrison & Rasplus, 2006; Yang et al., 2015). A longer 
distance dispersal is inferred for pollinator species of monoecious fig 
species as well (Ahmed et al., 2009; Nason et al., 1998).

In conjunction with detailed ecological studies that document 
patterns of wasp presence and abundance with respect to their 
usual host and its developmental phase, more comparative chemi-
cal work is also needed. Studies on volatile bouquets emitted by fig 
trees often focus on syconia, the fig reproductive structures (Chen 
et al., 2009; Cornille et al., 2012; Grison-Pigé et al., 2002; Proffit & 
Johnson,  2009; Wang et al.,  2013, 2016). From these studies, we 
know that figs generally emit common plant volatiles, and that they 
share many of them across the entire genus (Borges et al.,  2008; 
Grison-Pigé et al., 2002; Proffit & Johnson, 2009). There are a few 
examples showing that the volatile bouquet of fig leaves partly 
overlap with those from syconia (Borges et al.,  2008; Conchou 
et al., 2014; Song et al., 2001).

4.1  |  The balance of specificity and occasional 
“mistakes”

Most pollinator individuals are present at trees belonging to the 
fig species from which they emerged even when these trees are 
vegetative (Figures 3–5). But at the same time pollinator individuals 
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12 of 16  |     OLDENBEUVING et al.

do frequently arrive at closely related trees belonging to species in 
which they did not develop (Figures 4 and 5) Fig wasps may have 
a lower probability to produce offspring in syconia of a fig species 
which from which they usually do not emerge, for example, due 
to reduced ability to enter syconia through the ostioles or a lower 
survival rate of developing offspring (Ghana et al.,  2015; Moe & 
Weiblen,  2012; Wang et al.,  2013). Therefore, selection should 
favor fig pollinators that cue in on volatile signals that are only pro-
duced by the fig species from which they emerged. Nevertheless, 
pollinator fitness on other hosts will not be zero in all cases (Yang 
et al., 2012). This may be why fig pollinators are sometimes found 
on other fig species (Figure 4; but also see Bronstein, 1987; Wang 
et al.,  2016; Ware  & Compton,  1994a). If a pollinator individual, 
during her short lifespan, does not locate a trees with receptive 
syconia belonging to the species from which she emerged, she may 
settle for a suboptimal choice if it provides even a small chance of 
producing some offspring. An easily testable hypothesis, predicted 
by dynamic optimal foraging models (Mangel,  1992), that would 
provide support for this idea is that the host preference of pollina-
tor individuals broadens as they age.

Behavioral “mistakes” by pollinators individuals can be po-
tentially accounted for by high similarity in volatile bouquets be-
tween fig species (Cornille et al.,  2012; Wang et al.,  2016). For 
plant–pollinator relationships an increasing number of studies 
suggest that similar volatiles attract similar pollinators (Burkle & 
Runyon,  2019; Hetherington-Rauth  & Ramírez,  2016; Huang 
et al., 2015; Stökl et al., 2005). As with other plant groups, fig vol-
atiles may be phylogenetically constrained (Joffard et al.,  2020; 
Schwery et al.,  2022). The degree to which different levels of 
phylogenetic distance predicts similarity of chemical cues should 
correspond to particular pollinator species being more likely to 
shift within fig sections or subgenera than between them (Cook & 
Segar,  2010). In our field site, we tentatively predict that if we 
expanded detailed sampling to Pharmacosycea figs and their Tet-
rapus pollinators, we expect to trap Pegoscapus pollinators more 
frequently at Urostigma figs than at Pharmacosycea figs, and the 
opposite for Tetrapus fig wasps (Figure 1). We note that the idea 
that shifts to new hosts are mediated by the chemical similarity 
between old and new hosts was already postulated in 1964 (Eh-
rlich  & Raven,  1964), and supporting evidence has been found 
for many herbivorous insect groups (Becerra,  1997; Erbilgin 
et al., 2014; Murphy & Feeny, 2006; Rigsby et al., 2017).

Figs do not seem to have strong post-zygotic isolating mecha-
nisms, based on studies on natural and artificial hybrids showing that 
these produce viable seeds that develop well (Condit, 1950; Moe & 
Weiblen, 2012; Ramirez, 1986, 1994; Wang et al., 2013), although 
in one study syconia receiving pollinators with heterospecific pol-
len were more likely to abort (Wang et al., 2013). Recently, a back-
cross individual from a hybrid was found in Central Panama (Satler 
et al., 2022). Host-choice errors or genuine flexibility in host choice 
by fig pollinators may lead to hybridization of Ficus species (Gard-
ner et al., 2023; Satler et al., 2022; Wang, Yang, et al., 2021; Wang, 

Zhang, et al., 2021). Offspring developing in another host fig spe-
cies may imprint on the cues of the new host species, and this could 
lead to a population establishing on this new host species making 
the host-shift permanent as has been shown in other animals (Gowri 
et al., 2019; Remy, 2010; van Emden, 2015; Zhang et al., 2007).

The response of fig pollinators to host-specific signals within the 
volatile bouquets produced by the species in which they developed 
is thought to play a major role in host specificity (Cornille et al., 2012; 
Grison-Pigé et al., 2002; Herre et al., 2008; Wang et al., 2013, 2016; 
Wang, Yang, et al., 2021). Fig pollinators can locate and find a recep-
tive individual of the species from which they emerged within the 
suite of volatile bouquets they encounter in the rainforest (Bron-
stein, 1987; van Noort et al., 1989; Ware & Compton, 1994b). Our 
findings provide ecological context within which to frame studies 
on how different factors interact in pollinator attraction. We found 
modest support for our two, non-mutually exclusive, hypotheses 
which combined could explain how pollinator-attraction by fig trees 
could balance both specificity as well as occasional mistakes. Future 
studies on host choice should integrate how chemical signals, nota-
bly not only from inflorescences but also from vegetative tissues, 
operate at the community level, and different phylogenetic levels. 
We believe this will be a very fruitful way forward toward explaining 
how the host specificity of fig pollinators relates to genetic diversi-
fication or isolation which, in turn, are expected to affect opportu-
nities for speciation.
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