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Statistical Field Theory and Neural Structures Dynamics II: Signals

Propagation, Interferences, Bound States.

Pierre Gosselin∗ Äıleen Lotz†

November 30, 2023

Abstract

We continue our study of a field formalism for large sets of interacting neurons, together
with their connectivity functions. Expanding upon the foundation laid in ([9]), we formulate an
effective formalism for the connectivity field in the presence of external sources. We proceed to
deduce the propagation of external signals within the system. This enables us to investigate the
activation and association of groups of bound cells.

1 Introduction

In this series of papers, we develop a field-theoretic approach to study the dynamics of connectivities
in a system of interacting spiking neurons. To achieve this, in ([9]), we established a two-field model
that describes both the dynamics of neural activity and the connectivity between points in the
network. This field theory is the outcome of a two-step process and is based on a method originally
developed in ([1]) and subsequently adapted for complex interacting systems in [2][3][4], and [5].
In the first step, we extend the standard formalism of dynamic equations for a large assembly of
interacting neurons, as outlined in ([7]), to include a dynamic system accounting for the evolving
nature of neural connectivity. We employ the formalism for connectivity functions presented in
([8]), which is rewritten in a format suitable for translation into field theory. In the second step,
we transform this two sets of dynamic equations into a second-quantized Euclidean field theory,
as detailed in (see [2][3][4] for the method). The action functional of this field theory depends
on two fields.The first field, analogous to the one introduced in ([6]), characterizes the assembly of
neurons, while the second field delineates the dynamics of connectivity between cells. Both fields are
subject to self- interactions, depicting interactions across the network, and also interact mutually
with one another, encapsulating the interdependencies between neural activities and connectivities.
This field-based description encompasses both collective and individual aspects of the system. The
system with these two fields is delineated by a field action functional that records the interactions
at the microscopic level. This action functional comprehensively encapsulates the dynamics of the
entire system.

This field-theoretic framework enables us to derive the system’s effective action, as well as the
corresponding background field, namely, the minimum of the effective action. This background field
characterizes the collective state of the system. The field framework allows us to compute firing
rates, i.e., neural activity, at each point in the system in a given background state. Additionally,
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we can derive the propagation of perturbations in neural activity from one point to another. In a
prior work ([6]), we demonstrated the existence of persistent nonlinear traveling waves along the
network by considering the field action for neurons alone. In ([9]), where the field for connectivity
functions is included in the system, our description enables the derivation of both background fields
for neural interactions and connectivities, which minimize the action functional. These background
fields represent the collective configurations of the system and dictate the potential static equilibria
for neural activities and connectivities. These equilibria serve as the structural foundation of
the system, governing fluctuations and the propagation of signals within it. They depend on
internal parameters of the system and external stimuli. We showed the existence of several possible
background states and their corresponding connectivities, the thread being mainly organized into
groups of interconnected points.

Assuming that the timescale of connectivities is slower than that of individual cells, we have
demonstrated how repeated activations at certain points can propagate along the thread, gradu-
ally altering the connectivity functions. Foroscillatory perturbations, the oscillatory response may
exhibit interference phenomena. At points of constructive interference, both the background state
for connectivities and average connectivities undergo modifications. These long-term modifications
manifest as emerging states characterized by enhanced connectivities between specific points. These
states are reflective of external activations and can be regarded as records of these activations. They
are slowly fading over time but can be reactivated by external perturbations. Furthermore, the
association of such emerging states arises if their activation occurs at similar times. The resultant
state is a combination of two states, describable as a modification of the initial background state
at several points. Activating one of the two states may reactivate their combination. Therefore,
regardless of the cause of their activation, these enhanced connectivity states exhibit the charac-
teristics of interacting partial neuronal assemblies.

Nonetheless, these results were derived solely by working with the connectivities field. We made
use of the findings from ([6]) and did not establish our results based on interactions between the
neuronal field and the connectivity field. The objective of th present work is to incorporate the
interactions between these two fields and ultimately derive an effective action for the connectivities.
Any modification in terms of cell activity resulting from external signals or cell interactions will
then be then inherently encompassed within the effective action for the connectivity field.

This effective formalism enables us to contemplate the dynamics of the connectivity system as
alterations of the connectivity field induced by external perturbations. The outcomes from ([9]) are
thus recovered as transitions between initial and final states of this field. The outcomes from ([9]),
such as the emergence of combined structures and the reactivation of one structure by another,
thus occur within a coherent field description of the connectivity system.

This paper is organised as follows: In Part I, we provide an overview of the model and results
from ([9]), Sections 2 and 3 revisit the individual dynamics of interacting neurons and the field-
theoretic formulation of the model, respectively. In Section 4, we review the characteristics of the
background states and qualitatively discuss the influence of external perturbations on these states.

To develop an effective field theory for the connectivity field, Part II integrates the degrees
of freedom of the neuronal field in the presence of external sources out. Section 5 details the
modifications to the neuronal field’s path integral induced by the presence of sources. Section
6 computes the saddle-path neural activity in the presence of sources and derives the effects of
interferences on this activity. Section 7 deduces the impact of interferences on the emergence of
bound states.

In Part III, building on the previous sections, we derive an effective field theory for the con-
nectivity field. Section 8 outlines the effective theory and the associated Green functions for the
bound states. These Green functions are then utilized to investigate modifications in the con-
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nectivity background state. In Section 9, we present various applications, including activations,
associations, and reactivations of structures as externally induced transitions of the background
states. We uncover the effects of interferences as consequences of these transitions. Section 10 is
for the conclusion.

I. Model, static background fields and
external perturbations

We present the dynamical model for cells activity and connectivities between a large set of cells.
We recall the field translation of this model. We present the result of prtI: the static background
fields along with the associated equilibrium connectivities and activities, and the perturbations
associated wth external sources. Details are given in prtI.

2 A dynamical system of interacting cells.

Following [2][3][4], we describe a system of a large number of neurons (N >> 1). We define their
individual equations and the dynamics for the connectivity functions.

2.1 Individual dynamics

We follow the description of [7] for coupled quadratic integrate-and-fire (QIF) neurons, but use the
additional hypothesis that each neuron is characterized by its position in some spatial range.

Each neuron’s potential Xi (t) satisfies the differential equation:

Ẋi (t) = γX2
i (t) + Ji (t) (1)

for Xi (t) < Xp, where Xp denotes the potential level of a spike. When X = Xp, the potential is
reset to its resting value Xi (t) = Xr < Xp. For the sake of simplicity, following ([7]) we have chosen
the squared form γX2

i (t) in (1). However any form f (Xi (t)) could be used. The current of signals
reaching cell i at time t is written Ji (t).

Our purpose is to find the system dynamics in terms of the spikes’ frequencies. First, we
consider the time for the n-th spike of cell i, θ(i)n . This is written as a function of n, θ(i) (n). Then,
a continuous approximation n → t allows to write the spike time variable as θ(i) (t). We thus have
replaced:

θ(i)n → θ(i) (n) → θ(i) (t)

The continuous approximation could be removed, but is convenient and simplifies the notations
and computations. We assume now that the timespans between two spikes are relatively small.
The time between two spikes for cell i is obtained by writing (1) as:

dXi (t)

dt
= γX2

i (t) + Ji (t)

and by inverting this relation to write:

dt =
dXi

γX2
i + J (i)

(
θ(i) (n− 1)

)

3



Integrating the potential between two spikes thus yields:

θ(i) (n)− θ(i) (n− 1) ≃
∫ Xp

Xr

dX

γX2 + J (i)
(
θ(i) (n− 1)

)

Replacing J (i)
(
θ(i) (n− 1)

)
by its average value during the small time period θ(i) (n)− θ(i) (n− 1), we

can consider J (i)
(
θ(i) (n− 1)

)
as constant in first approximation, and we find:

θ(i) (n)− θ(i) (n− 1) ≡ G
(

θ(i) (n− 1)
)

=

arctan





(

1
Xr

− 1
Xp

)

√

J(i)(θ(i)(n−1))
γ

1+
J(n)(θ(n−1))

γXrXp





√

γJ (i)
(
θ(i) (n− 1)

) (2)

The activity or firing rate at t, ωi (t), is defined by the inverse time span (2) between two spikes:

ωi (t) =
1

G
(
θ(i) (n− 1)

) ≡ F
(

θ(i) (n− 1)
)

(3)

Since we consider small time intervals between two spikes, we can write:

θ(i) (n)− θ(i) (n− 1) ≃ d

dt
θ(i) (t)− ω−1

i (t) = εi (t) (4)

where the white noise perturbation εi (t) for each period was added to account for any internal
uncertainty in the time span θ(i) (n)− θ(i) (n− 1). This white noise is independent from the instan-
taneous inverse activity ω−1

i (t). We assume these εi (t) to have variance σ2, so that equation (4)
writes:

d

dt
θ(i) (t)−G

(

θ(i) (t) , J (i)
(

θ(i) (t)
))

= εi (t) (5)

The ωi (t) are computed by considering the overall current which, using the discrete time notation,
is given by:

Ĵ (i) ((n− 1)) = J (i) ((n− 1)) (6)

+
κ

N

∑

j,m

ωj (m)

ωi (n− 1)
δ

(

θ(i) (n− 1)− θ(j) (m)− |Zi − Zj |
c

)

Tij ((n− 1, Zi) , (m,Zj))

The quantity J (i) ((n− 1)) denotes an external current. The term inside the sum is the aver-
age current sent to i by neuron j during the short time span θ(i) (n) − θ(i) (n− 1). The function
Tij ((n− 1, Zi) , (m,Zj)) is the connectivity (or transfer) function between cells j and i. It measures
the level of connectivity between i and j.

In this paper, the connectivity function is a dynamical object whose dynamic equations are
described in the next paragraph. We will work in the continuous approximation, so that formula
(6) is replaced by:

Ĵ (i) (t) = J (i) (t) +
κ

N

∫
∑

j

ωj (s)

ωi (t)
δ

(

θ(i) (t)− θ(j) (s)− |Zi − Zj |
c

)

Tij ((t, Zi) , (s, Zj)) ds (7)

Formula (7) shows that the dynamic equation (4) has to be coupled with the neurons activities
equation:

ωi (t) = G
(

θ(i) (t) , Ĵ
(

θ(i) (t)
))

+ υi (t) (8)

and J (i) (t) is defined by (7). A white noise υi (t) accounts for the possible deviations from this
relation, due to some internal or external causes for each cell. We assume that the variances of
υi (t) are constant, and equal to η2, such that η2 << σ2.
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2.2 Connectivity functions dynamics

We describe the dynamics for the connectivity functions Tij ((n− 1, Zi) , (m,Zj)) between cells. To
do so we adapt the description of ([8]) to our context. In this work, the connectivity functions
depend on some intermediate variables and do not present any space index. The connectivity
between neurons i and j satisifies a differential equation:

dTij

dt
= −Tij (t)

τ
+ λT̂ij (t)

∑

l

δ
(
t−∆tij − tlj

)
(9)

where T̂ij (t) represents the variation in connectivity, due to the synaptic interactions between the
two neurons. The delay ∆tij is the time of arrival at neuton i for a spike of neuron j. The time tlj
accounts for time of neuron j spikes. The sum:

∑

l

δ
(
t−∆tij − tlj

)

counts the number of spikes emitted by neuron j and arriving at time t at neuron i.
The variation in connectivity satisfies itself an equation:

dT̂ij

dt
= ρ

(

1− T̂ij (t)
)

Cij (t)
∑

k

δ
(
t− tki

)
− T̂ij (t)Di (t)

∑

l

δ
(
t−∆tij − tlj

)
(10)

where Cij (t) and Di (t) measure the cumulated postsynaptic and presynaptic activity. The sum:

∑

k

δ
(
t− tki

)

counts the number of spikes emitted at time t. Quantities Cij (t) and Di (t) follow the dynamics:

dCij

dt
= −Cij (t)

τC
+ αC (1− Cij (t))

∑

l

δ
(
t−∆tij − tlj

)
(11)

dDi

dt
= −Di (t)

τD
+ αC (1−Di (t))

∑

k

δ
(
t− tki

)
(12)

To translate these equations in our set up, we have to consider connectivity functions of the
form:

Tij ((ni, Zi) , (nj , Zj))

that include the positions of neurons i and j and the parameter ni and nj which are our counting
variables of neurons spikes. However, equations (9), (10), (11), (12) include a time variable.

In our formalism, the time variable θ(i) (ni) is the time at which neuron i produces its ni-th
spike. We should write classical equations depending on these variables.

Moreover, the number of spikes
∑

l δ
(
t−∆tij − tlj

)
emitted by cell j at time tlj and the number of

spikes
∑

k δ
(
t− tki

)
emitted by cell i at time t are proportional to δ

(
θ(j) (nj)− (t−∆tij)

)
ωj (nj) and

δ
(
θ(i) (ni)− t

)
ωj (ni) respectively. Given the introduction of a spatial indices, we have the relation:

∆tij =
|Zi − Zj |

c

and the first δ function writes:

δ
(

θ(j) (nj)− (t−∆tij)
)

= δ

(

θ(j) (nj)−
(

θ(i) (ni)−
|Zi − Zj |

c

))

δ
(

θ(i) (ni)− t
)
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As a consequence, we will write first the connectivity functions from i to j as:

T
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj, θ
(j) (nj) , ωj (nj)

))

This function, together with the variation in connectivity:

T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj, θ
(j) (nj) , ωj (nj)

))

along with the auxiliary variables:

C
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

))

and:
D
((

Zi, θ
(i) (ni) , ωi (ni)

))

satisfy the following translations of equations (9), (10), (11), (12):

∇
θ(i)(ni)

T
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

))

(13)

= − 1

τ
T
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj, θ
(j) (nj) , ωj (nj)

))

+λ
(

T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

)))

δ

(

θ(i) (ni)− θ(j) (nj)−
|Zi − Zj |

c

)

where T̂ measures the variation of T due to the signals send from j to i and the signals emitted by
i. It satisfies the following equation:

∇
θ(i)(ni)

T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

))

(14)

= ρδ

(

θ(i) (ni)− θ(j) (nj)−
|Zi − Zj |

c

)

×
{(

h (Z,Z1)− T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

)))

C
(

θ(i) (n)
)

hC (ωi (ni))

−D
(

θ(i) (n)
)

T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj, θ
(j) (nj) , ωj (nj)

))

hD (ωj (nj))
}

where hC and hD are increasing functions. In the set of equations (9), (10), (11), (12):

hC (ωi (ni)) = ωi (ni)

hD (ωj (nj)) = ωj (nj)

We depart slightly from ([8]) by the introduction of the function h (Z,Z1) (they choose h (Z,Z1) =

1), to implement some loss due to the distance. We may choose for example:

h (Z,Z1) = exp

(

−|Zi − Zj|
νc

)

where ν is a parameter. Equation (14) involves two dynamic factors C
(
θ(i) (n− 1)

)
and D (θi (n− 1)).

The factor C
(
θ(i) (n− 1)

)
describes the accumulation of input spikes. It is solution of the differential

equation:

∇
θ(i)(n−1)C

(

θ(i) (n− 1)
)

= −C
(
θ(i) (n− 1)

)

τC
(15)

+αC

(

1− C
(

θ(i) (n− 1)
))

ωj

(

θ(i) (n− 1)− |Zi − Zj|
c

)
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The term D (θi (n− 1)) is proportional to the accumulation of output spikes and is solution of:

∇
θ(i)(n−1)D

(

θ(i) (n− 1)
)

= −D
(
θ(i) (n− 1)

)

τD
+ αD

(

1−D
(

θ(i) (n− 1)
))

ωi (ni) (16)

For the purpose of field translation, we have to change the variables in the derivatives by the
counting variable ni

and replace ∇
θ(i)(ni)

≃ ωi (ni)∇ni
in the previous dynamics equations. We thus rewrite the

dynamic equations in the following form:
For the connectivity T :

∇ni
T
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

))

(17)

= − 1

τωi (ni)
T
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj, θ
(j) (nj) , ωj (nj)

))

+
λ

ωi (ni)

(

T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

)))

δ

(

θ(i) (ni)− θ(j) (nj)−
|Zi − Zj |

c

)

For the variation in connectivity T̂ :

∇ni
T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

))

(18)

=
ρ

ωi (ni)
δ

(

θ(i) (ni)− θ(j) (nj)−
|Zi − Zj|

c

)

×
{(

h (Z,Z1)− T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

)))

C
(

θ(i) (n− 1)
)

hC (ωi (ni))

−D
(

θ(i) (n− 1)
)

T̂
((

Zi, θ
(i) (ni) , ωi (ni)

)

,
(

Zj , θ
(j) (nj) , ωj (nj)

))

hD (ωj (nj))
}

and for the auxiliary variables C and D:

∇ni
C
(

θ(i) (n− 1)
)

= −C
(
θ(i) (n− 1)

)

τCωi (ni)
(19)

+αC

(

1− C
(

θ(i) (n− 1)
)) ωj

(

Zj , θ
(i) (n− 1)− |Zi−Zj |

c

)

ωi (ni)

and:

∇ni
D
(

θ(i) (n− 1)
)

= −D
(
θ(i) (n− 1)

)

τDωi (ni)
+ αD

(

1−D
(

θ(i) (n− 1)
))

(20)

Then, to describe the connectivity by a field, we have to describe the connectivity as a set
of vectors depending of a set of double indices kl (replacing ij) and interacting with the neurons
activities, seen as independent variables indexed by i, j...

We thus describe connectivity by a set of matrices:

(

Tkl (nkl) , T̂kl (nkl) , (Zkl (nkl) = (Zk,, Zl)) , θ
(kl) (nkl) , ωk (nkl) , ω

′
l (nkl) , Ckl (nkl) , Dk (nkl)

)

where nkl is an internal parameter given by the average counting variable for cells or synapses firing
simultaneously at point Zk,.

Then, we replace the description (17), (18), (19), (20) by a set of equation in which connectivity
Tkl (nkl) interact with all pairs of neurons at points Zk, and Zl whose average activities at time
θ(kl) (nkl) and θ(kl) (nkl) − |Zk−Zl|

c
are given by ωk (nkl) , ω

′
l (nkl) respectively. As a consequence, we
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replace the notion of connectivity Tij ((n− 1, Zi) , (m,Zj)) between two specific neurons i and j by
the average connectivity between the two sets of neurons with identical activities at each extremity
of the segment (Zi, Zj) This approximation justifies if we consider that neurons located at the same
place and firing at the same rate can be considered as closely connected and in average identical.

Stated mathematically, variable is an average nkl = n̄i at a given time θ(kl) and we assume that
in average, connectivity variable Tkl (nkl) interacts with all neurons pairs located at (Zk,, Zl) at times
θ(i) (ni) = θ(kl) (nkl). Writing ω̄ (Zi, ni) for the average activity, we impose ω̄ (Zi, ni) = ωk (nkl) and
ω̄ (Zj, nj) = ω′

l (nkl) and θ(j) (nj) = θ(kl) (nkl) − |Zk−Zl|
c

respectively. The densities Tkl (nkl) are thus
the set of all connections between points Zk, and Zl between sets of synchronized neurons at Zk and
synchronized neurons at Zl, i.e. between set of neurons or synapses at this points. In this point of
view, we replace ∇

θ(i)(ni)
≃ ωi (ni)∇ni

by:

∇
θ(kl)(nkl)

≃ ∂nkl

∂θ(kl) (nkl)
∇nkl

= ω̄ (Zi, ni)∇nkl

As a consequence, the dynamic equations (17), (18), (19), (20) are replaced by:

∇nkl
Tkl (nkl) =



−
∑

i,ni

1

τω̄ (Zi, ni)
Tkl (nkl) +

λ

ω̄ (Zi, ni)
T̂kl (nkl)



 (21)

×δ
(

θ(i) (ni)− θ(kl) (nkl)
)

δ (Zk − Zi) δ (ωk (nkl)− ω̄ (Zi, ni))

∇nkl
T̂ (nkl) (22)

=




∑

i,ni

(

h (Zk, Zl)− T̂ (nkl)
)

Ckl (nkl)hC (ωi (ni))−
∑

j,nj

Dk (nkl) T̂ (nkl) hD (ωj (nj))





× ρ

ω̄ (Zi, ni)
δ

(

θ(i) (ni)− θ(j) (nj)−
|Zi − Zj |

c

)

δ
(

θ(i) (ni)− θ(kl) (nkl)
)

×δ ((Zk,, Zl)− (Zi,, Zj)) δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

∇nkl
C (nkl) =



− C (nkl)

τC ω̄ (Zi, ni)
+
∑

j,nj

αC (1− Ckl (nkl))
ωj (nj)

ω̄ (Zi, ni)



 (23)

×δ

(

θ(i) (ni)− θ(j) (nj)−
|Zi − Zj |

c

)

δ
(

θ(i) (ni)− θ(kl) (nkl)
)

δ ((Zk,, Zl)− (Zi,, Zj))

×δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj, nj))

∇nkl
Dk (nkl) =



− Dk (nkl)

τDω̄ (Zi, ni)
+

1

ω̄ (Zi, ni)

∑

i,ni

αD (1−Dk (nkl))ωi (ni)



 (24)

×δ
(

θ(i) (ni)− θ(kl) (nkl)
)

δ (Zk − Zi) δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

Similarly, note that we can also rewrite the currents equation (6) as:

Ĵ (i) ((n− 1)) = J (i) ((n− 1))+
κ

N

∑

j,m

ωj (m)

ωi (n− 1)
δ

(

θ(i) (n− 1)− θ(j) (m)− |Zi − Zj |
c

)

Tij ((n− 1, Zi) , (m,Zj))

with:

Tij ((ni, Zi) , (mj , Zj)) =
∑

kl

Tkl (nkl) δ
(

θ(i) (ni)− θ(kl) (nkl)
)

δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

(25)
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3 Field theoretic translation of the system

This section presents the translation of the system neurons+connectivities dynamics in terms of
fields. The detailed derivation was given in ([9]).

3.1 translation of Equation (5) in terms of field theory

We have shown in [2][3][4] that the probabilistic description of dynamic system for a large number
of degrees of freedom is equivalent to a statistical field formalism. A concise version of this method
is given in ([5]) and this method was applied in ([9]) to derive the field theory counterpart of the
system presented in section 2.

Within this formalism, the system is collectively described by a field, which is an element of the
Hilbert space of complex functions. The arguments of these functions correspond to the parameters
used to describe an individual neuron. In this study, we will present the results directly.

The fields action for the neurons activity is a functional for the field Ψ(θ, Z, ω) and encompasses
the dynamics (5) along with the activities described by (3) and (6):

S = −1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z, ω) (26)

+
1

2η2

∫

|Ψ(θ, Z, ω)|2
(

ω−1 −G

(

J (θ, Z) +

∫
κ

N

ω1

ω

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1, ω1

)∣
∣
∣
∣

2

T (Z, θ, Z1) dZ1dω1

))2

Using the fact that η2 << 1, we showed in ([9]) that we can restrict the fields to those of the form:

Ψ(θ, Z) δ
(

ω−1 − ω−1
(

J, θ, Z, |Ψ|2
))

(27)

where ω−1
(

J, θ, Z, |Ψ|2
)

satisfies:

ω−1
(

J, θ, Z, |Ψ|2
)

(28)

= G



J (θ, Z) +

∫
κ

N

ω
(

J, θ − |Z−Z1|
c

, Z1,Ψ
)

T
(

Z, θ, Z1, θ − |Z−Z1|
c

)

ω
(

J, θ, Z, |Ψ|2
)

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

dZ1





The ”classical” effective action becomes (see ([9])):

−1

2
Ψ† (θ, Z)

(

∇θ

(
σ2

2
∇θ − ω−1

(

J, θ, Z, |Ψ|2
)))

Ψ(θ, Z) (29)

with ω−1
(

J, θ, Z, |Ψ|2
)

given by equation (28). As in ([6]) we add to this action a stabilization

potential V (Ψ) ensuring an average activity of the system. The precise form of this potential is
irrelevant here, but we assume that it has a minimum Ψ0 (θ, Z).

