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Abstract

This series of papers models the dynamics of a large set of interacting neurons within the
framework of statistical field theory. The system is described using a two-field model. The first
field represents the neuronal activity, while the second field accounts for the interconnections be-
tween cells. This model is derived by translating a probabilistic model involving a large number
of interacting cells into a field formalism. The current paper focuses on deriving the background
fields of the system, which describe the potential equilibria in terms of interconnected groups.
Dynamically, we explore the perturbation of these background fields, leading to processes such
as activation, association, and reactivation of groups of cells.

1 Introduction

Bridging the micro and macroscopic behaviors remains largely problematic when dealing with
systems characterized by a large number of degrees of freedom. When investigating neural activity,
one typically either begins directly with a macroscopic description of the system or initiates a study
with a microscopic description that is subsequently treated numerically. In a previous study ([52]),
we introduced a statistical field-theoretic approach to establish a connection between the micro and
macro levels. For a dynamic system consisting of a large number of interacting spiking neurons
distributed within a defined spatial region, also referred to as the "thread," we can associate a field-
theoretic framework that encompasses the fundamental microscopic characteristics of the system.

This field-theoretic framework enables the determination of the system’s effective action, along
with the associated background field, which corresponds to the minimum of the effective action.
This background field characterizes the collective state of the system. The field framework facilitates
the computation of neurons firing frequencies, i.e., neural activity, at each point within the system
in a specific background state. Furthermore, we can derive the propagation of perturbations in
neural activity from one point to another. We showed the presence of persistent nonlinear traveling
waves along the thread.

Nonetheless, ([52]) considered the connectivity functions between various points in the thread
as endogenous functions of the neural activities. We introduced an extension that involved dynamic
equations for these functions driven by the activities dynamics. However, even in this extended case,
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the connectivities between the points in the thread were not treated as a dynamically interacting
system that could be addressed as a field-theoretic system in its own right.

The current series of papers addresses this issue and takes a significant step towards the field-
theoretic representation of a system of interacting neurons. We introduce a two-fields model that
characterizes both the dynamics of neural activity and the connectivity between cells within the
thread. Furthermore, we investigate the implications of this model in the context of neural and
connectivity dynamics.

This field theory results from a two-step process and is grounded in a method initially developed
by [47] and subsequently adapted to complex interacting systems in [48][49][50][51]. In the first
step, the conventional formalism governing the dynamic equations of a large assembly of interacting
neurons, as outlined in ([46]), is extended to encompass a dynamic system that accounts for the
dynamic nature of neuronal connectivity. We use the formalism for connectivity functions as
presented in ([53]), rewritten in a format suitable to translation into field theory. In the second
step, these two sets of dynamic equations are transformed into a second-quantized Euclidean field
theory, as elucidated in [48][49][50]. The action functional of this field theory relies on two fields.
The first field, akin to the one introduced in ([52]), characterizes the assembly of neurons and
their activity. Meanwhile, the second field delineates the dynamics of connectivity between cells.
Both fields exhibit self-interaction, portraying interactions across the network, and interact with
each other, encapsulating the interdependencies between neural activities and connectivities. This
field-based description encompasses both collective and individual aspects of the system. The
system with these two fields is described by a field action functional that comprehensively records
the interactions at the microscopic level. This action functional encapsulates the dynamics of the
entire system.

Our description enables the derivation of background fields for both neural interactions and
connectivities, which minimize the action functional. These background fields depict the collective
configuration of the system and determine the potential static equilibria for neural activities and
connectivities. These equilibria serve as the foundational framework for the system, organizing
fluctuations and signal propagation within it. The background fields are contingent upon internal
system parameters and external stimuli, and thus, the entire system may undergo transitions in
response to variations in these parameters and stimuli.

Throughout the four articles of this series, we investigate the implications of our formalism.
We explore the conditions and the possible forms for collective interconnected structures, their
interactions, and the mechanisms governing their merger. This study progressively reorients the
relative importance of our prior research between neural activity and connectivity dynamics. The
structures under examination are defined by sets of interconnected cells, and the activity within
the system is determined by the specific configuration of these sets.

We accomplish this by deriving an effective action for the connectivity field alone, with neural
activity becoming an endogenous variable dependent on connectivity. Ultimately, based on the
findings presented in these papers, the fourth section of this work will introduce an expanded
effective model designed to address a substantial or even infinite number of potential collective
states. The system will be characterized by fields representing collective states, each of these fields
depending on a large set of parameters. These sets of parameters describe potential interconnected
structures with various amplituds and frequencies of activity.

From a field theory perspective, this approach is tantamount to engaging in a second-quantized
formulation of the initial formalism, that is, to second-quantizing a previously second-quantized
formalism. Starting directly with a field formalism for collective states allows us to model how
these structures interact, activate or deactivate, and experience transitions in terms of activities
amplitudes and activity frequencies.
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In this first paper, we expound upon the development of the field model that characterizes the
system, encompassing both neural activity and connectivity functions. We present the derivation
of an effective action for the connectivities and subsequently compute its quasi-static background
field. This background field delineates the average connectivities among elements within the thread,
as well as the average activities between these elements. Subsequently, we outline the dynamic
implications of these findings by examining the effects of external perturbations that alter the
activities between individual cells.

Taking into account that the timescale for connectivities is slower than that of individual cells,
we demonstrate how repeated activations at certain points can propagate throughout the network
and progressively alter the connectivity functions. In the presence of oscillatory perturbations,
the oscillatory response may exhibit interference phenomena. At points where constructive inter-
ference occurs, the background state for connectivities and the average connectivities experience
modification. These long-term alterations manifest as emerging states characterized by enhanced
connectivities between specific points.

These states reflect the impact of external activations and can be regarded as a record of
these activations. They exhibit a gradual fading over time but remain capable of reactivation by
external perturbations. Furthermore, the association of such emerging states is possible when their
activation occurs at closed times. The resulting state is a composite of two distinct states, which
can be described as a modification of the initial background state at various points. Activating one
of these two states leads to the reactivation of their combined effect. Thus, regardless of the cause
of their activation, these states of enhanced connectivity present characteristics akin to interacting
partial neuronal assemblies.

The second application focuses on the system of connectivities as an independent self-interacting
object. By replacing the individual cells’field as an effective quantity dependent on connectivities,
we can derive the effective dynamics for the connectivity fields. This approach engenders internal
dynamics that can induce shifts in the static background state,particularly at certain points within
the system. Self-interactions triggered by perturbations may initiate internal patterns of connec-
tions among specific cells. Depending on internal parameters, we observe the potential for enduring
shifts in connectivity background states within certain regions of the network, while other areas
remain unaffected. This effective theory can also be applied to study the mechanisms underpinning
connectivity reinforcement among multiple cells.

This paper is organised as follows: Section 2 provides a literature review. Part I of the paper
develops a theoretical model for a neural system. Section 3 introduces a general method for trans-
lating a system with a large number of agents into a field framework. In Section 4, we elucidate
the individual dynamics of interacting neurons and its probabilistic interpretation. Subsequently,
we transcribe this framework in terms of fields in Section 5.

The second section of the paper applies this model to explore structural aspects of the neural
system. We investigate the background states of the system along with the corresponding cellular
activities and connectivities. In Section 6, we establish the saddle point equation for the neural
field and derive the general form of the equation for activities. Section 7 provides the saddle
point equation for the connectivity field. In Section 8, we deduce solutions to these equations,
which represent the background fields for connectivities. Additionally, we derive equations for the
average values of connectivities within these states.

Section 9 involves the computation of static equilibrium, yielding the possible average connec-
tivities and activities within the background field. Multiple solutions arise, each corresponding to
different potential configurations of interconnected states. Section 10 presents a model extension
in which n different types of cells interact. The background states for such a model are derived,
alongside the connectivities and activities within these background states.
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The third part of this work delves into dynamic aspects of the system, investigating how external
perturbations can induce transitions between connected equilibrium states. In Section 11, we revisit
the dynamics of the neural field and elucidate the dynamic aspects of the neurons’background field.
Section 12 subsequently derives the dynamic component of cellular activity.

Within this dynamic framework, stable oscillations in activity emerge, some of which may be
driven by external signals. These oscillations, stemming from source terms, are expounded upon in
Section 13. Building on these results, Section 14 examines how oscillations in activities can modify
the background states of connectivities and the groups of connected states.

The mechanism of interferences between waves of activity, isolating and synchronizing groups
of interacting cells, is explored in Section 15. Sections 16, 17, 18 are dedicated to the study of
group reactivation by subsequent signals, group associations through signals, the reactivation of
associated groups by subsequent signals, and the impact of sequences of signals on state associations,
respectively. Section 19 concludes the paper.

2 Litterature review

Several branches of the literature are related to our work. First, at the macroscopic scale, and
at the modeling level we are considering, our approach shares common goals with the literature
on mean fields or neural fields. Neural fields model large populations of neurons as homogeneous
structures, with individual neurons indexed by spatial coordinates. These models are employed
to describe various patterns of brain activity. Following the work of Wilson, Cowan, and Amari
([1][2][3][4][5][6][7][8][9]), neural field dynamics are typically investigated in the continuum limit,
with neural activity represented by a macroscopic variable– the population-averaged firing rate.
Mean field theory has been extended in various ways and has found a wide range of applications.

It permits the existence of traveling wave solutions (see [20][21], and related literature). Incor-
porating stochastic effects in firing rates allows to model perturbations and diffusion patterns in
pulse wave dynamics as well as noisy transitions between various mean field regimes (see [15] for
instance). Besides, mean field approaches can be expanded to investigate the influence of neural
network topology on spatial arrangements of neural activity, with relevant work found in [17],
further developments in [18], and related sources.

Nevertheless, the mean field approach is an effective theoretical framework in which the degrees
of freedom of certain underlying processes are aggregated. Despite the convenience and practical
applications of mean field formalism, it relies on simplifications to represent the microscopic level,
such as the neglect of interaction delays or variations in neuronal connectivity. Furthermore, owing
to its aggregated nature, this framework is unable to capture emerging behaviors.

Compared to this approach, our statistical field theory model maintains a detailed account of
the individual dynamics and connectivities of interacting neurons while retaining certain features
and objectives of neural field dynamics. For example, we assign spatial coordinates to neurons
in order to derive continuous dynamic equations for the entire system. However, unlike Mean
Field Theory and its extensions, our fields do not directly represent neural activity. Similar to
Statistical Field Theory (as seen in [47]), they are rather abstract, complex-valued functionals that
encapsulate microscopic information on a larger collective scale. It is only after translating the
microscopic model into the language of fields that we reconstruct specific quantities to describe
neural activities.

Our approach incorporates features that have been explored in certain extensions of mean field
theory. Our results inherently involve stochastic elements: the field accounts for the interactions of
neurons subject to dynamic uncertainty. We are able to recover certain patterns of traveling waves.
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However, beyond that, our formalism offers several advantages. It sheds light on the influence of
internal variables on firing rate dynamics. It can provide a direct approach to phenomena related
to phase transitions, such as the impact of collective patterns on individual ones, by examining the
system’s effective action. Additionally, it allows for a wide range of extensions, as demonstrated in
this series of paper, which incorporates the dynamics of connectivity functions within the framework
of field theory.

Please note that the Mean Field approach has already been extended using the tools of statis-
tical field theory, albeit in a manner different from ours (see [19][22][23][24][25][26][27]). In these
extensions, statistical fields represent neural activity, or spike counts, at each point within the net-
work. An effective action is formulated for neural activity. Because these extensions account for
covariances between neural activities at different network points, the perturbation expansion of the
effective action goes beyond the mean field approximation. However, these models are constructed
based on the mean field model and incorporate some deviations from it, ultimately remaining at
the collective level rather than emerging from the network’s microscopic features. Closer to our
approach are studies such as those in ([28]) and ([29]), which utilize partition functions for the
entire neural system, or ([30]), which uses an effective action. Nevertheless, these approaches either
make simplified micro-level assumptions or impose a priori constraints on the effective action.

At the same scale as the neural field, a specific portion of the literature has focused on the role of
connectivities and plasticity in systems of interacting neurons. This literature is situated within the
context of neural networks (see ([54]) and its references for network-related studies) or neural field
modeling. In ([55]), the author investigated the stability of the resting-state activity within a neural
field concerning variations in connectivity with respect to a homogeneous connectivity matrix. This
concept was further extended in ([?]) in the context of a generic network differential equation
(see ([57]) and ([58]) for a comprehensive account) to explore the impact of non-homogeneous
connectivities on network properties and neural dynamics. The authors revealed that symmetry
breaking in network connectivity, or inhomogeneous connectivities, leads to the emergence of an
attractive functional subspace. The states of symmetry breaking share some similarities with the
background states considered in this paper, by encompassing the decomposition into background
and fluctuations. Nevertheless, in their context, the backgrounds are postulated, and parameters
must be fine-tuned to produce stable states.

A more detailed examination of connectivity dynamics and their characteristics is provided in
([59]) (see ([60]) and ([61]) for applications). Neural field theory is employed to define connectivity
tensors in terms of bare and dressed propagators, and a diagrammatic analysis, akin to a Feynman
graph expansion, is conducted. This approach to connectivities enables to surpass the typical
phenomenological approach, allowing for the characterization and exploration of patterns in brain
connectivity and activity. The utilization of graph expansion is similar to our approach in the
sense that connectivities are comprehended through propagators and series expansion. However,
this approach is tailored within the framework of neural fields and lacks the emergence of global or
background states. Connectivities are not regarded as a dynamic system on their own.

At the microscopic scale, another branch of literature closely related to our work lies at the
intersection of dynamical systems, complex systems, and neural networks. This body of research is
primarily concerned with the dynamics and interactions of individual neurons (see [31][32][33], and
the references therein).

In literature strands such as cognitive neurodynamics or computational neuroscience, neural
processes arise from the interactions of assemblies of individual neurons. This finer-grained ap-
proach enables a more detailed account of the interplay between neurons’connectivity and firing
rates compared to that of neural fields. Typically, it does not assume spatial indices; neurons are
not arranged within a spatial structure, and the model’s resolution relies on numerical studies. This
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approach accommodates neurons’cyclical dynamics, variations in oscillation regimes (for further
details, see [31] and the references therein), and, of greater relevance to our work, the emergence
of local connectivity and higher-scale phenomena. These phenomena include the binding problem
or polychronization (see [36][37][38][39][40][41][42][43][44][45][46]).

However, unlike mean fields, these models lack an analytical treatment of collective effects.
Our method aims to bridge the gap between macro-scale modeling in neural field theory and the
assembly of interacting neurons. Nonetheless, they provide the foundational elements for developing
a microscopic basis for a field-theoretic description. Our work is based on one of these frameworks
described in ([53]). Initially designed to address polychronization, we employ it to describe the
dynamics of connectivity functions and investigate the emergence of connected patterns across the
thread of individual cells.

A third branch of the literature is of relevance to our work. Our research is closely tied to the
ongoing debate regarding the existence of specific sets of connected cells responsible for storing
information, particularly related to memory, often referred to as ’engrams.’ Recent empirical and
theoretical studies provide increasing evidence for the mechanisms underlying engram formation
and memory linkage. The articles [62] (and its references), [63], [64] (and its references), [65],
among others, support the engram hypothesis and its significance in memory storage. Engrams
exhibit persistence and can be subject to reactivation. They underscore the non-local aspects of
engrams, which may span different regions and types of neurons, as well as the importance of
interactions among multiple engram ensembles that result in enhanced memory recall compared to
the reactivation of a single engram ensemble: multiple engram ensembles are conferred a greater
level of memory recall than reactivation of a single engram ensemble.

In ([66]) engram allocation is linked to the excitability of neurons, offering insights into engram
interactions. Engrams are associated with dynamic interactions among connectivity states through
co-allocation and overlapping. Some characteristics of these interactions are further examined in
studies such as ([67]), ([70]), and ([68]).

These studies provide strong support for the notion that changes in the strength of neuronal
connections are stored in the brain. They emphasize the growing consensus regarding the role of
interactions between sets of neurons in the formation of recurrent memories and the composition
of complex behaviors. This confirms the idea that changes in connectivities and the emergence
of associated patterns correspond to the formation of engrams. In other words, the formation
of engrams is directly linked to the dynamic aspects of connectivity functions, including their
modifications and interactions. Engram states can thus be viewed as dynamic interacting states of
connectivities, akin to those studied in our work. Furthermore, the mechanism of engram interaction
proposed in ([69]), which involves a competitive process that integrates memories of events occurring
closely in time (co-allocating overlapping populations of neurons to both engrams) and separates
memories of events occurring at distant times, bears similarity to our mechanism of associating
connectivity states. In our model, connectivity states interact and may associate to produce more
stable states, with the timing of activation being crucial for the formation of such associated states.

Last but not least, several studies converge on the significance of regulatory mechanisms in-
volving connectivities and interactions between connectivities and neuronal activity. In ([71]),
the authors review recent research on the mechanisms that shape engrams and regulate memory
functions. They speculate that countervailing forces within local microcircuits contribute to the
generation and maintenance of engrams. On the other hand, some studies emphasize the role of
homeostatic processes that stabilize neuronal activity, as seen in ([73]), ([74]), ([72]), ([75]), ([76]),
([77]), ([78]), ([79]). The interaction of Hebbian homosynaptic plasticity with rapid non-Hebbian
heterosynaptic plasticity, when complemented with slower homeostatic changes and consolidation,
is suffi cient for the formation of assemblies. This confirms both the role of interactions between
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connectivities and neural activity in the formation of connectivity states, as well as the impor-
tance of certain homeostatic processes that we aim to capture through the concept of activity and
connectivity potential.

Part I: Field formalism for large set of
neurons activities and connectivity functions
In this initial section, we present the method to transform a dynamic system with a large number
of agents into a field-theoretic model. In general, this translation entails the introduction of one
field for each type of dynamic variable. Subsequently, we delve into neural dynamics, where we
elucidate the conventional dynamic equations governing neuronal activities and connectivities (also
referred to as transfer functions in ([52])). These equations are then translated into a formalism
based on two fields.

3 Translation of dynamical systems with large number of degrees
of freedom into fields models: General method

The formalism we propose transforms a dynamic system with large number of agents into a sta-
tistical field model. In the present work, the term agent will refer to individual neurons or the
connectivity between cells that are themselves dynamic variables. In classical models, each agent’s
dynamics is described by an optimal path for some vector variable, say Ai (t), from an initial to a
final point, up to some fluctuations.

But this system of agents could also be seen as probabilistic: each agent could be described by
a probability density centered around the classical optimal path, up to some idiosyncratic uncer-
tainties1 2 . In this probabilistic approach, each possible trajectory of the whole set of N agents has
a specific probability. The classical model is therefore described by the set of trajectories of the
group of N agents, each one being endowed with its own probability, its statistical weight. The
statistical weight is therefore a function that associates a probability with each trajectory of the
group.

This probabilistic approach can be translated into a more compact field formalism3 that pre-
serves the essential information encoded in the model but implements a change in perspective. A
field model is a structure governed by its own intrinsic rules that encapsulate the dynamic model
chosen. This field model contains all possible realizations that could arise from the initial economic
model, i.e. all the possible global outcomes, or collective state, permitted by the economic model.
So that, once constructed, the field model provides a unique advantage over a standard dynamic
model: it allows to compute the probabilities of each of the possible outcomes for each collective
state of the model. These probabilities are computed indirectly through the action functional of
the model, a function that assigns a specific value to each realization of the field. Technically, the
random N agents’trajectories {Ai (t)} are replaced by a field, a random variable whose realizations
are complex-valued functions Ψ of the variables A, and the statistical weight of the N agents’

1Because the number of possible paths is infinite, the probability of each individual path is null. We, therefore,
use the word "probability density" rather than "probability".

2See Gosselin, Lotz and Wambst (2017, 2020, 2021).
3 Ibid.

7



trajectories {Ai (t)} in the probabilistic approach is translated into a statistical weight for each
realization Ψ. They encapsulate the collective states of the system.

Once the probabilities of each collective state computed, the most probable collective state
among all other collective states, can be found. In other words, a field model allows to consider
the true global outcome induced by any standard economic model. This is what we will call the
expression of the field model, more usually called the background field of the model.

This most probable realization of the field, the expression or background field of the model,
should not be seen as a final outcome resulting from a trajectory, but rather as its most recurring
realization. Actually, the probability of the realizations of the model is peaked around the expression
of the field. This expression, which is characteristic of the system, will determine the nature of
individual trajectories within the structure, in the same way as a biased dice would increase the
probability of one event.

3.1 Statistical weight and minimization functions for a classical system

In a dynamic system with a large number of agents, each agent is characterized by one or more
stochastic dynamic equations. Some of these equations result from the optimization of one or
several objective functions. Deriving the statistical weight from these equations is straightforward:
it associates, to each trajectory of the group of agents {Ti}, a probability that is peaked around the
set of optimal trajectories of the system, of the form:

W (s ({Ti})) = exp (−s ({Ti})) (1)

where s ({Ti}) measures the distance between the trajectories {Ti} and the optimal ones.
As explained above, this paper studies two types of agents: cells and connectivities between

cells. To remain at a general level in this section, we rather consider two arbitrary types of agents
characterized by vector-variables {Ai (t)}i=1,...N , and

{
Âl (t)

}
i=1,...N̂

respectively, where N and N̂

are the number of agents of each type, with vectors Ai (t) and Âl (t) of arbitrary dimension. For
such a system, the statistical weight writes:

W
(
{Ai (t)} ,

{
Âl (t)

})
= exp

(
−s
(
{Ai (t)} ,

{
Âl (t)

}))
(2)

The optimal paths for the system are assumed to be described by the sets of equations:

dAi (t)

dt
−
∑
j,k,l...

f
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
= εi, i = 1...N (3)

dÂl (t)

dt
−
∑
i,j,k...

f̂
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
= ε̂l, i = 1...N̂ (4)

where the εi and ε̂i are idiosynchratic random shocks. These equations describe the general dynamics
of the two types agents, including their interactions with other agents. They may encompass the
dynamics of optimizing agents where interactions act as externalities so that this set of equations
is the full description of a system of interacting agents45.

4Expectations of agents could be included by replacing dAi(t)
dt

with E dAi(t)
dt

, where E is the expectation operator.
This would amount to double some variables by distinguishing "real variables" and expectations. However, for our
purpose, in the context of a large number of agents, at least in this work, we discard as much as possible this
possibility.

5A generalisation of equations (3) and (4), in which agents interact at different times, and its translation in term
of field is presented in appendix 1.
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For equations (3) and (4), the quadratic deviation at time t of any trajectory with respect to
the optimal one for each type of agent are:dAi (t)

dt
−
∑
j,k,l...

f
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

(5)

and: dÂl (t)

dt
−
∑
i,j,k...

f̂
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

(6)

Since the function (2) involves the deviations for all agents over all trajectories, the function:

s
(
{Ai (t)} ,

{
Âl (t)

})
is obtained by summing (5) and (6) over all agents, and integrate over t. We thus find:

s
(
{Ai (t)} ,

{
Âl (t)

})
=

∫
dt
∑
i

dAi (t)

dt
−
∑
j,k,l...

f
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

(7)

+

∫
dt
∑
l

dÂl (t)

dt
−
∑
i,j,k...

f̂
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

There is an alternate, more general, form to (7). We can assume that the dynamical system is
originally defined by some equations of type (3) and (4), plus some objective functions for agents i
and l, and that these agents aim at minimizing respectively:∑

j,k,l...

g
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
(8)

and: ∑
i,j,k..

ĝ
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
(9)

In the above equations, the objective functions depend on other agents’actions seen as externali-
ties6 . The functions (8) and (9) could themselves be considered as a measure of the deviation of a
trajectory from the optimum. Actually, the higher the distance, the higher (8) and (9).

Thus, rather than describing the systm by a full system of dynamic equations, we can consider
some ad-hoc equations of type (3) and (4) and some objective functions (8) and (9) to write the
alternate form of (7) as:

s
(
{Ai (t)} ,

{
Âl (t)

})
(10)

=

∫
dt
∑
i

dAi (t)

dt
−
∑
j,k,l...

f
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

+

∫
dt
∑
l

dÂl (t)

dt
−
∑
i,j,k...

f̂
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

+

∫
dt

∑
i,j,k,l...

(
g
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
+ ĝ

(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

))
6We may also assume intertemporal objectives, see ([48]).
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In the sequel, we will refer to the various terms arising in equation (10) as the "minimization
functions", i.e. the functions whose minimization yield the dynamics equations of the system7 .

We have shown in [48][49][50] that the probabilistic description of the system (10) is equivalent
to a statistical field formalism. In such a formalism, the system is collectively described by a field
that is an element of the Hilbert space of complex functions. The arguments of these functions are
the same as those describing an individual neuron and the connectivity function between two cells.
A shortcut of the translation of systems similar to (10) in terms of field, is given in [51] . The next
paragraph gives an account of this method.

3.2 Translation techniques

Once the statistical weight W (s ({Ti})) defined in (1) iscomputed, it can be translated in terms of
field. To do so, and for each type α of agent, the sets of trajectories {Aαi (t)} are replaced by a field
Ψα (Aα), a random variable whose realizations are complex-valued functions Ψ of the variables Aα

8 .
The statistical weight for the whole set of fields {Ψα} has the form exp (−S ({Ψα})). The function
S ({Ψα}) is called the fields action functional. It represents the interactions among different types
of agents. Ultimately, the expression exp (−S ({Ψα})) is the statistical weight for the field9 that
computes the probability of any realization {Ψα} of the field.

The form of S ({Ψα}) is obtained directly from the classical description of our model. For two
types of agents, we start with expression (10). The various minimizations functions involved in
the definition of s

(
{Ai (t)} ,

{
Âl (t)

})
will be translated in terms of field and the sum of these

translations will produce finally the action functional S ({Ψα}). The translation method can itself
be divided into two relatively simple processes, but varies slightly depending on the type of terms
that appear in the various minimization functions.

3.2.1 Terms without temporal derivative

In equation (10), the terms that involve indexed variables but no temporal derivative terms are the
easiest to translate. They are of the form:∑

i

∑
j,k,l,m...

g
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
These terms describe the whole set of interactions both among and between two groups of agents.
Here, agents are characterized by their variables Ai (t) ,Aj (t) ,Ak (t)... and Âl (t) , Âm (t)... respec-
tively, for instance in our model firms and investors.

In the field translation, agents of type Ai (t) and Âl (t) are described by a field Ψ (A) and Ψ̂
(
Â
)
,

respectively.
In a first step, the variables indexed i such as Ai (t) are replaced by variables A in the expression

of g. The variables indexed j, k, l, m..., such as Aj (t), Ak (t), Âl (t) , Âm (t)... are replaced by A′,A′′,
Â, Â′ , and so on for all the indices in the function. This yields the expression:∑

i

∑
j,k,l,m...

g
(
A,A′,A′′, Â, Â

′
...
)

7A generalisation of equation (10), in which agents interact at different times, and its translation in term of field
is presented in appendix 1.

8 In the following, we will use indifferently the term "field" and the notation Ψ for the random variable or any of
its realization Ψ.

9 In general, one must consider the integral of exp (−S ({Ψα})) over the configurations {Ψα}. This integral is the
partition function of the system.
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In a second step, each sum is replaced by a weighted integration symbol:∑
i

→
∫
|Ψ (A)|2 dA,

∑
j

→
∫
|Ψ (A′)|2 dA′,

∑
k

→
∫
|Ψ (A′′)|2 dA′′

∑
l

→
∫ ∣∣∣Ψ̂(Â

)∣∣∣2 dÂ, ∑
m

→
∫ ∣∣∣Ψ̂(Â′

)∣∣∣2 dÂ′
which leads to the translation:∑

i

∑
j

∑
j,k...

g
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
→

∫
g
(
A,A′,A′′, Â, Â

′
...
)
|Ψ (A)|2 |Ψ (A′)|2 |Ψ (A′′)|2 × ...dAdA′dA′′... (11)

×
∣∣∣Ψ̂(Â

)∣∣∣2 ∣∣∣Ψ̂(Â′
)∣∣∣2 × ...dÂdÂ′...

where the dots stand for the products of square fields and integration symbols needed.

3.2.2 Terms with temporal derivative

In equation (10), the terms that involve a variable temporal derivative are of the form:

∑
i

dA(α)
i (t)

dt
−

∑
j,k,l,m...

f (α)
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

(12)

This particular form represents the dynamics of the α-th coordinate of a variable Ai (t) as a function
of the other agents.

The method of translation is similar to the above, but the time derivative adds an additional
operation.

In a first step, we translate the terms without derivative inside the parenthesis:∑
j,k,l,m...

f (α)
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)
(13)

This type of term has already been translated in the previous paragraph, but since there is no sum
over i in equation (13), there should be no integral over A, nor factor |Ψ (A)|2.

The translation of equation (13) is therefore, as before:∫
f (α)

(
A,A′,A′′, Â, Â

′
...
)
|Ψ (A′)|2 |Ψ (A′′)|2 dA′dA′′

∣∣∣Ψ̂(Â
)∣∣∣2 ∣∣∣Ψ̂(Â′

)∣∣∣2 dÂdÂ′ (14)

A free variable A remains, which will be integrated later, when we account for the external sum∑
i. We will call Λ(A) the expression obtained:

Λ(A) =

∫
f (α)

(
A,A′,A′′, Â, Â

′
...
)
|Ψ (A′)|2 |Ψ (A′′)|2 dA′dA′′

∣∣∣Ψ̂(Â
)∣∣∣2 ∣∣∣Ψ̂(Â′

)∣∣∣2 dÂdÂ′ (15)

In a second step, we account for the derivative in time by using field gradients. To do so, and as a
rule, we replace :

∑
i

dA(α)
i (t)

dt
−
∑
j

∑
j,k...

f (α)
(
Ai (t) ,Aj (t) ,Ak (t) , Âl (t) , Âm (t) ...

)2

(16)
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by: ∫
Ψ† (A)

(
−∇A(α)

(
σ2

A(α)

2
∇A(α) − Λ(A)

))
Ψ (A) dA (17)

The variance σ2
A(α) reflects the probabilistic nature of the model which is hidden behind the field

formalism. This variance represents the characteristic level of uncertainty of the system’s dynamics.
It is a parameter of the model. Note also that in (17), the integral over A reappears at the end,
along with the square of the field |Ψ (A)|2. This square is split into two terms, Ψ† (A) and Ψ (A),
with a gradient operator inserted in between.

3.3 Action functional

The field description is ultimately obtained by summing all the terms translated above and intro-
ducing a time dependency. This sum is called the action functional. It is the sum of terms of the
form (11) and (17), and is denoted S

(
Ψ,Ψ†

)
.

For example, in a system with two types of agents described by two fields Ψ (A)and Ψ̂
(
Â
)
, the

action functional has the form:

S
(
Ψ,Ψ†

)
=

∫
Ψ† (A)

(
−∇A(α)

(
σ2

A(α)

2
∇A(α) − Λ1(A)

))
Ψ (A) dA (18)

+

∫
Ψ̂†
(
Â
)(
−∇Â(α)

(
σ2

Â(α)

2
∇Â(α) − Λ2(Â)

))
Ψ̂
(
Â
)
dÂ

+
∑
m

∫
gm

(
A,A′,A′′, Â, Â

′
...
)
|Ψ (A)|2 |Ψ (A′)|2 |Ψ (A′′)|2 × ...dAdA′dA′′...

×
∣∣∣Ψ̂(Â

)∣∣∣2 ∣∣∣Ψ̂(Â′)∣∣∣2 × ...dÂdÂ′...
where the sequence of functions gm describes the various types of interactions in the system.

4 Probabilistic description of large set of cells and connectivity
functions

We describe a dynamic system of a large number of neurons (N >> 1) and their connectivity
functions. We define their individual equations. Then, we write a probability density for the
configurations of the whole system over time.

4.1 Cells Individual dynamics

We follow the description of [46] for coupled quadratic integrate-and-fire (QIF) neurons, but use
the additional hypothesis that each neuron is characterized by its position in some spatial range.

Each neuron’s potential Xi (t) satisfies the differential equation:

Ẋi (t) = γX2
i (t) + Ji (t) (19)

for Xi (t) < Xp, where Xp denotes the potential level of a spike. When X = Xp, the potential is reset
to its resting value Xi (t) = Xr < Xp. For the sake of simplicity, following ([46]) we have chosen the
squared form γX2

i (t) in (19). However any form f (Xi (t)) could be used. The current of signals
reaching cell i at time t is written Ji (t).

12



Our purpose is to find the system dynamics in terms of the spikes’frequencies, that is neural
activities. First, we consider the time for the n-th spike of cell i, θ(i)

n . This is written as a function
of n, θ(i) (n). Then, a continuous approximation n → t allows to write the spike time variable as
θ(i) (t). We thus have replaced:

θ(i)
n → θ(i) (n)→ θ(i) (t)

The continuous approximation could be removed, but is convenient and simplifies the notations
and computations. We assume now that the timespans between two spikes are relatively small.
The time between two spikes for cell i is obtained by writing (19) as:

dXi (t)

dt
= γX2

i (t) + Ji (t)

and by inverting this relation to write:

dt =
dXi

γX2
i + J (i)

(
θ(i) (n− 1)

)
Integrating the potential between two spikes thus yields:

θ(i) (n)− θ(i) (n− 1) '
∫ Xp

Xr

dX

γX2 + J (i)
(
θ(i) (n− 1)

)
Replacing J (i)

(
θ(i) (n− 1)

)
by its average value during the small time period θ(i) (n) − θ(i) (n− 1),

we can consider J (i)
(
θ(i) (n− 1)

)
as constant in first approximation, so that:

θ(i) (n)− θ(i) (n− 1) '

[
arctan

(√
γ

J(i)(θ(i)(n−1))
X

)]Xp
Xr√

γJ (i)
(
θ(i) (n− 1)

)

=

arctan

(
1
Xr
− 1
Xp

)√J(i)(θ(i)(n−1))
γ

1+
J(n)(θ(n−1))

γXrXp


√
γJ (i)

(
θ(i) (n− 1)

) (20)

To work at the highest level of generality when possible, we write:

θ(i) (n)− θ(i) (n− 1) ≡ G
(
θ(i) (n− 1)

)
understood that for computations and numerical approximations we will use formula (20) for G.

For γ << 1, (20) yields:

θ(i) (n)− θ(i) (n− 1) ≡ G
(
θ(i) (n− 1)

)
=

Xp −Xr

J (i)
(
θ(i) (n− 1)

)
For γ = O (1) and for γ normalized to 1 and

J(n)
(
θ(n−1)

)
XrXp

<< 1, this is:

θ(i) (n)− θ(i) (n− 1) ≡ G
(
θ(i) (n− 1)

)
=

arctan

((
1
Xr
− 1

Xp

)√
J (i)

(
θ(i) (n− 1)

))
√
J (i)

(
θ(i) (n− 1)

) (21)
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The activity or firing rate at t, ωi (t), is defined by the inverse time span (21) between two spikes:

ωi (t) =
1

G
(
θ(i) (n− 1)

)

≡ F
(
θ(i) (n− 1)

)
=

√
J (i)

(
θ(i) (n− 1)

)
arctan

((
1
Xr
− 1

Xp

)√
J (i)

(
θ(i) (n− 1)

))
Since we consider small time intervals between two spikes, we can write:

θ(i) (n)− θ(i) (n− 1) ' d

dt
θ(i) (t)− ω−1

i (t) = εi (t) (22)

where the white noise perturbation εi (t) for each period was added to account for any internal
uncertainty in the time span θ(i) (n)− θ(i) (n− 1). This white noise is independent from the instan-
taneous inverse activity ω−1

i (t). We assume these εi (t) to have variance σ2, so that equation (22)
writes:

d

dt
θ(i) (t)−G

(
θ(i) (t) , J (i)

(
θ(i) (t)

))
= εi (t) (23)

The ωi (t) are computed by considering the overall current which, using the discrete time notation,
is given by:

Ĵ (i) ((n− 1)) = J (i) ((n− 1))+
κ

N

∑
j,m

ωj (m)

ωi (n− 1)
δ

(
θ(i) (n− 1)− θ(j) (m)− |Zi − Zj |

c

)
Tij ((n− 1, Zi) , (m,Zj))

(24)
The quantity J (i) ((n− 1)) denotes an external current. The term inside the sum is the aver-
age current sent to i by neuron j during the short time span θ(i) (n) − θ(i) (n− 1). The function
Tij ((n− 1, Zi) , (m,Zj)) is the connectivity function between cells j and i. It measures the level of
connectivity between i and j. If we consider Tij ((n− 1, Zi) , (m,Zj)) as exogenous, we may assume
that (see [?]):

Tij ((n− 1, Zi) , (m,Zj)) = T ((n− 1, Zi) , (m,Zj))

so that the connectivity function of Zj on Zi only depends on positions and times. It models the
connectivity function as an average connectivity between local zones of the thread. this transfer
function is typically considered as gaussian or decreasing exponentially with the distance between
neurons, so that the closer the cells, the more connected they are.

However, in this paper, the connectivity function is a dynamical object whose dynamic equations
are described in the next paragraph.

We can justify the other terms arising in (24): given the distance |Zi − Zj | between the two cells
and the signals’velocity c, signals arrive with a delay |Zi−Zj |c . The spike emitted by cell j at time
θ(j) (m) has thus to satisfy:

θ(i) (n− 1) < θ(j) (m) +
|Zi − Zj |

c
< θ(i) (n)

to reach cell i during the timespan
[
θ(i) (n− 1) , θ(i) (n)

]
. This relation must be represented by a

step function in the current formula. However given our approximations, this can be replaced by:

δ

(
θ(i) (n− 1)− θ(j) (m)− |Zi − Zj |

c

)
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as in (24). However, this Dirac function must be weighted by the number of spikes emitted during
the rise of the potential. This number is the ratio ωj(m)

ωi(n−1) that counts the number of spikes emitted
by neuron j towards neuron i between the spikes n − 1 and n of neuron i. Again, this is valid
for relatively small timespans between two spikes. For larger timespans, the firing rates should be
replaced by their average over this period of time.

The sum over m and i is the overall contribution to the current from any possible spike of the
thread, provided it arrives at i during the interval θ(i) (n) − θ(i) (n− 1) considered. Note that the
current (24) is partly an endogenous variable. It depends on signals external to i, but depends also
on i through ωi (n− 1). This is a consequence of the intrication between the system’s elements.

In the sequel, we will work in the continuous approximation, so that formula (24) is replaced
by:

Ĵ (i) (t) = J (i) (t) +
κ

N

∫ ∑
j

ωj (s)

ωi (t)
δ

(
θ(i) (t)− θ(j) (s)− |Zi − Zj |

c

)
Tij ((t, Zi) , (s, Zj)) ds (25)

Formula (25) shows that the dynamic equation (22) has to be coupled with the activity equation:

ωi (t) = G
(
θ(i) (t) , Ĵ

(
θ(i) (t)

))
+ υi (t) (26)

=

√
Ĵ (i) (t)

arctan

((
1
Xr
− 1

Xp

)√
Ĵ (i) (t)

) + υi (t)

and J (i) (t) is defined by (25). A white noise υi (t) accounts for the possible deviations from this
relation, due to some internal or external causes for each cell. We assume that the variances of
υi (t) are constant, and equal to η2, such that η2 << σ2.

4.2 Connectivity functions dynamics

We describe the dynamics for the connectivity functions Tij ((n− 1, Zi) , (m,Zj)) between cells. To
do so we adapt the description of ([53]) to our context. In this work, the connectivity functions
depend on some intermediate variables and do not present any space index. The connectivity
between neurons i and j satisifies a differential equation:

dTij
dt

= −Tij (t)

τ
+ λT̂ij (t)

∑
l

δ
(
t−∆tij − tlj

)
(27)

where T̂ij (t) represents the variation in connectivity, due to the synaptic interactions between the
two neurons. The delay ∆tij is the time of arrival at neuton i for a spike of neuron j. The time tlj
accounts for time of neuron j spikes. The sum:∑

l

δ
(
t−∆tij − tlj

)
counts the number of spikes emitted by neuron j and arriving at time t at neuron i.

The variation in connectivity satisfies itself an equation:

dT̂ij
dt

= ρ
(

1− T̂ij (t)
)
Cij (t)

∑
k

δ
(
t− tki

)
− T̂ij (t)Di (t)

∑
l

δ
(
t−∆tij − tlj

)
(28)
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where Cij (t) and Di (t) measure the cumulated postsynaptic and presynaptic activity. The sum:∑
k

δ
(
t− tki

)
counts the number of spikes emitted at time t. Quantities Cij (t) and Di (t) follow the dynamics:

dCij
dt

= −Cij (t)

τC
+ αC (1− Cij (t))

∑
l

δ
(
t−∆tij − tlj

)
(29)

dDi

dt
= −Di (t)

τD
+ αC (1−Di (t))

∑
k

δ
(
t− tki

)
(30)

To translate these equations in our set up, we have to consider connectivity functions of the
form:

Tij ((ni, Zi) , (nj , Zj))

that include the positions of neurons i and j and the parameter ni and nj which are our counting
variables of neurons spikes. However, equations (27), (28), (29), (30) include a time variable.

In our formalism, the time variable θ(i) (ni) is the time at which neuron i produces its ni-th
spike. We should write classical equations depending on these variables.

Moreover, the number of spikes
∑
l δ
(
t−∆tij − tlj

)
emitted by cell j at time tlj and the number

of spikes
∑
k δ
(
t− tki

)
emitted by cell i at time t are proportional to δ

(
θ(j) (nj)− (t−∆tij)

)
ωj (nj)

and δ
(
θ(i) (ni)− t

)
ωj (ni) respectively. Given the introduction of a spatial indices, we have the

relation:
∆tij =

|Zi − Zj |
c

and the first δ function writes:

δ
(
θ(j) (nj)− (t−∆tij)

)
= δ

(
θ(j) (nj)−

(
θ(i) (ni)−

|Zi − Zj |
c

))
δ
(
θ(i) (ni)− t

)
As a consequence, we will write first the connectivity functions from i to j as:

T
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

This function, together with the variation in connectivity:

T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

along with the auxiliary variables:

C
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

and:
D
((
Zi, θ

(i) (ni) , ωi (ni)
))

satisfy the following translations of equations (27), (28), (29), (30):

∇θ(i)(ni)
T
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

(31)

= −1

τ
T
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

+λ
(
T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
)))

δ

(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
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where T̂ measures the variation of T due to the signals send from j to i and the signals emitted by
i. It satisfies the following equation:

∇θ(i)(ni)
T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

(32)

= ρδ

(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
×
{(
h (Z,Z1)− T̂

((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
)))

C
(
θ(i) (n)

)
hC (ωi (ni))

−D
(
θ(i) (n)

)
T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

hD (ωj (nj))
}

where hC and hD are increasing functions. In the set of equations (27), (28), (29), (30):

hC (ωi (ni)) = ωi (ni)

hD (ωj (nj)) = ωj (nj)

We depart slightly from ([53]) by the introduction of the function h (Z,Z1) (they choose h (Z,Z1) =

1), to implement some loss due to the distance. We may choose for example:

h (Z,Z1) = exp

(
−|Zi − Zj |

νc

)

where ν is a parameter. Equation (32) involves two dynamic factors C
(
θ(i) (n− 1)

)
andD (θi (n− 1)).

The factor C
(
θ(i) (n− 1)

)
describes the accumulation of input spikes. It is solution of the differential

equation:

∇θ(i)(n−1)C
(
θ(i) (n− 1)

)
= −

C
(
θ(i) (n− 1)

)
τC

(33)

+αC

(
1− C

(
θ(i) (n− 1)

))
ωj

(
θ(i) (n− 1)− |Zi − Zj |

c

)
The term D (θi (n− 1)) is proportional to the accumulation of output spikes and is solution of:

∇θ(i)(n−1)D
(
θ(i) (n− 1)

)
= −

D
(
θ(i) (n− 1)

)
τD

+ αD

(
1−D

(
θ(i) (n− 1)

))
ωi (ni) (34)

For the purpose of field translation, we have to change the variables in the derivatives by the
counting variable ni and replace ∇θ(i)(ni)

' ωi (ni)∇ni in the previous dynamics equations. We thus
rewrite the dynamic equations in the following form:

For the connectivity T :

∇niT
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

(35)

= − 1

τωi (ni)
T
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

+
λ

ωi (ni)

(
T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
)))

δ

(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
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For the variation in connectivity T̂ :

∇ni T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

(36)

=
ρ

ωi (ni)
δ

(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
×
{(
h (Z,Z1)− T̂

((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
)))

C
(
θ(i) (n− 1)

)
hC (ωi (ni))

−D
(
θ(i) (n− 1)

)
T̂
((
Zi, θ

(i) (ni) , ωi (ni)
)
,
(
Zj , θ

(j) (nj) , ωj (nj)
))

hD (ωj (nj))
}

and for the auxiliary variables C and D:

∇niC
(
θ(i) (n− 1)

)
= −

C
(
θ(i) (n− 1)

)
τCωi (ni)

(37)

+αC

(
1− C

(
θ(i) (n− 1)

)) ωj (Zj , θ(i) (n− 1)− |Zi−Zj |c

)
ωi (ni)

∇niD
(
θ(i) (n− 1)

)
= −

D
(
θ(i) (n− 1)

)
τDωi (ni)

+ αD

(
1−D

(
θ(i) (n− 1)

))
(38)

Then, to describe the connectivity by a field, we have to describe the connectivity as a set of
vectors depending of a set of double indices kl (replacing ij) and interacting with the activities,
seen as independent variables indexed by i, j...

We thus describe connectivity by a set of matrices:(
Tkl (nkl) , T̂kl (nkl) , (Zkl (nkl) = (Zk,, Zl)) , θ

(kl) (nkl) , ωk (nkl) , ω
′
l (nkl) , Ckl (nkl) , Dk (nkl)

)
where nkl is an internal parameter given by the average counting variable for cells or synapses firing
simultaneously at point Zk,.

Then, we replace the description (35), (36), (37), (38) by a set of equations in which connec-
tivities Tkl (nkl) interact with all pairs of neurons at points Zk, and Zl whose average firing rates at
time θ(kl) (nkl) and θ(kl) (nkl)− |Zk−Zl|c are given by ωk (nkl) , ω

′
l (nkl) respectively. As a consequence,

we replace the notion of connectivity Tij ((n− 1, Zi) , (m,Zj)) between two specific neurons i and j
by the average connectivity between the two sets of neurons with identical activities at each ex-
tremity of the segment (Zi, Zj) This approximation is justified if we consider that neurons located
at the same place and firing at the same rate can be considered as closely connected and in average
identical. Alternatively, this can also be justified if we consider one neuron per spatial location
and assume each neuron as a complex entity sending several signals simultaneously. Under this
hypothesis, the average considered are taken over the multiple activities of the same neuron10 .

Stated mathematically, the variable nkl is replacd by an average nkl = n̄i at a given time θ(kl) and
we assume that in average, connectivity variable Tkl (nkl) interacts with all neurons pairs located
at (Zk,, Zl) at times θ(i) (ni) = θ(kl) (nkl). Writing ω̄ (Zi, ni) for the average activity, we impose
ω̄ (Zi, ni) = ωk (nkl) and ω̄ (Zj , nj) = ω′l (nkl) and θ(j) (nj) = θ(kl) (nkl) − |Zk−Zl|c respectively. The
densities Tkl (nkl) are thus the set of all connections between points Zk, and Zl between sets of
synchronized neurons at Zk and synchronized neurons at Zl, i.e. between set of neurons at this
points or alternatively between multiple synapses for one or a few number of cells. In this point of
view, we replace ∇θ(i)(ni)

' ωi (ni)∇ni by:

∇θ(kl)(nkl)
' ∂nkl

∂θ(kl) (nkl)
∇nkl = ω̄ (Zi, ni)∇nkl

10See section 5.2.1 for more details about these alternative interpretations.
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As a consequence, the dynamic equations (35), (36), (37), (38) are replaced by:

∇nklTkl (nkl) =

−∑
i,ni

1

τ ω̄ (Zi, ni)
Tkl (nkl) +

λ

ω̄ (Zi, ni)
T̂kl (nkl)

 (39)

×δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (Zk − Zi) δ (ωk (nkl)− ω̄ (Zi, ni))

∇nkl T̂ (nkl) (40)

=

∑
i,ni

(
h (Zk, Zl)− T̂ (nkl)

)
Ckl (nkl)hC (ωi (ni))−

∑
j,nj

Dk (nkl) T̂ (nkl)hD (ωj (nj))


× ρ

ω̄ (Zi, ni)
δ

(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
δ
(
θ(i) (ni)− θ(kl) (nkl)

)
×δ ((Zk,, Zl)− (Zi,, Zj)) δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

∇nklC (nkl) =

− C (nkl)

τC ω̄ (Zi, ni)
+
∑
j,nj

αC (1− Ckl (nkl))
ωj (nj)

ω̄ (Zi, ni)

 (41)

×δ
(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ ((Zk,, Zl)− (Zi,, Zj))

×δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

∇nklDk (nkl) =

− Dk (nkl)

τDω̄ (Zi, ni)
+

1

ω̄ (Zi, ni)

∑
i,ni

αD (1−Dk (nkl))ωi (ni)

 (42)

×δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (Zk − Zi) δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

Similarly, note that we can also rewrite the currents equation (24) as:

Ĵ (i) ((n− 1)) = J (i) ((n− 1))+
κ

N

∑
j,m

ωj (m)

ωi (n− 1)
δ

(
θ(i) (n− 1)− θ(j) (m)− |Zi − Zj |

c

)
Tij ((n− 1, Zi) , (m,Zj))

with:

Tij ((ni, Zi) , (mj , Zj)) =
∑
kl

Tkl (nkl) δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

(43)

4.3 Probability density for the system

4.3.1 Individual neurons

Due to the stochastic nature of equations (23) and (26), the dynamics of a single neuron can be
described by the probability density P

(
θ(i) (t) , ω−1

i (t)
)
for a path

(
θ(i) (t) , ω−1

i (t)
)
which is given

by, up to a normalization factor:

P
(
θ(i) (t) , ω−1

i (t)
)

= exp (−Ai) (44)
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where:

Ai =
1

σ2

∫ (
d

dt
θ(i) (t)− ω−1

i (t)

)2

dt+

∫ (
ω−1
i (t)−G

(
θ(i) (t) , Ĵ

(
θ(i) (t)

)))2

η2
dt (45)

(see [48] and [49]). The integral is taken over a time period that depends on the time scale of the
interactions. Actually, the minimization of (45) imposes both (22) and (26), so that the probability
density is, as expected, centered around these two conditions, i.e. (22) and (26) are satisfied in
mean. A probability density for the whole system of neurons is obtained by summing Si over all
agents. We thus define the statistical weight for the cells:

P
((
θ(i) (t) , ω−1

i (t) , Zi

)
i=1...N

)
= exp (−A) (46)

with:

A =
∑
i

Ai =
∑
i

1

σ2

∫ (
d

dt
θ(i) (t)− ω−1

i (t)

)2

dt+

∫ (
ω−1
i (t)−G

(
θ(i) (t) , Ĵ

(
θ(i) (t)

)))2

η2
dt (47)

and (using (43)):

Ĵ (i) ((n− 1)) = J (i) ((n− 1)) +
κ

N

∑
j,m

ωj (m)

ωi (n− 1)
δ

(
θ(i) (n− 1)− θ(j) (m)− |Zi − Zj |

c

)
Tij ((n− 1, Zi) , (m,Zj))

×
∑
kl

Tkl (nkl) δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (ωk (nkl)− ωi (ni)) δ (ωl (nkl)− ωj (m))

4.3.2 Connectivity functions

The statistical exponent associated to the connectivity functions is obtained as in the previous
paragraph. We obtain the statistical weight:∏
k,l

P
(
Tkl (nkl) , T̂kl (nkl) , (Zkl (nkl) = (Zk,, Zl)) , θ

(kl) (nkl) , ωk (nkl) , ω
′
l (nkl) , Ckl (nkl) , Dk (nkl)

)
= exp (−B)

where:

B =
∑
kl

(
∇nklTkl (nkl)−B

(1)
kl

)2

+
(
∇nkl T̂ (nkl)−B(2)

kl ∇nkl
)2

(48)

+
(
C (nkl)−B(3)

kl

)2

+
(
∇nklDk (nkl)−Bk

)2
and:

B
(1)
kl =

−∑
i,ni

1

τ ω̄ (Zi, ni)
Tkl (nkl) +

λ

ω̄ (Zi, ni)
T̂kl (nkl)

 (49)

×δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (Zk − Zi) δ (ωk (nkl)− ω̄ (Zi, ni))

B
(2)
kl =

∑
i,ni

(
h (Zk, Zl)− T̂ (nkl)

)
Ckl (nkl)hC (ωi (ni))−

∑
j,nj

Dk (nkl) T̂ (nkl)hD (ωj (nj))

 (50)

× ρ

ω̄ (Zi, ni)
δ

(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
δ
(
θ(i) (ni)− θ(kl) (nkl)

)
×δ ((Zk,, Zl)− (Zi,, Zj)) δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))
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B
(3)
kl =

− C (nkl)

τC ω̄ (Zi, ni)
+
∑
j,nj

αC (1− Ckl (nkl))
ωj (nj)

ω̄ (Zi, ni)

 (51)

×δ
(
θ(i) (ni)− θ(j) (nj)−

|Zi − Zj |
c

)
δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ ((Zk,, Zl)− (Zi,, Zj))

×δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

Bk =

− Dk (nkl)

τDω̄ (Zi, ni)
+

1

ω̄ (Zi, ni)

∑
i,ni

αD (1−Dk (nkl))ωi (ni)

 (52)

×δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (Zk − Zi) δ (ωk (nkl)− ω̄ (Zi, ni)) δ (ωl (nkl)− ω̄ (Zj , nj))

4.3.3 Probability density for the full system

The probability for the full system is obtained by the product:∏
k,l

P
(
Tkl (nkl) , T̂kl (nkl) , (Zkl (nkl) = (Zk,, Zl)) , θ

(kl) (nkl) , ωk (nkl) , ω
′
l (nkl) , Ckl (nkl) , Dk (nkl)

)
(53)

×P
((
θ(i) (t) , ω−1

i (t) , Zi

)
i=1...N

)
= exp (−B) exp (−A)

5 Field theoretic description of the system

5.1 Translation of formula (53) in terms of field theory

In our context two fields are necessary. The field representing the set of neurons depends on the three
variables (θ, Z, ω), and is denoted Ψ (θ, Z, ω). The connectivity functions are characterized by the
set of variables

(
T, T̂ , ω, ω′, θ, Z, Z ′, C,D

)
and represented by the field Γ

(
T, T̂ , ω, ω′, θ, Z, Z ′, C,D

)
.We

provide an interpretation of the various fields at the end of this paragraph.

5.1.1 Translation of (47)

The dynamics of neurons is described by an action functional for the field Ψ (θ, Z, ω) and its associ-
ated partition function. This partition function captures both collective and individual aspects of
the system, enabling the retrieval of correlation functions for number of neurons.

The field theoretic version of (45) is obtained using (47). The correspondence detailed in
[48][49]) yields an action S (Ψ) for a field Ψ (θ, Z, ω) and a statistical weight exp (− (S (Ψ))) for each
configuration Ψ (θ, Z, ω) of this field. The functional S (Ψ) is decomposed in two parts corresponding
to the two contributions in (47).

The first term of (47):
1

σ2

∫ (
d

dt
θ(i) (t)− ω−1

i (t)

)2

dt (54)

is a term with temporal derivative. Its form is simple since the function f (α) in (16) depends only
on the variable Xi (t) =

(
θ(i) (t) , ω−1

i (t) , Zi

)
. Actually f (θ) (Xi (t)) = ω−1

i (t). Using (17), the term

(54) is thus replaced by the corresponding quadratic functional in field theory:

−1

2
Ψ† (θ, Z, ω)∇

(
σ2

2
∇− ω−1

)
Ψ (θ, Z, ω) (55)
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where σ2 is the variance of the errors εi.
The field functional that corresponds to the second term of (45):

V =

∫ (
ω−1
i (t)−G

(
θ(i) (t) , Ĵ

(
θ(i) (t)

)))2

η2
dt

is obtained by expanding the formula (25) for the current induced by all j:

V =
1

2η2

∫
dt
∑
i

(
ω−1
i (t) (56)

− G

J (θ(i) (t) , Zi

)
+
κ

N

∫
ds
∑
j

ωj (s)Tij ((t, Zi) , s, Zj)

ωi (t)
δ

(
θ(i) (t)− θ(j) (s)− |Zi − Zj |

c

)2

with η << 1, which is the constraint (26) imposed stochastically. Its corresponding potential in
field theory is obtained straightforwardly by using the translation (11):

1

2η2

∫
|Ψ (θ, Z, ω)|2

ω−1 −G

J (θ, Z) +

∫
κ

N

ω1T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1, ω1

)∣∣∣∣2 dZ1dω1

2

(57)
and T

(
Z, θ, Z1, θ − |Z−Z1|

c

)
is obtained by the translation of the term (43):∑

kl

Tkl (nkl) δ
(
θ(i) (ni)− θ(kl) (nkl)

)
δ (ωk (nkl)− ωi (ni)) δ (ωl (nkl)− ωj (m))

→
∫
T
∣∣∣Γ(T, T̂ , ω̂, ω̂′, θ̂, Ẑ, Ẑ ′, C,D)∣∣∣2 δ (θ − θ̂) δ (ω̂ − ω) δ (ω̂ − ω1) δ

((
Ẑ, Ẑ ′

)
− (Z,Z1)

)
=

∫
T
∣∣∣Γ(T, T̂ , ω, ω1, θ, Z, Z1, C,D

)∣∣∣2 dTdT̂dCdD ≡ T (Z, θ, Z1, θ −
|Z − Z1|

c

)
To simplify, we will write in the sequel:

T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
=

∫
T
∣∣∣Γ(T, T̂ , ω, ω1, θ, Z, Z1, C,D

)∣∣∣2 dTdT̂dCdD ≡ T (Z, θ, Z1) (58)

which represents the average connectivity between points Z and Z1 in state Γ
(
T, T̂ , ω, ω1, θ, Z, Z1, C,D

)
.

The field action is then the sum of (55) and (57):

S = −1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

)
Ψ (θ, Z, ω) (59)

+
1

2η2

∫
|Ψ (θ, Z, ω)|2

(
ω−1 −G

(
J (θ, Z) +

∫
κ

N

ω1

ω

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1, ω1

)∣∣∣∣2 T (Z, θ, Z1) dZ1dω1

))2

5.1.2 Translation for connectivity dynamics (48)

The translation of the four action terms describing the connectivity dynamics (49), (50), (51) and
(52) in (48) is straightforward. We obtain four contributions:

S
(1)
Γ =

∫
Γ†
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
∇T

(
σ2
T

2
∇T +OωT

)
Γ
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)

(60)
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S
(2)
Γ =

∫
Γ†
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
∇T̂

(
σ2
T̂

2
∇T̂ +Oω

T̂

)
Γ
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)

(61)

S
(3)
Γ =

∫
Γ†
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
∇C

(
σ2
C

2
∇C +OωC

)
Γ
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)

(62)

S
(4)
Γ =

∫
Γ†
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
∇D

(
σ2
D

2
∇D +OωD

)
Γ
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)

(63)

with:

OωC =

 C

τC ω̄
−
αC (1− C)

∫
ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′

)∣∣∣∣2 dω′
ω̄

 δ ((ωΓ, ω
′
Γ)− (ω̄, ω̄′)) (64)

OωD =
D

τDω̄
− αD (1−D)

∫
ω |Ψ (θ, Z, ω)|2 dω
ω̄

δ ((ωΓ, ω
′
Γ)− (ω̄, ω̄′))

Oω
T̂

= − ρ
ω̄

((
h (Z,Z ′)− T̂

)
C

∫
|Ψ (θ, Z, ω)|2 hC (ω) dω

−DT̂
∫ ∣∣∣∣Ψ(θ − |Z − Z ′|c

, Z ′, ω′
)∣∣∣∣2 hD (ω′) dω′

)
δ ((ωΓ, ω

′
Γ)− (ω̄, ω̄′))

OωT = −
(
− 1

τ ω̄
T +

λ

ω̄
T̂

)
δ ((ωΓ, ω

′
Γ)− (ω̄, ω̄′))

Here:

ω̄ =

∫
ω |Ψ (θ, Z, ω)|2 dω∫
|Ψ (θ, Z, ω)|2 dω

ω̄′ =

∫
ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′

)∣∣∣∣2 dω′∫ ∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′
)∣∣∣2 dω′

5.2 Full action for the system

The full action for the system is obtained by gathering the different terms:

−1

2

∫
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

)
Ψ (θ, Z, ω) +

1

2η2

(
S

(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

)
(65)

with S(1)
Γ , S(2)

Γ , S(3)
Γ , S(4)

Γ given by (60), (61), (62), (63).

5.2.1 Remark: interpretation of the various field

The action functional depends on two fields: Ψ (θ, Z, ω) and Γ
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
. These two

abstract quantities will enable us to derive the dynamic state of the entire system and subsequently
study transitions between different states. However, the squared modulus of the two functions
can be interpreted in terms of statistical distribution, depending on the chosen description. If we
consider a system of simple cells spread along the thread, the function |Ψ (θ, Z, ω)|2 measures at
time θ, the density of active cells at point Z with activity ω. In the perspective of complex cells
with multiple axons and dendrites, we can consider that one cell stands at Z, and |Ψ (θ, Z, ω)|2
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measures for that cell the density of axons with activity ω. A similar interpretation works for
Γ
(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
. In the perspective of system of simple cells "accumulated" in the

neighborhood of Z,
∣∣∣Γ(T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)∣∣∣2 measures the density of connections of value T

(and auxiliary variabls T̂ , C,D) between the set of cells located at points Z and Z ′ with activity
ωΓ and ω′Γ. In the context of complex cells, it describes the density of connections with strength T
between sets of axons nd dendrites of cells with activity ωΓ, ω

′
Γ.

5.3 Projection on dependent activity states and effective action:

We have shown in ([52]) that some simplifications arise in the action functional. Using the fact
that η2 << 1, and noting that in this case, field configurations Ψ (θ, Z, ω) such that:

ω−1 −G
(
J (θ, Z) +

∫
κ

N

ω1

ω

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1, ω1

)∣∣∣∣2 T (Z, θ, Z1) dZ1dω1

)
6= 0

have negligible statistical weight, we can simplify (59) and restrict the fields to those of the form:

Ψ (θ, Z) δ
(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
(66)

where ω−1 (J, θ, Z,Ψ) satisfies:

ω−1
(
J, θ, Z, |Ψ|2

)
= G

J (θ, Z) +

∫
κ

N

ω1T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1, ω1

)∣∣∣∣2 dZ1dω1


= G

J (θ, Z) +

∫
κ

N

ω1T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2

× δ

(
ω−1

1 − ω−1

(
J, θ − |Z − Z1|

c
, Z1, |Ψ|2

))
dZ1dω1

)
The last equation simplifies to yield:

ω−1
(
J, θ, Z, |Ψ|2

)
(67)

= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 dZ1


The configurations Ψ (θ, Z, ω) that minimize the potential (57) can now be considered: the field
Ψ (θ, Z, ω) is projected on the subspace (66) of functions of two variables, and we can therefore
replace in (57):

ω → ω
(
J, θ, Z, |Ψ|2

)
(68)

ω′ → ω

(
J, θ − |Z − Z

′|
c

, Z ′, |Ψ|2
)

(69)

The "classical" effective action becomes (see appendix 1):

−1

2
Ψ† (θ, Z)

(
∇θ
(
σ2

2
∇θ − ω−1

(
J, θ, Z, |Ψ|2

)))
Ψ (θ, Z) (70)
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with ω−1
(
J, θ, Z, |Ψ|2

)
given by equation (67). As in ([52]) we add to this action a stabilization

potential V (Ψ) ensuring an average activity of the system. The precise form of this potential is
irrelevant here, but we assume that it has a minimum Ψ0 (θ, Z).