3.2 Translation for connectivity dynamics

The translation of the four action terms describing the connectivity dynamics (21), (22), (23) and
(24) is straightforward. Taking into account the projection (27), we obtain four terms: S

(1)
Γ , S(2)

Γ ,
S
(3)
Γ , S(4)

Γ :

S
(1)
Γ =

∫

Γ†
(

T, T̂ , θ, Z, Z ′, C,D
)

∇T

(
σ2
T

2
∇T −

(

− 1

τω
T +

λ

ω
T̂

))

Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

(30)
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S
(2)
Γ =

∫

Γ†
(

T, T̂ , θ, Z, Z ′, C,D
)

(31)

×∇
T̂

(

σ2
T̂

2
∇

T̂
− ρ

ω

((

h (Z,Z ′)− T̂
)

C |Ψ(θ, Z)|2 hC (ω)

−DT̂

∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

hD (ω′)

))

Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

S
(3)
Γ = Γ†

(

T, T̂ , θ, Z, Z ′, C,D
)

(32)

×∇C








σ2
C

2
∇C +








C

τCω
− αC (1− C)

ω′

∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

ω















×Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

S
(4)
Γ = Γ†

(

T, T̂ , θ, Z, Z ′, C,D
)

∇D

(
σ2
D

2
∇D +

(
D

τDω
− αD (1−D) |Ψ(θ, Z)|2

))

Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

(33)
with:

ω = ω
(

J, θ, Z, |Ψ|2
)

ω′ = ω

(

J, θ − |Z − Z ′|
c

, Z ′, |Ψ|2
)

and:

h (Z,Z ′) = exp

(

−|Z − Z ′|
νc

)

3.3 Full action for the system and partition function

The full action for the system is obtained by gathering the different terms:

Sfull = −1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

(

J, θ, Z, |Ψ|2
))

Ψ(θ, Z) + V (Ψ) (34)

+
1

2η2

(

S
(0)
Γ + S

(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

)

+ U
({

|Γ (θ, Z, Z ′, C,D)|2
})

with S
(1)
Γ , S(2)

Γ , S(3)
Γ , S(4)

Γ given by (30), (31), (32), (33). In (34), we added a potential:

U
({

|Γ (θ, Z, Z ′, C,D)|2
})

= U

(∫

T
∣
∣
∣Γ
(

T, T̂ , θ, Z, Z ′, C,D
)∣
∣
∣

2

dTdT̂

)

that models the constraint about the number of active connections in the system.
The partition function of the system is given by:

exp
(
−Sfull

((
Ψ†,Ψ

)
,
(
Γ,Γ†

)))
D
(
Ψ†,Ψ

)
D
(
Γ,Γ†

)
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4 Background state and perturbation

4.1 Background state

We showed in ([9]) that Sfull present several possible minima. These minima are characterized

by the shape of |Ψ(θ, Z)|2 and Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

for every point Z and doublet (Z,Z ′). The

derivation proceeds in several steps. We first derive the saddle point |Ψ(θ, Z)|2 of:

−1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

(

J, θ, Z, |Ψ|2
))

Ψ(θ, Z) + V (Ψ)

as a function of the connectivty field Γ and then work with an effective action:

S
(0)
Γ + S

(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

for this field. In first approximation, the field Γ can be decomposed as a product:

Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

= ΓC (θ, Z, Z ′, C) ΓD (θ, Z, Z ′, D) Γ
(

T̂ , T, θ, Z, Z ′
)

and this allows to compute the background values for ΓC and ΓD, leading ultimately to consider
an action S

(1)
Γ + S

(2)
Γ for:

Γ
(

T̂ , T, θ, Z, Z ′
)

with C and D replaced by their background values 〈C〉 and 〈D〉. For later purposes we recall this
action here:

S
(

Γ
(

T, T̂ , θ, Z, Z ′
))

(35)

= Γ†
(

T, T̂ , θ, Z, Z ′
)



∇T



∇T −





(

−T + λT̂
)

τω0 (Z)



 |Ψ(θ, Z)|2




+∇
T̂



∇
T̂
− ρ





(

h (Z,Z ′)− T̂
)

〈C〉 |Ψ0 (Z)|2
hC

(

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
))

ω0 (Z)

−ηH (δ − T )− 〈D〉 T̂ |Ψ0 (Z
′)|2 hD (ω0 (Z

′))

ω0 (Z)

))

Γ
(

T, T̂ , θ, Z, Z ′
)

We derive the saddle-points solutions and compute the associated averages for a static regime
and under some approximations. The background is determined by two possibilities for Γ for all

(Z,Z ′). These possibilities describe an activated state Γa

(

T, T̂ , θ, Z, Z ′, C,D
)

and an unactivatd one

Γu

(

T, T̂ , θ, Z, Z ′, C,D
)

.

We also showed how to derive the average connectivities in such background states. These
averages satisfy some set of equations:

〈
CZ,Z′

〉
=

αCω
′

∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

1
τC

+ αCω′
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2 (36)

〈
DZ,Z′

〉
=

αDω |Ψ(θ, Z)|2
1
τD

+ αDω |Ψ(θ, Z)|2

11



〈T (Z,Z ′)〉 = λτ
〈

T̂ (Z,Z ′)
〉

(37)

=
λτh (Z,Z ′)

〈

CZ,Z′ (θ) |Ψ(θ, Z)|2
〉

∣
∣Ψ̄ (θ, Z, Z ′)

∣
∣
2

with:

∣
∣Ψ̄ (θ, Z, Z ′)

∣
∣
2
=

CZ,Z′ (θ) |Ψ(θ, Z)|2 hC (ω (θ, Z)) +DZ,Z′ (θ)

∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

hD

(

ω

(

θ − |Z−Z′|
c

, Z ′

))

hC (ω (θ, Z))
(38)

for (Z,Z ′) an ”a” (active) doublet, and:

〈T (Z,Z ′)〉 = 0 (39)

〈

T̂ (Z,Z ′)
〉

=
h (Z,Z ′)

〈

CZ,Z′ (θ) hC (ω (θ, Z)) |Ψ(θ, Z)|2
〉

− η
〈

hC (ω (θ, Z))
∣
∣Ψ̄ (θ, Z, Z ′)

∣
∣
2
〉 < 0 (40)

We obtained under some assumptions and in the static case, the possible averages values for the
connectvt functns:

T
(
Z−, Z

′
+

)
=

λτ exp

(

−|Z−Z′|
νc

)(

1
τDαD

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z

)

1
τDαD

+ 1
αCτC

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z

+ bT̄

(

T̄
〈

|Ψ0 (Z ′)|2
〉2

Z′

)2 ≃ 0 (41)

T
(
Z+, Z

′
+

)
=

λτ exp

(

−|Z−Z′|
νc

)(

1
τDαD

+ bT̄

(

T̄
〈

|Ψ0 (Z
′)|2
〉2

Z

)2
)

1
τDαD

+ 1
αCτC

+ bT̄

(

T̄
〈

|Ψ0 (Z ′)|2
〉2

Z

)2

+ bT̄

(

T̄
〈

|Ψ0 (Z ′)|2
〉2

Z′

)2 ≃
λτ exp

(

−|Z−Z′|
νc

)

2

T
(
Z+, Z

′
−

)
=

λτ exp

(

−|Z−Z′|
νc

)(

1
τDαD

+ bT̄

(

T̄
〈

|Ψ0 (Z
′)|2
〉2

Z

)2
)

1
τDαD

+ 1
αCτC

+ bT̄

(

T̄
〈

|Ψ0 (Z ′)|2
〉2

Z

)2

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z′

≃ λτ exp

(

−|Z − Z ′|
νc

)

T
(
Z−, Z

′
−

)
≃

λτ exp

(

−|Z−Z′|
νc

)

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z

1 + τDαD
αCτC

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z′

≃
λτ exp

(

−|Z−Z′|
νc

)

2

with T̄ = λτνcb
2 , b a coefficient characterizing the function G in the linear approximation1 and

〈

|Ψ0 (Z
′)|2
〉2

Z
,
〈

|Ψ0 (Z
′)|2
〉2

Z
are some averaged background fields in regions surrounding Z and Z ′

respctvl. They are determined by a potential describing some average activity depending on the
points. These results are derived under the assumption of a static field Ψ0 (Z).

4.2 source induced perturbation of the static background state

In ([9]), we also showed with qualitative arguments how an external activation may modify the
solutions of equations (36) and (37) (or (39) and (40)) for connectivity functions averages. Actually
external signals modify the field Ψ0 (θ, Z):

Ψ0 (θ, Z) → Ψ0 (θ, Z) + δΨ(θ, Z)

1
b ≃ G

′ (0)
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and induce a modification δω
(

J, θ, Z, |Ψ|2
)

. This modifies in turn the set of equations for T (Z,Z ′).

In ([6]) we showed that oscillating signals can induce non linear oscillatory response δω
(

J, θ, Z, |Ψ|2
)

and produce interferences phenomena. These phenomena modify the solutions (41), linking points

where interferences induced perturbations δω
(

J, θ, Z, |Ψ|2
)

have a large amplitude, leading to some

emerging connected structures. We also discussed how such structures may interact and activate
each other.

However, these results were derived qualitatively in the context of switching static states. The
next sections provide the dynamical study of these phenomena in terms of field theory.

II Effective field theoretic approach to
transitions of connectivity states

In this part, we provide a rationale for adopting the local approach employed in the initial part
of this study ([9]) by using the system’s effective action. We elucidate the dynamic aspects of the
system presented in ([9]) within the framework of the field model. This approach is non-local in
nature due to the involvement of interactions between distant interconnected points.

The underlying principle remains consistent with our prior work. Our objective is to integrate
the degrees of freedom of the neuron field with respect to the connectivity field, denoted as Γ. This
procedure results in the generation of an effective action for the field Γ, enabling the investigation
of state transitions in connectivity. However, within a dynamic context, this integration of degrees
of freedom must account for external perturbations that alter the path integral associated with the
neuron field Ψ. We will evaluate this path integral by developing a time-dependent series expansion
for neural activity ω (J, θ, Z), which depends both on the connectivity field and the perturbation
component of the field Ψ, written ∆Ψ(θ, Z).

5 Principle: Integration of neuron field degrees of freedom in pres-
ence of external perturbation

As a general method for integrating the Ψ degrees of freedom, we start with the action functional
for cell field alone, along with its partition function:

∫

exp

(
1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

(

J, θ, Z, |Ψ|2
))

Ψ(θ, Z) + V (Ψ)

)

DΨ(θ, Z) (42)

We then compute this quantity as a function of the connectivity field Γ. Actually, the time scale
of neuronal processes is shorter than that of connectivity dynamics, and perturbations first affect
the equilibrium of the neuronal system. Subsequently, these perturbations propagate to influence
connectivity dynamics.

To model some external perturbation that will propagate in the system, we modify (42) and
consider the insertion, at some point Zi and time θ0, the factor a (Zi, θ0) |Ψ(Zi, θ0)|2 inside (42). The
partition function is thus replaced by:

∫

a (Zi, θ0) |Ψ(Zi, θ0)|2 exp
(
1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

(

J, θ, Z, |Ψ|2
))

Ψ(θ, Z) + V (Ψ)

)

DΨ(θ, Z)

(43)
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The squared field:
|Ψ(θ, Z)|2 = Ψ(θ, Z)Ψ† (θ, Z)

measures the density of activity at point Z and for a given time θ. The presence of the additional
contribution:

|Ψ(Zi, θ0)|2 = Ψ(Zi, θ0)Ψ
† (Zi, θ0)

in the integral corresponds, in the field framework, to the introduction of a ponctual perturbation
at time θ0 from the background field equilibrium, as described by the term Ψ† (Zi, θ0), which is
immediately switched off, as transcribed by Ψ(Zi, θ0).

In other words, the presence of |Ψ(Zi, θ0)|2 corresponds to a ponctual signal sent from Zi and
time θ0 that will propagate to the whole thread. The factor a (Zi, θ0) is the amplitude of this signal.
To model several sources sending signals at the same moment θ0, we introduce a product:

∏

i

a (Zi, θ0) |Ψ(Zi, θ0)|2

We will consider the possibility that the number of active sources may vary over time and
consider a probabilistic combination of such sources. Furthermore, we intend to account for the
periodic repetition of certain signals over time. Consequently, we will incorporate these elements
into the path integral by including the factor:

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 (44)

The term
∑

i a (Zi, θ) |Ψ(Zi, θ)|2 creates and cancels some stimulations at several points Zi which
deviate the field Ψ(Zi, θ) from the static equilibrium. The exponential factor accounts for the pos-
sibility of multiple similar stimuli occuring at the same location, as required. The summation over
θ0 guarantees the signal’s repetition over a certain time period. Furthermore, to ensure that per-
turbations only occur at specific points Zi, we assume that the perturbation is implicitely tensored
by:

∏

Z 6=Zi

δ
(

|Ψ(Z, θ0)|2
)

This will imply that outside the points Zi, there is no initial perturbation of the system.
The path integral to consider is thus:

∫

exp (−S (Ψ))

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 (45)

=

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)

)∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

Then, we evaluate the effect of the inserted term (44) on activities by expanding ω−1 as a
serie of ∆Ψ(θ, Z), the fluctuation of the field around the background field Ψ0 (Z) induced by the
perturbation. The knowledge of ω−1 in the perturbated background state will provide the effective
activity, which will be incorporated into the action for the field Γ.

We replicate the sequential steps of the derivation as outlined in ([6]) and tailor them to our
specific context. This series expansion subsequently enables us to calculate the transition in the
background state induced by the perturbation (44) and derive the interferences phenomena pre-
sented in ([9]).
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6 Activities ω (J, θ, Z) series expansion in field in presence of ex-

ternal sources

This section computes the modification of ω−1 with respect to its background value due to an
external perturbation. This is achieved by first computing the expansion of ω−1 in terms of field,
and then by including the effect of the sources. These sources modify the background state at
specific points, thereby influencing the activities.

6.1 Formal series expansion

We showed in ([6]) that in first approximation, the effective action for Ψ obtained by replacing:

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

→ G0 (0, Z1) +

∣
∣
∣
∣
Ψ0 (Z1) + Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

(46)

in (28), where G0 (0, Z1) is the free Green function computed in ([6]). In average, G0 (0, Z1) is some

constant 1
Λ . The field Ψ0 (Z1) is some static background, while Ψ

(

θ − |Z−Z1|
c

, Z1

)

represents the

dynamic part of the background field, i.e. a modification above the background state, which may
be induced by external sources.

Formula (46) can be written in a more compact form if we define:

Ḡ0 (0, Z1) = G0 (0, Z1) + |Ψ0 (Z1)|2 (47)

and write: ∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

as a shorthand for:

Ψ†
0 (Z1) Ψ

(

θ − |Z − Z1|
c

, Z1

)

+Ψ0 (Z1)Ψ
†

(

θ − |Z − Z1|
c

, Z1

)

+

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

As a consequence, formula (46) writes:

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

→ Ḡ0 (0, Z1) +

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

(48)

Taking (48) into account, our starting point the equation for (inverse) neurons activities:

ω−1 (J, θ, Z) = G



J (θ) +
κ

N

∫ ω
(

J, θ − |Z−Z1|
c

, Z1,Ψ
)

T
(

Z, θ, Z1, θ − |Z−Z1|
c

)

ω
(

J, θ, Z, |Ψ|2
) (49)

×
(

Ḡ0 (0, Z1) +

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2
)

dZ1

)

Then, we replace T
(

Z, θ, Z1, θ − |Z−Z1|
c

)

in (49) by its average over the connectivity, which is, given

(37):
〈

T

(

Z, θ, Z1, θ −
|Z − Z1|

c

)〉

= T (Z,Z1)W




ω (θ, Z)

ω
(

θ − |Z−Z1|
c

, Z1

)



 (50)

where:
T (Z,Z1) = h (Z,Z1)
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and:

W




ω (θ, Z)

ω
(

θ − |Z−Z1|
c

, Z1

)





=
λτh (Z,Z1)

〈

CZ,Z1 (θ)hC (ω (θ, Z)) |Ψ(θ, Z)|2
〉

hC (ω (θ, Z))
∣
∣Ψ̄ (θ, Z, Z1)

∣
∣
2 ≃

λτh (Z,Z1)
〈

CZ,Z1 (θ) |Ψ(θ, Z)|2
〉

∣
∣Ψ̄ (θ, Z, Z1)

∣
∣
2

Thus (49) writes:

ω−1 (J, θ, Z) = G









J (θ) +
κ

N

∫

T (Z,Z1)

ω
(

θ − |Z−Z1|
c

, Z1

)

W

(

ω(θ,Z)

ω
(

θ−
|Z−Z1|

c ,Z1

)

)

ω (θ, Z)
(51)

×
(

Ḡ0 (0, Z1) +

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2
)

dZ1

)

and we aim at expansion of the solutions of (51) around the static background equilibrium. To do

so, we write the series expansion in
∣
∣Ψ
(
θ(j), Z1

)∣
∣
2
of ω−1 (J, θ, Z) around its background state value:

ω−1 (J, θ, Z) = ω−1 (θ, Z)|Ψ|2=0 (52)

+

∫ ∞∑

n=1







δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2

and finding ω (J, θ, Z) amounts to finding the derivatives:

δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2

These derivatives are computed by expanding the right-hand side of (51) in
∣
∣Ψ
(
θ(j), Z1

)∣
∣
2
. We

present the computations in the next paragraphs.

6.2 First term of the expansion

The first term in (52), ω−1
(
θ(i), Z

)

|Ψ|2=0
, is a solution of:

ω−1 (θ, Z)|Ψ|2=0 (53)

= G



J +
κ

N

∫

T (Z,Z1)
ω|Ψ|2=0

(

θ − |Z−Z1|
c

, Z1

)

ω|Ψ|2=0 (θ, Z)
W




ω|Ψ|2=0 (θ, Z)

ω|Ψ|2=0

(

θ − |Z−Z1|
c

, Z1

)




(
Ḡ0 (0, Z1)

)
dZ1





To uncover the internal dynamics of the system, we will first consider a constant external current
J (θ) = J , typically with J = 0. However, the findings of this section remain applicable even in the
presence of a non-static current J (θ). The static solution of (53) satifies:

ω−1 (J, Z) = G

(

J +
κ

N

∫

T (Z,Z1)
ω (Z1)

ω (Z)
W

(
ω (Z)

ω (Z1)

)

Ḡ0 (0, Zi) dZ1

)

≡ G [J, ω, Z]
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We assume this solution to be known, and we chose to expand ω (J, θ, Z) in (52) around this solution,

the dynamics being determined by the time dependency of
∣
∣Ψ
(
θ(j), Z1

)∣
∣
2
. We thus set:

ω (θ, Z)|Ψ|2=0 = ω (J, Z)

6.3 Computation of the derivatives arising in the series

Appendices 1 and 2 compute the derivatives



 δnω−1(J,θ,Z)
n
∏

i=1
δ|Ψ(θ−li,Zi)|

2





|Ψ|2=0

in (52).

Defining:

Ť (θ, Z, Z1, ω,Ψ) (54)

= −
κ
N
ω (J, θ, Z)T (Z,Z1, θ)G

′ [J, ω, θ, Z,Ψ]

1−
(
∫

κ
N
ω
(

J, θ − |Z−Z′|
c

, Z ′
)(

Ḡ0 (0, Z ′) +
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2
)

T (Z,Z ′, θ) dZ ′

)

G′ [J, ω, θ, Z,Ψ]

and the operator with kernel:

Ť
((

Z(l−1), θ(l−1)
)

,
(

Z(l), θ(l)
))

= Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0



 (55)

×δ

(
(

θ(l) − θ(l−1)
)

−
∣
∣Z(l−1) − Z(l)

∣
∣

c

)

appendix 1 shows that:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
(56)

= −
∞∑

n=1

∫ ω−1

(

J, θ −∑n

l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Z1

)

(

Ḡ0 (0, Z1) + |Ψ(θ − l1, Z1)|2
)

×
n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω,Ψ



 δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

and appendix 2 builds on (56) to compute the derivative arising in the series expansion (52):







δnω (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2 (57)

by a graphical representation. We associate the squared field |Ψ(θ − li, Zi)|2 to each point Zi and
draw m lines for m = 1, ..., n. One of them at least is starting from Z. These lines are composed of
an arbitrary number of segments and all the points Zi are crossed by one line. Each line ends at
a point Zi. The starting points of the lines branch either at Z or at some point of an other line.
There are m branching points of valence k including the starting point at Z. Apart from Z, the
branching points have valence 3, ..., n− 1.
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To each line i of length Li, we associate the factor:

F (linei) =

Li∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0,Ψ



 (58)

×
−ω0

(

J, θ −
∑Li

l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Zi

)

Ḡ0 (0, Zi)

and to each branching point (X, θ) = B of valence k + 2, we associate the factor:

F ((X, θ)) =

δk
(

κ
N

T
(

Z,Z(l)
)

F ′
[

J,θ,ω0,Z
(l)
]

Ḡ0

(

0,Z(l)
)

ω0(J,θ,Z(l))

)

δkω0

(
J, θ, Z(l)

) (59)

and (57) writes as a series of lines contributions connected by the branching points:






δnω (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2 (60)

=





n∑

m=1

m∑

i=1

∑

(line1,...,linem)

∏

i

F (linei)
∏

B

F (B)





n∏

i=1

|Ψ(θ − li, Zi)|2

The graphical representation is generic. The integration over the set of lines also accounts for the
degenerate case of lines that share some segments.

6.4 Summing the series expansion for ω (J, θ, Z) in absence of external source:
auxiliary path integral description

Having obtained the successive derivatives of ω (J, θ, Z) in (60), we can now sum the corresponding
series expansion for ω (J, θ, Z). Appendix 2 uses formula (60) to derive a non-local formula for
the summation of successive derivatives of ω (J, θ, Z) and ω−1 (J, θ, Z). Actually, equation (60) can
be reformulated to calculate the expansion (133) as the sum of graphs for an auxiliary complex
field Λ (Zi, θi). The computation organizes the graphs in (60) so that their sum transforms into a
summation over graphs drawn between an arbitrary number of branching points, viewed as vertices
of arbitrary valence k with an associated factor (59). These vertices are connected by the edges
of the graph with associated Green functions 1

1−(1+|Ψ|2) Ť
where Ť is the operator whose kernel is

defined in (55). The factor |Ψ|2 is the operator multiplication by |Ψ(θ, Z)|2 at point (θ, Z).
Appendix 2 shows that the series expansion for activities has the following auxiliary path integral

form:

ω−1 (θ, Z) = ω−1
0 (J, θ, Z) +

∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥

(61)
where the action for the auxiliary fields ̥ and ̥† is:

S (̥) =

∫

̥ (Z, θ)
(

1− |Ψ|2 Ť
)

̥
† (Z, θ) d (Z, θ)

−
∫

̥ (Z, θ) Ť

(

θ −
∣
∣Z − Z(1)

∣
∣

c
, Z, Z(1), ω0 + Ť̥†

)

̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZdZ(1)dθ
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with:

Ť

(

θ −
∣
∣Z(1) − Z

∣
∣

c
, Z(1), Z, ω0 + Ť̥†

)

= Ť

(

θ −
∣
∣Z(1) − Z

∣
∣

c
, Z(1), Z, ω0 (Z, θ) +

∫

Ť

(

θ −
∣
∣Z − Z(1)

∣
∣

c
, Z(1), Z, ω0

)

̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZ(1)

)

6.5 Modification of ω (J, θ, Z) due to source terms

Formula (61) was derived without considering the presence of source terms in the path integral
(45). In Appendix 3, we show that these terms modify the formula (61) which can be replaced by:

ω−1 (θ, Z) (62)

= ω−1
0 (J, θ, Z)

+

∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ) +
∑

i a (Zi, θ)
ω
−1
0 (J,θ,Zi)

Λ2 ̥ (Zi, θ)

)

∫
exp (−S (̥))D̥

This integral will be computed by a saddle path approximation.