The projection on dependent activity also applies to connectivity action terms. We can thus
replace Γ

(
T, T̂ , ωΓ, ω

′
Γ, θ, Z, Z

′, C,D
)
by Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
and the action becomes:

Sfull = −1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

(
J, θ, Z, |Ψ|2

))
Ψ (θ, Z) + V (Ψ) (71)

+
1

2η2

(
S

(0)
Γ + S

(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

)
+ U

({
|Γ (θ, Z, Z ′, C,D)|2

})
with S(1)

Γ , S(2)
Γ , S(3)

Γ , S(4)
Γ now given by:

S
(1)
Γ =

∫
Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)
∇T

(
σ2
T

2
∇T +OT

)
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
(72)

S
(2)
Γ =

∫
Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)
∇T̂

(
σ2
T̂

2
∇T̂ +OT̂

)
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
(73)

S
(3)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′, C,D

)
∇C

(
σ2
C

2
∇C +OC

)
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
(74)

S
(4)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′, C,D

)
∇D

(
σ2
D

2
∇D +OD

)
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
(75)

where:

OC =
C

τCω
(
J, θ, Z, |Ψ|2

) − αC (1− C)ω

(
J, θ − |Z−Z

′|
c , Z ′, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2

ω
(
J, θ, Z, |Ψ|2

) (76)

OD =
D

τDω
(
J, θ, Z, |Ψ|2

) − αD (1−D) |Ψ (θ, Z)|2

OT̂ = − ρ

ω
(
J, θ, Z, |Ψ|2

) ((h (Z,Z ′)− T̂
)
C |Ψ (θ, Z)|2 hC

(
ω
(
J, θ, Z, |Ψ|2

))

−DT̂
∣∣∣∣Ψ(θ − |Z − Z ′|c

, Z ′
)∣∣∣∣2 hD (ω(J, θ − |Z − Z ′|c

, Z ′, |Ψ|2
)))

OT = −

− 1

τω
(
J, θ, Z, |Ψ|2

)T +
λ

ω
(
J, θ, Z, |Ψ|2

) T̂


In these equations, the averages ω̄ and ω̄′ have been replaced by ω
(
J, θ, Z, |Ψ|2

)
and ω

(
J, θ − |Z−Z

′|
c , Z ′, |Ψ|2

)
as a consequence of the projection.

In (71), we added a potential:

U
({
|Γ (θ, Z, Z ′, C,D)|2

})
= U

(∫
T
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 dTdT̂) (77)

that models the constraint about the number of active connections in the system.
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Part II. Structural aspects of the system.
Background fields, averages
The following sections concentrate on solving the saddle-point equations for (71). Considering that
the time scale for cell activity is shorter than that for connectivities, we solve in first approximation
the saddle-point equation for the neuron field action, given the connectivity field. Subsequently, we
calculate the background field for connectivities. This ultimately leads to the equilibrium equations
for average connectivity variables and cell activities.

6 Background states equations for neuron field and activities de-
pending on connectivty functions

Our goal is to find the possible background states of action (71). In principle we should minimize
Sfull both over the neurons field

(
Ψ,Ψ†

)
and the connectivity field

(
Γ,Γ†

)
. However, the time scale of

the neuron field is lower than that of the connectivity field. To obtain an effective action for
(
Γ,Γ†

)
,

we intend to integrate over the degrees of freedom for the field Ψ in the partition function defined
by Sfull in (71). In first approximation, this corresponds to set

(
Ψ,Ψ†

)
to its backround obtained

through the minimization of the effective action, written SΨ

(
Ψ,Ψ†

)
. The series expansion of the

effective action has been computed in ([52]). At the lowest order in perturbation, this corresponds
to modify the action by a translation in |Ψ|2:

SΨ

(
Ψ,Ψ†

)
=− 1

2
Ψ† (θ, Z, ω)∇

(
σ2
θ

2
∇− ω−1

(
J, θ, Z,G0 + |Ψ|2

))
Ψ (θ, Z) + V (Ψ)

where G0 is computed in ([52]), it is given by:

G0 = G0 (Z,Z)

where G0 (Z,Z) is the static Green function for the field Ψ. At the first order corrections, the
activities defined classically by formula (67) are now defined by the equation:

ω−1
(
J, θ, Z, |Ψ|2

)
(78)

= G

J (θ, Z) +

∫
κ

N

ω′T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω

(
G0 +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1


This equation depends on both on the external currents J (θ, Z) and the fields Ψ and Γ through
the expression (58) of T

(
Z, θ, Z1, θ − |Z−Z1|

c

)
. At the scale of activities, T

(
Z, θ, Z1, θ − |Z−Z1|

c

)
can

be considered quasi static, allowing us to find quasi-static equilibria for ω−1
(
J, θ, Z, |Ψ|2

)
and∣∣∣Ψ(θ − |Z−Z1|

c , Z1

)∣∣∣2 as functions of T (Z, θ, Z1). This result will be reintroduced in the dynam-
ics for the background field Γ.

The minimization equation for the background field becomes:

−∇
(
σ2
θ

2
∇− ω−1

(
J, θ, Z,G0 + |Ψ|2

))
+

δV (Ψ)

δΨ (θ, Z)
= 0 (79)

and the solutions of (79) are functions of the connectivities.
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7 Background state equations for Γ under simplifying assumptions

The minimization equation of (71) for the connectivity functions background states have the form:

0 =
δ

Γ†
(
T, T̂ , θ, Z, Z ′, C,D

) (S(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ + U

({
|Γ (θ, Z, Z ′, C,D)|2

})
+ SΨ

(
Ψ,Ψ†

))
(80)

and:

0 =
δ

Γ
(
T, T̂ , θ, Z, Z ′, C,D

) (S(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ + U

({
|Γ (θ, Z, Z ′, C,D)|2

})
+ SΨ

(
Ψ,Ψ†

))
(81)

where |Ψ (θ, Z)|2 is defined by (79).
To solve these equations, we introduce some simplifying assumptions. A more formal treatment

of these equations is given in appendix 2.

7.1 Use of background neuron field

The first simplification uses equation (79) to set the background field Ψ (θ, Z) to its average. As
a consequence, we will replace in the sequel |Ψ (θ, Z)|2 by its average

〈
|Ψ (θ, Z)|2

〉
. To simplify the

notations, we will write: 〈
|Ψ (θ, Z)|2

〉
→ |Ψ (θ, Z)|2

The activities are thus estimated for these averages. Moreover, using (58), (78) and (79), the
averages depend on: {

T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)}
(Z,θ,Z1)

(82)

where:

T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
=

∫
T
∣∣∣Γ(T, T̂ , ω, ω1, θ, Z, Z1, C,D

)∣∣∣2 dTdT̂dCdD ≡ T (Z, θ, Z1) (83)

7.2 Neglecting the derivatives of SΨ

(
Ψ,Ψ†

)
Given that the neuron fields

(
Ψ,Ψ†

)
are set to their background field values, the derivatives od

SΨ

(
Ψ,Ψ†

)
simplify. Actually in this case:

δSΨ

(
Ψ,Ψ†

)
δΨ

=
δSΨ

(
Ψ,Ψ†

)
δΨ†

= 0

and the derivatives with respect to connectivity fields reduce to partial derivatives:

δSΨ

(
Ψ,Ψ†

)
δΓ†

(
T, T̂ , θ, Z, Z ′, C,D

) =
∂SΨ

(
Ψ,Ψ†

)
∂Γ†

(
T, T̂ , θ, Z, Z ′, C,D

)
δ

δΓ
(
T, T̂ , θ, Z, Z ′, C,D

) =
∂SΨ

(
Ψ,Ψ†

)
∂Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
These partial derivatives involve the derivatives of G in (67) with respect to the connectivity field.
However, due to the disparity in time scales between activities and connectivities, a modification of
Γ and Γ† initially modifies the density of active axons/dentrite, subsequently influencing the level
of activity. As a result, the partial derivatives can thus be neglected in first approximation11 .
11 Including these derivatives in the saddle point equations for connectivities would modify these equation by a

quasi linear contribution 1
2
κ
N

Ψ† (θ, Z, ω)∇G′
(
G−1

(
ω−1

(
J, θ, Z, |Ψ|2

)))
Ψ (θ, Z)TΓ. This contribution shifts slightly

the average connectivities. In a quasi static approximation, it can be neglected.
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7.3 Neglecting backreaction contributions

equation (80) (there is a similar treatment for (81)) becomes:

0 =

(
∇C

(
σ2
C

2
∇C +OC

)
+∇D

(
σ2
C

2
∇D +OD

)
+∇T

(
σ2
C

2
∇T +OT

)
+∇T̂

(
σ2
C

2
∇T̂ +OT̂

)
(84)

+ K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
T +

δU
({
|Γ (θ, Z, Z ′, C,D)|2

})
δΓ†

(
T, T̂ , θ, Z, Z ′, C,D

)
Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
and K is given by:

K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
=

∫
Γ†
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
(85)

δW
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 Γ

(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
d
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
with:

W
(
T, T̂ , θ, Z, Z ′, C,D

)
= ∇COC +∇DOD +∇TOT +∇T̂OT̂

The last term in (84) arises from the dependency of averages in Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
as given in (82).

It represents the backreaction of the system as a whole when a variation in Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
occurs. This term can be considered as a correction and will be disregarded in the sequel. Appendix
2 includes this contributions and computes its impact on the background state.

Note that neglecting W
(
T, T̂ , θ, Z, Z ′, C,D

)
amounts to consider in (92) that the action:

S
(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

is quadratic in Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
.

7.4 Separating variables in the connectivty field

The third simplification arises from the fact that in (92) the dependency of the field in the variables
C and D is independent from the dependency in T and T̂ . We thus start by the minimization
of S(3)

Γ + S
(4)
Γ . We assume the existence of non-trivial minima Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
, and we will

determine, in the end, a condition for the existence of such states.
Furthermore, the solutions for Γ will depend on |Ψ (θ, Z)|2 and ω

(
J, θ, Z, |Ψ|2

)
. These fields, in

turn, depend as functionals on the entire collection
{

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)}
(Z,Z′)

, or, in first approx-

imation, on the norm ‖Γ‖2. This implies that Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
wil satisfy some compatibility

conditions that will define the equilibrium of the system. This equilibrium will be computed in the
next section.

8 Solutions for the background state equations

8.1 Principle

As a consequence of our simplifying assumptions, we can factor the solutions of the minimization
equations as:

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
= Γ1 (Z,Z ′, C) Γ2 (Z,Z ′, D) Γ

(
T, T̂ , θ, Z, Z ′

)
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and minimize first:
S

(3)
Γ + S

(4)
Γ

to find Γ1 (Z,Z ′, C) and Γ2 (Z,Z ′, D) along with the average values of C and D in these states.When
these functions are determined, we substitute their expression in:

S
(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

and minimize this action with respect to Γ
(
T, T̂ , θ, Z, Z ′

)
. The equations for these functions allow to

find the consistency equations for the average values of
(
T, T̂

)
in the state Γ

(
T, T̂ , θ, Z, Z ′

)
. Given

the threshold to creating connections, several possible solutions arise. These values are then used
to derive the final form of the possible states Γ

(
T, T̂ , θ, Z, Z ′

)
.

8.2 Background state for C and D

We first transform the terms involving the gradients ∇C and ∇D in S
(3)
Γ + S

(4)
Γ by changing the

variables. Starting with:

S
(3)
Γ + S

(4)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′, C,D

)
×
(
∇C

(
σ2
C

2
∇C +OC

)
+∇D

(
σ2
D

2
∇D +OD

))
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
(86)

where OC and OD are defined in (76).
We considerthechange of variables:

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
→ Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
exp

(∫
1

σ2
D

ODdD

)
exp

(
1

σ2
C

∫
OCdC

)
and:

Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)
→ Γ†

(
T, T̂ , θ, Z, Z ′, C,D

)
exp

(
−
∫

1

σ2
D

ODdD

)
exp

(
− 1

σ2
C

∫
OCdC

)
As a consequence, the terms involving the gradients ∇C and ∇D in (71) rewrite:

Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)(σ2
C

2
∇2
C −

1

2σ2
C

O2
C

+
1

2

 1

τCω
+ αC

ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′

)∣∣∣∣2
ω

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)

and:

Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)
×
(
σ2
D

2
∇2
D −

1

2σ2
D

O2
D +

1

2

(
1

τDω
+ αD |Ψ (θ, Z)|2

))
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
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where we use the notation:

ω ≡ ω
(
J, θ, Z, |Ψ|2

)
ω′ ≡ ω

(
J, θ − |Z − Z

′|
c

, Z ′, |Ψ|2
)

and ω and ω′ are defined by equation (67):

ω−1
(
J, θ, Z, |Ψ|2

)
= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
∣∣∣Γ(T, T̂ , θ, Z, Z1

)∣∣∣2
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 dZ1


The field Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
can be written as a product:

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
= Γ1 (Z,Z ′, C) Γ2 (Z,Z ′, D) Γ

(
T, T̂ , θ, Z, Z ′

)
and since we are looking for non trivial background states, i.e. states with positive norm, we
can constrain Γ1 (Z,Z ′, C) and Γ2 (Z,Z ′, D) to have a norm equal to 1, so that Γ1 (Z,Z ′, C) and
Γ2 (Z,Z ′, D) satisfy: (

σ2
C

2
∇2
C −

1

2σ2
C

O2
C −

1

2
aC (Z) + λ1 (Z)

)
Γ1 (Z,Z ′, C) = 0 (87)

(
σ2
D

2
∇2
D −

1

2σ2
D

O2
D −

1

2
aD (Z) + λ2 (Z)

)
Γ2 (Z,Z ′, D) = 0 (88)

with:

aC (Z) =
1

τCω
+ αC

ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′

)∣∣∣∣2
ω

(89)

aD (Z) =
1

τDω
+ αD |Ψ (θ, Z)|2

These equations can be rewritten by defining the averages 〈C (θ)〉 and 〈D (θ)〉:

C → 〈C (θ)〉 =
αC

ω′
∣∣∣∣∣Ψ
(
θ− |Z−Z

′|
c ,Z′

)∣∣∣∣∣
2

ω

1
τCω

+ αC
ω′
∣∣∣∣Ψ(θ−|Z−Z′|c ,Z′

)∣∣∣∣2
ω

=

αCω
′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣∣2
1
τC

+ αCω′
∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣2 ≡ C (θ) (90)

D → 〈D (θ)〉 =
αDω |Ψ (θ, Z)|2

1
τD

+ αDω |Ψ (θ, Z)|2
≡ D (θ) (91)

so that: (
σ2
C

2
∇2
C −

1

2σ2
C

(aC (Z) (C − C (θ)))
2 − 1

2
aC (Z) + λ1 (Z)

)
Γ1 (Z,Z ′, C) = 0 (92)

and: (
σ2
D

2
∇2
D −

1

2σ2
D

(aD (Z) (D −D (θ)))
2 − 1

2
aD (Z) + λ2 (Z,Z ′)

)
Γ2 (Z,Z ′, D) = 0 (93)

30



Note that we can consider C (θ) and D (θ) as slowly varying, given that 1
τC

<< 1, 1
τD

<< 1. Moreover,

the value |Ψ (θ, Z)|2 may also be considered as slowly varying in time, as this background field
represents the average activity of the cells at point Z. Consequently, Γ1 (Z,Z ′, C) and Γ2 (Z,Z ′, D)

are slowly varying as required for the connectivity background field.
The solutions of equations (92) and (93) are parabolic cylinder function at each pair of points

(Z,Z ′). Imposing a unit norm to these functions for C and D varying over R yields the fundamental
state for Γ1 (Z,Z ′, C) and Γ2 (Z,Z ′, D) which implies the condition:

aC (Z)− λ1 (Z,Z ′) = −1

2

 1

τCω
+ αC

ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣∣2
ω

 = −1

2
aC (Z) (94)

aD (Z)− λ2 (Z,Z ′) = −1

2

(
1

τDω
+ αD |Ψ (θ, Z)|2

)
= −1

2
aD (Z) (95)

The possibility to adjust the value of λ1 (Z,Z ′) translates that the determination of C and D

represents local activity, with the constraint on global activity being borne by the variable T (see
below).

Practically, constraint (94) corresponds to the fundamental state of a harmonic oscillator whose
lowest eigenvalue is 1

2 times the fundamental frequency. If we relax the simplifying hypothesis that
C and D vary over R, the eigenvalue constraint would not hold anymore. Actually, we should
also impose Γ1 (Z,Z ′, C) = Γ2 (Z,Z ′, C) = 0 for C < 0 and for D < 0. However, the appearance of
C (θ) and D (θ) imply that for |Ψ (θ, Z)|2 > 1, these constraints are satisfied in first approximation.
Moreover, assuming relatively low variances in the variables, and given that the variables C − 〈C〉
and D − 〈D〉 are centered justifies our assumption.

As a consequence, introducing normalization factors Ni, i = 1, 2, we find:

Γ1 (Z,Z ′, C) = N1 exp

(
−aC (Z)

8σ2
C

(C − C (θ))
2

)
(96)

Γ2 (Z,Z ′, D) = N2 exp

(
−aD (Z)

8σ2
D

(D −D (θ))
2

)
and Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
factors as:

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
' Γ

(
T, T̂ , θ, Z, Z ′

)
exp

(
− 1

8σ2
C

aC (Z) ((C − C (θ)))
2

)
exp

(
−aD (Z)

8σ2
D

(D −D (θ))
2

)
These solutions yield the following action for the field:

Γ†1 (Z,Z ′, C) Γ†2 (Z,Z ′, D)

(
1

2
+

1

2
aC (Z) +

1

2
+

1

2
aD (Z)

)
Γ1 (Z,Z ′, C) Γ2 (Z,Z ′, D)

=

(
1 +

1

2
(aC (Z) + aD (Z))

)
Iintroducing these expressions in the full action for Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
yields the contribution:

S
(3)
Γ + S

(4)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′

)
(aC (Z) + aD (Z)) Γ

(
T, T̂ , θ, Z, Z ′

)
(97)

Given our approximations, this is a constant that will not affect the minimisation of the action for

Γ
(
T, T̂ , θ, Z, Z ′

)
. However it will impact the condition of existence of a state with

∥∥∥Γ
(
T, T̂ , θ, Z, Z ′, C,D

)∥∥∥2

>

0.
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8.3 Minimization equation for T, T̂

8.3.1 Action for T, T̂

Given the previous projection on the background states for C and D, and introducing the additional
term

K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
TΓ
(
T, T̂ , θ, Z, Z ′, C,D

)
up to contribution (97), the effective action for Γ

(
T, T̂ , θ, Z, Z ′

)
reduces to two terms:

S
(1)
Γ + S

(2)
Γ (98)

= Γ†
(
T, T̂ , θ, Z, Z ′

)(
∇T

(
σ2
T

2
∇T +OT

)
+K

(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
T

)
Γ
(
T, T̂ , θ, Z, Z ′

)
+Γ†

(
T, T̂ , θ, Z, Z ′

)
∇T̂

(
σ2
T̂

2
∇T̂ + ŌT̂

)
Γ
(
T, T̂ , θ, Z, Z ′

)
with:

OT = −
(
− 1

τω
T +

λ

ω
T̂

)
ŌT̂ = − ρ

ω
(
J, θ, Z, |Ψ|2

) ((h (Z,Z ′)− T̂
)
C (θ) |Ψ (θ, Z)|2 hC

(
ω
(
θ, Z, |Ψ|2

))
− ηH (δ − T )

−D (θ) T̂

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2 hD (ω(θ − |Z − Z ′|c

, Z ′, |Ψ|2
)))

= ŌT̂ +
ρηH (δ − T )

ω
(
J, θ, Z, |Ψ|2

)
and C (θ) and D (θ) defined in (90) and (91). We will consider them as relatively constant while
finding the background state. This amounts to projecting onto states of fields Γ

(
T, T̂ , θ, Z, Z ′

)
and

Γ†
(
T, T̂ , θ, Z, Z ′

)
that are slowly varying. As for C and D, we will neglect the condition T < 0 holds.

However, as long that 〈T 〉 is significant enough, this case is irrelevant.

8.3.2 Change of variable

We perform the following change of variable on the fields:

Γ
(
T, T̂ , θ, Z, Z ′

)
(99)

→ exp

∫ ŌT̂

σ2
T̂
ω
(
θ, Z, |Ψ|2

)dT̂
 exp

(∫
OT
σ2
T

dT

)
Γ
(
T, T̂ , θ, Z, Z ′

)

Γ†
(
T, T̂ , θ, Z, Z ′

)
→ exp

−∫ ŌT̂

σ2
T̂
ω
(
θ, Z, |Ψ|2

)dT̂
 exp

(
−
∫
OT
σ2
T

dT

)
Γ†
(
T, T̂ , θ, Z, Z ′

)
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and S(1)
Γ and S(2)

Γ (98) write:

S
(1)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′

)(σ2
T

2
∇2
T −

O2
T

2σ2
T

+K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
T (100)

−
σ2
T̂

σ2
T

(
∇T

λ

ω

(
T̂ − λτT̂

))
− 1

2τω (Z)

)
Γ
(
T, T̂ , θ, Z, Z ′

)

S
(2)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′

)(σ2
T̂

2
∇2
T̂
− 1

2σ2
T̂

Ō2
T̂

(101)

−
ρ

(
C (θ) |Ψ (θ, Z)|2 hC − ηH (δ − T ) +D (θ)

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)
2ω
(
θ, Z, |Ψ|2

)
Γ

(
T, T̂ , θ, Z, Z ′

)

with:

hC

(
ω
(
θ, Z, |Ψ|2

))
≡ hC

hD

(
ω

(
θ − |Z − Z

′|
c

, Z ′, |Ψ|2
))

≡ hD

We aim at factoring:

Γ
(
T, T̂ , θ, Z, Z ′

)
= Γ (T, θ, Z, Z ′) Γ

(
T̂ , θ, Z, Z ′

)
(102)

Γ†
(
T, T̂ , θ, Z, Z ′

)
= Γ† (T, θ, Z, Z ′) Γ†

(
T̂ , θ, Z, Z ′

)
but the presence of the term:

Γ†
(
T, T̂ , θ, Z, Z ′

) σ2
T̂

σ2
T

∇T
λ

ω

(
T̂ − λτT̂

)
Γ
(
T, T̂ , θ, Z, Z ′

)
in (100) prevents this factorization since this contribution mixes both variables T, T̂ . However, we
may assume the variance of T is larger than the variance of T̂ . Actually, the value of connectivity
may depend on exogenous factors, whereas T̂ is a variable counting the output and input spikes.

Thus, we can consider that
σ2
T̂
σ2
T
<< 1 and that

∣∣∣∣∣Γ† (T, T̂ , θ, Z, Z ′) σ2
T̂

σ2
T

∇T
λ

ω

(
T̂ − λτT̂

)
|Ψ (θ, Z)|2 Γ

(
T, T̂ , θ, Z, Z ′

)∣∣∣∣∣ << 1

As a consequence the factorization (102) holds in first approximation, so that we can minimize
(100) in two parts, as we did for C and D.

In Appendix 2, we show how to remove the hypothesis concerning T̂ −λτT̂ . It amounts to solve
directly the background state of (98) both for T̂ and T , but the approximation we made above is
suffi cient to understand the properties of Γ0 (T, θ, Z, Z ′).

33



8.4 Average values for T and T̂

8.4.1 General case

Given that C (θ) and D (θ) given by (90) and (91).can be considered as slowly varying, we can
look for average values for T and T̂ . They are obtained by setting the quadratic potentials in the
effective actions (100) and (101) to 0. They are thus defined by:

− 1

τω (θ, Z)
〈T (Z,Z ′)〉+

λ

ω (θ, Z)

〈
T̂ (Z,Z ′)

〉
= 0

and:

0 =
(
h (Z,Z ′)−

〈
T̂ (Z,Z ′)

〉)
C (θ) |Ψ (θ, Z)|2 hC (ω (Z))− ηH (δ − 〈T (Z,Z ′)〉)

−
〈
T̂ (Z,Z ′)

〉
D (θ)

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2 hD (ω(θ − |Z − Z ′|c

, Z ′
))

given by:

〈T (Z,Z ′)〉 = λτ
〈
T̂ (Z,Z ′)

〉
=
λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − ηH (δ − 〈T (Z,Z ′)〉)

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2

where:

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 =

CZ,Z′ (θ) |Ψ (θ, Z)|2 hC (ω (θ, Z)) +DZ,Z′ (θ)

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD (ω(θ − |Z−Z′|c , Z ′

))
hC (ω (θ, Z))

(103)

is a weighted sum of the values of field |Ψ (θ, Z)|2 and
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣∣2.
The threshold δ implies three possibilities.
First, if:

λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 < δ

then the average connectivity is given by:

〈T (Z,Z ′)〉 = sup

λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − η

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 , 0


Second, if on the contrary:

λτ
((
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

)
− η
)

hC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2 > δ

then the average connectivity is:

〈T (Z,Z ′)〉 =
λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − η

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2
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Third, if:

λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 > δ

λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − η

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 < δ

both solutions:

〈T 〉 = sup

λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − η

)
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 , 0


〈T 〉 =

λτh (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

hC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
are possible.

8.4.2 Average values for T and T̂ for sharp threshold

The previous averages simplify for δ << 1. If:

λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − η

)
> 0

then:

〈T (Z,Z ′)〉 =
λτh (Z,Z ′)CZ,Z′ (θ) |Ψ (θ, Z)|2∣∣Ψ̄ (θ, Z, Z ′)

∣∣2 (104)

and if:
λτ
(
h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 − η

)
< 0

〈T (Z,Z ′)〉 = 0

otherwise.

8.5 Background state for T and T̂

Once the average values for 〈T (Z,Z ′)〉 are obtained, we can close the resolution for the background
Γ
(
T, T̂ , θ, Z, Z ′

)
.We will consider a sharp threshold only and consider two cases separately.

8.5.1 First case, cleared threshold T (Z,Z ′) > 0

For points such that:

h (Z,Z ′)
〈
CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

〉
− η > 0

then the averages are:

〈T (Z,Z ′)〉 = λτ
〈
T̂ (Z,Z ′)

〉
=
λτh (Z,Z ′)

〈
CZ,Z′ (θ) |Ψ (θ, Z)|2

〉
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2 (105)
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Whereas, for points such that:

h (Z,Z ′)
〈
CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

〉
− η < 0

then:
〈T (Z,Z ′)〉 = 0

〈
T̂ (Z,Z ′)

〉
=
h (Z,Z ′)

〈
CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

〉
− η〈

hC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2〉 < 0 (106)

To compute the background state, we proceed in two steps as for C and D.
We consider the two cases separately. If T (Z,Z ′) is given by (105), rxpression (101) is:

S
(2)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′

)σ2
T̂

2
∇2
T̂
− 1

2σ2
T̂

ρ
(
hC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 (T̂ − 〈T̂〉))

ω
(
θ, Z, |Ψ|2

)
2

(107)

−
ρhC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2

2ω
(
θ, Z, |Ψ|2

)
Γ

(
T, T̂ , θ, Z, Z ′

)

with
〈
T̂
〉
given by (105).

As explained in the previous paragraph, given the form (100) of S(1)
Γ and (107) of S(2)

Γ , Γ
(
T, T̂ , θ, Z, Z ′

)
factors in first approximation as:

Γ
(
T, T̂ , θ, Z, Z ′

)
= Γ0 (T, θ, Z, Z ′) Γ0

(
T̂ , θ, Z, Z ′

)
(108)

Introducing a constraint normalizing
∥∥∥Γ0

(
T̂ , θ, Z, Z ′

)∥∥∥2

to 1 allows to proceed as for the back-

ground state for C andD and minimizing (107) under the constraint allows to project Γ
(
T, T̂ , θ, Z, Z ′

)
on the background state:

Γ0

(
T, T̂ , θ, Z, Z ′

)
(109)

= Γ0 (T, θ, Z, Z ′) Γ0

(
T̂ , θ, Z, Z ′

)
= Γ0

(
T, T̂ , θ, Z

)
exp

−ρhC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
4σ2

T̂
ω
(
θ, Z, |Ψ|2

) ((
T̂ −

〈
T̂
〉))2


and in this state, (107) becomes:

S
(2)
Γ = Γ†0 (T, θ, Z, Z ′)

ρhC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
ω
(
θ, Z, |Ψ|2

)
Γ0 (T, θ, Z, Z ′) (110)

Ultimately, using (100) and (154) we can rewrite S(1)
Γ :

S
(1)
Γ = Γ†0 (T, θ, Z, Z ′)

(
σ2
T

2
∇2
T −

1

2σ2
T

((
1

τω
(T − 〈T 〉)

))2

− 1

2τω (Z)

)
Γ0 (T, θ, Z, Z ′)
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To obtain the complete action we have to add the contributions (97) and (110). We find ultimately
the action for Γ0 (T, θ, Z, Z ′):

Γ†0 (T, θ, Z, Z ′)

(
σ2
T

2
∇2
T −

1

2σ2
T

((
1

τω
(T − 〈T 〉)

)
|Ψ (θ, Z)|2

)2

− 1

2τω (Z)

)
Γ0 (T, θ, Z, Z ′) (111)

−Γ†0 (T, θ, Z, Z ′)

aC (Z) + aD (Z) +
ρhC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2

ω
(
θ, Z, |Ψ|2

)
Γ0 (T, θ, Z, Z ′)

This action results from the successive projections of partial background states and becomes a
function of T only.

At this point we aim at minimizing (111), as we did for the other parts of the background state.
However, a difference appears. The potential:

U

({∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2}) (112)

introduced in the full action imposes an overall constraint for the whole set of connections in the
system. We assume for the sake of simplicity that U depends only on the connectivities at points
(Z,Z ′), i.e. on:{∫ ∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 d(T, T̂ , θ, C,D)} =

{∫ ∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 d(T, T̂ , θ, C,D)}

Given our assumption about the norms of the fields arising in the decomposition of Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
,

we have: ∫ ∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 d(T, T̂ , C,D) =

∫
‖Γ0 (T, θ, Z, Z ′)‖2 dT = ‖Γ0 (Z,Z ′)‖2

and the potential becomes:

U

({∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2}) = U
({
‖Γ0 (Z,Z ′)‖2

})
Including the potential in (111) leads thus to the saddle point equation:(

σ2
T

2
∇2
T −

1

2σ2
T

((
1

τω
(T − 〈T 〉)

)
|Ψ (θ, Z)|2

)2

− 1

τω (Z)
− 2aC (Z)− 2aD (Z) (113)

−
ρhC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2

ω
(
θ, Z, |Ψ|2

) −
δU
({
‖Γ0 (θ, Z, Z ′)‖2

})
δ ‖Γ0 (θ, Z, Z ′)‖2

Γ0 (T, θ, Z, Z ′)

This saddle point equation has a minimum at (Z,Z ′) for:

0 =
1

τω (Z)
+

1

2
aC (Z) +

1

2
aD (Z) (114)

+
ρhC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2

2ω
(
θ, Z, |Ψ|2

) +
δU
({
‖Γ0 (θ, Z, Z ′)‖2

})
δ ‖Γ0 (θ, Z, Z ′)‖2

and this set of equations yields the norm ‖Γ0 (θ, Z, Z ′)‖2 at each point.
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The background Γ0 (T, θ, Z, Z ′) is given by:

Γ0 (T, θ, Z, Z ′) = ‖Γ0 (θ, Z, Z ′)‖ exp

(
− 1

4σ2
T τω

((T − 〈T 〉))2

)
(115)

Using (114), the sum of (111) and (112) at point (Z,Z ′) for this state writes:

S
(
‖Γ0 (Z,Z ′)‖2

)
= U

({
‖Γ0 (Z,Z ′)‖2

})
−
δU
({
‖Γ0 (θ, Z, Z ′)‖2

})
δ ‖Γ0 (θ, Z, Z ′)‖2

‖Γ0 (Z,Z ′)‖2 (116)

This expression yields the condition for the existence of a non trivial minimum for the action at
(Z,Z ′).