6.6 Saddle path approximation

We then show that the saddle point approximation yields the equations for ̥† (Z, θ) and ̥ (Z, θ):

((

1− |Ψ|2 Ť
)

̥
†
)

(Z, θ)−
(

Ť
ω
−1
0 +Ť̥†̥

†
)

(Z, θ)−
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
δ (Z − Zi) = 0 (63)

̥ (Z, θ) = 0

In this approximation, equation (62) for ω. becomes:

ω (J, θ, Z) = ω0 (J, θ, Z) + Ť̥† (Z, θ) (64)

6.7 Series expansion for activities in the perturbated state

We show in appendix 3 that, in first approximation, we can replace |Ψ|2 with 1
Λ in (63). When

considering perturbations around a static backgrund state, it enables us to rewrite the saddle point
equation (63) as follows:

((

1− 1

Λ
Ť

)

̥
†

)

(Z)−
(

Ťω0+Ť̥†̥
†
)

(Z)−
(
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

= 0

and to find a recursive solution for Ť̥† (Z) and ω (J, θ, Z) by rewriting:

Ť̥† = Ť
1

(

1− 1
Λ Ť − Ťω0+Ť̥†

)

(
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

(65)

= Ť
1

(

1−
(
1 + 1

Λ

)
Ť −

(

Ťω0+Ť̥† − Ť
))

(
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)
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Gathering (167) and (166), leads to the recursive formula under some approximations:

Ť̥† ≃
∑

n1,...,n2

Ť

1−
(
1 + 1

Λ

)
Ť

[(

− Ť̥† (Z1)

ω0 (Z1)
Ť

)n1
]

1

1−
(
1 + 1

Λ

)
Ť

[(

− Ť̥† (Z2)

ω0 (Z2)
Ť

)n2
]

...
1

1−
(
1 + 1

Λ

)
Ť

(

−
∑

i

a (Zi, θ)
ω0 (J, θ, Zi)

Λ2

)

We explain in appendix 3 how this formula builds recursively Ť̥†. Keeping the lowest order
solution of the saddle point in the local approximation Z ′ ≃ Z leads to:

Ť̥† =
Ť

(
1−

(
1 + 1

Λ

)
Ť
)

[
∑

i

a (Zi, θ)
ω0 (J, θ, Zi)

Λ2

]

(66)

≡
∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω0 (J, θi, Zi)

Λ2

}

dθi

so that the correction to the background state activities (62) due to the stimuli become:

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) +

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω0 (J, θi, Zi)

Λ2

}

dθi (67)

Appendix 3 computes an estimation of the second term in the RHS at the lowest order for oscillating
signals a (Zi, θ) ∝ a exp (i̟θ). We obtain:

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) +

a exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2
(68)

× exp

(

i

(
̟ (|Z − Z0|)

c
− arctan

(
̟

c (1 + 2α |Z − Z0|)

)))
∑

i

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

and this terms induces interferences. As a consequence, for a large number of points Zi:

∑

i

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

≃ 0

except for the maxima of interferences with magnitude:

a exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2

Note that for these maxima and N large:

a =
∑

i

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

is proportional to N so that a >> 1.
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6.8 Graph expansion for the partition function and modified background ac-
tivities

Once the activities ω (J, θ, Z) are expressed as a function of the field, we can substitute their form in
(45) to calculate the background state and equilbrium activity. In appendix 3 the graphs expansion
of (45) is derived with ω−1 (J, θ, Z) given by (67). To achieve this, we expand Ψ(θ, Z1) around a
quasi-static background state2 Ψ0 (θ, Z1) and |Ψ(θ, Z1)|2 around |Ψ0 (Z1)|2 so that we replace:

Ψ(θ, Z1) → Ψ0 (θ, Z1) + Ψ (θ, Z1)

and:

|Ψ(θ, Z1)|2 → |Ψ0 (Z1)|2 +Ψ†
0 (Z1)Ψ (θ, Z1) + Ψ0 (Z1)Ψ

† (θ, Z1) + |Ψ(θ, Z1)|2

We are thus left with the following form for the path integral with external perturbations:

∫

exp (−S (Ψ))

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

≡
∫

exp

((
1

2

(

Ψ†
0 (θ, Z) + Ψ† (θ, Z)

)

∇
(
σ2
θ

2
∇−

(

ω−1
0 − Ω (θ, θ0, Z)

ω2
0 (Z)

))

(Ψ0 (θ, Z) + Ψ (θ, Z))

))

dθ0

with the correction Ω (θ, θ0, Z) to the activities computed by (66):

Ω (θ, θ0, Z) = −
∑

i

ω2
0 (Z)K (Z, θ, Zi, θ0)

{

a (Zi, θ0)
ω0 (θ0, Z0)

Λ2

}

The expansion of:

exp

∫ (

Ψ†
0 (θ, Z) + Ψ† (θ, Z)

)

∇θ

(
Ω (θ, θ0, Z)

ω2
0 (Z)

(Ψ0 (θ, Z) + Ψ (θ, Z))

)

(69)

is performed in appendix 3. We specifically focus on the second-order expansion to identify the
first order corrections to activities only, although higher orders can be determined using a similar
approach. Our derivation shows that at this level of approximation and under the condition that
|Ψ0 (θ, Z)|2 >> 1

Λ , formula (69) becomes:

exp

(

A+B − 1

2
A2

)

where:

A =
1

Λ1Λω4
0 (Z)

∫
(

Ψ†
0 (θ, Z)∇

(

2

((
∫ θ ∫

(∇Ω (θ, θ0, Z))
2
dθ0

)

− Λ1

(∫

Ω2dθ0

)

Ψ0 (θ, Z)

)))

dZ

and:

B =

(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

√
∫

(∇Ω (θ, θ0, Z))
2
dθ0Ψ0 (θ, Z) dZ

)2

The term B − 1
2A

2 is a correction to the potential for the background field Ψ0 (θ, Z). It should
thus modify this background, but this can be neglected in first approximation.

2As quoted previously, the series expansion for activities is valid for a non constant background.
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The correction to the activities comes from the term A and leads to switch the equilibrium
inverse activities:

ω−1
0 (Z) → ω−1

0 (Z)− Aω2
0 (Z)

ω2
0 (Z)

or, which is equivalent:
ω0 (Z) → ω0 (Z) +Aω2

0 (Z)

In a developped form, the equilibrium activities are modified by the term:

ω0 (Z) → ω0 (Z) +
1

Λ1Λω4
0 (Z)

(

2

((
∫ θ ∫

(∇Ω (θ, θ0, Z))
2
dθ0

)

− Λ1

(∫

Ω2dθ0

)))

for a given background field Ψ0 (θ, Z).

6.9 Interferences

As explained after formula (68), the corrections Ω (θ, θ0, Z) can be considered equal to zero outside
the points of maximal interferences. At these points Ω (θ, θ0, Z) = Ť̥† is proportional to:

Ω̄ =
a exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2

and the correction to activities are:

ω0 (Z) → ω0 (Z) +
2
((∫ θ ∫ (

̟Ω̄
)2

dθ0

)

− Λ1

(∫
Ω̄2dθ0

))

Λ1Λω2
0 (Z)

≃ ω0 (Z) +
2
((

Tθ

(
̟Ω̄
)2
)

− Λ1

(
Ω̄2
))

Tθ

Λ1Λω2
0 (Z)

where Tθ is the duration of the signals at time θ. Note that for Tθ̟
2 > Λ1, i.e. for long enough

stimulation:
2
((

Tθ

(
̟Ω̄
)2
)

− Λ1

(
Ω̄2
))

Tθ

Λ1Λω2
0 (Z)

Moreover, since a >> 1, we also have Ω̄ >> 1 so that:

ω0 (Z) +
2
((

Tθ

(
̟Ω̄
)2
)

− Λ1

(
Ω̄2
))

Tθ

Λ1Λω2
0 (Z)

>> ω0 (Z) (70)

and the stimulated cells have a much higher activity than others.

7 Implication of modified activities on the emergence of bound

states

The modification in the background activity (70) allows to recover the existence of bound states as
a consequence of interferences. Actually, given the formula for connectivity functions (37):

〈T (Z,Z ′)〉 = λτ
〈

T̂ (Z,Z ′)
〉

=
λτh (Z,Z ′)

〈

CZ,Z′ (θ) hC (ω (θ, Z)) |Ψ(θ, Z)|2
〉

CZ,Z′ (θ) |Ψ(θ, Z)|2 hC (ω (θ, Z)) +DZ,Z′ (θ)
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

hD

(

ω
(

θ − |Z−Z′|
c

, Z ′
))
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So that:
〈T (Z,Z ′)〉 = 0 (71)

if Z ′ belongs to the maxima of interferences, but Z does not. Moreover, if both Z and Z ′ belong to
these maxima:

〈T (Z,Z ′)〉 ≃ 〈T (Z ′, Z)〉 (72)

As a consequence these maxima bind together, in a reciprocal manner. They form a connected
set, relatively disconnected from the rest of the thread. The description of these sets has been given
in the first article ([9]) of this work.

III Effective formalism for connectivity field

The preceding section has recovered the findings of the first part of this work ([9]). Certain bound
states may emerge due to positive interferences in activity. To delve deeper into the dynamics of
such states, we establish an effective field formalism for the connectivity field Γ. We also investigate
several applications.

8 Effective field formalism approach to connectivity functions tran-

sitions

We investigate the modifications in activities, as derived in the preceding section, and analyze
their influence on the background field of connectivities. Our focus lies in understanding the
dynamic processes involved in transitioning between different background fields, which arises from
perturbations in neural activity. To achieve this, we employ an effective action for the connectivity
field, which is computed through an expansion of the system’s action around a specific background.
This expansion captures a situation in which the background field has been perturbed by external
influences. Consequently, the actual state of the system at the moment of the transition which is
still characterized by the previous background field, differs from the new equilibrium defined by
the new background field and may undergo a transition to a new state. We leverage our effective
formalism to quantitatively compute these transitions.

It is worth noting that, in this section, we consider the modification in activities as exogenous,
primarily resulting from the sources. However, in the third part of this study, we will adopt a
more comprehensive perspective, considering that the change in activities is itself contingent on
the connectivity field.

8.1 Modified action for Γ
(

T, T̂ , C,D
)

In the perturbated state considered in the previous section, the equilibrium activity has been shifted
by an amount of δω0 and the action of the system can be approximated by:

−1

2

∫

Ψ†
0 (θ, Z)∇

(
σ2
θ

2
∇− (ω0 + δω0)

−1

)

Ψ0 (θ, Z) +

∫

V (Ψ0 (θ, Z)) + δV (Ψ0 (θ, Z)) (73)

+

4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))
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where Ψ0 (θ, Z) is the neuron field equilibrium background state for Ψ(θ, Z). The deviation in
activity and potential have been obtained in the previous section:

δω0 ∝
2
((

T
(
̟Ω̄
)2
)

− Λ1

(
Ω̄2
))

Tθ

Λ1Λω2
0 (Z)

(74)

and:

δV (Ψ0 (θ, Z)) (75)

=

(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

√
∫

(∇Ω (θ, θ0, Z))
2
dθ0Ψ0 (θ, Z)dZ

)2

−1

2

(

1

Λ1Λω4
0 (Z)

∫
(

Ψ†
0 (θ, Z)∇

(

2

((
∫ θ ∫

(∇Ω (θ, θ0, Z))
2
dθ0

)

− Λ1

(∫

Ω2dθ0

)

Ψ0 (θ, Z)

)))

dZ

)2

The form of the effective action (73) is justified by the distinct time scales governing neuronal
activities and connectivities. In first approximation, equilibrium shifts in activities occur before we
need to consider the dynamics of connectivities.

The modification in potential and equilibrium activities, as described in Equations (74) and (75)
are expected to impact the background state Ψ0 (θ, Z). Nonetheless, given that the shift is localized
at specific points, and considering that this potential characterizes some collective configuration, we
can assume, in first approximation, that Ψ0 (θ, Z) remains unaffected by the signals. Consequently,
the new background field for the connectivity field is shifted only at the points where Ω (θ, θ0, Z) 6= 0

and remains unchanged elsewhere.
This change is induced by the activities. Actually, in the perturbed state, after integrating

over Ψ0 (θ, Z) the system is described by an effective action for the connectivity functions
∑4

i=1 S
(i)
Γ

where |Ψ(Z)|2 is set to |Ψ0|2 and ω
(

J, θ, Z, |Ψ|2
)

to ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

where |Ψ0|2 and ω0 (Z)

correspond to the initial background state.
For 1

τCαC
<< 1 and 1

τDαD
<< 1 we can assume that C and D are close to 1

2 and we write the

effective action for Γ
(

T, T̂ , C,D
)

by replacing C and D with their averages:

C → 〈C (θ)〉 =
αCω

′

〈∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2
〉

1
τC

+ αCω′

〈∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2
〉 ≡ C (θ) (76)

D → 〈D (θ)〉 =
αDω

〈

|Ψ(θ, Z)|2
〉

1
τD

+ αDω
〈

|Ψ(θ, Z)|2
〉 ≡ D (θ) (77)
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so that the effective action becomes:

S
(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

(78)

= Γ†
(

T, T̂ , θ, Z, Z ′, C,D
)



∇T



∇T −





(

−T + λT̂
)

τω0 (Z) + ∆ω0

(

Z, |Ψ|2
)



 |Ψ(θ, Z)|2




+∇
T̂



∇
T̂
− ρ





(

h (Z,Z ′)− T̂
)

C |Ψ0 (Z)|2
hC

(

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

−ηH (δ − T )−DT̂ |Ψ0 (Z
′)|2

hD

(

ω0 (Z
′) + ∆ω0

(

Z ′, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)







Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

The minimization of this effective action yields a background field similar to the one derived using
(35), but with modified averages:

〈T (Z,Z ′)〉 = λτ
〈

T̂ (Z,Z ′)
〉

(79)

=
λτh (Z,Z ′)CZ,Z′hC (ω0 (Z) + ∆ω0 (Z)) |Ψ0 (Z)|2

CZ,Z′ |Ψ0 (Z)|2 hC (ω (Z)) +DZ,Z′ |Ψ0 (Z ′)|2 hD (ω0 (Z ′))

for (Z,Z ′) an ”a” (active) doublet, and:

〈T (Z,Z ′)〉 = 0

〈

T̂ (Z,Z ′)
〉

=
h (Z,Z ′)CZ,Z′hC (ω0 (Z) + ∆ω0 (Z)) |Ψ0 (Z)|2 − η

CZ,Z′ |Ψ0 (Z)|2 hC (ω (Z)) +DZ,Z′ |Ψ0 (Z ′)|2 hD (ω0 (Z ′))
< 0 (80)

for an ”u” (unactive) doublet.
Ultimately, remark that the modification:

ω0 (Z) + ∆ω0 (Z)

may induce some switches in connections in the new background field . Actually, if:

h (Z,Z ′)CZ,Z′hC (ω0 (Z)) |Ψ0 (Z)|2 − η < 0

h (Z,Z ′)CZ,Z′hC (ω0 (Z) + ∆ω0 (Z)) |Ψ0 (Z)|2 − η > 0

the connection becomes active, i.e. a connection is created between Z and Z ′. On the other hand
, if:

h (Z,Z ′)CZ,Z′hC (ω0 (Z)) |Ψ0 (Z)|2 − η > 0

h (Z,Z ′)CZ,Z′hC (ω0 (Z) + ∆ω0 (Z)) |Ψ0 (Z)|2 − η < 0

the connection may be deleted in the new background.

8.2 Expansion around the background state Γ0

(

T, T̂ , θ, Z, Z ′, C,D
)

and effective

action

Dynamicaly, the transition between states is achieved by expanding (78) around the new background
state, after perturbation. The expansion be will subsequently used to compute the transition
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functions. The threshold term ηH (δ − T ) will be neglected in the sequel to consider only the active
connections. The field is expanded as:

Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

= Γ0

(

T, T̂ , θ, Z, Z ′, C,D
)

+∆Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

Γ†
(

T, T̂ , θ, Z, Z ′, C,D
)

= Γ†
0

(

T, T̂ , θ, Z, Z ′, C,D
)

+∆Γ†
(

T, T̂ , θ, Z, Z ′, C,D
)

and the action writes:

S
(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

(81)

= S
(

Γ0

(

T, T̂ , θ, Z, Z ′, C,D
))

+ Se

(

∆Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

with:

Se

(

∆Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

(82)

= ∆Γ†
(

T, T̂ , θ, Z, Z ′, C,D
)



∇T



∇T −

(

λ
(

T̂ −
〈

T̂
〉)

− (T − 〈T 〉)
)

τω0 (Z) + ∆ω0

(

Z, |Ψ|2
) |Ψ0 (Z)|2





+∇
T̂



∇
T̂
+ ρ



C
|Ψ0 (Z)|2 hC

(

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

+D
|Ψ0 (Z

′)|2 hD

(

ω0 (Z
′) + ∆ω0

(

Z ′, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)





(

T̂ −
〈

T̂
〉)



∆Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

8.3 Individual transition functions

The effective action (81) enables the dynamic study of transitions between different connectivity
states. This is based on the calculation of transition functions for individual states. We write a
final state defined by some given values

(

T, T̂ , θ, C,D
)

f
between Z and Z ′ as:

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

and an initial state with given values
(

T, T̂ , θ, C,D
)

i
as:

〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

The computation of transition function between two states, initial and final, is obtained by com-
puting the Green functions:

〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

=

∫

∆Γ

((

T, T̂ , θ, Z, Z ′, C,D
)

f

)

∆Γ†
((

T, T̂ , θ, Z, Z ′, C,D
)

i

)

× exp

(

−Se

(

∆Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ α
∣
∣
∣∆Γ

(

T, T̂ , θ, Z, Z ′, C,D
)∣
∣
∣

2
)

D∆Γ

where α is the inverse average time of transition of the system as we will see below.
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Given the form of Se

(

∆Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

, the integral is given by:

〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

=
〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

1

α+O

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

where O is the operator:

O = ∇T



∇T +
(T − 〈T 〉)−

(

λ
(

T̂ −
〈

T̂
〉))

τω0 (Z) + ∆ω0

(

Z, |Ψ|2
) |Ψ0 (Z)|2



 (83)

+∇
T̂



∇
T̂
+ ρ



C
|Ψ0 (Z)|2 hC

(

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

+D
|Ψ0 (Z

′)|2 hD

(

ω0 (Z
′) + ∆ω0

(

Z ′, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)









(

T̂ −
〈

T̂
〉)

To interpret the formulas in terms of time transition, we write also:

〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

∣
∣
∣

∣
∣
∣
∣

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

=
〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

∣
∣
∣

∫ ∞

0

exp (− (α+O) t) dt

∣
∣
∣
∣

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

=

∫ ∞

0

exp (−αt)
〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

∣
∣
∣ exp (− (α+O) t)

∣
∣
∣
∣

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

dt

That is
〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

is the Laplace transform of the time transition

between two states defined by the operator O. This justifies the interpretation of α as the inverse of
an average transition time. Moreover, this shows that the probabilities of transition of the system
are defined by O. Before the Laplace transform, the probability of transition of the system between
two states during a time span t is given by:

Pt

((

T, T̂ , θ, Z, Z ′, C,D
)

i
,
(

T, T̂ , θ, Z, Z ′, C,D
)

f

)

(84)

=
〈(

T, T̂ , θ, Z, Z ′, C,D
)

i

∣
∣
∣ exp (−Ot)

∣
∣
∣
∣

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

This probability satisfies a differential equation given in appendix 4. We show in this appendix
that the transition between T−〈T〉 and T′−〈T〉 during a time t, written G0 (T−〈T〉 ,T′−〈T〉 , t), is
given by:

G0 (T−〈T〉 ,T′−〈T〉 , t) (85)

= (2π)
−1

(Det (σ (t)))
− 1

2

× exp

(

− ((T−〈T〉)−M (t) (T′−〈T〉))t σ
−1 (t)

2
((T−〈T〉)−M (t) (T′−〈T〉))

)

where the matrices M (t) and σ (t) are defined in appendix 4.
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For large t, the transition simplifies and writes:

G0 (T−〈T〉 ,T′−〈T〉) = (2π)
−1

(Det (σ (∞)))
− 1

2 (86)

× exp

(

−1

2
((T−〈T〉))t σ−1 (∞) ((T−〈T〉))

)

with:

σ (∞) =

(
1
u
+ s2

uv(u+v) − s
v(u+v)

− s
v(u+v)

1−e−2tv

v

)

8.4 N states transition functions

Formula (85) generalizes directly for the transition of N states:

(T (Zi, Zj)−〈T (Zi, Zj)〉) ≡ (T−〈T〉)ij ≡ Tij−〈T〉ij
located at different points (Zi, Zj)i,j fluctuating around the background state, without interactions.
We have:

G0

(

(T−〈T〉)ij , ((T′−〈T〉))ij , t
)

=
∏

j

G0

(
(Tij−〈Tij〉) ,

(
T′

ij−〈Tij〉
)
, t
)

= (2π)
−N

(Det (σ (t)))
−N

2

∏

ij

exp

(

−
(
(Tij−〈Tij〉)−M (t)

(
T′

ij−〈Tij〉
))t σ−1 (t)

2

(
(Tij−〈Tij〉)−M (t)

(
T′

ij−〈Tij〉
))
)

9 Several applications of the effective formalism

We present several applications of the effective formalism and compute the transitions between
several activated states, including reactivation, association and sequences of activations. We recover
the results presented in ([9]) as consequences of the effective field formalism.

9.1 Transition function approach to the change in connectivity background
state

We apply the formalism to the dynamics around a modified background field. Assume that, due
to the change in background activities, the Ψ0 (θ, Z) field action is modified from:

−1

2

∫

Ψ†
0 (θ, Z)∇

(
σ2
θ

2
∇− (ω0)

−1

)

Ψ0 (θ, Z) +

∫

V (Ψ0 (θ, Z)) + δV (Ψ0 (θ, Z))

to:

−1

2

∫

Ψ†
0 (θ, Z)∇

(
σ2
θ

2
∇− (ω0 + δω0)

−1

)

Ψ0 (θ, Z) +

∫

V (Ψ0 (θ, Z)) + δV (Ψ0 (θ, Z))

where the background activity modification δω0 is equal to zero except at some given points (Zj)j∈U

where U is a finite set. Consequently, the averages 〈Tij〉 are modified only at points Zij , j ∈ U

or i ∈ U . We define Ū = (ij, j ∈ U or i ∈ U) and write 〈Tij〉old for the old background state and
〈Tij〉new = 〈Tij〉old +∆ 〈Tij〉 for the new one. We have:

∆ 〈Tij〉 6= 0 for ij ∈ Ū

∆ 〈Tij〉 = 0 otherwise
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Consider the transition from a state corresponding to the previous background state to a other
state We thus set:

T′
ij = 〈Tij〉old

As explained in the previous paragraph, the transition for the system of points ij ∈ Ū in the new
background state is, up the normalization factor, given by:

∏

ij

exp

(

−
(
(Tij−〈Tij〉new)−M (t)

(
T′

ij−〈Tij〉new
))t σ−1 (t)

2

(
(Tij−〈Tij〉new)−M (t)

(
T′

ij−〈Tij〉new
))
)

=
∏

ij

exp

(

− ((Tij−〈Tij〉new)−M (t)∆ 〈Tij〉)t
σ−1 (t)

2
((Tij−〈Tij〉new)−M (t)∆ 〈Tij〉)

)

wth:

M (t) =

(

e−tu s e−tu−e−tv

u−v

0 e−tv

)

As time t increases, the corrections due to the gap between the initial value and the new background
state reduces, so that in average Tij→〈Tij〉new. The higher the values of u, v and s the faster
the modification in connectivity functions. Considering that u and s are increasing function of
the modified activity, the higher the average activity in the state, the lower the modification in
the transition functions. Higher activity levels hinder the system from transitioning to the new
equilibrium state.

9.2 Activation and reactivation of states

As before, an additional activation at one point for constant connectivities corresponds to the
computation of a transition function. Assume now that, after stimulation for activities ω0 →
ω0 (Z)+ δω0 (Z), the connectivities have experienced a transition: 〈Tij〉new = 〈Tij〉old +∆ 〈Tij〉. This
is equivalent to consider the modified action for the system:

−1

2

∫

Ψ†
0 (θ, Z)∇

(
σ2
θ

2
∇− (ω0 + δω0)

−1

)

Ψ0 (θ, Z) +

∫

V (Ψ0 (θ, Z)) + δV (Ψ0 (θ, Z)) (87)

+

4∑

i=1

S
(i)
Γ

Then, switching off the perturbation ω0 (Z) + δω0 (Z) → ω0 (Z) relatively quickly, the connec-
tivities remain at their new level 〈Tij〉new for a while. Actually, as shown in appendix 1, the
transmission of the perturbation of activities includes a factor:

∫

exp
(

−cl − α
(

(cl)
2 − |Z − Zi|2

))

exp

(

i
̟ (l− |Z − Zi|)

c

)

dl

so that after switching of this perturbation at some time t0, the correction to the activity decays
with a factor exp (−ct− t0). Considering again the time scale for the connectivities to be higher
than for activities, the state 〈Tij〉old +∆ 〈Tij〉 will decay slowly to 〈Tij〉old over a timespan T >> 1.

Assume now that at some time t << T , some perturbation raises again:

ω0 (Zm) → ω0 (Zm) + δω0 (Zm)

at some of the interferences maxima. Given (71) and (72) the perturbation will propagate only
along the all set of maxima.
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As a consequence, in this particular case, the computation of the series expansion for the
corrections (65) to the activities simplifies. Actually, replacing the perturbation:

∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

by:

δω0 (Zm)
ω−1
0 (Zm)

Λ2
̥ (Zi, θ)

representing the activation of one of the maxima, the correction (65) to activities becomes:

Ť̥† = Ť
1

(

1− 1
Λ Ť − Ťω0+Ť̥†

)

(

δω0 (Zm)
ω−1
0 (Zm)

Λ2
̥ (Zi, θ)

)

(88)

= Ť
1

(

1−
(
1 + 1

Λ

)
Ť −

(

Ťω0+Ť̥† − Ť
))

(

δω0 (Zm)
ω−1
0 (Zm)

Λ2
̥ (Zi, θ)

)

The series expansion in Ť has to performed over paths that connect the maxima since the oper-
ator Ť is nul outside these paths. Due to the exponential term in connectivity functions, in first
approximation:

δω0 (Z) ≃ Ť (Z,Zm)

if Z is an interference maximum, and:
δω0 (Z) ≃ 0

otherwise. As a consequence, the activation of one of these maxima reactivates the whole set.
In turn, doing so and if the stimulation duration is long enough, the connectivity functions are
reactivated towards 〈Tij〉old +∆ 〈Tij〉.

9.3 Distant activation

Consider the sequence of distant signals as in in the first part:

{ω0, T0} →
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ωM

}

→
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ω0

}

→
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ω0

}

+
{

T
(

Z
′(ε1)
M , Z

′(ε2)
M

)

, ω′
M

}

→
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ω0

}

+
{

T
(

Z
′(ε1)
M , Z

′(ε2)
M

)

, ω0

}

Starting from the equilibrium state, the sequence describes the subsequent activations of collective

states due to some perturbations. This perturbation initially binds a set
(

Z
(ε1)
M , Z

(ε2)
M

)

with high

activity ωM and high conncetivity T
(

Z
(ε1)
M , Z

(ε2)
M

)

. Then, the activity dampens and returns to some

equilibrium ω0. This new state may itself induce a transition involving another connected element
{

T
(

Z
′(ε1)
M , Z

′(ε2)
M

)

, ω0

}

.

The transition can be described by considering the transitions computed by the path integrals
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involving (45) and the action for the connectivity field:

〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

f

∣
∣
∣
∣
∣
∣

(

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))
)

(89)

×
∫

DΨ(θ, Z) exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)−
∫

V (Ψ0 (θ, Z))

)

×
∫ θ

(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∫ θ
(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0





∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

i

〉

where the product
∏

Z,Z′
is over points for which we study the transitions between different states

∣
∣
∣

(

T, T̂ , θ, Z, Z ′, C,D
)

i

〉

and

∣
∣
∣
∣

(

T, T̂ , θ, Z, Z ′, C,D
)

f

〉

. This transition is defined as a Green function

for the field Γ
(

T, T̂ , θ, Z, Z ′, C,D
)

:

∫

DΓ
(

T, T̂ , θ, Z, Z ′, C,D
)

DΨ(θ, Z)

(
∏

Γ

((

T, T̂ , θ, Z, Z ′, C,D
)

f

))

(90)

×
(∏

Γ†
((

T, T̂ , θ, Z, Z ′, C,D
)

i

))

× exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)−
∫

V (Ψ0 (θ, Z))

)

×
∫ θ

(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∫ θ
(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

with θ
(2)
0 >> θ

(1)
0 . The insertion of the exponential terms corresponds, as in (45), to two different

perturbations distant in time, so that their effect are disconnected, due to the exponential decay
of their persistence.

Expression (90) thus computes the transition function between two states where two distant
perturbation have been inserted. Given that these perturbations are independent, the path integral
can be computed by inserting a complete basis of states as border conditions. As a consequence
(89) writes:

〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

f

∣
∣
∣
∣
∣
∣

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)

(91)

×
∫ θ

(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∣
∣
∣
∣
∣

∏

Z

(Z, θ)

〉
∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)
〉

×
〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

∣
∣
∣
∣
∣
∣

〈
∏

Z

(Z, θ)

∣
∣
∣
∣
∣
exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)

×
∫ θ

(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

i

〉
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The introduction of the complete set:
∣
∣
∣
∣
∣

∏

Z

(Z, θ)

〉
∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)
〉〈

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

∣
∣
∣
∣
∣
∣

〈
∏

Z

(Z, θ)

∣
∣
∣
∣
∣

in the amplitude(91) represents the projection on all possible states. It includes the possibility of

multiple activations for
(

T, T̂ , θ, Z, Z ′, C,D
)

and (Z, θ), modeling various potential types of connec-

tions at the same point. Technically this multiple states at the same points correspond to tensor

products of states |(Z, θ)〉 or
∣
∣
∣
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)〉

.

The sum over the inserted states |
∏

Z (Z, θ)〉 can be carried out, yielding two factors of the type
(45). The transition at stake becomes:

〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

f

∣
∣
∣
∣
∣
∣

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)

(92)

∫ θ
(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)
〉

×
〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

∣
∣
∣
∣
∣
∣

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)

×
∫ θ

(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

i

〉

and each transition can be computed independently. To describe the successive activations, we
assume that the initial state: ∣

∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

i

〉

is the background state
∣
∣
∣〈Tij〉old

〉

previously described, corresponding to a product of background

states at several points. We have observed that, given the insertion of a term similar to (45), the

state
∣
∣
∣〈Tij〉old

〉

undergoes a transition, with the highest probability, towards
∣
∣
∣〈Tij〉old +∆ 〈Tij〉

〉

.

The insertion of the complet set:
∣
∣
∣
∣
∣
∣

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)
〉〈

∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

∣
∣
∣
∣
∣
∣

thus yields a projection: ∣
∣
∣〈Tij〉old +∆ 〈Tij〉

〉〈

〈Tij〉old +∆ 〈Tij〉
∣
∣
∣

and the transition reduces to:
〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

f

∣
∣
∣
∣
∣
∣

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)

(93)

∫ θ
(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∣
∣
∣〈Tij〉old +∆ 〈Tij〉

〉〈

〈Tij〉old +∆ 〈Tij〉
∣
∣
∣

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)
∫ θ

(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0





∣
∣
∣〈Tij〉old

〉
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The second insertion in (93) shifts the state
∣
∣
∣〈Tij〉old

〉

with highest probability to some:

∣
∣
∣〈Tij〉old +∆ 〈Tij〉+∆′ 〈Tij〉

〉

with an amplitude:

〈

〈Tij〉old +∆ 〈Tij〉+∆′ 〈Tij〉
∣
∣
∣ exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)

(94)

∫ θ
(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∣
∣
∣〈Tij〉old +∆ 〈Tij〉

〉〈

〈Tij〉old +∆ 〈Tij〉
∣
∣
∣

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))

+ S (Ψ (θ, Z))

)
∫ θ

(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0





∣
∣
∣〈Tij〉old

〉

This computation describes formally the qualitative discussion about transitions presented in ([9]).
The distant activation provides two independent structures of connections that can be reactivated
independently as described by the sequence:

→
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ω0

}

+
{

T
(

Z
′(ε1)
M , Z

′(ε2)
M

)

, ω′
M

}

9.4 Subsequent activation

For a sequence of subsequent activations, as described in ([9]), we consider the scheme:

{ω0, T0} →
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ωM

}

(95)

→
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ωM , T
(

Z
′(ε1)
M , Z

′(ε2)
M

)

, ω′
M , T

(

Z
(ε1)
M , Z

′(ε2)
M

)

, T
(

Z
′(ε2)
M , Z

(ε1)
M

)}

→
{

T
(

Z
(ε1)
M , Z

(ε2)
M

)

, ω0, T
(

Z
′(ε1)
M , Z

′(ε2)
M

)

, ω0, T
(

Z
(ε1)
M , Z

′(ε2)
M

)

, T
(

Z
′(ε2)
M , Z

(ε1)
M

)}

Here the transition including the second structure is directly caused by the action of the first
structure before its activity dampens.

Technically, the scheme of transitions (??) implies that the insertion of perturbations are no
longer independent and the transition in (89) cannot be shared as a product. It rather writes:

〈
∏

Z,Z′

(

T, T̂ , θ, Z, Z ′, C,D
)

f

∣
∣
∣
∣
∣
∣

(

exp

(

−
4∑

i=1

S
(i)
Γ

(

Γ
(

T, T̂ , θ, Z, Z ′, C,D
))
)

(96)

×
∫

DΨ(θ, Z) exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)−
∫

V (Ψ0 (θ, Z))

)

×
∫ θ

(3)
0

θ
(2)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

∫ θ
(1)
0

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0





∣
∣
∣〈Tij〉old

〉

and projects the final set to some state
∣
∣
∣〈Tij〉old + {∆ 〈Tij〉+∆′ 〈Tij〉}

〉

. The additional activa-

tions {∆ 〈Tij〉+∆′ 〈Tij〉} differ from the set ∆ 〈Tij〉 +∆′ 〈Tij〉 obtained in the previous paragraph.
Actually, the set ∆ 〈Tij〉 + ∆′ 〈Tij〉 describes a priori disconected structures that can be activated
independently, while {∆ 〈Tij〉+∆′ 〈Tij〉} encompasses connections between elements of ∆ 〈Tij〉 and
∆′ 〈Tij〉. This implies that reactivation of one set ∆ 〈Tij〉 or ∆′ 〈Tij〉 will induce the reactivation of
the other one.
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10 Conclusion

We have shown how the effective field formalism for connectivity enables the derivation of results
pertaining to the activation, association, reactivation... of states composed of interconnected sets
of cells. These states originate from the deformation of the background fields induced by external
sources. In the subsequent article of this series, we will explore the internal dynamics between such
states as an outcome of the formalism. Ultimately, in Part IV, we will expand our formalism into
a field theory for groups of interconnected states.
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Appendix 1 Activities ω (J, θ, Z) as functional of the field.

To obtain the activity ω (J, θ, Z) as a fld series expansion, we start with the recursive relation defining
ω−1 (J, θ, Z). We then proceed in several steps. In this appendix we compute the first derivative in
1.1. They are estimated through fourier integrals in 1.2. Then we will obtain the whole series of
derivatives by iterating this result in 2.

1.1 Computation of the first order derivatives in (52)

1.1.1 General formula

In the sequel, to simplify the notations:

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

stands for:

Ḡ0 (0, Z1) +

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

where3:
Ḡ0 (0, Z1) = G0 (0, Z1) + |Ψ0 (Z1)|2

Using the recursive definition of ω−1 (J, θ, Z):

ω−1 (J, θ, Z) = G



J (θ, Z) +

∫
κ

N

ω
(

J, θ − |Z−Z1|
c

, Z1

)

ω (J, θ, Z)

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

T (Z,Z1, θ) dZ1



 (97)

we first compute δω−1(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 :

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
(98)

=

δG




J (θ, Z) +

∫
κ
N

ω

(

J,θ−
|Z−Z′|

c ,Z′

)

ω(J,θ,Z)

∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

T (Z,Z ′, θ) dZ ′






δ |Ψ(θ − l1, Z1)|2

3See the discussion after (46)
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Expanding the right hand side and regrouping δω−1(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 on the left yields:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

=

1
ω(J,θ,Z)

κ
N
T (Z,Z1, θ)G

′ [J, ω, θ, Z,Ψ]ω

(

J, θ − |Z−Z′|
c

, Z ′

)

δ
(

l1 − |Z−Z1|
c

)

1−
(
∫

κ
N
ω
(

J, θ − |Z−Z′|
c

, Z ′
)

T (Z,Z ′, θ)
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

dZ ′

)

G′ [J, ω, θ, Z,Ψ]

+

1
ω(J,θ,Z)

∫
κ
N

δω

(

J,θ−
|Z−Z′|

c ,Z′

)

δ|Ψ(θ−l1,Z1)|
2 T (Z,Z ′, θ)

∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

dZ ′G′ [J, ω, θ, Z,Ψ]

1−
(
∫

κ
N
ω
(

J, θ − |Z−Z′|
c

, Z ′
)

T (Z,Z ′, θ)
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

dZ ′

)

G′ [J, ω, θ, Z,Ψ]

+

1
ω(J,θ,Z)

∫
κ
N
ω

(

J, θ − |Z−Z′|
c

, Z ′

)
∂T(Z,Z′,θ)

∂|Ψ(θ−l1,Z1)|
2

∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

dZ ′G′ [J, ω, θ, Z,Ψ]

1−
(
∫

κ
N
ω
(

J, θ − |Z−Z′|
c

, Z ′
)

T (Z,Z ′, θ)
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

dZ ′

)

G′ [J, ω, θ, Z,Ψ]

(99)

neglecting
∂T(Z,Z′,θ)

∂ω

(

J,θ−
|Z−Z′|

c ,Z′

) in first approxmtn, this leads to:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
= ω (J, θ − l1, Z1) T̃1 (θ, Z, Z1, ω,Ψ) δ

(

l1 −
|Z − Z1|

c

)

(100)

+

∫ δω

(

J, θ − |Z−Z′|
c

, Z ′

)

δ |Ψ(θ − l1, Z1)|2
∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

T̃1 (θ, Z, Z
′, ω,Ψ)dZ ′

where we defined:

T̃1 (θ, Z, Z1, ω,Ψ) =
1

ω (J, θ, Z)
(101)

×
κ
N
T (Z,Z1, θ)G

′ [J, ω, θ, Z,Ψ] δ
(

l1 − |Z−Z1|
c

)

1−
(
∫

κ
N
ω
(

J, θ − |Z−Z′|
c

, Z ′
)

T (Z,Z ′, θ)
∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

dZ ′

)

G′ [J, ω, θ, Z,Ψ]

Equation (100) shows that we also need δω(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 to compute δω−1(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 . This is obtained by:

δω (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
=

δF




J (θ, Z) +

∫
κ
N
W̄






ω

(

J,θ−
|Z−Z′|

c ,Z′

)

ω(J,θ,Z)






∣
∣
∣
∣
Ψ

(

θ − |Z−Z′|
c

, Z ′

)∣
∣
∣
∣

2

T (Z,Z ′) dZ ′






δ |Ψ(θ − l1, Z1)|2

= ω (J, θ − l1, Z1) T̃ (θ, Z, Z1, ω,Ψ) δ

(

l1 −
|Z − Z1|

c

)

+

∫ δω

(

J, θ − |Z−Z′|
c

, Z ′

)

δ |Ψ(θ − l1, Z1)|2
∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

T̃ (θ, Z, Z ′, ω,Ψ)dZ ′ (102)

36



with:

T̃ (θ, Z, Z1ω,Ψ) (103)

=

κ
N
ω (J, θ, Z)T (Z,Z1) W̄

′

(

ω
(

J,θ−
|Z−Z1|

c ,Z1

)

ω(J,θ,Z)

)

F ′ [J, ω, θ, Z,Ψ]

ω2 (J, θ, Z) + F ′ [J, ω, θ, Z,Ψ]
∫ κω

(

J,θ−
|Z−Z′|

c ,Z′

)

N
W̄ ′




ω

(

J,θ−
|Z−Z′|

c ,Z′

)

ω(J,θ,Z)





∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

T (Z,Z ′, θ) dZ ′

Equation (102) and (103) define δω(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 recursively. Actually, writing:

δω

(

J, θ − |Z−Z′|
c

, Z ′

)

δ |Ψ(θ − l1, Z1)|2

=

∫

ω

(

J, θ − |Z − Z ′|
c

− |Z ′ − Z ′′|
c

, Z ′′

)

T̃

(

θ − |Z − Z ′|
c

, Z ′, Z ′′, ω,Ψ

)

δ

( |Z − Z ′|
c

+
|Z ′ − Z ′′|

c
− l1

)

dZ ′′

+

∫ δω

(

J, θ − |Z−Z′|
c

− |Z′−Z′′|
c

, Z ′′

)

δ |Ψ(θ − l1, Z1)|2
∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

− |Z ′ − Z ′′|
c

, Z ′′

)∣
∣
∣
∣

2

T̃

(

θ − |Z − Z ′|
c

, Z ′, Z ′′, ω,Ψ

)

dZ ′′

we have:

δω (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

=

∫

ω

(

J, θ − |Z − Z ′|
c

, Z ′

)

T̃ (θ, Z, Z1, ω,Ψ) δ

( |Z − Z ′|
c

− l1

)

dZ ′

+

∫

ω

(

J, θ − |Z − Z ′|
c

− |Z ′ − Z ′′|
c

, Z ′′

)

T̃

(

θ − |Z − Z ′|
c

, Z ′, Z ′′, ω,Ψ

)

×
∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

T̃ (θ, Z, Z ′, ω,Ψ) δ

( |Z − Z ′|
c

+
|Z ′ − Z ′′|

c
− l1

)

dZ ′dZ ′′

+

∫ δω

(

J, θ − |Z−Z′|
c

− |Z′−Z′′|
c

, Z ′′

)

δ |Ψ(θ − l1, Z1)|2
∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

− |Z ′ − Z ′′|
c

, Z ′′

)∣
∣
∣
∣

2

×T̃

(

θ − |Z − Z ′|
c

, Z ′, Z ′′, ω,Ψ

)∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

T̂ (θ, Z, Z ′, ω,Ψ)dZ ′dZ ′′

By a redefinition of Ť and T̃1:

T̃ (θ, Z, Z ′, ω,Ψ)

∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

→ T̃ (θ, Z, Z ′, ω,Ψ)

T̃1 (θ, Z, Z
′, ω,Ψ)

∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

→ T̃1 (θ, Z, Z
′, ω,Ψ)

we find the series expansion:

δω (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
=

∞∑

n=1

1

|Ψ(θ − l1, Z1)|2
∫

ω

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)

(104)

×
n∏

l=1

T̃



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω,Ψ



 δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)
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and:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
=

∞∑

n=1

1

|Ψ(θ − l1, Z1)|2
∫

ω

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)

T̃1

(

θ, Z, Z(1), ω,Ψ
)

(105)

×
n∏

l=2

T̃



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω,Ψ



 δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

with the convention that Z(0) = Z and Z(n) = Z1.
We can write (105) in a more symetric way. Defining:

Ť
(

θ, Z, Z(1), ω,Ψ
)

= −ω2

(

J, θ −−|Z − Z1|
c

, Z1

)

T̃1

(

θ, Z, Z(1), ω,Ψ
)

Relation (100) writes:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
= −ω−1 (J, θ − l1, Z1) Ť (θ, Z, Z1, ω,Ψ) δ

(

l1 −
|Z − Z1|

c

)

+

∫ δω−1

(

J, θ − |Z−Z′|
c

, Z ′

)

δ |Ψ(θ − l1, Z1)|2
∣
∣
∣
∣
Ψ

(

θ − |Z − Z ′|
c

, Z ′

)∣
∣
∣
∣

2

Ť (θ, Z, Z ′, ω,Ψ)dZ ′

and we have:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
= −

∞∑

n=1

1

|Ψ(θ − l1, Z1)|2
∫

ω−1

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)

(106)

×
n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω,Ψ



 δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

1.1.2 Static approximation

We now use a static approximations (104) and (105). Actually, the values of T̃1 (θ, Z, Z1ω,Ψ) and
T̃ (θ, Z, Z1ω,Ψ) can be estimated for the static approximation for activity ω̄−1

(
J̄ , Z

)
. Moreover, in

the limit of small fluctuations, ω̄−1
(
J̄ , Z

)
, F ′ [J, ω̄, Z,Ψ] and G′ [J, ω̄, Z,Ψ] can be approximated by

their average over Z, denoted ω̄−1, F̄ ′and Ḡ′. We also have:

ω̄ (J, Z ′)

ω̄ (J, Z)
≃ 1

We also replace |Ψ|2 by 1
√

π
2

(

1
σ2X̄r

)2

+ 2πα

σ2

. Moreover for ω̄, both T̃1 and T̃ can be considered inde-

pendent of θ:

T̃1 (θ, Z, Z1ω̄,Ψ) ≃ T̃1 (Z,Z1, ω̄) (107)

=
1

√

π
2

(
1

σ2X̄r

)2

+ 2πα
σ2

κ
N
ω̄−1T (Z,Z1) Ḡ

′

1− Ḡ′ω̄
∫

κ
N

T (Z,Z′)dZ′
√

π
2

(

1
σ2X̄r

)2

+ 2πα

σ2
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and:

T̃ (θ, Z, Z1ω,Ψ) ≃ T̃ (Z,Z1, ω̄) (108)

=
1

√

π
2

(
1

σ2X̄r

)2

+ 2πα
σ2

κ
N
T (Z,Z1) F̄

′

ω̄ +
F̄ ′
∫

κ
N

T (Z,Z′)dZ′
√

π
2

(

1
σ2X̄r

)2

+ 2πα

σ2

as a consequence T̃1 (Z,Z1, ω̄) and T̃ (Z,Z1, ω̄) are functions of |Z − Z1| denoted T̃1 (|Z − Z1|) and
T̃ (|Z − Z1|). As a consequence (104) becomes:

δω (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

=

∞∑

n=1

1

|Ψ(θ − l1, Z1)|2
∫

ω

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)
n∏

l=1

T̃
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

×δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)

× δ

(

Z − Z1 −
n∑

l=1

(

Z(l−1) − Z(l)
)
)

n−1∏

l=1

dZ(l) (109)

and (105) can be estimated by:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
(110)

=

∞∑

n=1

1

|Ψ(θ − l1, Z1)|2
∫

ω

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)

T̃1 (|Z − Z1|)

×
n∏

l=2

T̃
(∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣

)

δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)

δ

(

Z − Z1 −
n∑

l=1

(

Z(l−1) − Z(l)
)
)

n−1∏

l=1

dZ(l)

1.2 Estimation of (110) and (104) close to the permanent regime

The series (110) can be computed by using the Fourier transform of the Dirac functions:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
(111)

=
∞∑

n=1

∫

ω (J, θ − l1, Z1)× T̃1

(∣
∣
∣Z − Z(1)

∣
∣
∣

) n∏

l=2

T̃
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

exp

(

iλ

(

cl1 −
n∑

l=1

∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

))

× exp

(

iλ1.