If S
(
‖Γ0 (Z,Z ′)‖2

)
< 0, the state:

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
= Γ1 (Z,Z ′, C) Γ2 (Z,Z ′, D) Γ0 (T, θ, Z, Z ′) Γ0

(
T̂ , θ, Z, Z ′

)
with the various contributions defined by (96), (109) and (115), is a non trivial minimum. Otherwise
the minimum of the action for the connectivity field is:

Γ
(
T, T̂ , θ, Z, Z ′, C,D

)
= 0

As a consequence, given the parameters arising in (114), that is, the average activity at some points,
the density of active neurons or axons |Ψ (θ, Z)|2, and depending on the potential, the non-trivial
state (115) Γ

(
T, T̂ , θ, Z, Z ′, C,D

)
may be a minimum of (116). Since the parameters describing the

activity vary across space defined by the points (Z,Z ′), we can expect some islands of connectivity.
Submanifolds satisfying S

(
‖Γ0 (Z,Z ′)‖2

)
< 0 present connectivity patterns, whereas those satisfying

S
(
‖Γ0 (Z,Z ′)‖2

)
> 0 present low levels of connectivity.

8.5.2 Second case: T (Z,Z ′) = 0

In the second case, i.e. T (Z,Z ′) = 0 we find the T̂ dependency of the background state as in the
first case, and we obtain:

Γ
(
T, T̂ , θ, Z, Z ′

)
= Γ0

(
T, T̂ , θ, Z

)
× exp

−
ρhC (ω (θ, Z))

∣∣Ψ̄ (θ, Z, Z ′)
∣∣2 (T̂ − 〈T̂〉)

4σ2
T̂
ω
(
θ, Z, |Ψ|2

)
2


but now,
〈
T̂
〉
is given by formula (106).

The difference with the first case arises when looking for the dependency in 〈T 〉. When
〈T (Z,Z ′)〉 = 0, the threshold makes the background state is peaked at T = 0. Only a significa-
tive change in activities and field |Ψ|2, i.e. a change in background state, allows to depart from
T = 0. We thus have:

Γ0

(
T, T̂ , θ, Z

)
= δ (T )
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8.5.3 Extension global constraint

In addition to the potential U
({
‖Γ0 (Z,Z ′)‖2

})
, a global constraint on the overall level of connec-

tivity could be introduced, either with a potential U
({
‖Γ0‖2

})
with ‖Γ0‖2 =

∫
‖Γ0 (Z,Z ′)‖2 d (Z,Z ′),

or with a constraint of the form:
‖Γ0‖2 = ‖Γ‖2

This constraint may be introduced through a Lagrange multiplier α0 in (113). The resolution is
identical as in the previous paragraph and amounts to add a term α0 in (114). This implies that the
solution of this equation becomes a function of α0 ‖Γ0 (θ, Z, Z ′, α0)‖2, the value of α0 being obtained
by implementing: ∫

‖Γ0 (θ, Z, Z ′, α0)‖2 = ‖Γ‖2

Again depending on the sign of the action:

S
(
‖Γ0 (Z,Z ′)‖2

)
= U

({
‖Γ0 (Z,Z ′)‖2

})
+

α0 −
δU
({
‖Γ0 (θ, Z, Z ′)‖2

})
δ ‖Γ0 (θ, Z, Z ′)‖2

 ‖Γ0 (Z,Z ′)‖2 (117)

i.e. for S
(
‖Γ0 (Z,Z ′)‖2

)
< 0, a nontrivial state for Γ0

(
T, T̂ , θ, Z

)
will exist.

9 Full background state for connectivity and static averages

In the previous section, we determined the form of the background connectivity state between two
points, Z and Z ′. The full background state is, therefore, the tensor product of such states for
every pair (Z,Z ′). However, to complete the description, the average values of connectivity in these
states need to be derived. The entire background state is depicted by a set of equations for these
averages.

In this section, by performing the integrations arising from the various changes of variables, we
can consolidate the previous results by providing the background state of the system and the equa-
tions for the averages. Then, as an example, we will solve these equations under some simplifying
assumptions.

9.1 Fields

To write the background state of the system in a compact form, we define:

Γ
(
T, T̂ , θ, C,D

)
=

{
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)}
(Z,Z′)

Γ†
(
T, T̂ , θ, C,D

)
=

{
Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)}
(Z,Z′)∣∣∣Γ(T, T̂ , θ, C,D)∣∣∣2 =

{∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2}
(Z,Z′)

These fields decompose as:

Γ
(
T, T̂ , θ, C,D

)
=

(
Γa

(
T, T̂ , θ, C,D

)
,Γu

(
T, T̂ , θ, C,D

))
Γ†
(
T, T̂ , θ, C,D

)
=

(
Γ†a

(
T, T̂ , θ, C,D

)
,Γ†u

(
T, T̂ , θ, C,D

))
|Γ|2

(
T, T̂ , θ, C,D

)
=

(
|Γ|2a

(
T, T̂ , θ, C,D

)
, |Γ|2u

(
T, T̂ , θ, C,D

))
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where

Γa/u

(
T, T̂ , θ, C,D

)
=

{
Γ
(
T, T̂ , θ, Z, Z ′, C,D

)}
(Z,Z′),〈T (Z,Z′)〉6=0/〈T (Z,Z′)〉=0

Γ†a/u

(
T, T̂ , θ, C,D

)
=

{
Γ†
(
T, T̂ , θ, Z, Z ′, C,D

)}
(Z,Z′),〈T (Z,Z′)〉6=0/〈T (Z,Z′)〉=0∣∣∣Γa/u (T, T̂ , θ, C,D)∣∣∣2 =

{∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2}
(Z,Z′),〈T (Z,Z′)〉6=0/〈T (Z,Z′)〉=0

The subscripts refer to active or unactive doublet (Z,Z ′). The expression for Γa,Γu and their
conjugates are:

Γa

(
T, T̂ , θ, C,D

)
(118)

'

N exp

− 1

2σ2
C

 1

τCω
+ αC

ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣∣2
ω

 (C − C (θ))
2


× exp

−
(

1
τDω

+ αD |Ψ (θ, Z)|2
)

2σ2
D

(D −D (θ))
2


× exp

−ρhC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
2σ2

T̂
ω
(
θ, Z, |Ψ|2

) ((
T̂ −

〈
T̂
〉))2


× ‖Γ0 (θ, Z, Z ′)‖ exp

(
−|Ψ (θ, Z)|2

2σ2
T τω

((T − 〈T 〉))2

)}
(Z,Z′),〈T (Z,Z′)〉6=0

Γu

(
T, T̂ , θ, C,D

)
(119)

'
{
N exp

(
−1

2
aC (Z) (C − C (θ))

2

)
exp

(
−aD (Z)

2
(D − 〈D〉)2

)

× exp

−ρhC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
2ω
(
θ, Z, |Ψ|2

) ((
T̂ −

〈
T̂
〉))2

 δ (T )


(Z,Z′),〈T (Z,Z′)〉=0

with (see (89)):

aC (Z) =
1

τCω
+ αC

ω′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′

)∣∣∣∣2
ω

(120)

aD (Z) =
1

τDω
+ αD |Ψ (θ, Z)|2

and where N is a normalization factor ensuring that the constraint over the number of connections
is satisfied.

Γ†a

(
T, T̂ , θ, C,D

)
' {1}(Z,Z′),〈T (Z,Z′)〉6=0

Γ†u

(
T, T̂ , θ, C,D

)
' {δ (T )}(Z,Z′),〈T (Z,Z′)〉=0
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The modulus of these fields define the density of the various variables in the state defined by Γa or
Γu.

|Γ|2a
(
T, T̂ , θ, C,D

)
(121)

'
{
N exp

(
−1

2
aC (Z) (C − C (θ))

2

)
exp

(
−aD (Z)

2
(D − 〈D〉)2

)

× exp

−ρhC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
2ω
(
θ, Z, |Ψ|2

) (
T̂ −

〈
T̂
〉)2


× ‖Γ0 (θ, Z, Z ′)‖ exp

(
−|Ψ (θ, Z)|2

2τω
(T − 〈T 〉)2

)}
(Z,Z′),〈T (Z,Z′)〉6=0

|Γ|2u
(
T, T̂ , θ, C,D

)
(122)

'
{
N exp

(
−1

2
aC (Z) (C − C (θ))

2

)
exp

(
−aD (Z)

2
(D − 〈D〉)2

)

× exp

−ρhC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
2ω
(
θ, Z, |Ψ|2

) (
T̂ −

〈
T̂
〉)2

× δ (T )


(Z,Z′),〈T (Z,Z′)〉6=0

9.2 Average values for connctivities

The average values in this background states are given by:

CZ,Z′ =

αCω
′
∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣∣2
1
τC

+ αCω′
∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣2
DZ,Z′ =

αDω |Ψ (θ, Z)|2
1
τD

+ αDω |Ψ (θ, Z)|2

〈T (Z,Z ′)〉 = λτ
〈
T̂ (Z,Z ′)

〉
(123)

=
λτh (Z,Z ′)

〈
CZ,Z′ (θ) |Ψ (θ, Z)|2

〉
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2
for (Z,Z ′) an ”a” (active) doublet, and:

〈T (Z,Z ′)〉 = 0

〈
T̂ (Z,Z ′)

〉
=
h (Z,Z ′)

〈
CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

〉
− η〈

hC (ω (θ, Z))
∣∣Ψ̄ (θ, Z, Z ′)

∣∣2〉 < 0 (124)

for an ”u” (unactive) doublet.
Choosing an exponential form for the function h (Z,Z ′):

h (Z,Z ′) = exp

(
−|Z − Z

′|
νc

)
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the average simplifies as:

〈T (Z,Z ′)〉 =

λτ exp

(
−|Z−Z

′|
νc

)

1 + αDωhD
αCω

′hC

1
τC

+αCω
′
∣∣∣∣Ψ(θ−|Z−Z′|c ,Z′

)∣∣∣∣2
1
τD

+αDω|Ψ(θ,Z)|2

(125)

in an a doublet.
Note that the background state obtained above is quasi-static. As explained in the previous

paragraph, the variations in θ of the background field are slow. Some modifications in the parame-
ters may induce a switch at some point from an ’a’to a ’u’doublet or from a ’u’to an ’a’doublet.
To consider a static background, the quantities involved in the definition of (118), (119) and (121)
can be averaged over time.

9.2.1 Interpretation of the background states

Formulas (121) and (122) for the densities of connectivities may be interpreted as follows: Regard-
less of the system’s interpretation, whether as a description of groups of simple cells or a single
complex cell at each point, the stable backgrounds are not defined with a given value of connectiv-
ity. On the contrary, the background states are described by a normal distribution around some
average value. That is, the cells or groups of axons/dendrites are connected with connectivities
that are spread around this average.

10 System’s background states averages

The full system background state average is given by several equations defining the averages con-
nectivits, the neural background stt and the neurons’activities. Equations (123) and (125)

〈T (Z,Z ′)〉 =

λτ exp

(
−|Z−Z

′|
νc

)

1 + αDωhD
αCω

′hC

1
τC

+αCω
′
∣∣∣∣Ψ(θ−|Z−Z′|c ,Z′

)∣∣∣∣2
1
τD

+αDω|Ψ(θ,Z)|2

= λτ
〈
T̂ (Z,Z ′)

〉

are considered together with (67) determining the activit at the lowest order in perturbation:

ω−1
(
J, θ, Z, |Ψ|2

)
(126)

= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 dZ1


and the minimizing equation for the field |Ψ (θ, Z)|2

0 =
δ

δ |Ψ (θ, Z)|2

∫ Ψ† (θ, Z)

−∇θ
σ2

θ

2
∇θ −

1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
Ψ (θ, Z)


+

δ

δ |Ψ (θ, Z)|2
[∫

U
(
|Ψ (θ, Z)|2

)]
where we will assume that the potential has the specific form:

U
(
|Ψ (θ, Z)|2

)
= V

(
|Ψ (θ, Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)
(127)
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This potential encompasses the fact that the field is constrained by a potential limiting the activity
around some average12 |Ψ0 (Z)|2. It also implies that the activity at some point depends on the
average activity in the neighborhood of the point. We will look for static solutions of these equations
under some simplifying assumptions in the next section. However, given the form of the various
equations, we can draw some general patterns for the solutions. Equation (123) shows that groups
of mutually connected states arise in localized region, i.e. for |Z − Z ′| < 1, and bewteen cells such
that:

ω ' ω′

and:

|Ψ (θ, Z)|2 '
∣∣∣∣Ψ(θ − |Z − Z ′|c

, Z ′
)∣∣∣∣2

Given (127) and (126), this is also realized in localized regions. As a consequence, assuming an
implicit global potential limiting the overall activity, we may expect groups of connected points,
with relatively close activities. We inspect this possibility more precisely for the static case in the
next section.

11 Static background state for the system

We look for a static background state for the whole system. It corresponds to averaging over time in
the background fields (118) (119) and (121). The equilibrium we look for is obtained as consistency
conditions for (118). Actually, the background Γ depends on ω (θ, Z) and |Ψ (θ, Z)|2 that depend
themselves functionally on Γ, through (78) (79).

11.1 General equations

An approximate static solution of (78) can be found for the constant background and a constant
current, i.e. J = J̄ . We also set:

T (Z,Z1) = T̄

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
From now on, the quantity T (Z,Z1) refers to the average of the connectivity function at points
(Z,Z1), in the background state defined above, i.e. T (Z,Z1) refers to 〈T (Z,Z1)〉 defined as:

〈T (Z,Z1)〉 =

∫
T
∣∣∣Γ(T, T̂ , θ, Z, Z1

)∣∣∣2 dT
For points such that T (Z,Z ′) 6= 0, it is defined by the set of equations (67) or (78), (104) (125) and
the minimizatn equatn (79) if:

h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 > 0

We choose, as in ([53]), hC (ω) = ω and hC (ω′) = ω′. The static equilibrium for ω (Z), T (Z,Z1) and
|Ψ (Z)|2 is found in three steps.
12This characteristic in line with the litterature about homeostatic activit quoted in the literature review.
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11.1.1 First step: finding ω (Z)

We first solve for ω (Z) as a function of other variables using (125) that allows to replace ω′ |Ψ (Z ′)|2:

ω′ |Ψ (Z ′)|2 =

λτ exp

(
−|Z−Z

′|
νc

)
− T (Z,Z ′)

T (Z,Z ′)

(
1

αDτD
+ ω |Ψ (Z)|2

)
− 1

αCτC

We show in appendix 3 that this allows to rewrite (78) as an equation for ω−1 (Z):

ω (Z) (128)

' G

(∫
κ

N

((
λτ exp

(
−|Z − Z1|

νc

)
− T (Z,Z1)

)((
1

αDτD
− T (Z,Z1)

αCτC

)
ω−1 + |Ψ (Z)|2

))
dZ1

)
with the solution defined by a function:

ω (Z) = Ĝ
(
T (Z) , |Ψ (Z)|2

)
where:

1

V
T (Z) =

1

V

∫
T (Z,Z1) dZ1

11.1.2 Second step: finding T (Z) and T (Z,Z ′)

In a second step, once ω (Z) found, we use (104) (125) to obtain T (Z) and T (Z,Z ′) as a function
of Ĝ

(
T (Z ′) , |Ψ (Z ′)|2

)
|Ψ (Z, ω)|2. We show in appendix 3 that:

T (Z) =
λτνc

1 +
1

τCαC
+Ω

1
τDαD

+Ĝ(T (Z),|Ψ(Z)|2)|Ψ(Z)|2

=
λτνc

(
1

τDαD
+ Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

)
1

τDαD
+ 1

τCαC
+ Ω + Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

(129)

where:
Ω =

1

V

∫
Ĝ
(
T (Z ′) , |Ψ (Z ′)|2

)
|Ψ (Z ′)|2 dZ ′ (130)

and this leads to the following formula for T (Z,Z ′):

T (Z,Z ′) =

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
τCαC

+ω′|Ψ(Z′,ω′)|2

1
τDαD

+ω|Ψ(Z,ω)|2

=

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
τCαC

+Ĝ(T (Z′),|Ψ(Z′)|2)|Ψ(Z′,ω′)|2

1
τDαD

+Ĝ(T (Z),|Ψ(Z)|2)|Ψ(Z,ω)|2

(131)

11.1.3 Third step: finding Ψ (θ, Z)

In a third step, the system is closed by minimizing the action for the field Ψ (θ, Z):∫
Ψ† (θ, Z)

−∇θ
σ2

θ

2
∇θ −

1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
Ψ (θ, Z)

+

∫
V

(
|Ψ (θ, Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)
Where we have assumed that the field is constrained by a potential limiting the activit around
some average |Ψ0 (Z)|2. We choose:

V =
1

2

(
|Ψ (Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)2
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We show in Appendix 3 that an equilibrium with static |Ψ (Z)|2 exist and minimizes:

∫  1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

|Ψ (Z)|2 +

∫
V

(
|Ψ (θ, Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)

with saddle point equation:

0 '


 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

+

(
|Ψ (Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)Ψ (θ, Z)

with solutions:
Ψ (θ, Z) = 0

or approximately: 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

+ |Ψ (Z)|2 ' T (Z)

∫
|Ψ0 (Z ′)|2 k (Z,Z ′) dZ ′

V
(132)

≡ T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

Remark that
〈
|Ψ0 (Z ′)|2

〉
Z
is a function of Z given by an average over the points Z ′ surrounding Z.

It is defind in appendix 3 and represents the average activity in the neighbourhood of Z.
The system is now reduced to two variables T (Z) and |Ψ (Z)|2 together with equations (129)

and (132). The average connectivity being then retrieved by (131).

11.2 Solving for |Ψ (Z)|2 and T (Z)

Appendix 3 solves the system for T (Z) and |Ψ (Z)|2. We show that:

|Ψ (Z)|2 =
2T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

(
λτνc−T (Z)(

1
τDαD

+ 1
τCαC

+Ω
)
T (Z)− 1

τDαD
λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

) (133)

Ultimately, inserting this result in (241) yields the following equation for T (Z).

Ω̂T (Z)− 1
τDαD

λτνc

λτνc− T (Z)
= Ĝ

T (Z) ,
2T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z1 +

√
1 + 4

(
λτνc−T (Z)

Ω̂T (Z)− 1
τDαD

λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z




×

2T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z1 +

√
1 + 4

(
λτνc−T (Z)

Ω̂T (Z)− 1
τDαD

λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

 (134)
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with:

Ω =
1

V

∫
Ĝ
(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

Ω̂ =

(
1

τDαD
+

1

τCαC
+ Ω

)
Equation (134) has in general several solutions (see below) corresponding to several regime of

activity, depending on the point. Once T (Z) is found, one can obtain |Ψ (Z)|2 using (133). To
obtain more precise formula for these solutions, we will detail a particular case below. The system
is ultimately determined by finding Ω. Details are given in appendix 3.

11.3 Particular case

For G an increasing function of the form G (x) ' b0x for x < 1, we can solve the system. In our
preliminary set up, this corresponds, for b0 = 1, to consider γ ' 0, that is, the activity of a cell
depends only on the external currents. The resolution starts by finding Ω, then ultimately T (Z)

and T (Z,Z ′).
Setting b = b0

κV
N , T̄ = λτνc

2 and
〈
|Ψ0|2

〉
=
〈〈
|Ψ0 (Z ′)|2

〉
Z

〉
, the average of

〈
|Ψ0 (Z ′)|2

〉
Z
, we find

in appendix 3 the equation for Ω:

1 =
bT̄Ω3(

bT̄ 2
〈
|Ψ0|2

〉
Ω− 1

)2 (135)

Several cases arise:
For d =

(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

< 27
4 there is one solution:

Ω '
(
bT̄
)− 1

3 << 1 (136)

For d =
(
bT̄
)2 〈

T̄ |Ψ0|2
〉3

> 27
4 there are three solutions. The first one is:

Ω ' bT̄
(
T̄
〈
|Ψ0|2

〉)2

(137)

The two other solutions are centered around 1

bT̄2〈|Ψ0|2〉 . They are given by:

Ω =

1±
√

1

(bT̄)
2
(T̄〈|Ψ0|2〉)3

bT̄ 2
〈
|Ψ0|2

〉 (138)

Solution (136) corresponds to relatively low activity, i.e.
〈
|Ψ0|2

〉
<< 1, so that we only con-

sider solutions (137) and (138) in the sequel. Moreover, since the solutions of (138) are centered
around 1

b〈|Ψ0|2〉 , we can consider only the two solutions:

Ω± = (Ω+,Ω−)

with:
Ω+ = bT̄

(
T̄
〈
|Ψ0|2

〉)2

,Ω− =
1

bT̄ 2
〈
|Ψ0|2

〉 (139)
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To these solutions for Ω, we associate the Z dependent parameters, which are at the lwst rdr13 :

Y+ (Z) ' bT̄
(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

)2

(140)

Y− (Z) =
1

bT̄ 2
〈
|Ψ0 (Z ′)|2

〉
Z

(141)

where Y± gathers the possibilities Y+ and Y . Appendix 3 shows that T (Z) is a function of these
parameters:

T (Z±) =
λτνcY± (Z) + λτνc 1

τDαD

Y± (Z) + 1
τDαD

+ 1
αCτC

+ Ω±

and takes the values:

T+ (Z) ' T̄ −
3T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)
2
〈
|Ψ0 (Z ′)|2

〉
Z

T− (Z) ' T̄ +
5

2

√√√√ 1

T̄ 2b2
〈
T̄ |Ψ0 (Z ′)|2

〉5

Z

T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)

Ultimately, we show that there are four possibilities for the connectivity functions that are
written:

T
(
Z±, Z

′
±
)

=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ Y± (Z)

)
1

τDαD
+ Y± (Z) + 1

αCτC
+ Y± (Z ′)

Given our assumptions on d, in most cases14 :

Y+ (Z) >> Y− (Z)

Moreover:
1

τDαD
<< 1,

1

αCτC
<< 1

13First order corrections are given in appendix 3.
14 In general T̄ = λτνc

2
>> 1
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so that due to the threshold in connectivity, we can write:

T
(
Z−, Z

′
+

)
=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ 1

bT̄2〈|Ψ0(Z′)|2〉Z

)
1

τDαD
+ 1

αCτC
+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z

+ bT̄

(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z′

)2 ' 0 (142)

T
(
Z+, Z

′
+

)
=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ bT̄

(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

)2
)

1
τDαD

+ 1
αCτC

+ bT̄

(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

)2

+ bT̄

(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z′

)2 '
λτ exp

(
−|Z−Z

′|
νc

)
2

T
(
Z+, Z

′
−
)

=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ bT̄

(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

)2
)

1
τDαD

+ 1
αCτC

+ bT̄

(
T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

)2

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z′

' λτ exp

(
−|Z − Z

′|
νc

)

T
(
Z−, Z

′
−
)
'

λτ exp

(
−|Z−Z

′|
νc

)
+ 1

bT̄2〈|Ψ0(Z′)|2〉Z
1 + τDαD

αCτC
+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z

+ 1

bT̄2〈|Ψ0(Z′)|2〉
Z′

'
λτ exp

(
−|Z−Z

′|
νc

)
2

Given equation (130) and (139), points Z+, Z
′
+ correspond to cells with high activity while Z−, Z ′−

describe points with low activity. This is confirmed in appendix 3, where we provide the following
formula for activities:

ω+ (Z) ' b0
κ

N
T̄

1−
3

(〈
|Ψ0 (Z ′)|2

〉2

Z
−
〈
|Ψ0|2

〉2
)

2
〈
|Ψ0 (Z ′)|2

〉2

Z

 |Ψ+ (Z)|2

ω− (Z) ' b0
κ

N
T̄


1 +

5

2

√√√√ 1

T̄ 2b2
〈
T̄ |Ψ0 (Z ′)|2

〉5

Z

(〈
|Ψ0 (Z ′)|2

〉2

Z
−
〈
|Ψ0|2

〉2
) |Ψ− (Z)|2


and given our assumptions, we show that:

|Ψ+ (Z)|2 ' 2T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

|Ψ− (Z)|2 < < 1

so that:
ω− (Z) << ω+ (Z)

As a consequence, equation (142) shows that cells with high activity bind together, as do
points with low activity, provided that the distance between them is moderate. However if low
activity cells connect to high activity neighbors, the high activity cells do not bind to low activity
neighbors. If we assume an overall bounded activity (which could be included as a global potential
in the action, or equivalently, as a constraint), this may favour islands of connected cells with high
activity, relatively independent from the rest of the thread. Actually, the activity is defined by
regions. Either in some zone, activity and the level of connectivity are high, or activity is low, with
the possibility of bonded groups. Given that connectivity decreases with distance, groups of high
activity are of bounded extension, and given that global activity is limited, a discrete set of such
groups exists.
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12 Generalization: Background state for n interacting fields

The previous description may be generalized to describe n interacting types of cells, with arbitrary
interactions. Each type of cells is caracterized by its activity i = 1, ..., n, and interacts either
positively or negatively with each other. Each type is defined by a field Ψi and activities ωi (θ, Z).
The general version of (71), that includes (77), becomes:

Sfull = −1

2

∑
i

Ψ†i (θ, Z)∇θ
(
σ2
θ

2
∇θ − ω−1

i

(
J, θ, Z, [Ψj ]j=1,...,n

))
Ψi (θ, Z) (143)

+
1

2η2

(
S

(0)
Γ + S

(1)
Γ + S

(2)
Γ + S

(3)
Γ + S

(4)
Γ

)
+ U

({
|Γij (θ, Z, Z ′, C,D)|2

})
(144)

and equations for activities are defined by:

ωi (θ, Z) = Fi

J (θ) +
κ

N

∫ ωj

(
θ − |Z−Z1|

c , Z1

)
ωi (θ, Z)

Gij (145)

× Tij (Z,Z1)

(
Ḡ0j (0, Z1) +

∣∣∣∣Ψj

(
θ − |Z − Z1|

c
, Z1

)∣∣∣∣2
)
dZ1

)

The n × n matrix G has coeffi cients in the interval [−1, 1]. In the sequel, the sum over index j
is implicit. For instance, if n = 2, the matrix g:

G =

(
1 −g
−g 1

)

represents inhibitory interactions between the two populations of cells.
As in the one field case, we define:

Tij (Z,Z1) =

∫
Tij

∣∣∣Γij (Tij , T̂ij , θ, Z, Z ′, Cij , Dij

)∣∣∣2
and S(1)

Γ , S(2)
Γ , S(3)

Γ , S(4)
Γ are given by:

S
(1)
Γ =

∫
Γ†ij

(
Tij , T̂ij , θ, Z, Z

′, Cij , Dij

)
∇Tij

(
σ2
T

2
∇Tij −

(
− 1

τωi
Tij +

λ

ωi
T̂ij

)
|Ψi (θ, Z)|2

)
(146)

×Γij

(
Tij , T̂ij , θ, Z, Z

′, Cij , Dij

)

S
(2)
Γ =

∫
Γ†ij

(
Tij , T̂ij , θ, Z, Z

′, Cij , Dij

)
(147)

×∇T̂ij

σ2
T̂ij

2
∇T̂ij −

ρ

ωi

((
hij (Z,Z ′)− T̂ij

)
Cij |Ψi (θ, Z)|2 hC (ωi)

−Dij T̂ij

∣∣∣∣Ψj

(
θ − |Z − Z

′|
c

, Z ′
)∣∣∣∣2 hD (ω′j)

))
Γij

(
Tij , T̂ij , θ, Z, Z

′, Cij , Dij

)
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S
(3)
Γ = Γ†ij

(
T, T̂ , θ, Z, Z ′, Cij , Dij

)
(148)

×∇Cij

σ
2
Cij

2
∇Cij +

 Cij
τCωi

− αC (1− Cij)
ω′j

∣∣∣∣Ψj

(
θ − |Z−Z

′|
c , Z ′

)∣∣∣∣2
ωi

 |Ψi (θ, Z)|2


×Γij

(
T, T̂ , θ, Z, Z ′, Cij , Dij

)

S
(4)
Γ = Γ†ij

(
T, T̂ , θ, Z, Z ′, Cij , Dij

)
∇Dij

(
σ2
D

2
∇Dij +

(
Dij

τDωi
− αDij (1−Dij) |Ψi (θ, Z)|2

))
(149)

×Γij

(
T, T̂ , θ, Z, Z ′, Cij , Dij

)
where;

ωi = ωi

(
J, θ, Z, |Ψ|2

)
ω′j = ωj

(
J, θ − |Z − Z

′|
c

, Z ′, |Ψ|2
)

In (71), we added a potential:

U
({
|Γ (θ, Z, Z ′, C,D)|2

})
= U

(∫
T
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 dTdT̂)

that models the constraint about the number of active connections in the system. The resolution
for the bckground fld follows several stps.

12.1 Equilibrium activities

The equilibrium activities (145) can be rewritten by replacing Tij (Z,Z1) with its average values
depending on the connectivity field:

ωi (Z) = G

∑
j

∫
κ

N

GijTij

∣∣∣Γij (T, T̂ , Z, Z1

)∣∣∣2 ωj (J, Z1)

ωi (Z)

(
Gj0 + |Ψj (Z1)|2

)
dZ1


Considering the interactions between the different types of fields as relatively weak, we can perform
an expansion of this equation around the non-interacting firing rates:

ωi (Z) ' G

∫ κ

N

GiiTii

∣∣∣Γii (T, T̂ , Z, Z1

)∣∣∣2 ωi (Z1)

ωi (Z)

(
Gi0 + |Ψi (Z1)|2

)
dZ1


+
∑
j

G′

∫ κ

N

GiiTii

∣∣∣Γii (T, T̂ , Z, Z1

)∣∣∣2 ωi (Z1)

ωi (Z)

(
Gi0 + |Ψi (Z1)|2

)
dZ1


×
∑
j 6=i

∫
κ

N

GijTij

∣∣∣Γij (T, T̂ , Z, Z1

)∣∣∣2 ωj (J, Z1)

ωi (Z)

(
Gj0 + |Ψj (Z1)|2

)
dZ1
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Given that:

ω0i (Z) = G

∫ κ

N

GiiTii

∣∣∣Γii (T, T̂ , Z, Z1

)∣∣∣2 ωi (Z1)

ωi (Z)

(
Gi0 + |Ψi (Z1)|2

)
dZ1


and that:

G′

∫ κ

N

GiiTii

∣∣∣Γii (T, T̂ , Z, Z1

)∣∣∣2 ωi (Z1)

ωi (Z)

(
Gi0 + |Ψi (Z1)|2

)
dZ1

 = G′
(
G−1 (ω0i (Z))

)
we find the solution for ωi (Z) at the first order:

ωi (Z) =
∑
j

(
1−G′

(
G−1 (ω0i (Z))

)

×

∫ κ

N

GijTij

∣∣∣Γij (T, T̂ , Z, Z1

)∣∣∣2 ωj (J, Z1)

ω0i (Z)

(
Gj0 + |Ψj (Z1)|2

)
dZ1


j 6=i


−1

ij

ω0j (Z)

for inhibitory interactions ωi (Z) < ω0i (Z).