(

Z − Z1 −
n∑

l=1

(

Z(l−1) − Z(l)
)
))

dλdλ1

n∏

l=1

∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

2

d
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣ dvl

where the unit vectors vl are defined such that:

Z(l−1) − Z(l) = vl

∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣

We also define:

λ1. (Z − Z1) = |λ1| |Z − Z1| cos (θ1)
λ1.vl = |λ1| cos (θl)

The angles θl are computed in the plane (λ1, Z − Z1) between the projection of vl and Z − Z1.
Before computing the integrals in (111) for arbitrary connectivity functions, we develop the

particular case of an exponential transfer function.
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1.2.1 Exponential connectivity function

We first choose:

T̃
(∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣

)

= C
exp

(
−c
∣
∣Z(l−1) − Z(l)

∣
∣
)

∣
∣Z(l−1) − Z(l)

∣
∣

(112)

T̃1

(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

≃ A1

A
CT̂

(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

where, given (107) and (108):

A1

A
=

T̃1

(

θ −∑n

l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Z, Z(1), ω,Ψ

)

T̃

(

θ −
∑n

l=1
|Z(l−1)−Z(l)|

c
, Z, Z(1), ω,Ψ

) (113)

=
κ
N
ω̄−1T (Z,Z1) Ḡ

′

1− Ḡ′ω̄
∫

κ
N

T (Z,Z′)dZ′
√

π
2

(

1
σ2X̄r

)2

+ 2πα

σ2










κ
N
T (Z,Z1) F̄

′

ω̄ +
F̄ ′
∫

κ
N

T (Z,Z′)dZ′
√

π
2

(

1
σ2X̄r

)2

+ 2πα

σ2










−1

≃ −
(
ω̄−1

)2

We will disregard the factor A1
A

that will be reintroduced in the end of the computation.
Using that

∑n
l=1

(
Z(l−1) − Z(l)

)
= cl1, the right hand side of (111) becomes:

exp (−cl1)×
∞∑

n=1

∫

exp

(

iλ

(

cl1 −
n∑

l=1

∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

))

× exp

(

iλ1.

(

Z − Z1 −
n∑

l=1

(

Z(l−1) − Z(l)
)
))

dλdλ1

n∏

l=1

C
∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣ d
∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣ dvl

that can be written in terms of the angles as:

exp (−cl1)×
∞∑

n=1

∫

exp (iλcl1 + i |λ1| |Z − Z1| cos (θ1)) (114)

× exp

(

−i

n∑

l=1

(λ+ |λ1| cos (θl))
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

dλdλ1

n∏

l=1

C
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣ d
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣ dvl

The integration over θl is:

π

∫ π

0

exp
(

−i (λ+ |λ1| cos (θl))
∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣

)

sin (θl) dθl

= − πi

|λ1|
∣
∣Z(l−1) − Z(l)

∣
∣

(

exp
(

−i (λ− |λ1|)
∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣

)

− exp
(

−i (λ+ |λ1|)
∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣

))

=
πi

|λ1|
∣
∣Z(l−1) − Z(l)

∣
∣

(

exp
(

−i (λ+ |λ1|)
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

− exp
(

−i (λ− |λ1|)
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

))

and (114) rewrites:

exp (−cl1)×
∞∑

n=1

∫ −πi

|λ1| |Z − Z1|
(exp (iλcl1 + i |λ1| |Z − Z1|)− exp (iλcl1 − i |λ1| |Z − Z1|))

×
n∏

l=1

C
πi

|λ1|
(

exp
(

−i (λ+ |λ1|)
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

− exp
(

−i (λ− |λ1|)
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

))

×d
∣
∣
∣Z

(l−1) − Z(l)
∣
∣
∣ dλ |λ1|2 d |λ1|
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We can then perform the integrals over the norms
∣
∣Z(l−1) − Z(l)

∣
∣, which yields:

exp (−cl1)×
∞∑

n=1

∫ −πi

|λ1| |Z − Z1|
(exp (iλcl1 + i |λ1| |Z − Z1|)− exp (iλcl1 − i |λ1| |Z − Z1|))

×
n∏

l=1

C
π

|λ1|

(
1

λ+ |λ1| − iε
− 1

λ− |λ1| − iε

)

dλ |λ1|2 d |λ1|

Performing the sum yields then the following expression for (114):

exp (−cl1)×
∫ −πi

|λ1| |Z − Z1|
(exp (iλcl1 + i |λ1| |Z − Z1|)− exp (iλcl1 − i |λ1| |Z − Z1|))

×
−C 2π

(λ+|λ1|−iε)(λ−|λ1|−iε)

1 + C 2π
(λ+|λ1|−iε)(λ−|λ1|−iε)

dλ |λ1|2 d |λ1|

= exp (−cl1)×
∫ −πi

|λ1| |Z − Z1|
(exp (iλcl1 + i |λ1| |Z − Z1|)− exp (iλcl1 − i |λ1| |Z − Z1|))

× −2πC

(λ+ |λ1| − iε) (λ− |λ1| − iε) + 2πC
dλ |λ1|2 d |λ1|

Ultimately, the previous formula can be reduced to a single expression, by performing the change
of variable x = − |λ1| in the term with exp (iλcl1 − i |λ1| |Z − Z1|) in factor. We obtain:

exp (−cl1)×
∫ −πi

|Z − Z1|
exp (iλcl1 + iλ1 |Z − Z1|)

−2πCλ1

(λ+ λ1 − iε) (λ− λ1 − iε) + 2πC
dλdλ1

where the integral over λ1 is now performed with λ1 ∈ R. This integral is computed by the residue
theorem, where the residues satisfy:

λ2
1 = (λ− iε)

2
+ 2πC

leading to write (114) as:

exp (−cl1)×
∫ −πi

|Z − Z1|
exp

(

iλcl1 + i

√

(λ− iε)
2
+ 2πC |Z − Z1|

)

dλ (115)

+exp (−cl1)×
∫ −πi

|Z − Z1|
exp

(

iλcl1 − i

√

(λ− iε)2 + 2πC |Z − Z1|
)

dλ

We then perform the change of variable:

x = λ+
√

λ2 + 2πC

dx =

(

1 +
λ√

λ2 + 2πC

)

dλ

=
x√

λ2 + 2πC
dλ =

2x2

x2 + 2πC
dλ

and rewrite the exponents in (115) as:

λcl1 +

√

(λ− iε)
2
+ 2πC |Z − Z1| =

cl1 + |Z − Z1|
2

(

λ+
√

λ2 + 2πC
)

+
cl1 − |Z − Z1|

2

(

λ−
√

λ2 + 2πC
)

=
cl1 + |Z − Z1|

2

(

λ+
√

λ2 + 2πC
)

− cl1 − |Z − Z1|
2

2πC

λ+
√
λ2 + 2πC

=
cl1 + |Z − Z1|

2
x− cl1 − |Z − Z1|

2

2πC

x
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and:

λcl1 −
√

(λ− iε)
2
+ 2πC |Z − Z1| =

cl1 − |Z − Z1|
2

x− cl1 + |Z − Z1|
2

2πC

x

As a consequence, expression (115) becomes:

exp (−cl1)×
∫ −πi

|Z − Z1|
exp

(

i

(
cl1 + |Z − Z1|

2
x− cl1 − |Z − Z1|

2

2πC

x

))

dx

+exp (−cl1)×
∫ −πi

|Z − Z1|
exp

(

i

(
cl1 − |Z − Z1|

2
x− cl1 + |Z − Z1|

2

2πC

x

))

dx

+2πC exp (−cl1)×
∫ −πi

|Z − Z1|
exp

(

i

(
cl1 + |Z − Z1|

2
x− cl1 − |Z − Z1|

2

2πC

x

))
1

x2
dx

+2πC ×
∫ −πi

|Z − Z1|
exp

(

i

(
cl1 − |Z − Z1|

2
x− cl1 + |Z − Z1|

2

2πC

x

))
1

x2
dx

Performing the change of variable y = 1
x
in the two last expressions yields:

exp (−cl1) (1 + 2πC)×
(∫ −πi

|Z − Z1|
exp

(

i

(
cl1 + |Z − Z1|

2
x− cl1 − |Z − Z1|

2

2πC

x

))

dx

+

∫ −πi

|Z − Z1|
exp

(

i

(
cl1 − |Z − Z1|

2
x− cl1 + |Z − Z1|

2

2πC

x

))

dx

)

and by analytic continuation x → ix, this becomes:

exp (−cl1) (1 + 2πC)×
(∫

π

|Z − Z1|
exp

(

−
(
cl1 + |Z − Z1|

2
x− cl1 − |Z − Z1|

2

2πC

x

))

dx

+

∫
π

|Z − Z1|
exp

(

−
(
cl1 − |Z − Z1|

2
x− cl1 + |Z − Z1|

2

2πC

x

))

dx

)

Ultimately, reintroducing the constraint H (cl1 − |Z − Z1|) and the factor A1
A
, (111) writes:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
= (1 + 2πC)

A1

A

exp (−cl1)

|Z − Z1|

(√

cl1 − |Z − Z1|
cl1 + |Z − Z1|

+

√

cl1 + |Z − Z1|
cl1 − |Z − Z1|

)

×K1

(
cl1 − |Z − Z1|

2
2πC

cl1 + |Z − Z1|
2

)

ω (J, θ − l1, Z1)

= (1 + 2πC)
A1

A

exp (−cl1)

|Z − Z1|

(√

cl1 − |Z − Z1|
cl1 + |Z − Z1|

+

√

cl1 + |Z − Z1|
cl1 − |Z − Z1|

)

×K1

(

πC
(cl1)

2 − |Z − Z1|2
2

)

ω (J, θ − l1, Z1) (116)

In first approximation, the right hand side of (116) is:

exp (−cl1) (cl1 + |Z − Z1|)
B |Z − Z1|

exp

(

−πC
(cl1)

2 − |Z − Z1|2
2

)

ω (J, θ − l1, Z1) (117)

∼ exp (−cl1)

B
exp

(

−πCcl1
cl1 − |Z − Z1|

2

)

H (cl1 − |Z − Z1|)ω (J, θ − l1, Z1)

for cl1 >> |Z − Z1|. This can also be replaced by a simplest form:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
≃

exp
(

−cl1 − α
(

(cl1)
2 − |Z − Z1|2

))

B
H (cl1 − |Z − Z1|)ω (J, θ − l1, Z1)

(118)
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where B and α are constants.
Using (106), the same computation can be performed by replacing T̂ with Ť and we obtain:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
≃

exp
(

−cl1 − α
(

(cl1)
2 − |Z − Z1|2

))

D
H (cl1 − |Z − Z1|)ω−1 (J, θ − l1, Z1)

(119)
with D a constant:

D =
B

ω̄2

with ω̄ (J) the average activity.

1.2.2 General formula

For an arbitrary connectivity function:

T̃
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

= C exp
(

−c
∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

f
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

we can factor C exp (−cl) as in the previous paragraph. It amounts to replace:

T̃
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

→ f
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

We rewrite (111) as:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
(120)

=

∞∑

n=1

∫

ω (J, θ − l1, Z1)× T
′′
1 (λ+ λ1.v1) dv1

n∏

l=2

∫

T
′′ (λ+ λ1.vl) dvl exp (iλcl1 + iλ1. (Z − Z1)) dλdλ1

= δ (|Z1 − Z| − cl1) T̃1

(∣
∣
∣Z − Z(1)

∣
∣
∣

)

ω (J, θ − l1, Z1)

+ (−1)
n

∫

ω (J, θ − l1, Z1)×
T

′′
1 (λ+ λ1.v1)

2
dv1

n∏

l=2

∫
T

′′ (λ+ λ1.vl)

2
dvl exp (iλcl1 + iλ1. (Z − Z1)) dλdλ1

With the convention that for n = 1, the product
n∏

l=2

is set to be equal to 1. The functions T1 and

T are the fourier transform of T̃1H and T̃H respectively, and H is the heaviside function. Remark
that the first term of (120) expresses the Dirac function δ (|Z1 − Z| − cl1) as a Fourier transform:

exp

(

iλ

(

cl1 −
n∑

l=1

∣
∣
∣Z(0) − Z(1)

∣
∣
∣

))

× exp

(

iλ1.

(

Z − Z1 −
n∑

l=1

(

Z(0) − Z(1)
)
))

dλdλ1

∣
∣
∣Z

(0) − Z(1)
∣
∣
∣

2

d
∣
∣
∣Z

(0) − Z(1)
∣
∣
∣ dvl

Some terms of (120) can be written in a useful form for the sequel:

1

2

∫

T
′′ (λ+ λ1.vl) dvl = π

∫ π

0

T
′′ (λ+ |λ1| cos (θl)) sin (θl) dθl

= π

∫ 1

−1

T
′′ (λ+ |λ1|u)du

=
2π (T ′ (λ+ |λ1|)− T

′ (λ− |λ1|))
2 |λ1|

≡ T̄ (λ, |λ1|) (121)
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∫

T
′′
1 (λ+ λ1.vl) dvl =

2π (T ′
1 (λ+ |λ1|)− T

′
1 (λ− |λ1|))

2 |λ1|
≡ T̄1 (λ, |λ1|) (122)

exp (iλ1. (Z − Z1)) dλ1 = exp (i cos (θ1) |λ1| |Z − Z1|) sin (θ1) |λ1|2 d |λ1| dθ1 (123)

= exp (iu |λ1| |Z − Z1|) |λ1|2 d |λ1| du

Remark that the functions of x:

T̄ (λ, x) =
2π (T ′ (λ+ x) − T

′ (λ− x))

2x
and T̄1 (λ, x) =

2π (T ′
1 (λ+ x)− T

′
1 (λ− x))

2x

are even.

1.2.3 Estimation of (120)

Using (121), (122) and (123), equation (120) becomes:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

=

∞∑

n=1

(−1)
n

∫

ω (J, θ − l1, Z1)× T1 (λ+ λ1.v1) dv1

n∏

l=2

∫

T (λ+ λ1.vl) dvl exp (iλcl1 + iλ1. (Z − Z1)) dλdλ1

= −
∫

ω (J, θ − l1, Z1)×
T̄1 (λ, |λ1|)

1 + T̄ (λ, |λ1|)
exp (iλcl1)

∫ 1

−1

exp (iu |λ1| |Z − Z1|) |λ1|2 d |λ1| dudλ

= −
∫

ω (J, θ − l1, Z1)×
T̄1 (λ, |λ1|)

1 + T̄ (λ, |λ1|)
exp (iλcl1)

(

2
sin (|λ1| |Z − Z1|)

|Z − Z1|
|λ1|

)

d |λ1| dλ (124)

We remark that for even functions f , the following identity holds:

∫ +∞

0

f (|λ1|) 2
sin (|λ1| |Z − Z1|)

|Z − Z1|
|λ1| d |λ1|

=

∫ +∞

0

f (x)
exp (ix |Z − Z1|)− exp (−ix |Z − Z1|)

i |Z − Z1|
xdx

=

∫ +∞

0

f (x)
exp (ix |Z − Z1|)

i |Z − Z1|
xdx +

∫ 0

−∞

f (−x)
exp (ix |Z − Z1|)

i |Z − Z1|
xdx

=

∫ +∞

−∞

f (x)
exp (ix |Z − Z1|)

i |Z − Z1|
xdx

so that (124) becomes:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
(125)

= −
∫

ω (J, θ − l1, Z1)×
T̄1 (λ, λ1)

1 + T̄ (λ, λ1)

λ1

i |Z − Z1|
exp (iλcl1 + iλ1 |Z − Z1|) dλ1dλ

= −
∫

ω (J, θ − l1, Z1)×
π (T ′

1 (λ+ λ1)− T
′
1 (λ− λ1))

λ1 + π (T ′ (λ+ λ1)− T ′ (λ− λ1))

λ1

i |Z − Z1|
× exp (iλcl1 + iλ1 |Z − Z1|) dλ1dλ

= −
∫

ω (J, θ − l1, Z1)×
π (T ′

1 (λ+ λ1)− T
′
1 (λ− λ1))

λ1 + π (T ′ (λ+ λ1)− T ′ (λ− λ1))

λ1

i |Z − Z1|
× exp (iu (cl1 + |Z − Z1|))× exp (iv (cl1 − |Z − Z1|)) dλ1dλ
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As in the previous paragraph, we also simplify (125) by writing T1 as a function of T :

T
′
1 (λ+ λ1)− T

′
1 (λ− λ1) =

A1

A
(T ′ (λ+ λ1)− T

′ (λ− λ1))

and by setting:

u =
λ+ λ1

2

v =
λ+ λ1

2

so that we are lead to:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
= −

∫

ω (J, θ − l1, Z1)×
A1

A

π (T ′
1 (λ+ λ1)− T

′
1 (λ− λ1))

λ1 + π (T ′ (λ+ λ1)− T ′ (λ− λ1))

λ1

i |Z − Z1|
× exp (iu (cl1 + |Z − Z1|))× exp (iv (cl1 − |Z − Z1|)) dλ1dλ (126)

Remark that the particular case of the exponential connectivity function is encompassed in (125).
Actually, if we choose:

T̃
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

= C
exp

(
−c
∣
∣Z(l−1) − Z(l)

∣
∣
)

∣
∣Z(l−1) − Z(l)

∣
∣

we have:
n∏

l=1

T̃
(∣
∣
∣Z(l−1) − Z(l)

∣
∣
∣

)

= exp (−cl1)

n∏

l=1

C
∣
∣Z(l−1) − Z(l)

∣
∣

For such a choice, we have formally: T = −iC
∫
(FH) where H is the heaviside function. As a

consequence:

T
′ (λ) = CFH = − C

λ+ iε

and (126) is equivalent to the expressions of appendix 1.3.2.1.
In the general case, we write λ

(r)
1 , r = 1, ... the solutions to the pole equation of (126):

λ1 + π (T ′ (λ+ λ1)− T
′ (λ− λ1)) = 0

For regular functions T
′ (λ+ λ1) such that for λ → ∞:

T
′ (λ+ λ1) ≃

g (λ+ λ1)

(λ+ λ1)
l

∫
1

(λ− s)
l
|Ψ(s)|

with l > 0 given and g bounded, the poles equation implies that for λ → ∞:

λ1 ≃ ±λ

and as a consequence, we can write:

λ
(r)
1 =

√

λ2 + hr (λ) (127)

where hr (λ) is bounded.
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We can compute the values of the residues at each pole by the first order expansion of 1 +

π
T

′(λ+λ1)−T
′(λ−λ1)

λ1
:

1 + π
T

′ (λ+ λ1)− T
′ (λ− λ1)

λ1

≃ π




T

′ (λ+ λ1)− T
′ (λ− λ1)

λ1
−

T
′
(

λ+ λ
(r)
1

)

− T
′
(

λ− λ
(r)
1

)

λ
(r)
1





≃ π





1
π
+ T

′′
(

λ+ λ
(r)
1

)

+ T
′′
(

λ− λ
(r)
1

)

λ
(r)
1





≃ π








T
′′
(

λ+ λ
(r)
1

)

+ T
′′
(

λ− λ
(r)
1

)

−
T

′
(

λ+λ
(r)
1

)

−T
′
(

λ−λ
(r)
1

)

λ
(r)
1

λ
(r)
1








For regular functions T
′ (λ+ λ1), this can be expanded as:

2πλ
(r)
1




∑

k>1

T
(2k+2) (λ)

(2k)!

(

λ
(r)
1

)2k−2

−
∑

k>1

T
(2k+2) (λ)

(2k + 1)!

(

λ
(r)
1

)2k−2





and for relatively slowly varying functions, this reduces to:

1 + π
T

′ (λ+ λ1)− T
′ (λ− λ1)

λ1
≃ 2πλ

(r)
1

T
(4) (λ)

3
(128)

and the residue theorem implies to replace:

π (T ′
1 (λ+ λ1)− T

′
1 (λ− λ1))

λ1 + π (T ′ (λ+ λ1)− T ′ (λ− λ1))

λ1

i |Z − Z1|
(129)

→ − i

π

3

|Z − Z1|T (4) (λ)

in (126). Using (127) and (129) in (126) leads to:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

≃
∑

r

i

π

1

|Z − Z1|

∫

ω (J, θ − l1, Z1)

× 3

T (4) (λ)
exp (iu (cl1 + |Z − Z1|))× exp (iv (cl1 − |Z − Z1|)) dλ

=
∑

r

i

π

1

|Z − Z1|

∫

ω (J, θ − l1, Z1)

× 3

T (4) (λ)
exp (iu (cl1 + |Z − Z1|))× exp (iv (cl1 − |Z − Z1|)) dλ

where:

u =
λ+ λ

(r)
1

2
=

λ+ f (r) (λ)

2

v =
λ+ λ

(r)
1

2
=

λ− f (r) (λ)

2
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As a consequence:

v = λ−
√

λ2 + hr (λ)

= − hr (λ)

λ+
√

λ2 + hr (λ)

= −hr (λ)

u

For hr (λ) varying slowly, we can replace hr (λ) by its average h̄r, and we have:

v = − h̄r

u

Replacing T
(4) (λ) by its average T̄

(4), we find:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
≃

∑

r

i

π

1

|Z − Z1|

∫

ω (J, θ − l1, Z1)

× 3

T̄ (4)
exp (iu (cl1 + |Z − Z1|))× exp

(

−i
h̄r

u
(cl1 − |Z − Z1|)

)

dλ

We can then apply the results of the previous paragraph for each r, and has a consequence, we
obtain:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
≃

∑

r

(
1 + h̄r

) 3

T̄ (4)
ω (J, θ − l1, Z1)

exp (−cl1)

|Z − Z1|
(130)

×
(√

cl1 − |Z − Z1|
cl1 + |Z − Z1|

+

√

cl1 + |Z − Z1|
cl1 − |Z − Z1|

)

K1

(

h̄r

(cl1)
2 − |Z − Z1|2

4

)

that becomes in first approximation:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
≃
∑

r

exp
(

−cl1 − αr

(

(cl1)
2 − |Z − Z1|2

))

Br

H (cl1 − |Z − Z1|)ω (J, θ − l1, Z1)

where the Br are constant coefficients and αr = h̄r
4 . As for (119), this also writes:

|Ψ(θ − l1, Z1)|2
δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
≃
∑

r

exp
(

−cl1 − αr

(

(cl1)
2 − |Z − Z1|2

))

Dr

H (cl1 − |Z − Z1|)ω (J, θ − l1, Z1)

(131)
for some constants Dr.

Appendix 2 Non local expansion for ω (θ, Z) and propagation of

signals.

We can generalize the findings of appendix 1 to calculate and estimate the successive derivatives
of ω (J, θ, Z).

In 2.1 we will compute the successive derivatives through a graphical expansion. Section 2.2
that the series expansion in the field of ω (J, θ, Z) can be summed and expressed as an auxiliary
path integral depending on the connectivity functions. This integral can be approximated through a
saddle point approximation to obtain a formula for the activity ω (J, θ, Z). The results are obtained
without considering the external sources that initiate fluctuations around the background state. In
section 2.3, we include the external sources to compute the expansion of ω (J, θ, Z). Once obtained,
we analyze in section 2.4 the effect of the signal propagation on ω (J, θ, Z). In section 2.5 we extend
these results to systems with multiple fields, including excitatory and inhibitory interactions.
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2.1 n-th derivatives of ω (θ, Z) and ω−1 (θ, Z) at |Ψ0|2

2.1.1 General formula

Based on the results of Appendix 1, we can now compute ω (J, θ, Z), ω−1 (J, θ, Z) and their derivatives

δnω (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2

and:
δnω−1 (J, θ, Z)

n∏

i=1

δ |Ψ(θ − li, Zi)|2

It allows to compute the expansion of the effective action, and also to study the solutions of (97)
without the locality assumption.