12.2 Background fields for connectivity functions

The formula are similar to the case of one type of cells. We find:

Γaij

(
Tij , T̂ij , θ, Cij , Di

)
(150)

'

N exp

− 1

2σ2
C

 1

τCωi
+ αC

ω′j

∣∣∣∣Ψj

(
θ − |Z−Z

′|
c , Z ′

)∣∣∣∣2
ωi

 |Ψi (θ, Z)|2 (Cij − Cij (θ))
2


× exp

−
(

1
τDωi

+ αD |Ψi (θ, Z)|2
)

2σ2
D

(Di −Di (θ))
2

 exp

(
−
ρ
∣∣Ψ̄ij (θ, Z, Z ′)

∣∣2
2σ2

T̂
ωi

(
T̂ij −

〈
T̂ij

〉)2
)

× ‖Γ0ij (θ, Z, Z ′)‖ exp

(
−|Ψi (θ, Z)|2

2σ2
T τωi

(Tij − 〈Tij〉)2

)}
(Z,Z′),〈Tij(Z,Z′)〉 6=0

Γu

(
Tij , T̂ij , θ, Cij , Di

)
(151)

'

N exp

− 1

2σ2
C

 1

τCωi
+ αC

ω′j

∣∣∣∣Ψj

(
θ − |Z−Z

′|
c , Z ′

)∣∣∣∣2
ωi

 |Ψi (θ, Z)|2 (Cij − Cij (θ))
2


× exp

−
(

1
τDωi

+ αD |Ψi (θ, Z)|2
)

2σ2
D

(Di − 〈Di〉)2


exp

(
−
ρ
∣∣Ψ̄ij (θ, Z, Z ′)

∣∣2
2σ2

T̂

(
T̂ij −

〈
T̂ij

〉)2
)
δ (Tij)

}
(Z,Z′),〈Tij(Z,Z′)〉=0
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with:

∣∣Ψ̄ij (θ, Z, Z ′)
∣∣2 =

(
Cij (θ) |Ψi (θ, Z)|2 hC (ωi (θ, Z)) +Di (θ)

∣∣∣∣Ψj

(
θ − |Z−Z

′|
c , Z ′

)∣∣∣∣2 hD (ωj (θ − |Z−Z′|c , Z ′
)))

2ωi (θ, Z)

and where N is a normalization factor ensuring that the constraint over the number of connections
is satisfied. For the conjugate fields, we find:

Γ†a

(
T, T̂ , θ, C,D

)
' {1}(Z,Z′),〈T (Z,Z′)〉6=0

Γ†u

(
T, T̂ , θ, C,D

)
' {δ (T )}(Z,Z′),〈T (Z,Z′)〉=0

12.3 averages for the background field

To complete the resolution of the minimization equation, we also need the averages of the dynamic
variables in the state defined by the background field. The generalization from the one-field case
is straightforward:

Cij → 〈C (θ)〉 =
αC

ω′j

∣∣∣∣∣Ψj
(
θ− |Z−Z

′|
c ,Z′

)∣∣∣∣∣
2

ωi

1
τCωi

+ αC
ω′j

∣∣∣∣Ψj(θ−|Z−Z′|c ,Z′
)∣∣∣∣2

ωi

(152)

=

αCω
′
j

∣∣∣∣Ψj

(
θ − |Z−Z

′|
c , Z ′

)∣∣∣∣2
1
τC

+ αCω′j

∣∣∣Ψj

(
θ − |Z−Z′|c , Z ′

)∣∣∣2 ≡ Cj (θ, Z, Z ′)

Di → 〈D (θ)〉 =
αDωi |Ψ (θ, Z)|2

1
τD

+ αDω′j |Ψ (θ, Z)|2
≡ D (θ) (153)

〈Tij (Z,Z ′)〉 = λτ
〈
T̂ij (Z,Z ′)

〉
(154)

=
λτh (Z,Z ′)

〈
Cj (θ, Z, Z ′)hC (ωi (θ, Z)) |Ψi (θ, Z)|2

〉
Cj (θ, Z, Z ′) |Ψi (θ, Z)|2 hC (ωi (θ, Z)) +Di (θ, Z, Z ′)

∣∣∣Ψi

(
θ − |Z−Z′|c , Z ′

)∣∣∣2 hD (ωj (θ − |Z−Z′|c , Z ′
))

We look for a static background state for the whole system. In the static case, we assume that
the static background field Ψ0j (Z) is the minimum of V (Ψj).

12.4 General equations and methdod of resolution

Derivation of equations for connectivity functions is similar to one field case. As before, we first
solve for the activities, then for the connectivities and the neurons fields.

12.4.1 Expression of ω (Z)

We use (125) to replace ω′j |Ψj (Z ′)|2:

ωj (Z ′) |Ψj (Z ′)|2 =

λτ exp

(
−|Z−Z

′|
νc

)
− Tij (Z,Z ′)

Tij (Z,Z ′)

(
1

αDτD
+ ωi |Ψi (Z)|2

)
− 1

αCτC
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which yilds:

ωi (Z) = G

∑
j

∫
κ

N

GijTij

∣∣∣Γij (T, T̂ , Z, Z1

)∣∣∣2 ωj (J, Z1)

ωi (Z)

(
Gj0 + |Ψj (Z1)|2

)
dZ1


→ G

∑
j

Gij
∫

κ

N

λτ exp
(
− |Z−Z1|

νc

)
− Tij (Z,Z1)

Tij (Z,Z1)

(
1

αDτD
+ ωi |Ψi (Z)|2

)
− 1

αCτC


×
Tij

∣∣∣Γij (T, T̂ , Z, Z1

)∣∣∣2
ωi (Z)

dZ1


' G

∑
j

Gij
∫

κ

N

((
λτ exp

(
−|Z − Z1|

νc

)
− Tij (Z,Z1)

)((
1

αDτD
− Tij (Z,Z1)

αCτC

)
ω−1
i + |Ψi (Z)|2

))
dZ1


We can replace T (Z,Z1) in the integral by its average:

1

V
Tij (Z) =

1

V

∫
Tij (Z,Z1) dZ1

so that:

ωi (Z) = G

∑
j

Gij
∫

κ

N

(
(λτνc− Tij (Z))

((
1

αDτD
− Tij (Z)

V αCτC

)
ω−1
i + |Ψi (Z)|2

))
The solution for the firing rates is defined by a function:

ωi (Z) = Ĝ
((
Gij
)
, (Tij (Z)) , |Ψi (Z)|2

)
= Ĝi

(
(Tij (Z)) , |Ψi (Z)|2

)
Here, (Tij (Z)) denotes the set of all the Tij (Z) with j running over the whole space.

To find ωi (Z), we thus have to determine Tij (Z) and |Ψi (Z)|2.

12.4.2 Equations for Tij (Z), Tij (Z,Z ′) and |Ψi (Z)|2

As in the one field case, the average connectivities at Z are given by:

Tij (Z) =
λτνc

1 +
1

τCαC
+Ωj

1
τDαD

+Ĝ((Tij(Z)),|Ψi(Z)|2)|Ψi(Z)|2

=
λτνc

(
1

τDαD
+ Ĝi

(
(Tij (Z)) , |Ψi (Z)|2

)
|Ψi (Z)|2

)
1

τDαD
+ 1

τCαC
+ Ωj + Ĝj

(
(Tij (Z)) , |Ψi (Z)|2

)
|Ψi (Z)|2

(155)
where:

Ωj =
1

V

∫
Ĝj

(
(Tjk (Z ′)) , |Ψj (Z ′)|2

)
|Ψj (Z ′)|2 dZ ′ (156)

and this leads to the following formula for Tij (Z,Z ′):

Tij (Z,Z ′) =

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
τCαC

+ω′j |Ψj(Z′)|
2

1
τDαD

+ωi|Ψi(Z)|2

=

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
τCαC

+Ĝj

(
(Tjk(Z)),|Ψj(Z′)|2

)
|Ψj(Z′)|2

1
τDαD

+Ĝi((Tij(Z)),|Ψi(Z)|2)|Ψi(Z)|2

(157)
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On the other hand, the minimization equation for the field Ψi is:

0 '


 1

Ĝi

(
(Tij (Z,Z1))Z1

, |Ψi (Z)|2
)
2

+

(
|Ψi (Z)|2 −

∫
Tij (Z ′, Z1) |Ψj0 (Z)|2 dZ1

)Ψi (θ, Z)

with solutions:
Ψi (θ, Z) = 0

or |Ψi (Z)|2 satisfying: 1

Ĝi

(
(Tij (Z,Z1))Z1

, |Ψi (Z)|2
)
2

+ |Ψi (Z)|2 '
∑
j

∫
Tij (Z,Z ′) |Ψj0 (Z ′)|2 kij (Z,Z ′) dZ ′

This equation can be approximated by: 1

Ĝi

(
(Tij (Z,Z1))Z1

, |Ψi (Z)|2
)
2

+ |Ψi (Z)|2 '
∑
j

Tij (Z)

∫
|Ψj0 (Z ′)|2 kij (Z,Z ′) dZ ′

V
(158)

≡
∑
j

Tij (Z)
〈
|Ψj0 (Z ′)|2

〉
Z

12.4.3 Expression of |Ψi (Z)|2 and Tij (Z) as functions of average values

To solve (155) and (158) for Tij (Z) and |Ψi (Z)|2, we first use (155) to express Ĝ
(

(Tij (Z)) , |Ψi (Z)|2
)
|Ψi (Z)|2

as a function of Tij (Z):

Ĝi

(
(Tij (Z)) , |Ψi (Z)|2

)
|Ψi (Z)|2 =

(
1

τDαD
+ 1

τCαC
+ Ωj

)
Tij (Z)− 1

τDαD
λτνc

λτνc− Tij (Z)
(159)

Inserting this result in (240) leads to thefollowng equation for |Ψ (Z)|2:

 λτνc− Tij (Z)(
1

τDαD
+ 1

τCαC
+ Ωj

)
Tij (Z)− 1

τDαD
λτνc

|Ψi (Z)|2
2

+ |Ψi (Z)|2 '
∑
j

Tij (Z)
〈
|Ψj0 (Z ′)|2

〉
Z
(160)

with solution:

|Ψi (Z)|2 =
2
∑
j Tij (Z)

〈
|Ψj0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

(
λτνc−Tij(Z)(

1
τDαD

+ 1
τCαC

+Ωj

)
Tij(Z)− 1

τDαD
λτνc

)2∑
j Tij (Z)

〈
|Ψj0 (Z ′)|2

〉
Z

) (161)

Ultimately, inserting this result in (159) writes Ĝi as a function of (Tij (Z)),
(

Ω̂j

)
:

Ĝi

(
(Tij (Z)) , |Ψi (Z)|2

)
|Ψi (Z)|2 = Ĝi

(
(Tij (Z)) ,

∣∣∣Ψi

(
Z,
(

Ω̂j

)
, Tij (Z)

)∣∣∣2) (162)

with:
Ω̂j =

(
1

τDαD
+

1

τCαC
+ Ωj

)
Averaging this relation will yield a consistency condtn for the Ω̂j.
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12.4.4 Identification of Ωj and T̄ij (Z)

The resolution is finalized by using (162) to identify the constant Ωj. Averagng (162) and using
(156) yields:

Ωi = Ĝi

(T̄ij) , 2
∑
j T̄ij (Z)

〈
|Ψj0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

Ω2
i

∑
j T̄ij (Z)

〈
|Ψj0 (Z ′)|2

〉
Z

)
 (163)

×
2
∑
j T̄ij (Z)

〈
|Ψj0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

Ω2
i

∑
j T̄ij (Z)

〈
|Ψj0 (Z ′)|2

〉
Z

)
The T̄ij (Z) can be replaced using (159) and (156), and computing averages:

Ωj ' 1

V

∫
Ĝ
(

(Tjk (Z)) , |Ψj (Z)|2
)
|Ψj (Z)|2 (164)

=
1

V

∫ (
1

τDαD
+ 1

τCαC
+ Ωk

)
Tjk (Z)− 1

τDαD
λτνc

λτνc− Tjk (Z)

'

(
1

τDαD
+ 1

τCαC
+ Ωk

)
T̄jk − 1

τDαD
λτνc

λτνc− T̄jk

where:
T̄ij =

1

V

∫
Tij (Z) dZ (165)

is the average cnnctvt of the system. This can be solved for T̄ij:

T̄jk =
λτνcΩj + 1

τDαD
λτνc(

1
τDαD

+ 1
τCαC

+ Ωj + Ωk

) ' λτνcΩj
Ωj + Ωk

=
2T̄Ωj

Ωj + Ωk
(166)

Inserted in (163), this yields an equation for the Ωj. Once found (166) yields T̄ij.
We can assume that the several types have approximatively the constant ration of activt, so

that Ωj
Ωj+Ωk

' 1
2gjk so that:

T̄jk ' gjkT̄

so that equation (163) bcms:

Ωi = Ĝi

T̄ , 2T̄
∑
j gij

〈
|Ψj0 (Z ′)|2

〉
Z(

1 +

√
1 + 4T̄

Ω2
i

∑
j gij

〈
|Ψj0 (Z ′)|2

〉
Z

)
 2T̄

∑
j gij

〈
|Ψj0 (Z ′)|2

〉
Z(

1 +

√
1 + 4T̄

Ω2
i

∑
j gij

〈
|Ψj0 (Z ′)|2

〉
Z

) (167)

and solvng ths equation ylds Ωi.

12.4.5 Deriving Tij (Z)

Once the Ωj is determined„we can use (161) to substitute |Ψi (Z)|2 in (155). This results in an
equation for Tij (Z). Substituting the various expressions in (157), we obtain the connectivity
Tij (Z,Z ′).

55



12.5 Particular case

We can solve the system for G an increasing function of the form Gi (xj) = G
(∑

j Gijxj

)
' b0Gijx

for xj < 1. We start with the derivation of Ω:

ωi (Z) = G

∑
j

Gij
∫

κ

N

(
(λτνc− Tij (Z))

((
1

αDτD
− Tij (Z)

V αCτC

)
ω−1
i + |Ψi (Z)|2

))
' G

∑
j

V Gij
κ

N

((
λτνc− T̄ij

)(( 1

αDτD
− T̄ij
V αCτC

)
ω−1
i + |Ψi (Z)|2

))
In first approximation, we thus find for the activity:

ωi (Z) ' G

∑
j

V Gij
κ

N

((
λτνc− T̄ij

) (
|Ψi (Z)|2

))
' b0

∑
j

V Gij
κ

N

((
λτνc− T̄ij

) (
|Ψi (Z)|2

))
Given that the average T̄ij is given by (164):

T̄ij =
λτνcΩi + 1

τDαD
λτνc

1
τDαD

+ 1
τCαC

+ Ωj + Ωi
' λτνcΩi

Ωj + Ωi
' gij T̄

we obtain:
ωi (Z) ' bGiT̄ |Ψi (Z)|2

with Gi =
∑
j G

ij (1− gij) and b = b0
κ
N V

12.5.1 Derivation of the Ωi

In this particular case, equation (247) writes:

Ωi = GibT̄

 2
∑
j T̄ij

〈
|Ψj0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

Ω2
i

∑
j T̄ij

〈
|Ψj0 (Z ′)|2

〉
Z

)


2

that can be rewritten as:

1 ' bGiT̄Ω3
i(

bGiT̄
(∑

j T̄ij

〈
|Ψj0 (Z ′)|2

〉
Z

)
Ωi − 1

)2

Defining:
T̄
〈∣∣Ψ̄i0 (Z ′)

∣∣2〉
Z

=
∑
j

T̄ij

〈
|Ψj0 (Z ′)|2

〉
Z

and its average:

T̄
〈∣∣Ψ̄i0

∣∣2〉 =

〈∑
j

T̄ij

〈
|Ψj0 (Z ′)|2

〉
Z

〉
we find:
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For d =
(
bGiT̄

)2 (
T̄
〈∣∣Ψ̄i0

∣∣2〉)3

< 27
4 there is one solution:

Ωi '
(
bGiT̄

)− 1
3 << 1 (168)

For d =
(
bGiT̄

)2 (
T̄
〈∣∣Ψ̄i0

∣∣2〉)3

> 27
4 there are three solutions. The first one is:

Ωi '
(
bGiT̄

) (
T̄
〈∣∣Ψ̄i0

∣∣2〉
Z

)2

(169)

The two other solutions are centered around 1

bGiT̄
〈
T̄ |Ψ̄i0|2

〉 . We set:

Ωi =
1± δ

bGiT̄
〈
T̄
∣∣Ψ̄i0

∣∣2〉
and (??) becomes: (

bGiT̄
)2 (

T̄
〈∣∣Ψ̄i0

∣∣2〉)3

' 1

δ2

so that:

Ωi =

1±
√

1

(bGiT̄)
2
(
T̄
〈
|Ψ̄i0|2

〉)3

bGiT̄
〈
T̄
∣∣Ψ̄i0

∣∣2〉 (170)

Solution (168) corresponds to relatively low activity, i.e.
〈∣∣Ψ̄i0

∣∣2〉 << 1, so we only consider solu-

tions (169) and (170) in the sequel. For λτνcb2 >> 1 the solutions of (170) are both approximatively
given by:

Ωi =
1

bGiT̄
〈
T̄
∣∣Ψ̄i0

∣∣2〉
Writing Ωi− this solution and Ωi+ the solution (169), we gather them and write Ωi±. To these
solutions for Ω, we associate the Z dependent parameters:

Yi+ (Z) '

(
bGiT̄

) (
T̄
〈∣∣Ψ̄i0 (Z ′)

∣∣2〉
Z

)2

2
(171)

Yi− (Z) =
1

bGiT̄
〈
T̄
∣∣Ψ̄i0 (Z ′)

∣∣2〉
Z

(172)

where Yi± gathers the possibilities Yi+ and Yi−. Similarly to the derivation in Appendix 3 of T (Z),
Tij (Z±) is a function of these parameters and can take the values:

Tij (Z±) =
λτνcYi± (Z) + 1

τDαD
λτνc

1
τDαD

+ 1
τCαC

+ Ωj± + Yi± (Z)

Ultimately, we show that there are four possibilities for the connectivity functions that are written:

Tij
(
Z±, Z

′
±
)

=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ Yi± (Z)

)
1

τDαD
+ Yi± (Z) + 1

αCτC
+ Yj± (Z ′)
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Given our assumptions on d, in most cases:

Y+ (Z) >> Y− (Z)

Moreover:
1

τDαD
<< 1,

1

αCτC
<< 1

so that due to the threshold in connectivity, we have:

Tij
(
Z−, Z

′
+

)
=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ 1

bGiT̄
〈
T̄ |Ψ̄i0(Z′)|2

〉
Z

)
1

τDαD
+ 1

αCτC
+ 1

bGiT̄
〈
T̄ |Ψ̄i0(Z′)|2

〉
Z

+
(bGj T̄)

(
T̄
〈
|Ψ̄j0(Z′)|2

〉
Z′

)2

2

' 0 (173)

Tij
(
Z+, Z

′
+

)
=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+

(bGiT̄)
(
T̄
〈
|Ψ̄i0(Z′)|2

〉
Z

)2

2

)
1

τDαD
+ 1

αCτC
+

(bGiT̄)
(
T̄
〈
|Ψ̄i0(Z′)|2

〉
Z

)2

2 +
(bGj T̄)

(
T̄
〈
|Ψ̄j0(Z′)|2

〉
Z′

)2

2

'
Giλτ exp

(
−|Z−Z

′|
νc

)
(Gi +Gj)

Tij
(
Z+, Z

′
−
)

=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+

(bGiT̄)
(
T̄
〈
|Ψ̄i0(Z′)|2

〉
Z

)2

2

)
1

τDαD
+ 1

αCτC
+

(bGiT̄)
(
T̄
〈
|Ψ̄i0(Z′)|2

〉
Z

)2

2 + 1

bGj T̄
〈
T̄ |Ψ̄j0(Z′)|2

〉
Z

' λτ exp

(
−|Z − Z

′|
νc

)

T
(
Z−, Z

′
−
)
'

λτ exp

(
−|Z−Z

′|
νc

)
+ 1

bGiT̄
〈
T̄ |Ψ̄i0(Z′)|2

〉
Z

1 + τDαD
αCτC

+ 1

bGiT̄
〈
T̄ |Ψ̄i0(Z′)|2

〉
Z

+ 1

bGj T̄
〈
T̄ |Ψ̄j0(Z′)|2

〉
Z

'
Gjλτ exp

(
−|Z−Z

′|
νc

)
(Gi +Gj)

Part III Dynamic aspects of the system:
modifications of background fields due to
external sources.
Having derived the possible forms for background, i.e. equilibrium states, we turn to the study of
the dynamical aspects of the system. External sources may induce fluctuations around static values.
We first present the results of ([52]) concerning flutuations in cell background field and activities:
we derive the dynamic corrections for the neurons background field Ψ (θ, Z) and obtain a formula
for these corrections δΨ (θ, Z) as a function of the corrections in the activities ω (J (θ, Z) , θ, Z). We
then derive a wave equation for these frequencies, and show that stable oscillations may occur. We
also inspect the interferences of waves of activities induced by several oscillating sources and their
effect on the connectivities. Some patterns of bound cells arise from these interferences so that,
the propagation of periodic perturbations may change the static background field for connectivity
functions in the long run.

We also consider the association of signals through synchronized stimuli and, ultimately, the
recovery of a combined state by the reactivation of part of the full state.

The approach in this section is local and relies only partly on the field formalsm. We show
in the next papers how to derive more generally the presented result via a field-theoretic based
description.
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13 Source induced fluctuations of neurons background field

We first study dynamic fluctuations in cells background field Ψ (θ, Z) and activities ω
(
J (θ, Z) , θ, Z,G0 + |Ψ|2

)
around some static background state. These fluctuations may be induced by some time-dependent
current J (θ, Z). The connectivity function are assumed to remain constant, since the time scale of
their modification is slower. We follow the derivations of the fluctuating background state Ψ (θ, Z)

in ([52]).

13.1 Minimization equation for dynamic fields

In ([52]) we show that the background field Ψ (θ, Z) can be decomposed in a static part and a
fluctuation part:

Ψ (θ, Z) ' Ψ0 (Z) + δΨ (θ, Z)

Ψ† (θ, Z) ' Ψ†0 (Z)

where: ∣∣∣δΨ(θ(j), Zj

)∣∣∣ < |Ψ0 (Zj)|

The static part Ψ0 (Z) is the minimum of V (Ψ). To simplify, we could consider |Ψ (Z)|2 as
exogenous and minimizing a stabilizing potential with minimum Ψ0 (θ, Z) = X0.

Expanding the potential around Ψ0 (θ, Z) and setting V = 1, yields at the second order the
effective action:

SΨ

(
Ψ,Ψ†

)
= −1

2

∫
δΨ† (θ, Z)

(
∇θ
(
σ2
θ

2
∇θ − ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)))
X0

−1

2

∫
δΨ† (θ, Z)

(
∇θ
(
σ2
θ

2
∇θ − ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)))
δΨ (θ, Z)

+
1

2

∫
δΨ† (θ, Z)U ′′ (X0) δΨ (θ, Z)

with |Ψ|2 = X0 +
√
X0

(
δ
(
Ψ† + δΨ

))
. This leads to the first order condition for δΨ (θ1, Z1):

0 =
1

2
δΨ† (θ, Z)

(
−∇θ

(
σ2
θ

2
∇θ − ω−1 (J (θ) , θ, Z,G0 +X0)

)
+ U ′′ (X0)

)
−1

2

∫
δΨ† (θ1, Z1)

√
X0

(
∇θ

δω−1 (J (θ1) , θ1, Z1,G0 +X0)

δ |Ψ (θ, Z)|2

)
X0dθ1dZ1

with solution δΨ† (θ, Z) = 0. This implies that the first order condition for δΨ† (θ, Z) becomes:

0 = −1

2

(
∇θ
(
σ2
θ

2
∇θ − ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)))
X0 (174)

−1

2

(
∇θ
(
σ2
θ

2
∇θ − ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)))
δΨ (θ, Z)

+
1

2
U ′′ (X0) δΨ (θ, Z)
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In first approximation, for U ′′ (X0) >> 1 and σ2
θ << 1, this yields15 :

δΨ (θ, Z) ' −
∇θω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)
U ′′ (X0) +∇θω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)X0 (176)

' −
∇θω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)
U ′′ (X0)

X0

Equation (174) also rewrites:(
−
(
∇θ
(
σ2
θ

2
∇θ − ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)))
+ U ′′ (X0)

)
(δΨ (θ, Z) +X0) = U ′′ (X0)X0 (177)

Equation (177) can be used to write δΨ (θ, Z) as a function of ω−1
(
J (θ) , θ, Z,G0 + |Ψ|2

)
:

δΨ (θ, Z) =


(
∇θ
(
σ2
θ

2 ∇θ − ω
−1
(
J (θ) , θ, Z,G0 + |Ψ|2

)))
U ′′ (X0)−

(
∇θ
(
σ2
θ

2 ∇θ − ω−1
(
J (θ) , θ, Z,G0 + |Ψ|2

)))
X0 (178)

= −
∇θ
(
ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

))
U ′′ (X0)−

(
∇θ
(
σ2
θ

2 ∇θ − ω−1
(
J (θ) , θ, Z,G0 + |Ψ|2

)))X0

'
∇θ
(
ω
(
J (θ) , θ, Z,G0 + |Ψ|2

))
(
ω
(
J (θ) , θ, Z,G0 + |Ψ|2

))2

U ′′ (X0)
X0

leading to system of equation for activities and field:

ω−1
(
J, θ, Z, |Ψ|2

)
= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) (
G0 +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1


and:

δΨ (θ, Z) =
∇θ
(
ω
(
J (θ) , θ, Z,G0 + |Ψ|2

))
(
ω
(
J (θ) , θ, Z,G0 + |Ψ|2

))2

U ′′ (X0)
X0 (179)

Relation (178) is suffi cient to derive the next section’s activities equations, but can however be
used to find δΨ (θ, Z), at our order of approximation (see appendix 4). In the local approximation
and for slowly varying currents, we show that the fluctuation δΨ (θ, Z) (179) is equal to:

δΨ (θ, Z) =

(
G−1

(
−U

′′ (X0)

X0
exp

(
H−1

(
θ

Γ
(
G0 (Z1) +

√
X0

) + d

)))
− J (θ, Z)

)
(180)

× exp

(
H−1

(
θ

Γ
(
G0 (Z1) +

√
X0

) + d

))
15Note that for a slowly background field Ψ0 (θ, Z), equation (176) remains valid and becomes:

δΨ (θ, Z) ' −
∇θω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)
U ′′ (X0)

Ψ0 (θ, Z) (175)
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with:
H (Y ) =

∫
dY

G−1
(
−U ′′(X0)

X0
expY

)
− J (θ, Z)

and:
Γ =

∫
κ

N

|Z − Z1|
c

T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
dZ1

The constant d is chosen so that limθ→∞ δΨ (θ, Z) = 0.
The field Ψ

(
θ(j), Zj

)
is the - phase-dependent - background field. It is null in the trivial phase,

so that the effective action is the "classical" one. In a non-trivial phase, Ψ
(
θ(j), Zj

)
is not null

and may be time-dependent. It describes the accumulation of currents or signals that shapes the
long-term dynamics of activities. Incidentally, we note that a non-trivial minimum that depends
on the system parameters should allow for phase transition in the system of activities.

14 Dynamic wave equation for activities

This section studies the dynamic solutions of (67). We use relation (178) to replace the non-static
part of the field Ψ as a function of the activities and then deduce a wave equation for the activities.

14.1 Differential equation for activities in the local approximation

A local approximation of (78) around some position-independent static equilibrium can be derived
for non static activities. Assuming a static background field Ψ0, we derived above the relation
between δΨ (θ, Z) and ω

(
J, Z, |Ψ|2

)
(see (179)):

δΨ (θ, Z) '
∇θω

(
J, Z, |Ψ|2

)
V ′′ (Ψ0 (Z))ω2

0

(
J, Z, |Ψ|2

)Ψ0 (181)

where ω
(
J, Z, |Ψ|2

)
is the time-dependent firing rate, or activity.

We can find a local approximation of (67) if we expand ω
(
J (θ) , θ, Z,G0 + |Ψ|2

)
to the second-

order in Z − Z1, and consider the other terms in the right-hand side of (67) as corrections. The
equation for ω

(
J (θ) , θ, Z,G0 + |Ψ|2

)
is:

F−1 (ω (J (θ) , θ)) = J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) (182)

×
(∣∣∣∣Ψ0 + δΨ

(
θ − |Z − Z1|

c
, Z1

)∣∣∣∣2
)
dZ1

where F = 1
G and F

−1 the reciprocal function of F . We then expand ω
(
θ − |Z−Z1|

c , Z1

)
around

ω (θ, Z) to the second-order in Z − Z1 and compute the integrals, which yields for the right-hand
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side of (182):

J (θ) +

∫
κ

N

ω
(
θ − |Z−Z1|

c , Z1

)
ω (θ, Z)

T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
(183)

×
∣∣∣∣Ψ0 (Z1) + δΨ

(
θ − |Z − Z1|

c
, Z1

)∣∣∣∣2 dZ1

' J (θ) +
TW (1)

Λ̄
+
f̂1∇θω (θ, Z)

ω (θ, Z)
+
f̂3∇2

θω (θ, Z)

ω (θ, Z)
+ c2

f̂3∇2
Zω (θ, Z)

ω (θ, Z)
+ TΨ0δΨ (θ, Z)

where we defined:

f̂1 = −Γ1

c
, f̂3 =

Γ2

c2
(184)

Γ1 =
κ

NXr

∫
|Z − Z1|T (Z,Z1) |Ψ0 (Z1)|2 dZ1

Γ2 =
κ

2NXr

∫
(Z − Z1)

2
T (Z,Z1) |Ψ0 (Z1)|2 dZ1

and:
TΨ0δΨ (θ, Z) =

∫
κT (Z,Z1)

N
Ψ0 (Z1) δΨ

(
θ − |Z − Z1|

c
, Z1

)
dZ1 (185)

Using (181) we can rewrite (185) as:

TδΨ (θ, Z) ' δΨ (θ, Z)− Γ1∇θδΨ (θ, Z) (186)

' N1∇θω0

(
J, Z, |Ψ0|2

)
−N2∇θω0

(
J, Z, |Ψ0|2

)
with:

N1 =
Ψ0 (Z)

U ′′ (X0)ω2
(
J, Z, |Ψ0|2

)
N2 =

Γ1Ψ0 (Z)

U ′′ (X0)ω2
(
J, Z, |Ψ0|2

)
Then, replacing (186) in (183), equation (182) becomes:

F−1 (ω (J (θ) , θ))− F−1 (ω0) (187)

= J (θ, Z) +

(
f̂1

ω (θ, Z)
+N1

)
∇θω (θ, Z) +

(
f̂3

ω (θ, Z)
−N2

)
∇2
θω (θ, Z) + c2f̂3

∇2
Zω (θ, Z)

ω (θ, Z)

To obtain an equation for the fluctuations of activities around the background state values, we
assume that F−1 is slowly varying, so that:

F−1 (ω (J (θ) , θ))− F−1 (ω0) ' Γ0 (ω (J (θ) , θ)− ω0)

with16 :
f =

(
F−1

)′( κ

N

∫
T (Z,Z1)W (1) dZ1Ḡ0 (0, Z1)

)
16Given our assumption that F is an increasing function, f > 0.
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and define:
Ω (θ, Z) = ω (θ, Z)− ω0

As a result, the expansion of (187) for a non-static current is then:

fΩ (θ, Z) = J (θ, Z) +

(
f̂1

ω (θ, Z)
+N1

)
∇θΩ (θ, Z) +

(
f̂3

ω (θ, Z)
−N2

)
∇2
θΩ (θ, Z) +

c2f̂3

ω (θ, Z)
∇2
ZΩ (θ, Z)

(188)
A careful study of this equation is performed in ([52]). We show that this equation has non

sinusoidal stable traveling wave solutions and that in first approximation it can be replaced by a
usual wave equation:

fΩ (θ, Z)−
(
f̂3

ω0
−N2

)
∇2
θΩ (θ, Z)− c2f̂3

ω0
∇2
ZΩ (θ, Z) = J (θ, Z) (189)

where ω0 is the average of the static activity.

14.2 Perturbative corrections to the local frequency equations

The perturbative expansion of the path integral for the field action (71) local modifies the activities
equation. We computed this effective action, written Γ

(
Ψ†,Ψ

)
, in ([52]). In the local approximation

it is given by:

Γ
(
Ψ†,Ψ

)
'
∫

Ψ† (θ, Z)

(
−∇θ

(
σ2
θ

2
∇θ − ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

))
δ (θf − θi) + Ω (θ, Z)

)
Ψ (θ, Z)

(190)
where Ω (θ, Z) is a corrective term depending on the successive derivatives of the field. The term
G0 is a function of Z and represents a two points free Green function (see ([52])).

The previous equation (190) defines an effective activity that can be identified as:

ω−1
e

(
J (θ) , θ, Z,G0 + |Ψ|2

)
= ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)
+

∫ θ

Ω (θ, Z) (191)

where ω
(
J (θ) , θ, Z, Ḡ0 + |Ψ|2

)
is the solution of:

ω−1
(
J, θ, Z, |Ψ|2

)
= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

)
×
(
Ḡ0 (0, Z1) +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1

)

Wich is the classical activity equation, up to the inclusion of the Green function Ḡ0 (0, Z1).
The second term

∫ θ
Ω (θ, Z) in (191) represents corrections due to the interactions. Using (190),

we can find its expression as a series expansion in terms of activities and field. The computations
of these corrections to the classical equation are presented in ([52]) and confirm the possibility of
traveling wave solutions. To sum up, the perturbative corrections account for interactions between
the classical solutions and the whole thread and these interactions stabilize the traveling waves.
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15 Sources induced activities, interferences.

15.1 Local approximation

In the perspective of this work, we are looking at the solutions of (189) induced by some ponctual
sources. Assume several signals arising at some points (Z1, θ1) , ..., (ZN , θN ).

The solution to (189) are then:

Ω (Z, θ) =

N∑
i=1

G ((Z, θ) , (Zi, θi)) J (Zi, θi) (192)

Where G ((Z, θ) , (Zi, θi)) is the Green function of the operator involvd in (189):

f −
(
f̂3

ω0
−N2

)
∇2
θ −

c2f̂3

ω0
∇2
Z

Solutions of (192) present interference phenomena. When the number of sources is large, we may
expect that solutions of (192) locate mainly at some maxima depending both on the connectivity

field
∣∣∣Γ(T, T̂ , θ, Z, Z ′)∣∣∣2 and neuron field. In the sequel, we will write:

Z
(ε)
M

(
|Γ|2 , |Ψ0|2

)
the location of these maxima, with ε = 1, ... indexing these maxima. We will also assume that at
these maxima, the activities are all equal to some value:

ω ' ω′ ' ωM

so that:

hC (ω) ' hC (ωM )

hD (ω) ' hD (ωM )

The precise derivation of the interference phenomenom will be presented in a field theoretic context
in part II. It is suffi cient for the rest of this article to build on the previous qualititative argument.

15.2 Non local propagation and interferences

Note that more generally, we can go farther than the local equation (189) by considering the non
local equation (182) in presence of sources, this equation has solutions:

Ω (θ, Z) '
N∑
i=1

GT ((Z, θ) , (Zi, θi)) J (Zi, θi) (193)

where GT ((Z, θ) , (Zi, θi)) is defined by:

GT ((Z, θ) , (Zi, θi)) =

(
1

1−GT

)
((Z, θ) , (Zi, θi))

and GT is an operator whose kernel GT,Ψ0

(
Z, θ, Z1, θ − |Z−Z1|

c

)
depending on T and Ψ0 will be

studied in the second article of this series. Remark that formula (193) is the non-local version
of (192). Both solutions present interference phenomena with maxima located at specifc points
Z

(ε)
M

(
|Γ|2 , |Ψ0|2

)
.
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16 Effective action and background state for given sources per-
turbations

We have seen that for a given external source state, interferences occur in cells activity, leading to
localized activities at specific points:

Z
(ε)
M

(
|Γ|2 , |Ψ0|2

)
with ε = 1, ... indexing these points. To derive the connctivity background field associated to
these source induced interferences, we have to proceed as we did in section 8 and start with the
level of activity at each points of the system. We will assume that the effect of activity is large
at the points of positive interferences and neglect at these points the level of static equilibrium
level ω0 (Z) in the static background field. This corresponds to study states with source induced
additional connectivity and activation. The background field obtained will thus described this
modification "above" the static background field, similar to an activated state above some vacuum.

We will also assume, for the sake of simplicity, that that at these maxima Z(ε)
M

(
|Γ|2 , |Ψ0|2

)
, the

activities are all equal to some value:
ω ' ω′ ' ωM (194)

so that:

hC (ω) ' hC (ωM )

hD (ω) ' hD (ωM )

Assuming that functions hC (ω) and hD (ω) are proportional to some positive power of ω implies
that outside the set of points

UM =
{
Z

(ε)
M

(
|Γ|2 , |Ψ0|2

)}
the functions hC (ω) and hD (ω) can be considered as nul. We will write Z the generic points of the
complementary set of UM , written CUM .

We compute average connectivity between points of UM , between points of CUM , and between
points of UM and CUM .

16.1 Connectivity between points of UM

Using (194), we can compute the average connectivities for points of UM , the points with construc-
tive interferences. We use that the background state at points

(
Z

(ε1)
M , Z

(ε2)
M

)
⊂ UM is:

Γ
(
T, T̂ , θ, Z

(ε1)
M , Z

(ε2)
M

)
= exp

(
−
((
− 1

τωM
T +

λ

ωM

〈
T̂
〉) ∣∣∣Ψ(θ, Z(ε1)

M

)∣∣∣2)2
)

× exp

−
 ρ

ωM
H
(
Z

(ε1)
M , Z

(ε2)
M

) ∣∣∣Ψ(θ, Z(ε1)
M

)∣∣∣2
∣∣∣∣∣∣Ψ
θ −

∣∣∣Z(ε1)
M − Z(ε2)

M

∣∣∣
c

, Z
(ε2)
M

∣∣∣∣∣∣
2


2


where:
H
(
Z

(ε1)
M , Z

(ε2)
M

)
=
((
h
(
Z

(ε1)
M , Z

(ε2)
M

)
− T̂

)
C (θ)hC −D (θ) T̂ hD

)
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and the average values of C, D, T̂ and T in this background states are:

C
Z

(ε1)
M

,Z
(ε2)
M

=

αCωM

∣∣∣∣∣Ψ
(
θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c , Z

(ε2)
M

)∣∣∣∣∣
2

1
τC

+ αCωM

∣∣∣∣∣Ψ
(
θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c , Z

(ε2)
M

)∣∣∣∣∣
2

D
Z

(ε1)
M

,Z
(ε2)
M

=
αDωM

1
τD

+ αDωM

∣∣∣Ψ(θ, Z(ε1)
M

)∣∣∣2

T
(
Z

(ε1)
M , Z

(ε2)
M

)
= λτT̂

(
Z

(ε1)
M , Z

(ε2)
M

)
= λτ

h
(
Z

(ε1)
M , Z

(ε2)
M

)
C
Z

(ε1)
M

,Z
(ε2)
M

(θ)hC

C
Z

(ε1)
M

,Z
(ε2)
M

(θ)hC +D
Z

(ε1)
M

,Z
(ε2)
M

(θ)hD

Then assuming an exponential decreasing dependency in distance for the connectivities:

h
(
Z

(ε1)
M , Z

(ε2)
M

)
' exp

−
∣∣∣Z(ε1)
M − Z(ε2)

M

∣∣∣
νc


we obtain:

T
(
Z

(ε1)
M , Z

(ε2)
M

)
(195)

=

λτ exp

(
−
∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
νc

)∣∣∣∣∣Ψ
(
θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c , Z

(ε2)
M

)∣∣∣∣∣
2

hC∣∣∣∣∣Ψ
(
θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c , Z

(ε2)
M

)∣∣∣∣∣
2

hC +

 1
αCτC

+ ωM

∣∣∣∣∣Ψ
(
θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c , Z

(ε2)
M

)∣∣∣∣∣
2
 αDhD

1
τD

+αDωM

∣∣∣Ψ(θ,Z(ε1)
M

)∣∣∣2
In a long run static perspective, this formula reduces to:

T
(
Z

(ε1)
M , Z

(ε2)
M

)
=

λτ exp

(
−
∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
νc

)∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 hC∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 hC +

(
1

αCτC
+ ωM

∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2) αDhD
1
τD

+αDωM

∣∣∣Ψ0

(
Z

(ε1)
M

)∣∣∣2
The decription of the set UM is achieved by adding the long term determination of activities ωM :

ω−1
M

(
Z

(ε1)
M , |Ψ|2

)
' G

 κ

N

∑
Z

(ε2)
M

T
(
Z

(ε1)
M , Z

(ε2)
M

) ∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2


' G

C |Ψ0 (ZM )|4 hC
|Ψ0 (ZM )|2 hC +

(
1

αCτC
+ ωM |Ψ0 (ZM )|2

)
αDhD

1
τD

+αDωM |Ψ0(ZM )|2


whr:

C =
κλτ

N
(
]
{
Z

(ε1)
M

}) ∑
Z

(ε1)
M

,Z
(ε2)
M

exp

−
∣∣∣Z(ε1)
M − Z(ε2)

M

∣∣∣
νc


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nd |Ψ0 (ZM )|2 is the average of
∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 over {Z(ε2)
M

}
. The value of |Ψ0 (ZM )|2 can be approxi-

mated in the following way.
In the field-theoretic approach to interferences, we will see that the signals modify the potential

for |Ψ0 (Z)|2 but that in first approximation, this modification can be neglected. Thus, the value of
|Ψ0 (Z)|2 after interferences may be computed by the background field before interferences. This is
formula (133):

|Ψ (Z)|2 =
2T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

(
λτνc−T (Z)(

1
τDαD

+ 1
τCαC

+Ω
)
T (Z)− 1

τDαD
λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

)
where all quantities are computed in the initial background state. The system emrging from the
interferences thus depends on the whole initial structure.

16.2 Connectivity between points of CUM

The connectivity function for two points in CUM is obtained by setting ω << 1 and ω′ << 1:

T (Z,Z ′) '
αCωλτ exp

(
−|Z−Z

′|
νc

) ∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hC

αCω
∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣2 hC +
(
ω′
τC

)
αDhD
|Ψ(θ,Z)|2

τD

and these values are identitical to those computed for the static background state in the previous
section (see (173)), up to some global modifications of the system by the interfering signals. These
modifications are encompassed in the values of the constants Ω, Ω̄... in (173). These modifications
are negligible in general.

16.3 Connectivity between points of UM and points of CUM

Two cases arise. We have ton consider both:

T
(
Z

(ε)
M , Z ′

)
describing the connectivity of points of CUM towards point of UM , measuring the strength of signals
send from CUM to UM , and:

T
(
Z,Z

(ε)
M

)
computing the connectivity of points of UM towards point of CUM .

The connectivity function T
(
Z

(ε)
M , Z ′

)
is obtained by setting ω = ωM and ω′ << 1 or ω << 1 and

ω′ = ωM . We find

T
(
Z

(ε)
M , Z ′

)
'

λτ exp

(
−|Z−Z

′|
νc

) ∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hC∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣2 hC +
∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣2 αDωMhD
|Ψ(θ,Z)|2

τD
+αDωM

(196)

The connectivity function T
(
Z

(ε)
M , Z ′

)
is derived by setting ω << 1 and ω′ = ωM :

T
(
Z,Z

(ε)
M

)
'
αCωλτ exp

(
−|Z−Z

′|
νc

) ∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hC

αCω
∣∣∣Ψ(θ − |Z−Z′|c , Z ′

)∣∣∣2 hC + ωM
τC

αDhDτD
|Ψ(θ,Z)|2

<< 1 (197)
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As a consequence, points of the set U do not connect with elements of CU . On the contrary,
elements of CU send signals and connect to elements of U but their firing rate being low, they do
not influence the whole set that remains unaffected.

16.4 Equations defining the set of connected cells

The results of the previous paragraph where derived considering a given set UM . However, there is
a priori no guarantee for the unicity of this set. Actually, the set of constructive interferences points
Z

(ε)
M are by definition, dependent on both fields Γ

(
T, T̂ , θ, Z, Z ′

)
and Ψ (θ, Z) through T (Z,Z ′), so

that the points Z(ε)
M are in fact themselves endogeneous:

Z
(ε1)
M ≡ Z

(ε1)
M

T (Z(ε1)
M , Z

(ε2)
M

)
,
∣∣∣Ψ(θ, Z(ε1)

M

)∣∣∣2 ,
∣∣∣∣∣∣Ψ
θ −

∣∣∣Z(ε1)
M − Z(ε2)

M

∣∣∣
c

, Z
(ε2)
M

∣∣∣∣∣∣
2


Z
(ε2)
M ≡ Z

(ε2)
M

T (Z(ε1)
M , Z

(ε2)
M

)
,
∣∣∣Ψ(θ, Z(ε1)

M

)∣∣∣2 ,
∣∣∣∣∣∣Ψ
θ −

∣∣∣Z(ε1)
M − Z(ε2)

M

∣∣∣
c

, Z
(ε2)
M

∣∣∣∣∣∣
2


As a consequence, equation (195) is a self consistent functionnal non linear equation for
∣∣∣Ψ(θ, Z(ε1)

M

)∣∣∣2,∣∣∣∣∣Ψ
(
θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c , Z

(ε2)
M

)∣∣∣∣∣
2

and T
(
Z

(ε1)
M , Z

(ε2)
M

)
. This implies multiple possible states of construc-

tive interferences. The full environment impacts the interference pattern, and is itself modified by
these interferences, leading possibly to multiple equilibria. These solutions depend on Ψ. If thereisa
threshold for connectivity to be effective, given the form of h

(
Z

(ε1)
M , Z

(ε2)
M

)
, connections arise along

lines or branched lines. This may induce some effective form of engrams, asset of branched lines,
described by activities and connectivity at nodes.

17 Medium term state reactivation

In this section, we focus on the possible reactivation of a state defined by the points Z(ε)
M . When

the sources are off, we have J (Z) = 0 for θ > θt, so that in the medium run:

ω
(
Z

(ε1)
M

)
' ωJ=0 << ωM

T
(
Z

(ε1)
M , Z

(ε2)
M

)
' T exp (−λ (θ − θt))

The activation at some point Z(ε2)
M , ω

(
Z

(ε1)
M

)
= ωM leads to the dynamics between points

{
Z

(ε1)
M

}
with T

(
Z

(ε1)
M , Z

(ε2)
M

)
= T . Set U do not connect with set CU . Writing the equation for ω−1

(
J, θ, Z, |Ψ|2

)
:

ω−1
(
J, θ, Z, |Ψ|2

)
= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
∣∣∣Γ(T, T̂ , θ, Z, Z1

)∣∣∣2
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 dZ1


and using the condition about the average connectivit:∫

T
∣∣∣Γ(T, T̂ , θ, Z, Z1

)∣∣∣2 dT = T
(
Z

(ε1)
M , Z

(ε2)
M

)
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that connects only the points Z(ε)
M in first approximation yields:

ω−1
M

(
Z

(ε1)
M , |Ψ|2 , θ

)
' G

 κ

N

∑
Z

(ε2)
M

ωM

(
Z

(ε2)
M , |Ψ|2 , θ −

∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
c

)
ωM

(
Z

(ε1)
M , |Ψ|2 , θ

) T
(
Z

(ε1)
M , Z

(ε2)
M

) ∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2


with the static lmt:

ω−1
M

(
Z

(ε1)
M , |Ψ|2

)
' G

 κ

N

∑
Z

(ε2)
M

T
(
Z

(ε1)
M , Z

(ε2)
M

) ∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2


' G

C |Ψ0 (ZM )|4 hC
|Ψ0 (ZM )|2 hC +

(
1

αCτC
+ ωM |Ψ0 (ZM )|2

)
αDhD

1
τD

+αDωM |Ψ0(ZM )|2


and th st is reactivated as a whole, with lower level activity compared to the initial level.

18 Background state for associated signals

We can can consider that several disconnected state become associated by an external source. When
two states UM and U ′M activated simultaneously their average connectivities are:

T
(
Z

(ε1)
M , Z

(ε2)
M

)
=

λτ exp

(
−
∣∣∣Z(ε1)
M
−Z(ε2)

M

∣∣∣
νc

)∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 hC∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 hC +

(
1

αCτC
+ ωM

∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2) αDhD
1
τD

+αDωM

∣∣∣Ψ0

(
Z

(ε1)
M

)∣∣∣2

T
(
Z
′(ε1)
M , Z

′(ε2)
M

)
=

λτ exp

(
−
∣∣∣Z′(ε1)
M

−Z′(ε2)
M

∣∣∣
νc

)∣∣∣Ψ0

(
Z
′(ε2)
M

)∣∣∣2 hC∣∣∣Ψ0

(
Z
′(ε2)
M

)∣∣∣2 hC +

(
1

αCτC
+ ω′M

∣∣∣Ψ0

(
Z
′(ε2)
M

)∣∣∣2) αDhD
1
τD

+αDω
′
M

∣∣∣Ψ0

(
Z
′(ε1)
M

)∣∣∣2
But crssd connectivities have also to be considered:

T
(
Z

(ε1)
M , Z

′(ε2)
M

)
=

λτ exp

(
−
∣∣∣Z(ε1)
M
−Z′(ε2)

M

∣∣∣
νc

)∣∣∣Ψ0

(
Z
′(ε2)
M

)∣∣∣2 hC∣∣∣Ψ0

(
Z
′(ε2)
M

)∣∣∣2 hC +

(
1

αCτC
+ ω′M

∣∣∣Ψ0

(
Z
′(ε2)
M

)∣∣∣2) αDhD
1
τD

+αDωM

∣∣∣Ψ0

(
Z

(ε1)
M

)∣∣∣2

T
(
Z
′(ε2)
M , Z

(ε1)
M

)
'

λτ exp

(
−
∣∣∣Z′(ε1)
M

−Z(ε2)
M

∣∣∣
νc

)∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 hC∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2 hC +

(
1

αCτC
+ ωM

∣∣∣Ψ0

(
Z

(ε2)
M

)∣∣∣2) αDhD
1
τD

+αDω
′
M

∣∣∣Ψ0

(
Z
′(ε1)
M

)∣∣∣2
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along with the associated activities:

ω−1
M

(
Ẑ

(ε1)
M , |Ψ|2 , θ

)
' G

 κ

N

∑
Ẑ

(ε2)
M

ωM

(
Ẑ

(ε2)
M , |Ψ|2 , θ −

∣∣∣Ẑ(ε1)
M
−Ẑ(ε2)

M

∣∣∣
c

)
ωM

(
Ẑ

(ε1)
M , |Ψ|2 , θ

) T
(
Ẑ

(ε1)
M , Ẑ

(ε2)
M

) ∣∣∣Ψ0

(
Ẑ

(ε2)
M

)∣∣∣2


with:
Ẑ

(ε)
M ∈

{
Z

(ε1)
M , Z

′(ε2)
M

}
nd sttc lmt:

ω−1
M

(
Ẑ

(ε1)
M

)
' G

 κ

N

∑
Ẑ

(ε2)
M

ωM

(
Ẑ

(ε2)
M , |Ψ|2

)
ωM

(
Ẑ

(ε1)
M , |Ψ|2

)T (Ẑ(ε1)
M , Ẑ

(ε2)
M

) ∣∣∣Ψ0

(
Ẑ

(ε2)
M

)∣∣∣2


ωM = ωM

(
Z

(ε)
M

)
ω′M = ωM

(
Z
′(ε)
M

)
19 Reactivation of associated signals

As before, activation at one point for constant connectivities yields, dynamic system:

ω−1
M

(
Ẑ

(ε1)
M , |Ψ|2 , θ

)
' G

 κ

N

∑
Ẑ

(ε2)
M

ωM

(
Ẑ

(ε2)
M , |Ψ|2 , θ −

∣∣∣Ẑ(ε1)
M
−Ẑ(ε2)

M

∣∣∣
c

)
ωM

(
Ẑ

(ε1)
M , |Ψ|2 , θ

) T
(
Ẑ

(ε1)
M , Ẑ

(ε2)
M

) ∣∣∣Ψ0

(
Ẑ

(ε2)
M

)∣∣∣2


cnvrgng twrd qlbrm:

ω−1
M

(
Ẑ

(ε1)
M , |Ψ|2 , θ

)
' G

 κ

N

∑
Ẑ

(ε2)
M

ωM

(
Ẑ

(ε2)
M , |Ψ|2 , θ −

∣∣∣Ẑ(ε1)
M
−Ẑ(ε2)

M

∣∣∣
c

)
ωM

(
Ẑ

(ε1)
M , |Ψ|2 , θ

) T
(
Ẑ

(ε1)
M , Ẑ

(ε2)
M

) ∣∣∣Ψ0

(
Ẑ

(ε2)
M

)∣∣∣2


20 Background state for sequence of signals

The previous section allows to consider now the combined effects of two different sources modifying
the system at different moments. We will consider two possibilities, distant and subsequent activa-
tions. We present these two possibilities qualitatively and provide some details while developping
the field formalism dynamic for connectivities.

20.1 Distant activation

We assume that the system is in a static background state, as computed in the previous section,
and described as {ω0, T0}. The effect of two distant signals in time can be described in the sequence:

{ω0, T0} →
{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ωM

}
→
{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
→

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
+
{
T
(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′M

}
→

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
+
{
T
(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω0

}
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where
{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ωM

}
describes a modified state where the connectivities are modified at

points
(
Z

(ε1)
M , Z

(ε2)
M

)
with values T

(
Z

(ε1)
M , Z

(ε2)
M

)
and ωM are the modified activities. The sequence

describe the modification by a first signal. This implies modified connectivities and modified ac-
tivities. As the signals ends, and time increase, the activities, whose time scale can be considered
smaller than the connectivities time scale, come back to their equilibrium, while the modifica-
tions T

(
Z

(ε1)
M , Z

(ε2)
M

)
are persistent. In a second step an other signal modifies the system at some

points, which induces a new set of modification in connectivities. As time increases the frequencies
come back to some equilibrium values, but connection remain active. The main feature of the
modification is that the two sets:{

T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
+
{
T
(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω0

}
are not connected a priori. In the activation, the connections between activated points increase,
but connections with other points decrease as seen from (196) and (197). The two set remain
independent, and in a reactivation of one set, the following sequence applies (we consider here,the
reactivation of ω′M):{

T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
+
{
T
(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω0

}
→
{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
+
{
T
(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′M

}
While ω′M is activated at some points of

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, the activated points will send signals to the

points of the same set to which they are connected. It will lead to reactivate the activities at these
points. However, the other state

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0

}
being independent, as a consequenc of (196)

and (197), will remain silent. More about the mechanism of diffusion of activities will be given in
the dynamic field theoretic approach.

20.2 Subsequent activation

When the activation are subsequent, i.e. when the two perturbations are closed in time, the
following sequence applies:

{ω0, T0} →
{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ωM

}
→

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ωM , T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′M , T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
→

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0, T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω0, T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
While activating the system with second signal, the track of the first one is still active and thus

both sets
(
Z

(ε1)
M , Z

(ε2)
M

)
and

(
Z
′(ε2)
M , Z

(ε1)
M

)
are connected. The activated system is thus made of a

set of connected points
{(
Z

(ε1)
M , Z

(ε2)
M

)
,
(
Z
′(ε2)
M , Z

(ε1)
M

)}
. This is translated by the notation:{

T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ωM , T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′M , T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
When both signals fade away, we are left with:{

T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0, T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω0, T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
When one set is reactivated (here choose ω′M), we can write:{

T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0, T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′0, T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
→

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ω0, T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′M , T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
→

{
T
(
Z

(ε1)
M , Z

(ε2)
M

)
, ωM , T

(
Z
′(ε1)
M , Z

′(ε2)
M

)
, ω′M , T

(
Z

(ε1)
M , Z

′(ε2)
M

)
, T
(
Z
′(ε2)
M , Z

(ε1)
M

)}
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Actually, while ω′M is activated at some point, the whole system defined by the points
(
Z
′(ε2)
M , Z

(ε1)
M

)
and their connections T

(
Z
′(ε2)
M , Z

(ε1)
M

)
will be activated, as in the previous paragraph. However,

given that both sets T
(
Z

(ε1)
M , Z

(ε2)
M

)
are connected, the diffucion of the signal will reactive the

activity between the points
(
Z

(ε1)
M , Z

(ε2)
M

)
. The two structures are synchronically activated.

21 Conclusion

Our results reveal that the primary entities emerging from our model are sets of interconnected
cells. The activity levels of these cells are jointly defined with their interconnections within the
set. We observed that dynamically, such sets interact with each other and can engage in associ-
ations, deactivations, and reactivations. While our results were obtained in a qualitative manner,
the subsequent article will provide a more technical derivation, emphasizing the role of the field
theoretic framework. Nevertheless, our study already offers insights into two key characteristics of
the formalism.

Firstly, the interactions among interconnected sets imply the need to develop a dynamic effective
formalism for connectivity functions. Integrating the degrees of freedom for neuronal activity fields
should yield such a formalism, directly describing activations, associations, and other group-related
phenomena. This effective formalism is expounded upon in the third article of this series.

Secondly, the existence of additional states that may be activated due to external signals suggests
the necessity for a formalism to describe interconnected groups. The coexistence, interaction,
creation, or deactivation of several groups prompts the consideration of a field formalism for these
groups. This is the objective of the fourth article in this series, which will develop such an expanded
model.
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Appendix 1 Effective action for Ψ (θ, Z)

1.1 Projection on activities states

When we restrict the fields to those of the form:

Ψ (θ, Z) δ
(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
(198)

where ω−1 (J, θ, Z,Ψ) satisfies:

ω−1
(
J, θ, Z, |Ψ|2

)
(199)

= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 dZ1


The classical effective action writes:

−1

2

∫
Ψ† (θ, Z) Ψ (θ, Z) δ

(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))((σ2

2
∇θ − ω−1

)
∇θ
)

Ψ (θ, Z) δ
(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
(200a)

We can replace the first δ function by 1 to normalize the projection on the activity dependent
states.. The action of ∇θ on Ψ (θ, Z) δ

(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
yields:

∇θ
(

Ψ (θ, Z) δ
(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

)))
(201)

= (∇θΨ (θ, Z)) δ
(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
−
(
∇θω−1

(
J, θ, Z, |Ψ|2

))
Ψ (θ, Z) δ′

(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
Inserting the result (201) in (200a) leads to:

−1

2

∫
Ψ† (θ, Z) Ψ (θ, Z)

((
σ2

2
∇θ − ω−1

))
(∇θΨ (θ, Z)) δ

(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
+

1

2

∫
Ψ† (θ, Z) Ψ (θ, Z)

((
σ2

2
∇θ − ω−1

))
Ψ (θ, Z) δ′

(
ω−1 − ω−1

(
J, θ, Z, |Ψ|2

))
= −1

2

∫
Ψ† (θ, Z) Ψ (θ, Z)

((
σ2

2
∇θ − ω−1

(
J, θ, Z, |Ψ|2

)))
∇θΨ (θ, Z)

−1

2

∫
Ψ† (θ, Z) Ψ (θ, Z)

((
σ2

2
∇θ −∇θω−1

(
J, θ, Z, |Ψ|2

)))
Ψ (θ, Z)

and the sum of the two last terms is, as in the text:

−1

2

∫
Ψ† (θ, Z)

(
∇θ
(
σ2

2
∇θ − ω−1

(
J, θ, Z, |Ψ|2

)))
Ψ (θ, Z)

Appendix 1.2 Effective action for Ψ (θ, Z) at the lowest order

To find the effective action for field Ψ at lowest order, we start with the two points Green function
and prove (??). To do so, we will expand the action functional in series of the field Ψ. The
two points Green functions will be computed by using the "free" action’s propagator, obtained by
replacing ω−1 (J, θ, Z,Ψ) with ω−1 (J, θ, Z, 0) in (??). The free action is:

S0 = −1

2
Ψ† (θ, Z)∇θ

(
σ2

2
∇θ − ω−1 (J, θ, Z, 0)

)
Ψ (θ, Z) (202)

and the series in field of (??) will be considered, as usual, as a perturbation expansion.
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1.2.1 "Free" action propagator

Now, we compute the propagator associated to (202). We decompose the external current into a
static and a time dependent parts J̄ + J (θ) where J̄ can be thought as the time average of the
current. We will consider that

∣∣J̄ (Z)
∣∣ > |J (θ, Z)|. At zeroth order in current J (θ), the function

ω−1 (J, θ, Z, 0) satisfies:

ω−1 (J, θ, Z, 0) = G
(
J̄ + J (θ)

)
(203)

' G
(
J̄ (Z)

)
=

arctan
((

1
Xr
− 1

Xp

)√
J̄ (Z)

)
√
J̄ (Z)

=
1

X̄r (Z)
≡ 1

X̄r

where the dependence in Z of X̄r will be understood. As a consequence ω (θ, Z) is thus approxima-
tively equal to X̄r. Under this approximation:

S0 = −Ψ† (θ, Z)∇θ
(
σ2

2
∇θ −

1

X̄r

)
Ψ (θ, Z)

and the Green function of the operator ∇θ
(
σ2

2 ∇θ −
1
X̄r

)
is computed as:

〈
Ψ† (θ, Z) Ψ

(
θ′, Z

)〉
≡ G0

(
(θ, Z) ,

(
θ′, Z ′

))
≡ G0

(
θ, θ′, Z

)
= δ (Z − Z ′)

∫
exp

(
ik
(
θ − θ′

))
σ2

2 k
2 + ik 1

X̄r
+ α

dk (204)

The right hand side of (204) can be computed as:∫
exp

(
ik
(
θ − θ′

))
σ2

2 k
2 + ik 1

X̄r
+ α

dk = exp

(
θ − θ′

σ2X̄r

)∫
exp

(
ik
(
θ − θ′

))
σ2

2 k
2 + 1

2

(
1

σX̄r

)2

+ α
dk

=
1√
π
2

exp

(
−
√(

1
σ2X̄r

)2

+ 2α
σ2

∣∣θ − θ′∣∣)√(
1

σ2X̄r

)2

+ 2α
σ2

exp

(
θ − θ′

σ2X̄r

)
(205)

and this is quickly suppressed for θ − θ′ < 0. This is the direct consequence of non-hermiticity of
operator. In the sequel, for σ2X̄r << 1, we can thus consider that:

G0

(
θ, θ′, Z

)
= δ (Z − Z ′) 1√

π
2

exp

(
−
(√(

1
σ2X̄r

)2

+ 2α
σ2 − 1

σ2X̄r

)(
θ − θ′

))
√(

1
σ2X̄r

)2

+ 2α
σ2

H
(
θ − θ′

)
(206)

where H is the Heaviside function:

H
(
θ − θ′

)
= 0 for θ − θ′ < 0

= 1 for θ − θ′ > 0

Formula (206) for the propagator is suffi cient to compute the graphs expansion in the next para-
graphs. We can check that the corrections due to a non-static current do not modify the result at
a good level of approximation. Considering the following form for G (J (θ, Z)):

G (J (θ, Z)) =
arctan

((
1
Xr
− 1

Xp

)√
J (θ, Z)

)
√
J (θ, Z)
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For relatively high frequency firing rates, i.e., small periods of time between two spikes, we can
write in first approximation:

G
(
J̄ + J (θ, Z)

)
' G

(
J̄
)

+ J (θ, Z)G′
(
J̄
)

=
1

X̄r
+ J (θ, Z)G′

(
J̄
)

and replace (204) by the Green function of:

∇θ
(
σ2

2
∇θ −G (J (θ, Z))

)
' ∇θ

(
σ2

2
∇θ −

1

X̄r
− J (θ, Z)G′

(
J̄
))

As a consequence, the inverse activity G0

(
θ, θ′, Z

)
defined in (206) is replaced by:

G0

(
(θ, Z) ,

(
θ′, Z ′

))
= δ (Z − Z ′) 1√

π
2

exp

(
−
(√(

1
σ2X̄r

)2

+ 2α
σ2 − 1

σ2X̄r

)(
θ − θ′

))
√(

1
σ2X̄r

)2

+ 2α
σ2

H
(
θ − θ′

)

×

1− 1√
π
2

G′
(
J̄
)√(

1
σ2X̄r

)2

+ 2α
σ2

∫ θ′

θ

J
(
θ′′, Z

)
dθ′′


Since J (θ, Z) is a deviation around the static part J̄ , the corrective term:

− 1√
π
2

G′
(
J̄
)√(

1
σ2X̄r

)2

+ 2α
σ2

∫ θ′

θ

J
(
θ′′, Z

)
dθ′′

vanishes quickly as θ − θ′ increases, which justifies approximation (206).