2.1.1.1 Series expansion for the first order derivative of ω (θ, Z) Recall that ω (θ, Z) is
solution of (28):

ω−1 (θ, Z) = G



J (θ) +
κ

N

∫

T (Z,Z1, θ)
ω
(

θ − |Z−Z1|
c

, Z1

)

ω (θ, Z)
(132)

×
(

Ḡ0 (0, Z1) +

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2
)

dZ1

)

where:
T (Z,Z1, θ) = 〈T 〉 (Z,Z1)

and where, for the sake of simplicity, the expression:

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

will stand for4:

Ψ†
0 (Z1) Ψ

(

θ − |Z − Z1|
c

, Z1

)

+Ψ0 (Z1)Ψ
†

(

θ − |Z − Z1|
c

, Z1

)

+

∣
∣
∣
∣
Ψ

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2

To find the internal dynamics of the system we will consider J (θ) = J , a constant external current,
usually J = 0. We use a series expansion in

∣
∣Ψ
(
θ(j), Z1

)∣
∣
2
of the right hand side of (132) and write:

ω
(

θ(i), Z
)

= ω
(

θ(i), Z
)

|Ψ|2=0
(133)

+

∫ ∞∑

n=1







δnω (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2

4See discussion after (47)
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The first term (133), i.e. ω
(
θ(i), Z

)

|Ψ|2=0
, is a solution of:

F



J +
κ

N

∫

T (Z,Z1, θ)
ω
(

θ − |Z−Z1|
c

, Z1

)

ω (θ, Z)
|Ψ0 (Z1)|2 dZ1





One solution is the static frequency (74) solution of:

ω (J, Z) = F

(

J +
κ

N

∫

T (Z,Z1)
ω (Z1)

ω (Z)
|Ψ0 (Z1)|2 dZ1

)

≡ F [J, ω, Z]

but any time dependent solution for |Ψ|2 = 0 is also possible. This arises for non constant current
J (θ). Equation (133) is the expansion of ω

(
θ(i), Z

)
around this solution, the dynamics depending

on
∣
∣Ψ
(
θ(j), Z1

)∣
∣
2
. We set:

ω
(

θ(i), Z
)

|Ψ|2=0
= ω0 (J, Z)

The first derivative δω(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 in (133) has been computed in Appendix 1. It is given by:

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2
= −

∞∑

n=1

1
(

Ḡ0 (0, Z1) + |Ψ(θ − l1, Z1)|2
)

∫

ω−1

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)

(134)

×
n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω,Ψ



 δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

where:

Ť (θ, Z, Z1, ω,Ψ) (135)

= −
κ
N
ω (J, θ, Z)T (Z,Z1, θ)G

′ [J, ω, θ, Z,Ψ] δ
(

l1 − |Z−Z1|
c

)(

|Ψ0 (Z1)|2 +
∣
∣
∣Ψ
(

θ − |Z−Z1|
c

, Z1

)∣
∣
∣

2
)

1−
(
∫

κ
N
ω
(

J, θ − |Z−Z′|
c

, Z ′
)

∂T (Z,Z′,θ)
∂ω(J,θ,Z)

∣
∣
∣Ψ
(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2

dZ ′

)

G′ [J, ω, θ, Z,Ψ]

with the convention that Z(0) = Z and Z(n) = Z1. The derivative (134) was then evaluated in
Appendix 5 using combinations of K1 functions, but for the purpose of the computation of the suc-
cessive derivatives of ω (J, θ, Z), we will work, temporarily, with the general formula (134). Equation
(134) yield recursively δω(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2 in terms of past activities. Applied to the case |Ψ|2 = 0, the

factor (135) simplifies:

Ť (θ, Z, Z1, ω0) ≡ Ť (θ, Z, Z1ω0, 0) (136)

= −
κ
N
ω0 (J, θ, Z)T (Z,Z1, θ)G

′ [J, ω, θ, Z,Ψ] |Ψ0 (Z1)|2

1−
(∫

κ
N
ω0 (J, Z ′) ∂T (Z,Z′,θ)

∂ω(J,θ,Z) |Ψ0 (Z ′)|2 dZ ′
)

G′ [J, ω, θ, Z,Ψ]

or in first aproximation:

Ť (θ, Z, Z1, ω0,Ψ) ≡ Ť (Z,Z1, ω0) (137)

≃ −
κ
N
T (Z,Z1, θ)G

′ [J, ω, θ, Z,Ψ] |Ψ0 (Z1)|2

ω−1
0 (J, Z)
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and (134) becomes:

(

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

)

|Ψ|2=0

= −
∞∑

n=1

∫ ω−1
0

(

J, θ −∑n

l=1

∣

∣

∣Z
(l−1)−Z(l)

∣

∣

∣

c
, Z1

)

Ḡ0 (0, Z1)
(138)

×
n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0, 0





×δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

2.1.1.2 Graphical representation of the successive derivatives The n-th term in (138) can
be understood graphically as a sum over the set of broken paths with n segments, each path linking

Z(l−1) and Z(l) during a timespan of

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
. To each point of the segment, we associate the

factor:

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0,Ψ



 (139)

≃
κ
N
Ť
(
Z(l−1), Z(l)

)
G′

[

J, ω0, θ −
∑l−1

j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1)

]

|Ψ0 (Zl)|2

ω−1
0

(

J, θ −∑l−1
j=1

|Z(j−1)−Z(j)|
c

, Z(l−1)

)

Ultimately, the product of factor is multiplied by the activity at the last point:

−
ω−1
0

(

J, θ −∑n
l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Z1

)

|Ψ0 (Z1)|2
(140)

and by |Ψ(θ − l1, Z1)|2. The integrals over the points Z(l) and the sum over n, the length of the
broken paths, yield the first order contribution to the expansion (133).

The next terms in the expansion of (133) are the derivatives



 δnω−1(J,θ,Z)
n
∏

i=1
δ|Ψ(θ−li,Zi)|

2





|Ψ|2=0

which are

obtained by successive derivations of (134) and (135) by |Ψ(θ − l2, Z2)|2 and evaluated at |Ψ|2 = 0.
The li are ordered such that l1 < ... < ln. These derivatives are obtained by differentiating either:

−ω−1
0

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Zn

)

or the successive factors:

n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω,Ψ





The first possibility amounts to write δω(J,θ−l1,Z1)

δ|Ψ(θ−l2,Z2)|
2 using (134). Graphically it amounts to write bro-

ken lines from Z1 to Z2 and associate to each broken line the factor (139), (140) and |Ψ(θ − l2, Z2)|2.
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The second possibility is obtained by computing for each l:

δŤ

(

θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω,Ψ

)

δ |Ψ(θ − l2, Z2)|2
(141)

Which can be written as:

δŤ

(

θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω,Ψ

)

δ |Ψ(θ − l2, Z2)|2

=

∫

d∆dZ ′

δŤ

(

θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω,Ψ

)

δω−1

(

J, θ −∑l−1
j=1

|Z(j−1)−Z(j)|
c

−∆, Z ′

)

δω−1

(

J, θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
−∆, Z ′

)

δ |Ψ(θ − l2, Z2)|2

This derivative can be described graphically by assigning to some point Z(l) of the initial line the
factor:

δŤ

(

θ −
∑l−1

j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω,Ψ

)

δω−1

(

J, θ −∑l−1
j=1

|Z(j−1)−Z(j)|
c

−∆, Z ′

)

issuing a new succession of segments representing
δω−1

(

J,θ−
∑l−1

j=1

|Z(j−1)−Z(j)|
c −∆,Z′

)

δ|Ψ(θ−l2,Z2)|
2 and then sum-

ming over ∆ and Z ′. In first approximation, we can set ∆ = 0 and Z ′, so that the factor is:








δŤ

(

θ −∑l−1
j=1

∣

∣

∣Z
(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω,Ψ

)

δω−1

(

J, θ −
∑l−1

j=1
|Z(j−1)−Z(j)|

c
, Z(l−1)

)








|Ψ|2=0

and the new succession of segments represents
δω−1

(

J,θ−
∑l−1

j=1

|Z(j−1)−Z(j)|
c ,Z(l−1)

)

δ|Ψ(θ−l2,Z2)|
2 .

More generally, differentiating successively T̂
(

θ, Z, Z1ω, |Ψ|2
)

, corresponds to insert the vertices:

δkŤ

(

θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω,Ψ

)

k∏

i=1

δω−1

(

J, θ −∑l−1
j=1

|Z(j−1)−Z(j)|
c

−∆l, Zl

) ≃
δk
(

Ť
(

Z(l−1),Z(l)
)

G′
[

J,ω0,Z
(l)
]

|Ψ0(Zl)|
2

ω
−1
0 (J,θ,Z(l))

)

δkω−1
0

(
J, θ, Z(l)

)

with k new segments representing
δω−1

(

J,θ−
∑l−1

j=1

|Z(j−1)−Z(j)|
c −∆l,Zl

)

δ|Ψ(θ−ll,Zl)|
2 .

Gathering the two possibilities forementionned and iterating this procedures yields a graphical
representation for:







δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2 (142)
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We associate the squared field |Ψ(θ − li, Zi)|2 to each point Zi . For m = 1, ..., n, we draw m lines. At
least one of them is starting from Z. These lines are composed of an arbitrary number of segments
and all the points Zi are crossed by one line. Each line ends at a point Zi. The starting points of
the lines have to branch either at Z, either at some point of an other line. There are m branching
points of valence k including the starting point at Z Apart from Z the branching points have valence
3, ..., n− 1. To each line i of length Li, we associate the factor:

F (linei) =

Li∏

l=1

κ
N
T
(
Z(l−1), Z(l)

)
G′

[

J, ω0, θ −
∑l−1

j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1)

]

Ḡ0

(
0, Z(l)

)

ω−1
0

(

J, θ −∑l−1
j=1

|Z(j−1)−Z(j)|
c

, Z(l−1)

) (143)

×
−ω−1

0

(

J, θ −∑Li
l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Zi

)

Ḡ0 (0, Zi)

=

Li∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0,Ψ





−ω−1
0

(

J, θ −∑Li
l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Zi

)

Ḡ0 (0, Zi)

and to each branching point (X, θ) = B of valence k + 2 arising in the expansion, we associate the
factor:

F ((X, θ)) =

δk
(

Ť
(

Z(l−1),Z(l)
)

G′
[

J,ω0,Z
(l)
]

|Ψ0(Zl)|
2

ω
−1
0 (J,θ,Z(l))

)

δkω−1
0

(
J, θ, Z(l)

) (144)

and (142) writes:







δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2

=





n∑

m=1

m∑

i=1

∑

(line1,...,linem)

∏

i

F (linei)
∏

B

F (B)





n∏

i=1

|Ψ(θ − li, Zi)|2 (145)

The integral over the branch points is implicit. The factor F (B) for a branch point B is defined in
(144) The graphical representation is generic. While integrating over the set of lines, the degenerate
case of lines that share some segments is taken into account.

2.1.2 Approximate expression for the n-th derivatives of ω−1 (θ, Z)

The results of the section 5 can then be used with (145) to compute:

δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2

in the approximation of the dominant contribution. To each line from a branching point θ − l′j, Z
′
j

to θ− li, Zi (the branching point can be one of the θ− li, Zi) we associate a factor of the type, as in
(118):

exp
(
−c
(
li − l′j

)
− γ

(
c
(
li − l′j

)
−
∣
∣Z ′

j − Zi

∣
∣
))

D
H (cl1 − |Z − Z1|)

52



The dominant contribution is obtained when the set
{
l′j, Z

′
j

}
is equal to {lj , Zj} and the product

over the branching points yields a contribution whose form is:

δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2
≃

exp
(

−cln − γ
(
∑n−1

i=1

(

(c (li − li+1))
2 − |Zi − Zi+1|2

)))

Dn
(146)

×H

(

cln −
n−1∑

i=1

|Zi − Zi+1|
)

n∏

i=1

ω−1
0 (J, θ − li, Zi)

Ḡ0 (0, Zi)

with Z1 = Z and ln > ... > l1 and B a constant coefficient (see (119)).
Formula (106) shows that the previous computations are also valid for the derivatives of

ω (J, θ, Z). We thus obtain the generalization of (119):

δnω (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2
≃

exp
(

−cln − α
(
∑n−1

i=1

(

(c (li − li+1))
2 − |Zi − Zi+1|2

)))

Bn
(147)

×H

(

cln −
n−1∑

i=1

|Zi − Zi+1|
)

n∏

i=1

ω0 (J, θ − li, Zi)

Ḡ0 (0, Zi)

The only difference is the appearance of different coefficients α and B in the expression.

2.2 Series for ω−1 (θ, Z)

2.2.1 Reordering the graphical sum (145)

We now sum the series expansion (133):

ω−1
(

θ(i), Z
)

= ω−1
(

θ(i), Z
)

|Ψ|2=0
(148)

+

∫ ∞∑

n=1







δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2

by reordering the sums in the RHS of (145).
To do so, we first compute the sum over the lines between (Z, θ) and (Z1, θ1) and of given length

Li = n of the product of factors Ť

(

θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω0,Ψ

)

in F (linei) (see (143) for

the definition of F (linei)). This sum is computed in (138). We call the result G
(n)
0 ((Z, θ) , (Z1, θ1)),

so that:

G
(n)
0 ((Z, θ) , (Z1, θ1)) =

∫ n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0





×δ

(

(θ − θ1)−
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

=

∫ n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0



 δ

(
(

θ(l) − θ(l−1)
)

−
∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)dθl
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with
(
Z(0), θ(0)

)
= (Z, θ) and

(
Z(n), θ(n)

)
= (Z1, θ1).

Then, we sum over the length n of the lines and the factor associated to the sum of lines, written
G0 ((Z, θ) , (Z1, θ1)), is:

G0 ((Z, θ) , (Z1, θ1)) =

∞∑

n=1

∫ n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0





×δ

(
(

θ(l) − θ(l−1)
)

−
∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)dθl

The function G0 ((Z, θ) , (Z1, θ1)) is a series expansion that can be summed:

G0 ((Z, θ) , (Z1, θ1)) = Ť
(
1− Ť

)−1
((Z, θ) , (Z1, θ1)) (149)

with:

Ť
((

Z(l−1), θ(l−1)
)

,
(

Z(l), θ(l)
))

= Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0





×δ

(
(

θ(l) − θ(l−1)
)

−
∣
∣Z(l−1) − Z(l)

∣
∣

c

)

As a consequence, equation (145) can be rewritten as a sum over the branch points.:

ω−1
(

θ(i), Z
)

− ω−1
(

θ(i), Z
)

|Ψ|2=0
(150)

=

∫
∑

n







δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θ − li, Zi)|2 dlidZi

=






n∑

m=1

m∑

i=1

∑

B

∑

(line1,...,linem)

∏

i

G0

(
linei

)∏

B

F (B)






n∏

i=1

|Ψ(θ − li, Zi)|2

The sum
∑

(line1,...,linem) is over the finite set of m segments connecting two branch points and

respecting the constraint given above (143). If linei connects two branch points ((X1, θ1) , (X2, θ2)),

then G0

(
linei

)
is equal to G0 ((X1, θ1) , (X2, θ2)). At each branch point we insert |Ψ(θ−lk,Zk)|

2

Ḡ0(0,Zk)
and for

a terminal point −ω
−1
0 (J,θ−lk,Zk)|Ψ(θ−lk,Zk)|

2

Ḡ0(0,Zk)
. We will normalize |Ψ|2 by Ḡ0, so that |Ψ(θ − lk, Zk)|2

will stand for |Ψ(θ−lk,Zk)|
2

Ḡ0(0,Zk)
.

Now the sums in (150) can be reordered in the following way. We consider the lines from
(θ, Z) to a final point, and sum over the branch points of valence 2 crossed by these lines, that is
points crossed or reached only by this line. We then sum the contributions over all these lines.
For instance, if a line crosses only one branch point, the associated contribution will include two
propagators G0 = Ť

(
1− Ť

)−1
, one between the initial point and the branch point, one between the

branch point and the final point plus the factors inserted at each point. Summing over all possible
branch points crossed by a line yields the factor associated to the overall sum of single lines crossing
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the points Zk:

Ť
(
1− Ť

)−1∑

n>0

∫ n−1∏

l=1

{∫ (

|Ψ(θ − ll, Zl)|2 dZldll

)

Ť
(
1− Ť

)−1
}

|Ψ(θ − ln, Zn)|2
−ω−1

0 (J, θ − ln, Zn)

Ḡ0 (0, Zn)

= Ť
(
1− Ť

)−1 1

1− |Ψ(θ, Z)|2 Ť
(
1− Ť

)−1 |Ψ(θ − ln, Zn)|2
−ω−1

0 (J, θ − ln, Zn)

Ḡ0 (0, Zn)

= Ť
1

1−
(

1 + |Ψ|2
)

Ť
|Ψ(θ − ln, Zn)|2

−ω−1
0 (J, θ − ln, Zn)

Ḡ0 (0, Zn)
(151)

with Z0 = X1 and Zk+1 = X2 and
0∏

l=1

is set to 1. The li are ranked such that: l1 < ... < lk We

sum over all contributions of field insertions between (X1, θ1) and (X2, θ2) and integrate over the
intermediate points. The factor |Ψ|2 is seen as the operator multiplication by |Ψ(θ, Z)|2 at the point
(θ, Z).

The sum (151) over the single lines is the Green function of the operator 1−
(

1 + |Ψ|2
)

Ť with

Ť and − |Ψ(θ − ln, Zn)|2 ω0 (J, θ − ln, Zn) inserted at the starting and ending points. This quantity
can be seen as a block [(X1, θ1) , (X2, θ2)].

2.2.2 Path integral formulation

The series expansion (150) for ω−1
(
θ(i), Z

)
can ultimately be rewritten as a sum over the number

m of branch points (Xi, θi) with valence ki > 2: we draw all connected graphs whose vertices are
the branch points (X1, θ1) ... (Xm, θm). We attach ki blocks to the vertex (Xi, θi), the endpoint of
one of them and the starting point of the others are fixed by the vertex. To each vertex, the factor
F ((Xi, θi)) defined in (144) is associated. The extremities of the blocks that are not fixed are free
and integrated over, except one of them which is equal to (Z, θ). Then the series (61) is the sum
over m and over all types of graphs with m vertices.

Note that the sum of graph can be computed without ordering in time the fields. It amounts
to replace (150) by:

ω−1
(

θ(i), Z
)

− ω−1
(

θ(i), Z
)

|Ψ|2=0
=

∫
1

n!

∑

n







δnω−1 (J, θ, Z)
n∏

i=1

δ |Ψ(θ − li, Zi)|2







|Ψ|2=0

n∏

i=1

|Ψ(θi, Zi)|2 dθidZi

As a consequence, the symetry factor of equivalent graphs factored by
n∏

i=1

|Ψ(θi, Zi)|2 and integrated

over
n∏

i=1

dθidZi is:

1

n!

n!
∏

V

kV !

where the product is over the vertices of valence kV of the graph. The factor n! comes from the

exchange between the vertices
n∏

i=1

|Ψ(θi, Zi)|2 The kV ! accounts for the exchange of the kV vertices

among the same graph.
The sum of lines connected by vertices can then be computed using the Green function 1

1−(1+|Ψ|2)Ť
connecting the vertices of all possible valences.
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As a consequence, the generating function for the graphs is equal to the partition function for
an auxiliary complex field ̥ (X, θ) with free Green function equal to 1

1−(1+|Ψ|2)Ť
and interaction

terms generating the various graphs with arbitrary number of vertices. The free part of the action
for ̥ (X, θ) is thus:

∫

̥ (X, θ)
(

1−
(

1 + |Ψ|2
)

Ť
)

̥
† (X, θ) d (X, θ)

and the interaction terms have to induce the graphs with factor (144). The k + 2 valence vertex,
with k > 1 is thus described by a term involving (144) and writes:

∫

̥

(

Z(1), θ(1)
) δk

(

Ť

(

θ(1) −
∣

∣

∣
Z(1)−Z(2)

∣

∣

∣

c
, Z(1), Z(2), ω0

))

k!
k+2∏

l=3

δkω−1
0

(
J, θ(l), Z(l)

)
̥

†

(

Z(2), θ(1) −
∣
∣Z(1) − Z(2)

∣
∣

c

)

×
k+2∏

l=3

Ť
((

Z(1), θ(1)
)

,
(

θ(l), Z(l)
))(

̥
†
(

θ(l), Z(l)
)) k+2∏

l=1

d
(

θ(l), Z(l)
)

=

∫

̥

(

Z(1), θ(1)
) δk

(

Ť

(

θ(1) −
∣

∣

∣
Z(1)−Z(2)

∣

∣

∣

c
, Z(1), Z(2), ω0

))

k!
k+2∏

l=3

δkω−1
0

(
J, θ(l), Z(l)

)
̥

†

(

Z(2), θ(1) −
∣
∣Z(1) − Z(2)

∣
∣

c

)

×
k+2∏

l=3

Ť

(

θ(1) −
∣
∣Z(1) − Z(l)

∣
∣

c
, Z(1), Z(l), ω0

)

̥
†
(

θ(l), Z(l)
)

dθ(1)
k+2∏

l=1

dZ(l)

Having found the free part of the action and the required vertices, the sum of all graphs (150)

yields, for |Ψ(J,θi,Zi)|
2

Ḡ0(0,Zi)
→ |Ψ(J, θi, Zi)|2:

ω−1
0 (J, θ, Z) +

∞∑

n=1

1

n!

∫
Ť̥† (Z, θ)

∫ n∏

i=1

(
−ω−1

0 (J, θi, Zi)
)
|Ψ(J, θi, Zi)|2 ̥ (Zi, θi) d (Zi, θi) exp (−S (̥))D̥

exp (−S (̥))D̥

= ω−1
0 (J, θ, Z) +

∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥

(152)

with:

S (̥) =

∫

̥ (X, θ)
(

1−
(

1 + |Ψ|2
)

Ť
)

̥
† (X, θ) d (X, θ)

−
∫

̥

(

Z(1), θ(1)
)∑

k

δk
(

Ť

(

θ(1) −
∣

∣

∣
Z(1)−Z(2)

∣

∣

∣

c
, Z(1), Z(2), ω0

))

k!
k+2∏

l=3

δkω−1
0

(
J, θ(l), Z(l)

)
̥

†

(

Z(2), θ(1) −
∣
∣Z(1) − Z(2)

∣
∣

c

)

×
k+2∏

l=3

Ť

(

θ(1) −
∣
∣Z(1) − Z(l)

∣
∣

c
, Z(1), Z(l), ω0

)

̥
†
(

θ(l), Z(l)
)

dθ(1)
k+2∏

l=1

dZ(l)
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The sum can be computed, and we have the more compact expression:

S (̥) =

∫

̥ (Z, θ)
(

1− |Ψ|2 Ť
)

̥
† (Z, θ) d (Z, θ) (153)

−
∫

̥ (Z, θ) Ť

(

θ −
∣
∣Z − Z(1)

∣
∣

c
, Z, Z(1), ω−1

0 + Ť̥†

)

×̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZdZ(1)dθ

where:

Ť

(

θ −
∣
∣Z(1) − Z

∣
∣

c
, Z(1), Z, ω−1

0 + Ť̥†

)

= Ť

(

θ −
∣
∣Z(1) − Z

∣
∣

c
, Z(1), Z,

ω0 (Z, θ) +

∫

Ť

(

θ −
∣
∣Z − Z(1)

∣
∣

c
, Z(1), Z, ω0

)

̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZ(1)

)

Integral (152) will be computed in the saddle point approximation. It is obtained by replacing
̥† and ̥ with their values minimizing action S (̥) defined in (153). But before doing so, we will
use a perturbation expansion of (152) to rewrite the source term:

−
∫

̥ (X, θ)ω−1
0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ)

as a function of the stimuli:
∑

i

a (Zi, θ) |Ψ(Zi, θ)|2

Appendix 3 Expansion for ω−1 (J, θ, Z) in presence of external sources

In this appendix, we include the impact of external sources in the computation of the activity
ω (J, θ, Z). This allows then to derive the propagation of external signal along the thread. Ultimately,
we generalize the results to severl types of interacting cells.

3. 1 Computation of graphs expansion in stimulated state

So far, the results for activity ω (J, θ, Z) are derived witout external source. We now include these
ones in the path integral to correct our previous expressions.

3.1.1 Modified expression for ω−1 (J, θ, Z) in presence of external source

For given connectivity functions, we want to compute the path integral for Ψ(θ, Z) given a series of
signals through time at some particular points. As explained in the text, this amounts to introduce
in the path integral the factor:

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0
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The term
∑

i a (Zi, θ) |Ψ(Zi, θ)|2 corresponds to create and cancel some stimulation that makes the
field Ψ(Zi, θ) to deviate from the static equilibrium. The exponential factor stands for the possibility
of several similar stimuli at the same point. The sum over θ ensures the repetion of the signal
through some period of time. Recall that the perturbation is implicitely, tensored by:

∏

Z 6=Zi

δ
(

|Ψ(Z, θ0)|2
)

to ensure that the perturbation arises only at points Zi.
The path integral to consider is thus:

∫

exp (−S (Ψ))

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

=

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)

)∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

with ω−1 given by the auxiliary path integral (152):

ω−1 = ω−1
0 (J, Z) +

∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥

We start by expanding perturbatively:

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)

)∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

=

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

0 (J, Z)

)

Ψ(θ, Z)

)

× exp



−1

2
Ψ† (θ, Z)∇





∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (θ, Z) |Ψ(θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥



Ψ(θ, Z)





×
∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

=

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

0 (J, Z)

)

Ψ(θ, Z)

)

× 1

n!



−1

2
Ψ† (θ, Z)∇





∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥



Ψ(θ, Z)





n

×
∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 (154)

We then compute the graphs associated to the case n = 1 so that we compute the graphs
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associated to:

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 (155)

×
∫

Ψ† (θ, Z)∇



−
∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥



Ψ(θ, Z)

=

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 ×
∫

Ψ† (θ, Z)

×∇






−

∞∑

n=1

1

n!

∫
Ť̥† (Z, θ)

∫ n∏

i=1

(
−ω−1

0 (J, θi, Zi)
)
|Ψ(J, θi, Zi)|2 ̥ (Zi, θi) d (Zi, θi) exp (−S (̥))D̥

exp (−S (̥))D̥






Ψ(θ, Z)

To compute the contractions induced by the Wick theorem, we will use the two remarks:
first, we do not contract Ψ† (θ, Z) and Ψ(θ, Z) outside the brackets in (155) with the source
∫
exp

(
∑

i a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 since it would imply the appearance of non connected graphs

or vanishing contributions. Actually, the terms inside the brackets are evaluated at θi < θ and we
assume that the perturbation Ψ(θ, Z) is null before the action of the source.

Second, the loops arising from the series expansion can be neglected. Actually, we have seen
that expanding

S (̥) =

∫

̥ (Z, θ)
(

1− |Ψ|2 Ť
)

̥
† (Z, θ) d (Z, θ)−

∫

̥ (Z, θ) Ť

(

θ −
∣
∣Z − Z(1)

∣
∣

c
, Z, Z(1), ω−1

0 + Ť̥†

)

×̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZdZ(1)dθ

in series of |Ψ|2 corresponds to a sum of lines crossing |Ψ|2 at some points that are integrated over.
Contracting two such fields |Ψ(Z, θ)|2 |Ψ(Z ′, θ′)|2 contracts two lines crossing (Z, θ) and (Z ′, θ′) This
imposes Z = Z ′ but also, due to the contractions:

︷ ︸︸ ︷

Ψ† (θ, Z)Ψ (θ′, Z)
︷ ︸︸ ︷

Ψ† (θ′, Z)Ψ (θ, Z)

that θ′ = θ. Actually, the first propagator imposes θ′ < θ and the second one θ < θ′. This means
that the loop corresponding to the contraction involves integrals over a set whose measure is equal
to 0: the integration over the set of lines forming the loop imposes that the length of these two
lines are equal, but with no δ function to implement this condition.

Once these remarks made, given the presence of the term
∏

Z 6=Zi

δ
(

|Ψ(Z, θ0)|2
)

in the path integral,

the n-th term of the sum:

1

n!

∫
Ť̥† (Z, θ)

∫ n∏

i=1

(
−ω−1

0 (J, θi, Zi)
)
|Ψ(J, θi, Zi)|2 ̥ (Zi, θi) d (Zi, θi) exp (−S (̥))D̥

exp (−S (̥))D̥
(156)

is contracted, by Wick theorem, with:

∫
1

n!

(
∑

i

a (Zi, θ) |Ψ(Zi, θ)|2
)n

dθ (157)
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Actually, given our introductive remarks, contracting the n-th term in the sum with:

∫
1

n!

(
∑

i

a (Zi, θ) |Ψ(Zi, θ)|2
)k

dθ

for k < n induces the presence of loops that are negligible, and for k > n induces the presence
of disconnected graphs where the sources term are contracted with themselves. Such graphs are
cancelled since the normalization of the path integral keeps only connected graphs.

To compute the contraction between (156) and (157), recall that:

|Ψ(θ, Z1)|2

arising in (156) stands for:

Ψ†
0 (Z1)Ψ (θ, Z1) + Ψ0 (Z1)Ψ

† (θ, Z1) + |Ψ(θ, Z1)|2

and the contractions are:

︷ ︸︸ ︷

Ψ† (θ, Z)Ψ (θ′, Z) → 1

Λ

︷ ︸︸ ︷

Ψ† (θ, Z)∇θΨ(θ, Z) =
1

ΛΛ1

︷ ︸︸ ︷

Ψ†
0 (θ, Z)Ψ (θ′, Z) =

︷ ︸︸ ︷

Ψ† (θ, Z)Ψ0 (θ
′, Z) = 0

We normalize 1
ΛΛ1

≡ 1
Λ . Considering θ < θi leads to a contribution and since that due to the form of

the propagator for Ψ, there is no loop, it amounts to replace the contractions |Ψ(Zi, θ)|2 |Ψ(J, θi′ , Zi′)|2

by
δ(θi−θi′)δ(Zi−Zi′)

Λ2 .and this leads to the expression for the contraction between (156) and (157):

1

n!

∑

(i1,...,in)

∫ n∏

l=1

(

−ω
−1
0 (J,θ,Zil

)
Λ2

)

a
(
Zil

, θ
)
̥
(
Zil

, θ
)
exp (−S (̥))D̥

exp (−S (̥))D̥
(158)

Reintroducing Ψ† (θ, Z)∇ on the left and Ψ(θ, Z) on the right of (158) and summing over n these
contributions gives the contraction (155):

︷ ︸︸ ︷

Ψ† (θ, Z)∇



−
∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(J, θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥





×

︷ ︸︸ ︷

Ψ(θ, Z)

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

→
∫

Ť̥† (Z, θ) exp

(

−S (̥)−
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

The contractions Ψ(J, θi, Zi)Ψ
† (J, θ′i, Z

′
i) in the internal lines can also be replaced by

exp(−Λ1(θi−θi′))δ(Zi−Zi′)
Λ .

The same applies to the powers of:






−1

2
Ψ† (θ, Z)∇





∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)ω−1

0 (J, θ, Z) |Ψ(θ, Z)|2 d (X, θ)
)

D̥
∫
exp (−S (̥))D̥



Ψ(θ, Z)







n
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cntrctd wth (157). The absence of loops allows to replace:

(

exp

(

−S (̥)−
∫

̥ (X, θ)ω−1
0 (J, θ, Z) |Ψ(θ, Z)|2 d (X, θ)

))n

by:
(
∫

Ť̥† (Z, θ) exp

(

−S (̥)−
∑

i

a (Zi, θ)
ω−1
0 (Zi)

Λ2
̥ (Zi, θ)

))n

As a consequence, the perturbation expansion (154) rewrites:

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)

)∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0

=

∫

dθ0

∫

exp

(
1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

)

Ψ(θ, Z)

)

with:

ω−1 (J, θ, Z) = ω−1
0 (J, Z) +

∫
Ť̥† (Z, θ) exp

(

−S (̥)−∑i a (Zi, θ0)
ω
−1
0 (J,θ0,Zi)

Λ2 ̥ (Zi, θ)

)

D̥

∫
exp (−S (̥))D̥

(159)

and S (̥) obtained by replacing |Ψ(θ, Z)|2 with 1
̥
:

S (̥) =

∫

̥ (Z, θ)
(

1− |Ψ|2 Ť
)

̥
† (Z, θ) d (Z, θ) (160)

−
∫

̥ (Z, θ) Ť

(

θ −
∣
∣Z − Z(1)

∣
∣

c
, Z, Z(1), ω−1

0 + Ť̥†

)

̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZdZ(1)dθ

3.1.2 Saddle point approximation for activity auxiliary path integral

Integral (159) will be computed in the saddle point approximation. It is obtained by replacing ̥†

and ̥ with their values minimizing action S (̥) defined in (153). This yields the equations for
̥† (Z, θ) and ̥ (Z, θ):

((

1− |Ψ|2 Ť
)

̥
†
)

(Z, θ)−
(

Ť
ω
−1
0 +Ť̥†̥

†
)

(Z, θ) +
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
δ (Z − Zi) = 0 (161)

or, using (160):

((

1− 1

Λ
Ť

)

̥
†

)

(Z, θ)−
(

Ť
ω
−1
0 +Ť̥†̥

†
)

(Z, θ) +
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
δ (Z − Zi) = 0 (162)

and:
̥ (Z, θ) = 0

Under the saddle point approximation, equation (159) becomes:

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) + Ť̥† (Z, θ) (163)
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and (162) leads to write recursively:

̥
† =

1
(

1− |Ψ|2 Ť − Ťω0+Ť̥†

)

[

−
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2

]

(164)

so that using (163) yields in first approximatn:

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z)− Ť

1
(

1−
(

|Ψ|2 + 1
)

Ť
)

[
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2

]

(165)

This will be applied to the expansion around the static case.

3.1.3 Expansion around static case

We estimate the correction Ť̥† (Z, θ) given by (??), in the static state. We rewrite the expression
of T (Z,Z ′):

T (Z,Z ′) =

λτ exp

(

−|Z−Z′|
νc

)

1 + ω′|Ψ(Z′,ω′)|2

ω|Ψ(Z,ω)|2

and Ť (Z,Z ′) is equal to:

Ť (Z,Z ′) = −
κ
N
T (Z,Z1)G

′ [J, ω0Z] |Ψ0 (Z1)|2

ω−1
0 (J, Z)

Given our previous choices, F ′ [J, ω0Z] = − b

(ω0(J,Z))2
, so that, for b normalized to 1:

Ť (Z,Z ′) =
κ
N
T (Z,Z ′) |Ψ0 (Z

′)|2

ω0 (J, Z)
=

κ

N

λτ exp

(

−|Z−Z′|
νc

)(

|Ψ0 (Z
′)|2
)2

ω0 |Ψ0 (Z)|2 + ω′
0 |Ψ0 (Z ′)|2

We also need to estimate:

Ť
(
Z,Z ′, ω0 + Ť̥†

)

=
κ

N

λτ exp

(

−|Z−Z′|
νc

)(

|Ψ0 (Z
′)|2
)2

(
ω0 + Ť̥† (Z)

)
|Ψ0 (Z)|2 +

(
ω′
0 + Ť̥† (Z ′)

)
|Ψ0 (Z ′)|2

= Ť (Z,Z ′, ω0)

−
λτ exp

(

−|Z−Z′|
νc

)(

|Ψ0 (Z
′)|2
)2 (

Ť̥† (Z) |Ψ0 (Z)|2 + Ť̥† (Z ′) |Ψ0 (Z
′)|2
)

(

ω0 |Ψ0 (Z)|2 + ω′
0 |Ψ0 (Z ′)|2

)((
ω0 + Ť̥† (Z)

)
|Ψ0 (Z)|2 +

(
ω′
0 + Ť̥† (Z ′)

)
|Ψ0 (Z ′)|2

)

= Ť (Z,Z ′, ω0)−

(

Ť̥† (Z) |Ψ0 (Z)|2 + Ť̥† (Z ′) |Ψ0 (Z
′)|2
)

((
ω0 + Ť̥† (Z)

)
|Ψ0 (Z)|2 +

(
ω′
0 + Ť̥† (Z ′)

)
|Ψ0 (Z ′)|2

) Ť (Z,Z ′, ω0)

In the local approximation Z ′ = Z, this yields a series expansion:

Ťω0+Ť̥† − Ť ≃
∑

n>1

(

− Ť̥† (Z)

ω0 (Z)

)n

Ť (166)
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The saddle point equation (162) is rewriten:
((

1− 1

Λ
Ť

)

̥
†

)

(Z)−
(

Ťω0+Ť̥†̥
†
)

(Z) +

(
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

= 0

and this leads to:

Ť̥† = Ť
1

(

1− 1
̥
Ť − Ťω0+Ť̥†

)

(
∑

i

−a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

(167)

= Ť
1

(

1−
(
1 + 1

Λ

)
Ť −

(

Ťω0+Ť̥† − Ť
))

(
∑

i

−a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

Gathering (167) and (166), leads to the recursive formula:

Ť̥† ≃
∑

n1,...,n2

Ť

1−
(
1 + 1

Λ

)
Ť

[(

− Ť̥† (Z1)

ω0 (Z1)
Ť

)n1
]

1

1−
(
1 + 1

Λ

)
Ť

[(

− Ť̥† (Z2)

ω0 (Z2)
Ť

)n2
]

...
1

1−
(
1 + 1

Λ

)
Ť

(
∑

i

−a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2

)

Recursively, (??) leads to replace Ťω0+Ť̥† − Ť by:



∑

ni>1

κ

N

λτ |Ψ0 (Zi)|2
2Λω0

(

− Ť̥† (Zi)

ω0

)ni





Graphically, we fix k Zi vertices of valence ni, i = 1, ..., k with k ∈ N, ni ∈ N. Draw all graphs
connected and simply connected crossing these vertices with the given valence. To each edge,

associate 1

1−(1+ 1
Λ)Ť

, to each vertex, associate
n∏

1

−Ť
ω0(Zi)

. The factors associated to the edges are

connected to one term of the product The graphs are ordered in time starting from one edge. The
first edge is composed with Ť .

3.1.4 Lowest order expansion in local approximation

A first order compact approximation of (167) can also be obtained by writing in the local approxi-
mation Z ′ ≃ Z:

Ť
(
Z,Z ′, ω + Ť̥†

)
− Ť = − κ

N

(

Ť̥† (Z) |Ψ0 (Z)|2 + Ť̥† (Z ′) |Ψ0 (Z
′)|2
)

((
ω0 + Ť̥† (Z)

)
|Ψ0 (Z)|2 +

(
ω′
0 + Ť̥† (Z ′)

)
|Ψ0 (Z ′)|2

) Ť (Z,Z ′, ω0)(168)

≃ −
(
Ť̥† (Z)

)

(
ω0 (Z) + Ť̥† (Z)

) Ť (Z,Z ′, ω0)

and then the solution (167) of the saddle point equation at zeroth order leads to:

Ť̥† = Ť1

[

−
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2

]

(169)

with:

Ť1 =
Ť

(
1−

(
1 + 1

Λ

)
Ť
)

That is, using (163), we recover a first approximation f (165):

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) +

Ť
(
1−

(
1 + 1

Λ

)
Ť
)

[

−
∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2

]

(170)
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3.1.5 Higher order terms in local approximation

We can go to higher orders and insert this formula (169) in (168):

Ť
(
Z,Z ′, ω + Ť̥†

)
− Ť ≃ −

Ť1

[

−
∑

i a (Zi, θ)
ω−1
0 (J,θ,Zi)

Λ2

]

ω0 (Z) + Ť1

[

−∑i a (Zi, θ)
ω
−1
0 (J,θ,Zi)

Λ2

] Ť

This allows to solve the saddle point equation at the first order by writing (167):

Ť̥† = Ť
1

(

1− 1
Λ Ť − Ťω0+Ť̥†

)

(
∑

i

−a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2
̥ (Zi, θ)

)

(171)

where we define the effective scale of connectivities:

1

Λ1 ((ω0 (J, θ, Zi)i))
=

1

Λ
−

Ť1

[

−∑i a (Zi, θ)
ω
−1
0 (J,θ,Zi)

Λ2

]

ω0 (Z) + Ť1

[

−
∑

i a (Zi, θ)
ω
−1
0 (J,θ,Zi)

Λ2

]

Computing explicitely the integrals, this leads to rewrite (163):

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) (172)

+

∫ θi

Ť

(

1−
(

1 +
1

Λ1 ((ω0 (J, θ, Zi)i))

)

Ť

)−1

(Z, θ, Zi, θi)

[

−
∑

i

a (Zi, θi)
ω0 (J, θi, Zi)

Λ2
dθi

]

≡
∑

i

∫

K (Z, θ, Zi, θi)

{

a (Zi, θi)
ω0 (J, θi, Zi)

Λ2

}

dθi

Note that we can go recursively to the next orders, by replacing K (Z, θ, Zi, θi) wth:

K (Z, θ, Zi, θi) ≃ −Ť

(

1−
(

1 +
1

Λ2 ((ω0 (J, θ, Zi)i))

)

Ť

)−1

(173)

wher:

1

Λ2 ((ω0 (J, θ, Zi)i))
=

1

Λ
−

Ť2

[

−∑i a (Zi, θ)
ω
−1
0 (J,θ,Zi)

Λ2

]

ω0 (Z) + Ť2

[

−∑i a (Zi, θ)
ω
−1
0 (J,θ,Zi)

Λ2

]

along with:

Ť2 =
Ť

(

1−
(

1 + 1

Λ1((ω0(J,θ,Zi)i))

)

Ť

)

and so on, the next order being obtained by replacing:
(

1 +
1

Λ

)

Ť

by:
(

1 +
1

Λ2 ((ω0 (J, θ, Zi)i))

)

Ť
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3.2 Estimation of the propagated signal and correction to activities.

Once the kernel K (Z, θ, Zi, θi) for signals propagation has been computed, we can study the modi-
fication in activity induced by external signals propagating along the thread.

3.2.1 Propagated signal

We first estimate the transmitted signal from the sources to the points of the thread given in (172):

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω−1
0 (J, θi, Zi)

Λ2

}

dθi

at the lowest order. Expanding:

− Ť
(
1−

(
1 + 1

Λ

)
Ť
)

∑

i

a (Zi, θ)
ω−1
0 (J, θ, Zi)

Λ2

computes the sum of lines starting at one Zi The lines connects points Zil
− Zil+1

such that
Ť
(
Zil

, Zil+1

)
is different from 0. Considering oscillating signals a (Zi, θ) ∝ exp (i̟θ), and assuming

”quite” straight lines of length |Z − Zi| from Z to Zi, due to the exponential factor in the transitions,

leads to a phase shift proportional to exp
(

i
̟|Zi−Z0|
c|Z−Z0|

)

where Z0 ∈ {Zi} is the closest point to Z.

Taking into account corrections due to the length around |Z − Zi| contributes to a phase shift of

exp
(

i
̟(l−|Z−Zi|)

c

)

in the integral:

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω−1
0 (J, θi, Zi)

Λ2

}

dθi

Moreover for K (Z, θ, Zi, θi) proportional to the product between the average of T along the path
and the exponential factor computed in the previous section, we obtain:

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω−1
0 (J, θi, Zi)

Λ2

}

dθi (174)

∝
∫
∑

i

a (Zi, θi) exp
(

−cl − α
(

(cl)2 − |Z − Zi|2
))

exp

(

i
̟l

c

)

dl

(

exp

(

i
̟ (l − |Z − Zi|)

c

)

exp

(

i
̟ |Zi − Zi+1|
c |Z − Zi|

))

∝
∫
∑

i

a (Zi, θi) exp
(

−cl − α
(

(cl)2 − |Z − Zi|2
))

exp

(

i
̟ (l− |Z − Zi|)

c

)

exp

(

i
̟ (|Z − Zi|)

c

)

≃
∫
∑

i

a (Zi, θi) exp
(

−cl − α
(

(cl)
2 − |Z − Zi|2

))

exp

(

i
̟ (l− |Z − Zi|)

c

)

exp

(

i
̟ (|Z − Z0|)

c

)

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

Now, the integral:

Z =

∫

exp
(

−cl− α
(

(cl)
2 − |Z − Zi|2

))

exp

(

i
̟ (l − |Z − Zi|)

c

)

dl

arisng n (174) is computed by writing:

(

(cl)2 − |Z − Zi|2
)

= (cl − |Z − Zi|)2 − 2
(

|Z − Zi|2 − |Z − Zi| cl
)

= (cl − |Z − Zi|)2 + 2 |Z − Zi| (cl − |Z − Zi|)
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so that:

Z =

∫

exp
(

− (cl− |Z − Zi|)− |Z − Zi| − α
(

(cl− |Z − Zi|)2 + 2 |Z − Zi| (cl − |Z − Zi|)
))

exp

(

i
̟ (cl − |Z − Zi|)

c

)

dl

and the integral becomes:

Z =
exp (− |Z − Zi|)

c

∫

exp
(
−Y (1 + 2α |Z − Zi|)− αY 2

)
exp

(

i
̟Y

c

)

dY

=
exp

(

− |Z − Zi|+ (1+2α|Z−Zi|)
2

4α − i
̟(1+2α|Z−Zi|)

2cα

)

c

∫

(1+2α|Z−Zi|)
2α

exp
(
−αY 2

)
exp

(

i
̟Y

c

)

dY

this result can be approximated by:

Z ≃ exp (− |Z − Zi|)
c

∫

exp (−Y (1 + 2α |Z − Zi|)) exp
(

i
̟Y

c

)

dY

≃ exp (− |Z − Zi|)
c
(
1 + 2α |Z − Zi|+ i̟

c

) =
exp (− |Z − Zi|)

c

√

(1 + 2α |Z − Zi|)2 +
(
̟
c

)2
exp

(

−i arctan

(
̟

c (1 + 2α |Z − Zi|)

))

Inserting the reslt in (174) ylds th prpgtd sgnl:

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω−1
0 (J, θi, Zi)

Λ2

}

dθi

∝
∑

i

a (Zi, θi)
exp (− |Z − Zi|)

c

√

(1 + 2α |Z − Zi|)2 +
(
̟
c

)2

× exp

(

i

(
̟ (|Z − Z0|)

c
− arctan

(
̟

c (1 + 2α |Z − Zi|)

)))

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

At the first order in |Zi−Z0|
|Z−Z0|

, this is:

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω−1
0 (J, θi, Zi)

Λ2

}

dθi

≃ exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2

× exp

(

i

(
̟ (|Z − Z0|)

c
− arctan

(
̟

c (1 + 2α |Z − Z0|)

)))
∑

i

a (Zi, θi) exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

For a (Zi, θi) constant equal to a ths rdcs t:

∫

K (Z, θ, Zi, θi)

{
∑

i

a (Zi, θi)
ω−1
0 (J, θi, Zi)

Λ2

}

dθi (175)

≃ a exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2
exp

(

i

(
̟ (|Z − Z0|)

c
− arctan

(
̟

c (1 + 2α |Z − Z0|)

)))
∑

i

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

leading to interferences. For large number of points Zi:

∑

i

exp

(

i
̟ |Zi − Z0|
c |Z − Z0|

)

≃ 0
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except for the maxima of interferences with magnitude:

a exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2

so that (175) localizes t ths pnt.

3.2.2 Estimation of correction to activities

Recall that:
|Ψ(θ, Z1)|2

stands for:
Ψ†

0 (θ, , Z1)Ψ (θ, Z1) + Ψ0 (θ, , Z1) Ψ
† (θ, Z1) + |Ψ(θ, Z1)|2

where Ψ0 (θ, , Z1) is quasi static (see the remark in the text) and ultimately, we are left with the
following form for the path integral over Ψ:

∫

exp (−S (Ψ))

∫

exp

(
∑

i

a (Zi, θ0) |Ψ(Zi, θ0)|2
)

dθ0 (176)

≡
∫

exp

(
1

2

(

Ψ†
0 (θ, Z) + Ψ† (θ, Z)

)

∇
(
σ2
θ

2
∇−

(

ω−1
0 − Ω (θ, θ0, Z)

ω2
0 (Z)

))

(Ψ0 (θ, Z) + Ψ (θ, Z))

)

dθ0

with:

Ω (θ, θ0, Z) =
∑

i

ω2
0 (Z)K (Z, θ, Zi, θ0)

{

a (Zi, θ0)
ω−1
0 (θ0, Z0)

Λ2

}

The expression (176) includes several contrbtns:
First, the expansion of:

1

2

(

Ψ†
0 (θ, Z) + Ψ† (θ, Z)

)

∇
(
σ2
θ

2
∇− ω−1

0

)

(Ψ0 (θ, Z) + Ψ (θ, Z))

around Ψ0 (θ, Z) includes the terms:

1

2
Ψ† (θ, Z)∇

(
σ2
θ

2
∇− ω−1

0

)

Ψ(θ, Z)

+
1

2
Ψ†

0 (θ, Z)∇
(
σ2
θ

2
∇− ω−1

0

)

Ψ(θ, Z) +
1

2

(
Ψ† (θ, Z)

)
∇
(
σ2
θ

2
∇− ω−1

0

)

(Ψ0 (θ, Z))

The first one is the free action for Ψ(θ, Z), while the two other terms compute the modifications of
the effective action due to fluctuations Ψ(θ, Z). They contribute to the effective action above the
classical approximation.