1.2.2 perturbation expansion and the two points Green function

Formula (206) allows to compute higher order contributions to the Green function of action (??)
by using a graph expansion. Actually, writing ω−1 (θ, Z) for ω−1 (J, θ, Z,Ψ) when no ambiguity is
possible, the higher order contribution for the series expansion of ω−1 (θ, Z) in fields are obtained
by solving recursively:

ω−1 (J, θ, Z) = G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1

)
ω (J, θ, Z)

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 T (Z, θ, Z1) dZ1dω1


(207)

This will be done precisely in the next paragraph. For now, it is enough to note that given (207),
the recursive expansion in ω−1 (J, θ, Z) of the potential term in (??):

1

2
Ψ† (θ, Z)∇

G
J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1

)
ω (J, θ, Z)

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2 T (Z,Z1) dZ1

Ψ (θ, Z)

(208)
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induces the presence of products in the series expansion of the two points Green function:

m∏
i=1

∫
Ψ†
(
θ(i), Zi

)
∇θ(i)

ki∏
k=1

 lk∏
l=1

n(α(l))∏
α(l)=1

∫ ∣∣∣∣∣∣Ψ
θ(i) −

∣∣∣Zi − Z(1)
α(l)

∣∣∣+ ...+
∣∣∣Z(l−1)
α(l) − Z

(l)
α(l)

∣∣∣
c

, Z
(l)
α(l)

∣∣∣∣∣∣
2


×dZ(1)
α(l)...dZ

(lk)
α(l)Ψ

(
θ(i), Zi

)
dθ(i)dZi (209)

with n (α (l)) > n (α (l′)) for l > l′ and m ∈ N. The function δ (Z − Z ′) in (204) and the use of Wick’s
theorem imply that all subgraphs drawn from this product reduce to a product of free Green
functions (206) of the following form (the gradient terms and the indices α (l) are not included and
do not impact the reasoning):

∫ ∏
i

G0

θ(i) −
∑
l6ni

∣∣∣Zi − Z(l)
i

∣∣∣
c

, θ(i+1) −
∑

k6ni+1

∣∣∣Zi+1 − Z(k)
i+1

∣∣∣
c

, Z
(ni)
i , Z

(ni+1)
i


×δ
(
Z1 − Z(ni)

i

)
δ

(
Z1 − Z

(ni+1)
i+1

)
dZ

(ni)
i dZ

(ni+1)
i+1

∏
i

dθ(i)

=

∫ ∏
i

G0

θ(i) −
∑
l6n

∣∣∣Zi − Z(l)
1

∣∣∣
c

, θ(i+1) −
∑
k6m

∣∣∣Zi+1 − Z(k)
1

∣∣∣
c

, Z1

∏
i

dθ(i)

=

∫ ∏
i

G0

(
θ(i), θ(i+1), Z1

)∏
i

dθ(i) (210)

by change of variable in the successive integrations. Moreover, the cancelation of G0

(
θ, θ′, Z

)
for

θ < θ′ implies that this product is different from zero only for θ(i) < θ(i+1). As a consequence, for
all closed loops θ1 < ... < θ(i) < θ(i+1) < ...θn = θ1, the contribution (210) for loop graphs reduces to:∏

i

G0 (θ1, θ1, Z1) =
∏
i

G0 (0, Z1)

with (see (206)):

G0 (0, Z) =
1√

π
2

(
1

σ2X̄r

)2

+ 2πα
σ2

As a consequence, the contribution of (209) to the two points Green function between an initial
and final state:〈

Ψ† (θin, Zin)

∫ m∏
i=1

Ψ†
(
θ(i), Zi

)

×∇θ(i)

ki∏
k=1

 lk∏
l=1

∫ ∣∣∣∣∣Ψ
(
θ(i) −

∣∣Zi − Z(1)
∣∣+ ...+

∣∣Z(l−1) − Z(l)
∣∣

c
, Z(l)

)∣∣∣∣∣
2

dZ(1)...dZ(lk)


× Ψ

(
θ(i), Zi

)
dθ(i)dZiΨ (θfn, Zfn)

〉
(211)

reduces to sums and integrals of the type:

δ (Zin − Zfn)
∑
p

G0 (θin, θ1, Zin)G0 (θ1, θ2, Zin) ...G0 (θp, θfn, Zin) (212)

×

∑
n

∑
{
L

(p)
1 ,...,L

(p)
n

}
n∏

m=1

(G0 (0, 0, Zm))
l
(
L

(p)
m

)
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where
{
L

(p)
1 , ..., L

(p)
n

}
is the set of all n-uplet of possible closed loops that can be drawn from the

remaining variables in (211) once p variables have been chosen.
The result (212) is the same as if in (208) the potential had been expanded to the second order

in Ψ and in all terms of higher order, |Ψ (θ, Z)|2 had been replaced by G0 (0, Z).
Now, writing ω

(
J, θ, Z, |Ψ|2

)
for ω and ω (0) = ω (J, θ, Z, 0) (i.e. when we set Ψ ≡ 0), this means

that the 2 points Green functions are computed using the free action:

−1

2
Ψ† (θ, Z)∇θ

(
σ2
θ

2
∇θ − ω−1 (0)

)
Ψ (θ, Z) (213)

+
1

2
Ψ† (θ, Z)

∑
n>0

∇θ
(
ω−1

)([n])
(0)

[n]!
(G0 (0, Z))

n
Ψ (θ, Z)

+
∑
n>0

(
∇θ
(
ω−1

)([n−1])
(0) |Ψ|2

[n− 1]!
(G0 (0, Z))

n−1 G0

(
θ, θ′, Z

))
θ′=θ

= −1

2
Ψ† (θ, Z)∇θ

(
σ2
θ

2
∇θ − ω−1 (0)

)
Ψ (θ, Z) +

1

2
Ψ† (θ, Z)

∑
n>0

∇θ
((
ω−1

)
(G0 (0, Z))− ω−1 (0)

)
Ψ (θ, Z)

+Ψ† (θ, Z)
(
∇θ′

((
ω−1

)([1])
(G0 (0, Z)) Ψ

(
θ′, Z

)
G0

(
θ, θ′, Z

)))
θ′=θ

≡ −1

2
Ψ† (θ, Z)

(
∇θ

σ2
θ

2
∇θ
)

Ψ (θ, Z) +
1

2
|Ψ|2

δ
[
Ψ†
(
θ′, Z

)
∇θω−1

(
J, θ, Z, |Ψ|2

)
Ψ (θ, Z)

]
δ |Ψ|2


|Ψ(θ,Z)|2=G0(0,Z)

where (ω−1)
([n])

(0)

[n]! is a short notation for:

∑
li

∫ n∏
i=1

dZ
(1)
li
...dZ

(li)
li


δn
[
ω−1

(
J, θ, Z, |Ψ|2

)]
n∏
i=1

δ


∣∣∣∣∣∣Ψ
θ − ∣∣∣Z−Z(1)

li

∣∣∣+...+∣∣∣∣Zli (l−1)−Z(li)
li

∣∣∣∣
c , Z

(li)
li

∣∣∣∣∣∣
2



|Ψ|=0

and (ω−1)
([n−1])

(0)|Ψ|2

[n−1]! stands for:

∑
li

∫ n−1∏
i=1

dZ
(1)
li
...dZ

(li)
li


δn−1

[
ω−1

(
J, θ, Z, |Ψ|2

)]
∏
i

δ


∣∣∣∣∣∣Ψ
θ − ∣∣∣Z−Z(1)

li

∣∣∣+...+∣∣∣∣Z(l−1)
li

−Z(li)
li

∣∣∣∣
c , Z

(li)
li

∣∣∣∣∣∣
2

kli


|Ψ|=0

×
n−1∑
j=1

∣∣∣∣∣∣∣∣Ψ
θ −

∣∣∣Z − Z(1)
lj

∣∣∣+ ...+

∣∣∣∣Z(l−1)
li

− Z(lj)
lj

∣∣∣∣
c

, Z
(lj)
lj


∣∣∣∣∣∣∣∣
2

Similar notation is valid for (ω−1)
([n])

(G0(0,0,Z))|Ψ|2

[n−1]! , the derivatives are evaluated at |Ψ (θ, Z)|2 =

G0 (0, 0, Z).
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We have also used |Ψ|2
[

δ
δ|Ψ|2

]
as a shorthand for:

∑
l

∫ (
dZ

(1)
l ...dZ

(l)
l

(kl)!

)∣∣∣∣∣∣∣∣Ψ
θ −

∣∣∣Z − Z(1)
l

∣∣∣+ ...+

∣∣∣∣Z(l−1)
l − Z(lj)

l

∣∣∣∣
c

, Z
(l)
l


∣∣∣∣∣∣∣∣
2

(214)

× δ

δ

∣∣∣∣∣Ψ
(
θ −

∣∣∣Z−Z(1)
l

∣∣∣+...+∣∣∣Z(l−1)
l

−Z(l)
l

∣∣∣
c , Z

(l)
l

)∣∣∣∣∣
2


Ultimately, the computation of the Green function involves the series expansion of the potential
V (Ψ). As shown earlier (see equation(212)) the graphs generated by this expansion are equivalent
to those that would result if, in equation (208) the potential had been expanded to the second order
in Ψ and if, in all terms of higher order, |Ψ (θ, Z)|2 had been replaced by G0 (0, Z). As a consequence,
the second order Green functions are computed with the action:

−1

2
Ψ† (θ, Z)

(
∇θ

σ2
θ

2
∇θ
)

Ψ (θ, Z)

+
1

2
|Ψ|2

δ
[
Ψ†
(
θ′, Z

)
∇θ
(
ω−1

(
J, θ, Z, |Ψ|2

)
Ψ (θ, Z)

)]
δ |Ψ|2


|Ψ(θ,Z)|2
=G0(0,Z)

+ |Ψ|2
[
δ [V (Ψ)]

δ |Ψ|2

]
|Ψ(θ,Z)|2
=G0(0,Z)

Equivalently, this means that the 2 points Green functions are the inverse of the operator:

−1

2
∇θ

σ2
θ

2
∇θ +

1

2

δ
[
Ψ†
(
θ′, Z

)
∇θ
(
ω−1

(
J, θ, Z, |Ψ|2

)
Ψ (θ, Z)

)]
δ |Ψ|2


|Ψ(θ,Z)|2
=G0(0,Z)

+

[
δ [V (Ψ)]

δ |Ψ|2

]
|Ψ(θ,Z)|2
=G0(0,Z)

and, at the lowest order in |Ψ (θ, Z)|2, this corresponds to the effective action of the text.

Appendix 2

Corrections to background field

Corrections to saddle point

To compute the corrections to the background due to:

K = K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
we can ultimately rewrite (100) by including the term KT so that the squared term writes:

−

((
|Ψ(θ,Z)|2

τω

(
T − λτT̂

)))2

2σ2
T

+KT

= − 1

2σ2
T

 |Ψ (θ, Z)|2

τω

T − λτT̂ −Kσ2
T

(
τω

|Ψ (θ, Z)|2

)2
2

+
1

2
K2σ2

T

(
τω

|Ψ (θ, Z)|2

)2

+KλτT̂
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the last term can be included in S(2)
Γ , and defining:

hC = hC

(
ω
(
J, θ, Z, |Ψ|2

))
hD = hD

(
ω

(
J, θ − |Z − Z

′|
c

, Z ′, |Ψ|2
))

we find ultimately:

S
(1)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′

)σ2
T

2
∇2
T −

1

2σ2
T

 |Ψ (θ, Z)|2

τω

T − λτT̂ −Kσ2
T

(
τω

|Ψ (θ, Z)|2

)2
2

(215)

+
1

2τω (Z)
+

1

2
K2σ2

T

(
τω

|Ψ (θ, Z)|2

)2
Γ

(
T, T̂ , θ, Z, Z ′

)

S
(2)
Γ = Γ†

(
T, T̂ , θ, Z, Z ′

)

σ2
T̂

2
∇2
T̂
−

(
ρ

(
C (θ) |Ψ (θ, Z)|2 hC +D (θ)

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)(
T̂ −

〈
T̂
〉

0

))2

2σ2
T̂
ω2
(
θ, Z, |Ψ|2

) (216)

+

ρ

(
C (θ) |Ψ (θ, Z)|2 hC − ηH (δ − T ) +D (θ)

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)
2ω
(
θ, Z, |Ψ|2

)
Γ

(
T, T̂ , θ, Z, Z ′

)

+
1

2
σ2
T̂

 ω
(
θ, Z, |Ψ|2

)
ρ

(
C (θ) |Ψ (θ, Z)|2 hC +D (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD)


2

(Kλτ)
2

+Kλτ
〈
T̂
〉

0

with:

〈
T̂ (Z,Z)

〉
0

=

(
h (Z,Z ′)CZ,Z′ (θ)hC |Ψ (θ, Z)|2 − ηH (δ − T (Z,Z ′))

)
CZ,Z′ (θ) |Ψ (θ, Z)|2 hC +DZ,Z′ (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD

+σ2
T̂

 ω
(
θ, Z, |Ψ|2

)
ρ

(
C (θ) |Ψ (θ, Z)|2 hC +D (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD)


2

Kλτ

The effective potentials are thus modified by shifts proportional to σ2
T and σ

2
T̂
respectively. As a

consequence for
σ2
T̂
σ2
T
<< 1, σ2

T << 1 these corrections can be treated purturbatively and neglected

in first approximation as quoted in the text.
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Corrections to the averages

The average equations are modified with terms proportional to 〈K〉:

〈
T̂ (Z,Z ′)

〉
=

〈
T̂
〉

0
=

(〈
h (Z,Z ′)CZ,Z′ (θ)hC |Ψ (θ, Z)|2

〉
− ηH (δ − 〈T (Z,Z ′)〉)

)
〈
CZ,Z′ (θ) |Ψ (θ, Z)|2 hC

〉
+

〈
DZ,Z′ (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD〉

+σ2
T̂

 ω
(
θ, Z, |Ψ|2

)
ρ

(
C (θ) |Ψ (θ, Z)|2 hC +D (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD)


2

〈K〉λτ

and:

〈T (Z,Z ′)〉 = λτ
〈
T̂ (Z,Z ′)

〉
+ 〈K〉σ2

T

(
τω

|Ψ (θ, Z)|2

)2

Given the definition of K, it is a function of the collection {〈T (Z,Z ′)〉}(Z,Z′). The corrections
to 〈T (Z,Z ′)〉 and

〈
T̂ (Z,Z ′)

〉
are obtained purturbatively by replacing K

(
{〈T (Z,Z ′)〉}(Z,Z′)

)
with

〈T (Z,Z ′)〉 computed for K = 0. As a first approximation, it is possible to replace 〈T (Z,Z ′)〉 by its
space average, so that:

K
(
{〈T (Z,Z ′)〉}(Z,Z′)

)
' K (〈T 〉)

where:

〈T 〉 ' λτ

V

∫ (〈
h (Z,Z ′)CZ,Z′ (θ)hC |Ψ (θ, Z)|2

〉
− ηH (δ − 〈T (Z,Z ′)〉)

)
〈
CZ,Z′ (θ) |Ψ (θ, Z)|2 hC

〉
+

〈
DZ,Z′ (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD〉d (Z,Z ′)

and V is the thread’s volume.
The correction terms proportional to K in (215) and (216) modify the condition for minima

(114) that writes:

2 =
1

2τω (Z)
+ aC (Z) + aD (Z) + aK (Z) (217)

+

ρ

(
C (θ) |Ψ (θ, Z)|2 hC +D (θ)

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)
2ω
(
θ, Z, |Ψ|2

) −
δU
({
‖Γ0 (θ, Z, Z ′)‖2

})
δ ‖Γ0 (θ, Z, Z ′)‖2

with:

aK (Z) =
1

2
K2σ2

T

(
τω

|Ψ (θ, Z)|2

)2

+
1

2
σ2
T̂

 ω
(
θ, Z, |Ψ|2

)
ρ

(
C (θ) |Ψ (θ, Z)|2 hC +D (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD)


2

(Kλτ)
2

+Kλτ
〈
T̂
〉

0

and this set of equations shifts the norm ‖Γ0 (θ, Z, Z ′)‖2 at each point.
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As a consequence, the condition (??) for non trivial background state at (Z,Z ′):

S
(
‖Γ0 (Z,Z ′)‖2

)
= U

({
‖Γ0 (Z,Z ′)‖2

})
−
δU
({
‖Γ0 (θ, Z, Z ′)‖2

})
δ ‖Γ0 (θ, Z, Z ′)‖2

‖Γ0 (Z,Z ′)‖2 < 0 (218)

is modified by the shift of the norm. The correction due to the backreaction modifies the set of
points with non trivial background.

The expression for K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
can be obtained by using (85):

K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
(219)

=

∫
Γ†
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

) δW (
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

×Γ
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
d
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
where:

W
(
T, T̂ , θ, Z, Z ′, C,D

)

= ∇C

 C

τCω
(
J, θ, Z, |Ψ|2

) − αC (1− C)ω

(
J, θ − |Z−Z

′|
c , Z ′, |Ψ|2

) ∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′, ω′
)∣∣∣∣2

ω
(
J, θ, Z, |Ψ|2

)
 |Ψ (θ, Z)|2

+∇D

 D

τDω
(
J, θ, Z, |Ψ|2

) − αD (1−D) |Ψ (θ, Z)|2


−∇T̂

ρ

((
h (Z,Z ′)− T̂

)
C |Ψ (θ, Z)|2 hC −DT̂

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)
ω
(
J, θ, Z, |Ψ|2

)
−∇T

(
− 1

τω
T +

λ

ω
T̂

)
|Ψ (θ, Z, ω)|2

Given that τC >> 1 and τD >> 1 and that C and D are close to 1, the two first contributions are

negligibles. Given that |Ψ (θ, Z, ω)|2 depends on the potential V
(
|Ψ (θ, Z, ω)|2

)
, we can assume that:∣∣∣∣∣∣∣

δ |Ψ (θ, Z, ω)|2

δ
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

∣∣∣∣∣∣∣ <<
∣∣∣∣∣∣∣

δω
(
J, θ, Z, |Ψ|2

)
δ
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

∣∣∣∣∣∣∣
the last contribution can be neglected, and we can consider that K

(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
can be

computed with:

W
(
T, T̂ , θ, Z, Z ′, C,D

)
(220)

= −∇T̂

ρ

((
h (Z,Z ′)− T̂

)
C |Ψ (θ, Z)|2 hC −DT̂

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)
ω
(
J, θ, Z, |Ψ|2

)
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In the computation of (219), the contribution proportional to:∫
Γ†
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
∇T̂Γ

(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
d
(
T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)
is equal to 0, since Γ is gaussian. As a consequence, the gradient ∇T̂ in (220) acts on the function
at its right in (220).

We thus replace:

W
(
T, T̂ , θ, Z, Z ′, C,D

)
→ (221)

=

ρ

(
C |Ψ (θ, Z)|2 hC +D

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 hD

)
ω
(
J, θ, Z, |Ψ|2

)

' ρC |Ψ (θ, Z)|2 +

ρD

∣∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣∣2 ω(J, θ − |Z−Z′|c , Z ′, |Ψ|2

)
ω
(
J, θ, Z, |Ψ|2

)
for hC

(
ω
(
J, θ, Z, |Ψ|2

))
' ω

(
J, θ, Z, |Ψ|2

)
and hD

(
ω

(
J, θ − |Z−Z

′|
c , Z ′, |Ψ|2

))
'
(
ω

(
J, θ − |Z−Z

′|
c , Z ′, |Ψ|2

))
.

Given our approximations, we then deduce that (219) reduces to:

K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
(222)

=

∫
ρD

∣∣∣∣Ψ(θ − |Z1 − Z ′1|
c

, Z ′1

)∣∣∣∣2 δ
ω

(
J,θ− |Z1−Z

′
1|

c ,Z′1,|Ψ|
2

)
ω(J,θ,Z1,|Ψ|2)

δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

×
∣∣∣Γ(T1, T̂1, θ1, Z1, Z

′
1, C1, D1

)∣∣∣2 d(T1, T̂1, θ1, Z1, Z
′
1, C1, D1

)
where we approximate:

δ

ω

(
J, θ − |Z1−Z′1|

c , Z ′1, |Ψ|
2

)
ω
(
J, θ, Z1, |Ψ|2

) ' δ
|Z1 − Z ′1|

2∇2
Z1
ω
(
J, θ, Z1, |Ψ|2

)
ω
(
J, θ, Z1, |Ψ|2

)
The last expression being obtained in the limit of slowly varying activities. In the same approxi-
mation:

δ
|Z1−Z′1|2∇2

Z1
ω(J,θ,Z1,|Ψ|2)

ω(J,θ,Z1,|Ψ|2)

δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 =

δ

(
|Z1 − Z ′1|

2

(
∇2
Z1

ln
(
ω
(
J, θ, Z1, |Ψ|2

))
−
(
∇Z1 ln

(
ω
(
J, θ, Z1, |Ψ|2

)))2
))

δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

' |Z1 − Z ′1|
2∇2

Z1

δ
(

ln
(
ω
(
J, θ, Z1, |Ψ|2

)))
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

We show in appendix 5 that the derivatives:

δω
(
J, θ, Z1, |Ψ|2

)
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

87



are proportional to some exponential:

exp (−a |Z1 − Z|)

so that, by averaging over the entire space, we find:

K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
(223)

' 1

a
ρD

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2 |Z − Z ′|2∇2

Z

δ
(

ln
(
ω
(
J, θ, Z, |Ψ|2

)))
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 ‖Γ‖2

Given (78):

ω−1
(
J, θ, Z, |Ψ|2

)
= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) (
G0 +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1


(224)

and using:

δ
∫

κ
N

ω
(
J,θ− |Z−Z1|

c ,Z1,Ψ
)
T
(
Z,θ,Z1,θ−

|Z−Z1|
c

)
ω(J,θ,Z,|Ψ|2)

δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

' κ

N

ω

(
J, θ − |Z−Z

′|
c , Z ′,Ψ

)
ω
(
J, θ, Z, |Ψ|2

) +
κ

N

∫ δ
ω
(
J,θ− |Z−Z1|

c ,Z1,Ψ
)

ω(J,θ,Z,|Ψ|2)

δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)

' κ

N

ω

(
J, θ − |Z−Z

′|
c , Z ′,Ψ

)
ω
(
J, θ, Z, |Ψ|2

) +
1

a

δ κN ω

(
J, θ − |Z−Z

′|
c , Z ′,Ψ

)
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2T

(
Z, θ, Z ′, θ − |Z − Z

′|
c

)

' κ

N

ω

(
J, θ − |Z−Z

′|
c , Z ′,Ψ

)
ω
(
J, θ, Z, |Ψ|2

)
the differentiation of (224) is:

δω−1
(
J, θ, Z, |Ψ|2

)
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2

=
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)

ω
(
J, θ, Z, |Ψ|2

) (
G0 +

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2
)

G′

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

) (
G0 +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1


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so that:

δω
(
J, θ, Z, |Ψ|2

)
δT
∣∣∣Γ(T, T̂ , θ, Z, Z ′, C,D)∣∣∣2 =

κ

N
ω

(
J, θ − |Z − Z1|

c
, Z1,Ψ

)
ω
(
J, θ, Z, |Ψ|2

)(
G0 +

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2
)

G′
(
G−1

(
ω
(
J, θ, Z, |Ψ|2

)))
' κ

N
ω2
(
J, θ, Z, |Ψ|2

)
G′
(
G−1

(
ω
(
J, θ, Z, |Ψ|2

)))(
G0 +

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2
)

and (223) writes:

K
(
θ, Z, Z ′, ‖Ψ‖2 , ‖Γ‖2

)
(225)

' 1

a
ρD

κ

N
‖Γ‖2

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2 |Z − Z ′|2

×∇2
Z

(
ω
(
J, θ, Z, |Ψ|2

)
G′
(
G−1

(
ω
(
J, θ, Z, |Ψ|2

)))(
G0 +

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2
))

Resolution of saddle point equations without approximation

To study the background state for T and T̂ , we start from the effective action (98)

Γ†
(
T, T̂ , θ, Z, Z ′

)(
∇T

(
∇T −

(
− 1

τω
T +

λ

ω
T̂

)
|Ψ (θ, Z)|2

))
Γ
(
T, T̂ , θ, Z, Z ′

)
(226)

+Γ†
(
T, T̂ , θ, Z, Z ′

)∇T̂
∇T̂ − ρ

ω
(
J, θ, Z, |Ψ|2

)
×
((

h (Z,Z ′)− T̂
)
C (θ) |Ψ (θ, Z)|2 hC − ηH (δ − T )−D (θ) T̂

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2 hD

)))
Γ
(
T, T̂ , θ, Z, Z ′

)
As in the text, we consider points such that:

h (Z,Z ′)
〈
CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2

〉
− η > 0

for which the averages are:

〈T (Z,Z ′)〉 = λτ
〈
T̂ (Z,Z ′)

〉
=

λτh (Z,Z ′)
〈
CZ,Z′ (θ)hC |Ψ (θ, Z)|2

〉
CZ,Z′ (θ) |Ψ (θ, Z)|2 hC +DZ,Z′ (θ)

∣∣∣Ψ(θ − |Z−Z′|c , Z ′
)∣∣∣2 hD (227)

which allows to rewrite the effective action as:

Γ†
(
T, T̂ , θ, Z, Z ′

)(
∇T

(
∇T + u (T − 〈T 〉) + s

(
T̂ −

〈
T̂
〉))

+∇T̂
(
∇T̂ + v

(
T̂ −

〈
T̂
〉)))

Γ
(
T, T̂ , θ, Z, Z ′

)
(228)

with:

u =
|Ψ0 (Z)|2

τω0 (Z)

v = ρC
|Ψ0 (Z)|2 hC (ω0 (Z))

ω0 (Z)
+ ρD

|Ψ0 (Z ′)|2 hD (ω0 (Z ′))

ω0 (Z)

s = −λ |Ψ0 (Z)|2

ω0 (Z)
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Imposing the constraint that the norm of Γ
(
T, T̂ , θ, Z, Z ′

)
is a given number determined by some

average number of connections all over the thread, the saddle point equations becomes:(
∇T

(
∇T + u (T − 〈T 〉) + s

(
T̂ −

〈
T̂
〉))

+∇T̂
(
∇T̂ + v

(
T̂ −

〈
T̂
〉))

+ α
)

Γ
(
T, T̂ , θ, Z, Z ′

)
= 0

with α the Lagrange multiplier.This also rewrite matricially:(
∇2 + (∇)

t
γx + α

)
Γ
(
T, T̂ , θ, Z, Z ′

)
= 0 (229)

with:

γ =

(
u s

0 v

)

Solution for Fourier transform

This is solved by considering the Fourier transform of this equation:(
−k2 − (k)

t
γ∇k + α

)
Γ (k, θ, Z, Z ′) = 0 (230)

We write the solution:
Γ (k, θ, Z, Z ′) = exp

(
−1

2
ktNk

)
Γ̂ (k, θ, Z, Z ′)

where the matrix N satisifies:
−k2 + (k)

t
γNk = 0

and: (
− (k)

t
γ∇k + α

)
Γ̂ (k, θ, Z, Z ′) = 0

Equation for N writes:
1

2

(
γN +Nγt

)
= I

where I is the identity matrix. The solution is:

N =

(
1
u

(
1 + s2

v(u+v)

)
− s
v(u+v)

− s
v(u+v)

1
v

)

The equation for Γ̂ (k, θ, Z, Z ′) becomes:(
− (k)

t
γ∇k + α

)
Γ̂ (k, θ, Z, Z ′) = 0 (231)

If we diagonalize γ:
γ = PDP−1

with:

D =

(
u 0

0 v

)

P =

(
1 1

0 v−u
s

)

and define:
k̂ = P tk
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equation (231) is: (
−
(
k̂
)t
D∇k̂ + α

)
Γ̂ (k, θ, Z, Z ′) = 0

with solution:
Γ̂ (k, θ, Z, Z ′) = k̂

αδ
u

1 k̂
(1−δ)α

v
2

where k̂1 and k̂2 are the component of k̂:

k̂1 = k1

k̂1 = k1 +
v − u
s

k2

and ultimately:

Γδ (k, θ, Z, Z ′) = exp

(
−1

2
ktNk

)
k
αδ
u

1

(
k1 +

v − u
s

k2

) (1−δ)α
v

The parameter δ implies the possibility of several local global minima for each (Z,Z ′). As explained
in the text, this parameter is not free if we aim at obtaining a minimum at all points (Z,Z ′).

Background field

To come back to the background field we compute the inverse Fourier transform:

Γδ

(
T, T̂ , θ, Z, Z ′

)
=

∫
exp

(
−1

2
ktNk− ik∆T

)
k
αδ
u

1

(
k1 +

v − u
s

k2

) (1−δ)α
v dk

2π

where:

∆T =

(
T − 〈T 〉
T̂ −

〈
T̂
〉 )

To estimate the integral, we diagonalize N :

N =

(
1
u

(
1 + s2

v(u+v)

)
− s
v(u+v)

− s
v(u+v)

1
v

)
= PDP−1

with:

D =

(
λ+ 0

0 λ−

)
and the eigenvalues:

λ± =

1
u

(
1 + s2

v(u+v)

)
+ 1

v

2
±

√√√√√ 1
u

(
1 + s2

v(u+v)

)
− 1

v

2

2

+

(
s

v (u+ v)

)2

The matrix P is orthogonal:

P =

(
cosx − sinx

sinx cosx

)
P−1 = P t
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and x satifies: (
λ+ − λ−

2

)
sin 2x = − s

v (u+ v)(
λ+ + λ−

2

)
+

(
λ+ − λ−

2

)
(cos 2x) =

1

u

(
1 +

s2

v (u+ v)

)
with:

λ+ + λ−
2

=

1
u

(
1 + s2

v(u+v)

)
+ 1

v

2

As a consequence, we obtain:

tan 2x =
− 2s
v(u+v)

1
u

(
1+ s2

v(u+v)

)
− 1
v

2

= − 4su

v2 − u2 + s2

It thus implies that Γδ

(
T, T̂ , θ, Z, Z ′

)
is given by:

Γδ

(
T, T̂ , θ, Z, Z ′

)
=

∫
exp

(
−1

2
ktDk− ik∆T′

)
×

× (k1 cosx− k2 sinx)
αδ
u

(
k1

(
cosx+

v − u
s

sinx

)
+

(
v − u
s

cosx− sinx

)
k2

) (1−δ)α
v dk

2π

with:
∆T′ = P t∆T

In the approximation given in the text, we have s << 1 and:

Γδ

(
T, T̂ , θ, Z, Z ′

)
'

∫
exp

(
−1

2
ktDk− ik∆T′

)
(k1 − xk2)

αδ
u

(
v − u
s

k2 + k1

) (1−δ)α
v dk

2π

'
∫

exp

(
−1

2
ktDk− ik∆T′

)
(k1)

αδ
u

(
v − u
s

k2

) (1−δ)α
v

(
1− xαδ

u

k2

k1

)(
1 +

s

u− v
(1− δ)α

v

k1

k2

)
dk

2π

'
(
v − u
s

) (1−δ)α
v

∫
exp

(
−1

2
ktDk− ik∆T′

)
(k1)

αδ
u (k2)

(1−δ)α
v

(
1− xαδ

u

k2

k1
+
s (1− δ)α
v (u− v)

k1

k2

)
dk

2π

These integrals are sums of products of parabolic cylinder functions:

Γδ

(
T, T̂ , θ, Z, Z ′

)
'

(
v − u
s

) (1−δ)α
v

2
1
αu+1

2∏
i=1

exp

−((D− 1
2P t∆T

2

)
i

)2


×


2∏
i=1

Dpi

((
D−

1
2P t∆T

4

)
i

)
− xα

δ
2∏
i=1

D
p
(1)
i

((
D
− 1

2 P t∆T
4

)
i

)
u

+

s (1− δ)α
2∏
i=1

D
p
(2)
i

((
D
− 1

2 P t∆T
4

)
i

)
v (u− v)


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where:

p1 =
αδ

u
, p2 =

(1− δ)α
v

p
(1)
1 =

αδ

u
− 1, p

(1)
2 =

(1− δ)α
v

+ 1

p
(1)
1 =

αδ

u
+ 1, p

(1)
2 =

(1− δ)α
v

− 1

The approximation made in the text, i.e. s << 1 corresponds to the first terms:

Γδ

(
T, T̂ , θ, Z, Z ′

)
' N

2∏
i=1

exp

−((D− 1
2P t∆T

2

)
i

)2
 2∏
i=1

Dpi

((
D−

1
2P t∆T

4

)
i

)

where N is a normalization factor.