The last terms:

(

Ψ†
0 (θ, Z) + Ψ† (θ, Z)

)

∇θ

(
Ω (θ, θ0, Z)

ω2
0 (Z)

(Ψ0 (θ, Z) + Ψ (θ, Z))

)

encompass the corrections due to the externl perturbations.
To find these corrections, we will compute the expansion of:

exp

(∫ (

Ψ†
0 (θ, Z) + Ψ† (θ, Z)

)

∇θ

(
Ω (θ, θ0, Z)

ω2
0 (Z)

(Ψ0 (θ, Z) + Ψ (θ, Z))

))
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in the pth ntgrl. We consider the second order expansion to find the first corrections to activities.
The field contractions are obtained in the local approximation:

︷ ︸︸ ︷

Ψ† (θ, Z)Ψ (θ′, Z) → 1

Λ

︷ ︸︸ ︷

Ψ† (θ, Z)∇θΨ(θ, Z) =
1

ΛΛ1

︷ ︸︸ ︷

Ψ† (θ, Z)∇θΨ(θ′, Z) → 1

Λ

︷ ︸︸ ︷

Ψ† (θ, Z)∇θΨ(θ, Z) =
Λ1

ΛΛ1
=

1

Λ

︷ ︸︸ ︷

Ψ†
0 (θ, Z)Ψ (θ′, Z) =

︷ ︸︸ ︷

Ψ† (θ, Z)Ψ0 (θ
′, Z) = 0

The first order of the expansion has the contributions:

Ψ†
0 (θ, Z)

ω2
0 (Z)

∇θ

(
Ω (θ, θ0, Z)

ω2
0 (Z)

)

Ψ†
0 (θ, Z) +

Λ1

Λω2
0 (Z)

(
Ω (θ, θ0, Z)

ω2
0 (Z)

)

+
1

Λω2
0 (Z)

∇θ

(
Ω (θ, θ0, Z)

ω2
0 (Z)

)

that are equal to 0 due to the integral over θ0. For oscillating signals, this integral is equal to 0.
Second order in the local approximation :

(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

(∇Ω)Ψ0 (θ, Z) dZ

)2

+
2

ω4
0 (Z)





∫

Ψ†
0 (θ, Z)∇Ω

︷ ︸︸ ︷

Ψ(θ, Z)

∫

Ψ† (θ′, Z)∇ΩΨ0 (θ
′, Z) dZ





+
1

ω4
0 (Z)





∫

Ψ† (θ, Z)∇Ω

︷ ︸︸ ︷

Ψ(θ, Z)

∫

Ψ† (θ′, Z)∇ΩΨ (θ′, Z)dZ





Considering |Ψ0 (θ, Z)|2 >> 1
Λ , this leads to:

(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

(∇Ω)Ψ0 (θ, Z) dZ

)2

+
2

Λ1Λω4
0 (Z)

(∫

Ψ†
0 (θ, Z) (∇Ω)∇ΩΨ0 (θ, Z) dZ

)

− 2

Λω4
0 (Z)

(∫

Ψ†
0 (θ, Z)Ω∇ΩΨ0 (θ, Z) dZ

)

=

(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

(∇Ω)Ψ0 (θ, Z) dZ

)2

+
2

Λ1Λω4
0 (Z)

(
∫
(

Ψ†
0 (θ, Z)∇

((
∫ θ

(∇Ω)
2

)

Ψ0 (θ, Z)

)

+O (∇Ψ0 (θ, Z))

)

dZ

)

− 1

Λω4
0 (Z)

(∫ (

Ψ†
0 (θ, Z)∇Ω2Ψ0 (θ, Z) +O (∇Ψ0 (θ, Z))

)

dZ

)

≃
(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

(∇Ω)Ψ0 (θ, Z) dZ

)2

+
1

Λ1Λω4
0 (Z)

∫
(

Ψ†
0 (θ, Z)∇

(

2

((
∫ θ

(∇Ω)2
)

− Λ1Ω
2Ψ0 (θ, Z)

)))

dZ

first contribtion in frst prxm when integration over θ0:

B =

(
∫

Ψ†
0 (θ, Z)

ω4
0 (Z)

√
∫

(∇Ω (θ, θ0, Z))
2
dθ0Ψ0 (θ, Z) dZ

)2
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second contribution:

A =
1

Λ1Λω4
0 (Z)

∫
(

Ψ†
0 (θ, Z)∇

(

2

((
∫ θ ∫

(∇Ω (θ, θ0, Z))
2
dθ0

)

− Λ1

(∫

Ω2dθ0

)

Ψ0 (θ, Z)

)))

dZ

(177)
The contributions A and B obtained can be gathered in an exponential and lead in first ap-

proximation to a term:

exp

(

A+B − 1

2
A2

)

The term B − 1
2A

2 is a correction to the potential.
This implies a correction to activities:

ω−1
0 (Z)− Aω2

0 (Z)

ω2
0 (Z)

Using (177), this leads to a modification:

ω0 (Z) → ω0 (Z) +Aω2
0 (Z)

which is:

ω0 (Z) → ω0 (Z) +
1

Λ1Λω2
0 (Z)

(

2

((
∫ θ ∫

(∇Ω (θ, θ0, Z))
2
dθ0

)

− Λ1

(∫

Ω2dθ0

)))

As explained above, the corrections Ω (θ, θ0, Z) can be considered as nul outside the points of
maximal interferences. At these points Ω (θ, θ0, Z) is proportional to:

Ω̄ =
a exp (− |Z − Z0|)

c

√

(1 + 2α |Z − Z0|)2 +
(
̟
c

)2

and the correction to drequencies are:

ω0 (Z) → ω0 (Z) +
2
((∫ θ ∫ (

̟Ω̄
)2

dθ0

)

− Λ1

(∫
Ω̄2dθ0

))

Λ1Λω2
0 (Z)

≃ ω0 (Z) +
2
((

Tθ

(
̟Ω̄
)2
)

− Λ1

(
Ω̄2
))

Tθ

Λ1Λω2
0 (Z)

where Tθ is the duration of the signals at time θ.
As a consequence, in presence of the signals, the states is transformed from the background

activities to modification of magnitude:

∆ω0 =
2
((

Tθ

(
̟Ω̄
)2
)

− Λ1

(
Ω̄2
))

Tθ

Λ1Λω2
0 (Z)

at points of additive interferences, and 0 elsewhere. The shift may be positive or negative depending
on the parameters of the system.

In the sequel, we consider Tθ ≃ T .
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3.3 Extension: Excitatory vs inhibitory interaction

The previous results computing the perturbations in activities may be extended straightforwarly
in the case of two types of interactions. We consider n populations, each caracterized by their
activities i = 1, ..., n. They interact positively or negatively. Each population is defined by a field
Ψi and activities ωi (θ, Z). The details are given in part 1. Equations for activities are defined by:

ω−1
i (θ, Z) = Gi



J (θ) +
κ

N

∫

T (Z,Z1)
ωj

(

θ − |Z−Z1|
c

, Z1

)

ωi (θ, Z)
Gij (178)

× W




ωi (θ, Z)

ωj

(

θ − |Z−Z1|
c

, Z1

)





(

Ḡ0j (0, Z1) +

∣
∣
∣
∣
Ψj

(

θ − |Z − Z1|
c

, Z1

)∣
∣
∣
∣

2
)

dZ1





For example, if i, j = 1, 2, a matrix g of the form:

G =

(

1 −g

−g 1

)

represents inhibitory interactions between the two populations. More generally, the matrix G is
n×n with coefficients in the interval [−1, 1]. The sum over indices is understood for j. The resolution
of (178) follows the same principle as for (132), with a vector of activities. The expansion of the
first order derivative is:

(

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

)

|Ψ|2=0

= −
∞∑

n=1

∫ n∏

l=1

Ť



θ −
l−1∑

j=1

∣
∣Z(j−1) − Z(j)

∣
∣

c
, Z(l−1), Z(l), ω0, 0





×Ω0

(

J, θ −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c
, Z1

)

× δ

(

l1 −
n∑

l=1

∣
∣Z(l−1) − Z(l)

∣
∣

c

)
n−1∏

l=1

dZ(l)

with ω0 a n component vector describing a solution for |Ψ|2 = 0. The matrices Ω−1
0

(

J, θ −∑n

l=1

∣

∣

∣Z
(l−1)−Z(l)

∣

∣

∣

c
, Z1

)

and D
(

|Ψ|2
)

are diagonal with components ω−1
0i

(

J, θ −
∑n

l=1

∣

∣

∣
Z(l−1)−Z(l)

∣

∣

∣

c
, Z1

)

and |Ψi|2 respectively

on the diagonal. More generally, for any expression H
(

ω0i, |Ψi|2
)

, we define D
(

H
(

ω0, |Ψ|2
))

the

diagonal matrix with components H
(

ω0i, |Ψi|2
)

.

The quantity Ω (J, θ, Z) |Ψ|2 is a vector with components ωi (J, θ, Z) |Ψi|2. The expressions
(

δω−1(J,θ,Z)

δ|Ψ(θ−l1,Z1)|
2

)

|Ψ|2=0
and Ť

(

θ −∑l−1
j=1

∣

∣

∣
Z(j−1)−Z(j)

∣

∣

∣

c
, Z(l−1), Z(l), ω0, 0

)

are n× n matrices:





(

δω−1 (J, θ, Z)

δ |Ψ(θ − l1, Z1)|2

)

|Ψ|2=0





ij

=

(

δω−1
i (J, θ, Z)

δ |Ψj (θ − l1, Z1)|2

)

|Ψ|2=0

and:

Ťij (θ, Z, Z1ω,Ψ)

= − Gij κ
N
ωi (J, θ, Z)T (Z,Z1)G

′
i [J, ω, θ, Z,Ψ]

1 +Gij

(
∫

κ
N
ωj

(

J, θ − |Z−Z′|
c

, Z ′
)(

Ḡ0j (0, Z ′) +
∣
∣
∣Ψj

(

θ − |Z−Z′|
c

, Z ′
)∣
∣
∣

2
)

T (Z,Z ′) dZ ′

)

G′
i [J, ω, θ, Z,Ψ]
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The factor associated to the sum of single lines (151) crossing the points Zk generalizes straight-
forwardly and is given by:

−Ť
(
1− Ť

)−1
n−1∏

l=1

{(

D
(

|Ψ(θ − ll, Zl)|2
)

dZldll

)

Ť
(
1− Ť

)−1
}

D
(

|Ψ(θ − ln, Zn)|2 ω−1
0 (J, θ − ln, Zn)

)

= −Ť
(
1− Ť

)−1 1

1−D
(

|Ψ(θ, Z)|2
)

Ť
(
1− Ť

)−1
D
(

|Ψ(θ − ln, Zn)|2 ω−1
0 (J, θ − ln, Zn)

)

= −Ť
1

1−
(

1 +D
(

|Ψ|2
))

Ť
D
(

|Ψ(θ − ln, Zn)|2 ω−1
0 (J, θ − ln, Zn)

)

(179)

Then, we compute ω−1 (J, θ, Z) by writing the action for an auxiliary field which is the same as in
appendix 6.2:

S (̥) =

∫

̥ (Z, θ)
(

1−D
(

|Ψ|2
)

Ť
)

̥
† (Z, θ) d (Z, θ)

−
∫

̥ (Z, θ) Ť

(

θ −
∣
∣Z(1) − Z

∣
∣

c
, Z(1), Z, ω0 + Ť̥†

)

̥
†

(

Z(1), θ −
∣
∣Z − Z(1)

∣
∣

c

)

dZdZ(1)dθ(1)

where ̥ (Z, θ) is a n components vector, and ̥† (Z, θ) is the hermitian conjugate. The activity
vector is thus given by the integral:

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) +

∫
Ť̥† (Z, θ) exp

(

−S (̥)−
∫
̥ (X, θ)D

(

|Ψ|2 ω−1
0 (J, θ, Z)

)

d (X, θ)
)

D̥

exp (−S (̥))D̥

where ̥† satisfies in the saddle point approximation:

((

1−D
(

|Ψ|2
)

Ť
)

̥
†
)

(Z, θ)−
(

Ť
ω0+Ť(ω0|Ψ|2)̥

†
)

(Z, θ)−D
(

|Ψ|2 ω0

)

= 0

In first approximation:

Ť
ω0+Ť(ω0|Ψ|2) ≃ D




ω (J, θ, Z)

ω (J, θ, Z) + Ť
((

|Ψ|2 ω0

))



 Ťω0

and the previous equation becomes:

((

1−D
(

|Ψ|2
)

Ť
)

̥
†
)

(Z, θ)−D

(
ω0

ω0 + Ť̥†

)

Ť̥† (Z, θ)−D (ω0) |Ψ|2 ≃ 0 (180)

As for the basic case, under the saddle point approximation:

ω (J, θ, Z) = ω0 (J, θ, Z) + Ť̥† (Z, θ)

Equation (180) can be solved recursively. As in the one component field case, we find in first
approximation:

Ť̥† = A
1

1 −
(

Ťω0+Aω0|Ψ|2 − Ť
)

Ť−1A
ω0 |Ψ|2 (181)

≃ A
1

1 −D
(

ω0

ω0+Aω0|Ψ|2

)

A
ω0 |Ψ|2
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with:

A =
Ť

1−
(

1 +D
(

|Ψ|2
))

Ť
=

1
(

1 +D
(

|Ψ|2
))

(

1 +D
(

|Ψ|2
))

Ť

1−
(

1 +D
(

|Ψ|2
))

Ť

=
Ť

1− Ť −D
(

|Ψ|2
)

Ť

=
Ť

1− Ť

∑

n>0

(

D
(

|Ψ|2
) Ť

1− Ť

)n

and the generalization of (151) is obtained by diagonalization of Ť . For two fields, we write:

(

1 +D
(

|Ψ|2
))

Ť =




Ť1

((

1 +
(

|Ψ1|2
))

ω01

)

−gŤ2

((

1 +
(

|Ψ2|2
))

ω02

)

−gŤ1

((

1 +
(

|Ψ1|2
))

ω01

)

Ť2

((

1 +
(

|Ψ2|2
))

ω02

)





Assuming ω01 and ω02 changing slowly in time, we have:

(

1 +D
(

|Ψ|2
))

Ť = UŤDU
−1

ŤD =







1
2

(

Ť1 + Ť2 −
√

4g2Ť1Ť2 +
(
Ť1 − Ť2

)2
)

0

0 1
2

(

Ť1 + Ť2 +

√

4g2Ť1Ť2 +
(
Ť1 − Ť2

)2
)







U =







− 1
2g

(

Ť1 − Ť2 −
√

4g2Ť1Ť2 +
(
Ť1 − Ť2

)2
)

Ť2

Ť1
1
2g

(

Ť1 − Ť2 −
√

4g2Ť1Ť2 +
(
Ť1 − Ť2

)2
)







As a consequence:

Ť = UD




exp

(

−cl1 − α
(
ŤD

) (

(cl1)
2 − |Z − Z1|2

))

B
(
ŤD

) H (cl1 − |Z − Z1|)



U−1

with α
(
Ť
)
and B

(
Ť
)
are vectors. That is, given our conventions:

Ť = U






exp(−cl1−α1(ŤD)((cl1)2−|Z−Z1|
2))

B1(Ť)
0

0
exp(−cl1−α2(ŤD)((cl1)2−|Z−Z1|

2))
B2(Ť)




U−1H (cl1 − |Z − Z1|)

For connectivity functions Ti (Z,Z1) that are proportional Ti (Z,Z1) = CiT0 (Z,Z1), the change of
basis yields the diagonalized connectivity function:

TD (Z,Z1) =







1
2

(

C1 + C2 −
√

4g21C1C2 + (C1 − C2)
2

)

0

0 1
2

(

C1 + C2 +
√

4g21C1C2 + (C1 − C2)
2

)







T0 (Z,Z1)
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Appendix 5.2 shows that αi

(
Ť
)
and Bi

(
Ť
)
are proportional to the averages of ŤiD and 1 + ŤiD,

more precisely:

D
(
α
(
Ť
))

∝







1
2

(

C1 + C2 −
√

4g21C1C2 + (C1 − C2)
2

)

0

0 1
2

(

C1 + C2 +
√

4g21C1C2 + (C1 − C2)
2

)







D
(
B
(
Ť
))

∝







1
2

(

C1 + C2 −
√

4g21C1C2 + (C1 − C2)
2

)

0

0 1
2

(

C1 + C2 +

√

4g21C1C2 + (C1 − C2)
2

)







As a consequence, by multiplication with U and U−1, we find that:

(

1 +D
(

|Ψ|2
))

Ť

1−
(

1 +D
(

|Ψ|2
))

Ť
=

exp
(

−cl1 −
(

1 +D
(〈

|Ψ|2
〉))

Φ
(

(cl1)
2 − |Z − Z1|2

))

B
H (cl1 − |Z − Z1|)

with:

Φ =

(

C1 −gC2

−gC1 C2

)

B = 1 + 2π
(

1 +D
(〈

|Ψ|2
〉))

Λ

where the constants C1 and C2 are as in Appendix 5 to define Ť1 and Ť2.
Then, the modification to activities to the lowest order writes:

ω−1 (J, θ, Z) = ω−1
0 (J, θ, Z) + T̂Λ† (Z, θ) (182)

=

∫

K (Z, θ, Zi, θi)

{

−
∑

i

a (Zi, θi)
D
(
ω−1
0 (J, θi, Zi)

)

Λ2

}

dθi

=

∫ exp
(

−cli −
(

1 +D
(〈

|Ψ|2
〉))

Φ
(

(cli)
2 − |Z − Zi|2

))

B

{

−
∑

i

a (Zi, θi)
D
(
ω−1
0 (J, θi, Zi)

)

Λ2

}

dθi

The phenomenom of interferences will occur, but will be mitigated by the intertwining of inhibitory
and enhancing interactions that are encompassed in matrix Φ.

Remark ultimately that the previous results generalizes to a system with n interacting compo-
nents, and an analogous to (182) holds. If we look to higher expansion, we consider the expansion
of A ((Z, θ) , (Z1, θ − l1)):

A ((Z, θ) , (Z1, θ − l1)) ≃ D




1

(

1 +D
(〈

|Ψ|2
〉))



 (183)

×




exp

(

−cl1 −
(

1 +D
(〈

|Ψ|2
〉))

Λ
(

(cl1)
2 − |Z − Z1|2

))

B
H (cl1 − |Z − Z1|)




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As aconsequence, the expansion of (181) is:

ω (Z, θ) = ω0 (J, θ, Z) +

∫ ∞∑

k=0

k−1∏

i=0

exp

(

−cli −
(

1 +D
(〈

|Ψ|2
〉))

Λ

(

(cli)
2 − |Zi−Zi+1|

c

))

B

×D




ω0 (θ − li, Zi)

ω0 (θ − li, Zi) +Aω0 |Ψ|2 (θ − li, Zi)

ω0 (J, θ − lk, Zk)
(

1 +D
(〈

|Ψ|2
〉))





×
exp

(

−clk −
(

1 +D
(〈

|Ψ|2
〉))

Λ

(

(cli)
2 − |Zk−1−Zk|

c

))

B
|Ψ(θ − lk, Zk)|2 dZidli (184)

Appendix 4 Computation of Green functions

Given the definition (83) ofoperator O, the time-dependent version:

Pt

((

T, T̂ , θ, Z, Z ′, C,D
)

i
,
(

T, T̂ , θ, Z, Z ′, C,D
)

f

)

of the transition functn defined in (84)) satisfies the associated differential equation:

∂

∂t
P = ∇T



∇T +
(T − 〈T 〉)−

(

λ
(

T̂ −
〈

T̂
〉))

τω0 (Z) + ∆ω0

(

Z, |Ψ|2
) |Ψ0 (Z)|2



P (185)

+∇
T̂



∇
T̂
+ ρ



C
|Ψ0 (Z)|2 hC

(

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

+D
|Ψ0 (Z

′)|2 hD

(

ω0 (Z
′) + ∆ω0

(

Z ′, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)









(

T̂ −
〈

T̂
〉)

P

This equation can be writen in the matricial notation:

∂

∂t
P =

(

∇
2 + (∇)

t
γx
)

P (186)

with:

γ =









|Ψ0(Z)|2

τω0(Z)+∆ω0(Z,|Ψ|2)
− λ|Ψ0(Z)|2

τω0(Z)+∆ω0(Z,|Ψ|2)

0
ρC

|Ψ0(Z)|2hC(ω0(Z)+∆ω0(Z,|Ψ|2))
ω0(Z)+∆ω0(Z,|Ψ|2)

+ρD
|Ψ0(Z′)|2hD(ω0(Z′)+∆ω0(Z′,|Ψ|2))

ω0(Z)+∆ω0(Z,|Ψ|2)









x =

(
T − 〈T 〉
T̂ −

〈

T̂
〉

)

74



We define the background dependent parameters:

u =
|Ψ0 (Z)|2

τω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

v = ρC
|Ψ0 (Z)|2 hC

(

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
) + ρD

|Ψ0 (Z
′)|2 hD

(

ω0 (Z
′) + ∆ω0

(

Z ′, |Ψ|2
))

ω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

s = − λ |Ψ0 (Z)|2

τω0 (Z) + ∆ω0

(

Z, |Ψ|2
)

The transition functions are obtained by defining the matricial quantities M (t)x and σ (t):

M (t)x =

(

e−tu s e−tu−e−tv

u−v

0 e−tv

)

(T−〈T〉)

and:

σ (t) = 2

∫ t

0




e−2tu + s2

(e−tu−e−tv)
2

(u−v)2
se−tv e−tu−e−tv

u−v

se−tv e−tu−e−tv

u−v
e−2tv



 dt

= −






e−2tu

u
+ s2

e−2tu

u −4 e−t(u+v)

u+v + e−2tv

v

(u−v)2
s
2 e−t(u+v)

u+v − e−2tv

v

u−v

s
2 e−t(u+v)

u+v − e−2tv

v

u−v
e−2tv

v






=







1−e−2tu

u
+ s2

(u−v)2

uv(u+v)
−

(

e−2tu

u −4 e−t(u+v)

u+v + e−2tv

v

)

(u−v)2
s

v−u
v(u+v)

−

(

2 e−t(u+v)

u+v − e−2tv

v

)

u−v

s

v−u
v(u+v)

−

(

2 e−t(u+v)

u+v − e−2tv

v

)

u−v
1−e−2tv

v







The transition between T−〈T〉 and T′−〈T〉 during a time t is written G0 (T−〈T〉 ,T′−〈T〉 , t) is
obtained as the solution of (186) and is given directly by:

G0 (T−〈T〉 ,T′−〈T〉 , t) (187)

= (2π)
−1

(Det (σ (t)))
− 1

2

× exp

(

− ((T−〈T〉)−M (t) (T′−〈T〉))t σ
−1 (t)

2
((T−〈T〉)−M (t) (T′−〈T〉))

)

Starting from the intial background ste T′ = 〈T〉0, as t increases, the difference between initial
background state and the new one is progressively reduced, as the factor:

M (t) (T′−〈T〉) =
(

e−tu s e−tu−e−tv

u−v

0 e−tv

)

(T′−〈T〉)

goes to 0.
Ultimately, remark that for large t, the transition function simplifies and writes:

G0 (T−〈T〉 ,T′−〈T〉) = (2π)
−1

(Det (σ (∞)))
− 1

2 (188)

× exp

(

−1

2
((T−〈T〉))t σ−1 (∞) ((T−〈T〉))

)

with:

σ (∞) =

(
1
u
+ s2

uv(u+v) − s
v(u+v)

− s
v(u+v)

1−e−2tv

v

)
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