Condition for minima

The conditions for finding a minimum with N 6= 0 is similar to those presented in the text. Action
(98) for η = 0:

Γ†
(
T, T̂ , θ, Z, Z ′

)(
∇T

(
∇T −

(
− 1

τω
T +

λ

ω
T̂

)
|Ψ (θ, Z)|2

))
Γ
(
T, T̂ , θ, Z, Z ′

)
(232)

+Γ†
(
T, T̂ , θ, Z, Z ′

)∇T̂
∇T̂ − ρ

ω
(
J, θ, Z, |Ψ|2

)
×
((

h (Z,Z ′)− T̂
)
C (θ) |Ψ (θ, Z)|2 hC −D (θ) T̂

∣∣∣∣Ψ(θ − |Z − Z ′|c
, Z ′
)∣∣∣∣2 hD

)))
Γ
(
T, T̂ , θ, Z, Z ′

)
reduces, after using the saddle point equation (229), to:

α

∫
|Γ (Z,Z ′)|2 (233)

where:
|Γ (Z,Z ′)|2 =

∫ ∣∣∣Γ(T, T̂ , θ, Z, Z ′)∣∣∣2 d(T, T̂)
Using p1 = αδ

u , p2 = (1−δ)α
v allows to find α and δ. As in the text, if we ensures that the action has

a minimum with |Γ (Z,Z ′)|2 > 0 at each point (Z,Z ′) for T̂ , we find p2 = 1
2 and thus δ = 1− v

2α . The
value of p1 =

α− v2
u .

Then, if we include the potential for
∣∣∣Γ(T, T̂ , θ, Z, Z ′)∣∣∣2, equation (229) is modified by shifting:

α→ α− U ′
(∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 , Z, Z ′)
so that the action (233) becomes:

α

∫
|Γp1,p2 (Z,Z ′)|2 + Û

(∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 , Z, Z ′)
with:

Û

(∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 , Z, Z ′)− ∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 Û ′(∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 , Z, Z ′)
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The action is minimal for:
α+ Û ′

(∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2) = 0

and the norm of Γp1,p2

(
T, T̂ , θ, Z, Z ′

)
is given by:

∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 = Û ′ (−α,Z, Z ′)

If:
α

∫
U ′ (−α) + Û (U ′ (−α) , Z, Z ′) < 0 (234)

there is a non trivial state at (Z,Z ′). Otherwise
∣∣∣Γp1,p2

(
T, T̂ , θ, Z, Z ′

)∣∣∣2 = 0. In the text we have

assumed that (234) is satisfied at each point. The value of α is determined by the condition:∫
Û ′ (−α,Z, Z ′) d (Z,Z ′) = ‖Γp1,p2‖

2

where ‖Γp1,p2‖
2 is the norm of Γp1,p2 .

Appendix 3 Static background state for the system

We look for a static background state for the whole system. In the static case, we assume that the
static background field Ψ0 (Z) is the minimum of V (Ψ).

General equations

An approximate static solution of (78) can be found for the constant background and a constant
current, i.e. J = J̄ . We also set:

T (Z,Z1) = T̄

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
From now on, the quantity T (Z,Z1) refers to the average of the connectivity function at points
(Z,Z1), in the background state defined above, i.e. T (Z,Z1) refers to 〈T (Z,Z1)〉 defined as:

〈T (Z,Z1)〉 =

∫
T
∣∣∣Γ(T, T̂ , θ, Z, Z1

)∣∣∣2 dT
For points such that T (Z,Z ′) 6= 0, it is defined by the set of equations (67) or (78), (104) (125) if:

h (Z,Z ′)CZ,Z′ (θ)hC (ω (θ, Z)) |Ψ (θ, Z)|2 > 0

We choose hC (ω) = ω and hC (ω′) = ω′. As explained in the text, the resolution is in three steps.

We solve first for ω (Z).
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Expression of ω (Z)

We use (125) to replace ω′ |Ψ (Z ′)|2:

ω′ |Ψ (Z ′)|2 =

λτ exp

(
−|Z−Z

′|
νc

)
− T (Z,Z ′)

T (Z,Z ′)

(
1

αDτD
+ ω |Ψ (Z)|2

)
− 1

αCτC

This allows to rewrite (78) as an equation for ω−1 (Z):

ω (Z) = G

∫ κ

N

ω (J, Z1)T
∣∣∣Γ(T, T̂ , Z, Z1

)∣∣∣2
ω (Z)

(
G0 + |Ψ (Z1)|2

)
dZ1

 (235)

→ G

∫ κ

N

λτ exp
(
− |Z−Z1|

νc

)
− T (Z,Z1)

T (Z,Z1)

(
1

αDτD
+ ω |Ψ (Z)|2

)
− 1

αCτC

 T
∣∣∣Γ(T, T̂ , θ, Z, Z1

)∣∣∣2
ω
(
J, θ, Z, |Ψ|2

) dTdZ1


' G

(∫
κ

N

((
λτ exp

(
−|Z − Z1|

νc

)
− T (Z,Z1)

)((
1

αDτD
− T (Z,Z1)

αCτC

)
ω−1 + |Ψ (Z)|2

))
dZ1

)
We can replace T (Z,Z1) in the integral by its average:

1

V
T (Z) =

1

V

∫
T (Z,Z1) dZ1

so that:
ω (Z) = G

(
κ

N

(
(λτνc− V T (Z))

((
1

αDτD
− T (Z)

V αCτC

)
ω−1 + |Ψ (Z)|2

)))
(236)

with solution defined by a function:

ω (Z) = Ĝ
(
T (Z) , |Ψ (Z)|2

)
Finding T (Z) and T (Z,Z ′)

In a second step, we can insert the solution for ω in the expression for T (Z,Z ′) that rewrites:

T (Z,Z ′) =

λτ exp

(
−|Z−Z

′|
νc

)
1 + αD

αC

1
τC

+αCω
′|Ψ(Z′)|2

1
τD

+αDω|Ψ(Z)|2

=

λτ exp

(
−|Z−Z

′|
νc

)
1 + αD

αC

1
τC

+αCĜ(T (Z′),|Ψ(Z′)|2)|Ψ(Z′)|2

1
τD

+αDĜ(T (Z),|Ψ(Z)|2)|Ψ(Z)|2

Then integrating over Z ′ and replacing:

Ĝ
(
T (Z ′) , |Ψ (Z ′)|2

)
|Ψ (Z ′)|2

by its average over the volume V leads to:

T (Z) =
λτνc

1 +
1

τCαC
+Ω

1
τDαD

+Ĝ(T (Z),|Ψ(Z)|2)|Ψ(Z)|2

=
λτνc

(
1

τDαD
+ Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

)
1

τDαD
+ 1

τCαC
+ Ω + Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

(237)

95



where:
Ω =

1

V

∫
Ĝ
(
T (Z ′) , |Ψ (Z ′)|2

)
|Ψ (Z ′)|2 dZ ′ (238)

and this leads to the following formula for T (Z,Z ′):

T (Z,Z ′) =

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
τCαC

+ω′|Ψ(Z′,ω′)|2

1
τDαD

+ω|Ψ(Z,ω)|2

=

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
τCαC

+Ĝ(T (Z′),|Ψ(Z′)|2)|Ψ(Z′,ω′)|2

1
τDαD

+Ĝ(T (Z),|Ψ(Z)|2)|Ψ(Z,ω)|2

(239)

Closing the system with minimization equations

The system is then closed by minimizing the action for the field Ψ (θ, Z):

∫
Ψ† (θ, Z)

−∇θ
σ2

θ

2
∇θ −

1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
Ψ (θ, Z)

+V

(
|Ψ (θ, Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)
We have assumed that the field is constrained by a potential limiting the activit around some
average |Ψ0 (Z)|2. We choose:

V =
1

2

(
|Ψ (Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)
Performing the changement of variable:

Ψ (θ, Z)→ exp

− ∫ 1

G
(
|Ψ (θ, Z)|2 κ

N

(
λτνc−

∫
T (Z ′, Z1) dZ1

))dθ
Ψ (θ, Z)

rewrites the action as:

∫
Ψ† (θ, Z)

−σ2
θ

2
∇2
θ +

 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2
Ψ (θ, Z)

−1

2

∫
∇θ

 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
 |Ψ (θ, Z)|2 + V

(
|Ψ (θ, Z)|2 −

∫
T (Z,Z1) |Ψ0 (Z)|2 dZ1

)

In the perspective of a static equilibrium, we aim thus at minimizing:

∫  1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

|Ψ (θ, Z)|2 + V

(
|Ψ (θ, Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)

96



with saddle point equation:

0 =

 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

Ψ (θ, Z)

−2
G′|Ψ(θ,Z)|2

(
|Ψ (θ, Z)|2 κ

N (λτνc− T (Z))
)

Ĝ3
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

) |Ψ (θ, Z)|2 Ψ (θ, Z)

+

(
|Ψ (Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)
Ψ (θ, Z)

'


 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

+

(
|Ψ (Z)|2 −

∫
T (Z ′, Z1) |Ψ0 (Z)|2 dZ1

)Ψ (θ, Z)

with solutions:
Ψ (θ, Z) = 0

or |Ψ (Z)|2 satisfying: 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

+ |Ψ (Z)|2 '
∫
T (Z,Z ′) |Ψ0 (Z ′)|2 k (Z,Z ′) dZ ′

This equation can be approximated by: 1

Ĝ
(

(T (Z,Z1))Z1
, |Ψ (Z)|2

)
2

+ |Ψ (Z)|2 ' T (Z)

∫
|Ψ0 (Z ′)|2 k (Z,Z ′) dZ ′

V
(240)

≡ T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

As a consequence the system is reduced to two variables T (Z) and |Ψ (Z)|2 together with (237) and
(240). The average connectivity being then retrieved by (239).

Solving for |Ψ (Z)|2 and T (Z)

To solve (237) and (240) for T (Z) and |Ψ (Z)|2, we use (237):

T (Z) =
λτνc

(
1

τDαD
+ Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

)
1

τDαD
+ 1

τCαC
+ Ω + Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

and express Ĝ
(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2 as a function of T (Z):

Ĝ
(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2 =

(
1

τDαD
+ 1

τCαC
+ Ω

)
T (Z)− 1

τDαD
λτνc

λτνc− T (Z)
(241)

Inserting this result in (240) yields the equation for |Ψ (Z)|2:

 λτνc− T (Z)(
1

τDαD
+ 1

τCαC
+ Ω

)
T (Z)− 1

τDαD
λτνc

|Ψ (Z)|2
2

+ |Ψ (Z)|2 ' T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

(242)
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with solution:

|Ψ (Z)|2 =
2T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z(

1 +

√
1 + 4

(
λτνc−T (Z)(

1
τDαD

+ 1
τCαC

+Ω
)
T (Z)− 1

τDαD
λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

) (243)

Ultimately, inserting this result in (241) yields the following equation for T (Z):

Ω̂T (Z)− 1
τDαD

λτνc

λτνc− T (Z)
= Ĝ

T (Z) ,
2T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z1 +

√
1 + 4

(
λτνc−T (Z)

Ω̂T (Z)− 1
τDαD

λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z



(244)

×
2T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z1 +

√
1 + 4

(
λτνc−T (Z)

Ω̂T (Z)− 1
τDαD

λτνc

)2

T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z


with:

Ω̂ =

(
1

τDαD
+

1

τCαC
+ Ω

)
This equation has in general several solutions (see below) corresponding to several regime of activity,
depending on the point. Once T (Z) is found, one can obtain |Ψ (Z)|2 using (243). To obtain more
precise formula for these solutions, we will detail a particular case below. The system is ultimately
determined by finding Ω.

Identification of Ω

The resolution is finalized by using (238) to identify the constant Ω. Writing:

Ω =
1

V

∫
Ĝ
(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2

=
1

V

∫ (
1

τDαD
+ 1

τCαC
+ Ω

)
T (Z)− 1

τDαD
λτνc

λτνc− T (Z)

'

(
1

τDαD
+ 1

τCαC
+ Ω

)
T̄ − 1

τDαD
λτνc

λτνc− T̄

where
T̄ =

1

V

∫
T (Z) dZ

is the average activity of the system, we can find Ω as a function of T̄ :

Ω =

(
1

τDαD
+ 1

τCαC

)
T̄ − 1

τDαD
λτνc

λτνc− 2T̄
(245)

or T̄ as a function of Ω:

T̄ =
λτνc

(
Ω + 1

τDαD

)
(

1
τDαD

+ 1
τCαC

)
+ 2Ω

(246)
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Inserting this result inside (244), integrating over Z, replacing T (Z) by its average T̄ inside the
expression and using (245), yields:

Ω = Ĝ

T̄ , 2T̄
〈
|Ψ0|2

〉
(

1 +

√
1 + 4T̄

Ω2

〈
|Ψ0|2

〉)
 2T̄

〈
|Ψ0|2

〉
(

1 +

√
1 + 4T̄

Ω2

〈
|Ψ0|2

〉) (247)

with: 〈
|Ψ0|2

〉
≡
〈〈
|Ψ0 (Z ′)|2

〉
Z

〉
The system (247) and (246) yields the possible values for Ω and T̄ . Once these constants derived,

they can be replaced in (244) to find T (Z) and finally |Ψ (Z)|2 byusing (133).

Particular case

For G an increasing function of the form G (x) ' b0x for x < 1, we can solve the system. We start
with the derivation of Ω.

Derivation of Ω

In this particular case, we rewrite equation (236) as:

ω (Z) = G

(
κ

N
V

(
(λτνc− T (Z))

((
1

αDτD
− T (Z)

V αCτC

)
ω−1 + |Ψ (Z)|2

)))
' b0

(
κ

N
V

(
(λτνc− T (Z))

((
1

αDτD
− T (Z)

V αCτC

)
ω−1 + |Ψ (Z)|2

)))
and for 1

αDτD
<< 1 and 1

V αCτC
<< 1, this yields in first approximation:

ω (Z) ' b0
( κ
N

(
(λτνc− T (Z)) |Ψ (Z)|2

))
(248)

and equation (247) writes:

Ω = b

(λτνc− T̄ ) 2T̄
〈
|Ψ0|2

〉
(

1 +

√
1 + 4T̄

Ω2

〈
|Ψ0|2

〉)
 2T̄

〈
|Ψ0|2

〉
(

1 +

√
1 + 4T̄

Ω2

〈
|Ψ0|2

〉)
We use (246) under approximation 1

τDαD
' 1

τCαC
<< 1, so that:

T̄ ' λτνc

2
(249)

and (250) reduces to the formula quoted in the paper:

Ω = bT̄

 2T̄
〈
|Ψ0|2

〉
(

1 +

√
1 + 4T̄

Ω2

〈
|Ψ0|2

〉)


2

(250)

with b = b0
κ
N V . Equation (250) can be transformed as:
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(
1 +

√
1 +

4T̄

Ω2

〈
|Ψ0|2

〉)2

= 4
bT̄

Ω

(
T̄
〈
|Ψ0|2

〉)2

and developping the square yields:

1 +
4T̄

Ω2

〈
|Ψ0|2

〉
=

2

bT̄
Ω

(
T̄
〈
|Ψ0|2

〉)2

−
T̄
〈
|Ψ0|2

〉
Ω2

− 1

2

for a final equation:

4T̄

Ω2

〈
|Ψ0|2

〉
= 4

bT̄
Ω

(
T̄
〈
|Ψ0|2

〉)2

−
T̄
〈
|Ψ0|2

〉
Ω2

2

− 4

bT̄
Ω

(
T̄
〈
|Ψ0|2

〉)2

−
T̄
〈
|Ψ0|2

〉
Ω2


This leads to the equation for Ω:

1 =
bT̄Ω3(

bT̄ 2
〈
|Ψ0|2

〉
Ω− 1

)2 (251)

Defining bT̄ 2
〈
|Ψ0|2

〉
Ω = X, this equation becomes:

(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

=
X3

(X − 1)
2 (252)

For d =
(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

< 27
4 there is one solution:

X ' 3
√(

bT̄
)2
T̄
〈
|Ψ0|2

〉
with:

Ω '
(
bT̄
)− 1

3 << 1

For d =
(
bT̄
)2 〈|Ψ0|2

〉3

> 27
4 there are three solutions. The first one is:

X '
(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

with:
Ω ' bT̄

(
T̄
〈
|Ψ0|2

〉)2

The two other solutions are centered around 1. We set X = 1± δ and (??) becomes:(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

' 1

δ2 (253)

so that:

X = 1±
√√√√ 1(

bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

with:

Ω =

1±
√

1

(bT̄)
2
(T̄〈|Ψ0|2〉)3

bT̄ 2
〈
|Ψ0|2

〉
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Computation of T (Z)

In this paragraph we compute also Y defined by:

Y =

(
1

τDαD
+ 1

τCαC
+ Ω

)
T (Z)− 1

τDαD
λτνc

λτνc− T (Z)
(254)

that will be used to derive the connectivity function T (Z,Z ′). Equation (244) rewrites in this
particular case:

Y = b
(
2T̄ − T (Z)

) 2T (Z)
〈
|Ψ0 (Z ′)|2

〉
Z(

1 +

√
1 + 4T (Z)

Y 2

〈
|Ψ0 (Z ′)|2

〉
Z

)


2

(255)

Similar computations as for Ω reduce equation (255) to:

1 =
b
(
2T̄ − T (Z)

)
Y 3(

b
(
2T̄ − T (Z)

)
T (Z)

〈
|Ψ0 (Z ′)|2

〉
Z
Y − 1

)2 (256)

Equations (254) and (256) form a system allowing to find T (Z). To do so, we solve (256) for T (Z):

T (Z) =
λτνc

(
1

τDαD
+ Y

)
1

τDαD
+ 1

τCαC
+ Ω + Y

' 2T̄ Y

Ω + Y
(257)

Along with (256), equation (257) leads to the equation defining Y :

1 =
b 2T̄Ω

Ω+Y Y
3(

b 2T̄Ω
Ω+Y

2T̄ Y
Ω+Y

〈
|Ψ0 (Z ′)|2

〉
Z
Y − 1

)2 (258)

Lowest order approximation If we assume that the fluctations of
〈
|Ψ0 (Z ′)|2

〉
Z
around |Ψ0|2

are relatively low, we can assume in first approximation that:

Ω ' Y

and thus;

T (Z) '
λτνc

(
1

τDαD
+ Ω

)
1

τDαD
+ 1

τCαC
+ 2Ω

' λτνc

2

Then the resolution of (258) is similar to the previous section.

For d =
(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

< 27
4 there is one solution:

Y '
(
bT̄
)− 1

3 << 1 (259)

For d =
(
bT̄
)2 (

T̄
〈
|Ψ0|2

〉)3

> 27
4 there are three solutions. The first one is:

Y '
(
bT̄
)2 (

T̄
〈
|Ψ0 (Z ′)|2

〉
Z

)3

(260)
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The two other solutions are centered around 1

bT̄2〈|Ψ0|2〉 . We obtain:

Y =

1±
√

1

(bT̄)
2
(T̄〈|Ψ0(Z′)|2〉

Z
)
3

bT̄ 2
〈
|Ψ0 (Z ′)|2

〉
Z

(261)

We write Y+ the solution (260) and Y−(±)
the solutions (261). In the sequel, we will consider only

these three solutions, written Y+,−(±), and neglect (259) which corresponds to
〈
|Ψ0 (Z ′)|2

〉3

Z
<< 1,

a point with low activity.

First order corrections Note also that the average connectivity at Z, i.e. T (Z) can be computed
including the first order correction with respect to λτνc

2 , by using:

T (Z) =
λτνcY + λτνc 1

τDαD

Y + Ω̂
(262)

with:
Ω̂ =

1

τCαC
+

1

τDαD
+ Ω

We compute these corrections, in the approximation 1
τCαC

<< 1 and 1
τDαD

<< 1. We write equation
(258) as:

1 =
b 2T̄ (δ+Y )
δ+x+2Y (Y + x)

3(
b 2T̄ (Y+δ)
δ+x+2Y

2T̄ (Y+x)
δ+x+2Y

〈
|Ψ0 (Z ′)|2

〉
Z

(Y + x)− 1
)2 (263)

wth x is the deviation of Y from its zeroth rdr value and where δ is the difference between Ω and
Y at the first order:

δ = Ω− Y ' 3
(
bT̄
)2 (

T̄
〈
|Ψ0 (Z ′)|2

〉
Z

)2

T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)
if (260) is used, or:

δ = Ω− Y ' ∓ 1

T 3b
〈
|Ψ0 (Z ′)|2

〉2

Z

5

2

√√√√ 1

T 5b2
〈
|Ψ0 (Z ′)|2

〉3

Z

± 1

 T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)

if (261) is considered. Expanding equation (263) to the first order yields the correction ∆Y to the
lowest order solution, whatever its form:

∆Y = − δ(
5− 4

bT2Y 〈|Ψ0(Z′)|2〉
Z

(bT2Y 〈|Ψ0(Z′)|2〉
Z
−1)

)
which corrects (260):

Y+ '
(
bT̄
)2 (

T̄
〈
|Ψ0 (Z ′)|2

〉
Z

)3

−
3
(
bT̄
)2 (

T̄
〈
|Ψ0 (Z ′)|2

〉
Z

)2

5− 4
bT2Y 〈|Ψ0(Z′)|2〉

Z

(bT2Y 〈|Ψ0(Z′)|2〉
Z
−1)

T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)
(264)
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with:

T+ (Z) ' 2T̄ Y

Ω + Y
=

2T̄ Y

2Y + δ
' T̄ − T̄

2Y
δ

' T̄ −
3T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)
2
〈
|Ψ0 (Z ′)|2

〉
Z

and (261):

Y−± ' Y =

1±
√

1

(bT̄)
2
(T̄〈|Ψ0(Z′)|2〉

Z
)
3

bT̄ 2
〈
|Ψ0 (Z ′)|2

〉
Z

±

1

T3b〈|Ψ0(Z′)|2〉2
Z

(
5
2

√
1

T5b2〈|Ψ0(Z′)|2〉3
Z

± 1

)

2

(
5− 4

bT2Y 〈|Ψ0(Z′)|2〉
Z

(bT2Y 〈|Ψ0(Z′)|2〉
Z
−1)

) T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)

with:

T−± (Z) ' T̄ − T̄

2Y
δ

' T̄ ±
bT̄

(
5
2

√
1

T5b2〈|Ψ0(Z′)|2〉3
Z

± 1

)
(
bT̄
(
T̄
〈
|Ψ0 (Z ′)|2

〉
Z

)
±
√

1

T̄〈|Ψ0(Z′)|2〉
Z

) T̄ (〈|Ψ0|2
〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)

we define also the average of T−+ (Z) and T−− (Z):

T− (Z) ' T̄ +
5

2

√√√√ 1

T̄ 2b2
〈
T̄ |Ψ0 (Z ′)|2

〉5

Z

T̄

(〈
|Ψ0|2

〉2

−
〈
|Ψ0 (Z ′)|2

〉2

Z

)

Connectivity functions

We ultimately write the connectivity functions:

T (Z,Z ′) =

λτ exp

(
−|Z−Z

′|
νc

)
1 + αD

αC

1
τC

+αCω
′|Ψ(Z′)|2

1
τD

+αDω|Ψ(Z)|2

=

λτ exp

(
−|Z−Z

′|
νc

)
1 +

1
αCτC

+Ĝ(T (Z′),|Ψ(Z′)|2)|Ψ(Z′)|2

1
τDαD

+Ĝ(T (Z),|Ψ(Z)|2)|Ψ(Z)|2

Since:
Y = Ĝ

(
T (Z) , |Ψ (Z)|2

)
|Ψ (Z)|2
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we write T (Z,Z ′):

T (Z,Z ′) =

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ Y (Z)

)
1

τDαD
+ Y (Z) + 1

αCτC
+ Y (Z ′)

with Y (Z) given by (260) and (261). There are nine possibilities for the connectivity function:

T
(
Z+,−(±), Z

′
+,−(±)

)
=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ Y+,−(±) (Z)

)
1

τDαD
+ Y+,−(±) (Z) + 1

αCτC
+ Y+,−(±) (Z ′)

Given that the solution (261) are both centered around 1

b〈|Ψ0(Z′)|2〉
Z

, and thus relatively close from

each other, we can gather them in one approximative solution 1

b〈|Ψ0(Z′)|2〉
Z

and replace Y+,−(±) by

Y± (Z) given by:

T
(
Z±, Z

′
±
)

=

λτ exp

(
−|Z−Z

′|
νc

)(
1

τDαD
+ Y± (Z)

)
1

τDαD
+ Y± (Z) + 1

αCτC
+ Y± (Z ′)

and this yields four possibilities as detailed in the text.
Note that (262) can also be written as:

T (Z±) =
λτνcY± (Z) + λτνc 1

τDαD

Y± (Z) + 1
τDαD

+ 1
αCτC

+ Ω±

where:
Ω± = (Ω+,Ω−)

with:
Ω+ = bT̄

(
T̄
〈
|Ψ0|2

〉)2

,Ω− =
1

bT̄ 2
〈
|Ψ0|2

〉
Activities

We can rewrite the activity (248) as:

ω+ (Z) ' b0

( κ
N

(λτνc− T+ (Z)) |Ψ (Z)|2
)

= b0
κ

N
T̄

1−
3

(〈
|Ψ0 (Z ′)|2

〉2

Z
−
〈
|Ψ0|2

〉2
)

2
〈
|Ψ0 (Z ′)|2

〉2

Z

 |Ψ (Z)|2

and:

ω− (Z) b0 '
( κ
N

(λτνc− T+ (Z)) |Ψ (Z)|2
)

' b0
κ

N
T̄


1 +

5

2

√√√√ 1

T̄ 2b2
〈
T̄ |Ψ0 (Z ′)|2

〉5

Z

(〈
|Ψ0 (Z ′)|2

〉2

Z
−
〈
|Ψ0|2

〉2
) |Ψ (Z)|2


where ω− (Z) gathers the formula for ω− (Z)
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The square |Ψ (Z)|2 depends on Ω±. Thus we write:

|Ψ± (Z)|2 =
2T± (Z)

〈
|Ψ0 (Z ′)|2

〉2

Z(
1 +

√
1 + 4

(
λτνc−T±(Z)(

1
τDαD

+ 1
τCαC

+Ω±
)
T±(Z)− 1

τDαD
λτνc

)2

T± (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

)

Given that:√
1 + 4

(
λτνc− T± (Z)

(Ω±)T± (Z)

)2

T± (Z)
〈
|Ψ0 (Z ′)|2

〉
Z
'

√
1 +

(
1

Ω±

)2

T± (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

we find:

|Ψ+ (Z)|2 =
2T+ (Z)

〈
|Ψ0 (Z ′)|2

〉2

Z(
1 +

√
1 +

T+(Z)〈|Ψ0(Z′)|2〉
Z(

bT̄(T̄〈|Ψ0|2〉)2
)2

) ' 2T̄
〈
|Ψ0 (Z ′)|2

〉2

Z

and:

|Ψ− (Z)|2 =
2T− (Z)

〈
|Ψ0 (Z ′)|2

〉2

Z(
1 +

√
1 + 4

(
bT̄ 2

〈
|Ψ0|2

〉)2

T− (Z)
〈
|Ψ0 (Z ′)|2

〉
Z

) << 1

for T̄ >> 1.
Thus, given our assumptions:

ω− (Z) << ω+ (Z)

Appendix 4 Solution of classical action’s first order condition

To solve equations (176) and (175), the dependency of ω−1
(
J (θ) , θ, Z,G0 + |Ψ|2

)
in |Ψ|2 has to be

explicited. Note that in first approximation, the solution of (175) is:

δΨ (θ, Z) ' −
∇θω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)
U ′′ (X0)

Ψ0 (θ, Z)

=
∇θω

(
J (θ) , θ, Z,G0 + |Ψ0|2

)
U ′′ (X0)ω2

(
J (θ) , θ, Z,G0 + |Ψ0|2

)Ψ0 (θ, Z)

and this approximation is suffi cient as a first approximation.
However, to find a more precise expression for δΨ (θ, Z), we use (??) that defines ω−1

(
J (θ) , θ, Z,G0 + |Ψ|2

)
at the classical order:

ω−1
(
J, θ, Z, |Ψ|2

)
(265)

= G

J (θ, Z) +

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)
T
(
Z, θ, Z1, θ − |Z−Z1|

c

)
ω
(
J, θ, Z, |Ψ|2

)
×
(
G0 (Z1) +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1

)
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Using (265), the defining equation (176) for δΨ (θ, Z) becomes:

G−1

(
−U

′′ (X0)

X0

∫ θ

δΨ (θ, Z)

)

=

∫
κ

N

ω
(
J, θ − |Z−Z1|

c , Z1,Ψ
)

ω
(
J, θ, Z, |Ψ|2

) T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)(
G0 (Z1) +

∣∣∣∣Ψ(θ − |Z − Z1|
c

, Z1

)∣∣∣∣2
)
dZ1

This equation can be rewritten in the local approximation:

G−1

(
−U

′′ (X0)

X0

∫ θ

δΨ (θ, Z)

)
' J (θ, Z) +

(
−Γ∇θ + Γ′∇2

Z

) (
ω (J, θ, Z)

(
G0 (Z) + |Ψ (θ, Z)|2

))
ω
(
J, θ, Z, |Ψ|2

) (266)

where Γ and Γ′ are defined by:

Γ =

∫
κ

N

|Z − Z1|
c

T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
dZ1

Γ′ =

∫
κ

N
|Z − Z1|2 T

(
Z, θ, Z1, θ −

|Z − Z1|
c

)
dZ1

At the lowest order in derivatives, equation (266) becomes:

G−1

(
−U

′′ (X0)

X0

∫ θ

δΨ (θ, Z)

)
' J (θ, Z)−

Γ∇θω (J, θ, Z)
(
G0 (Z1) + |Ψ (θ, Z)|2

)
ω
(
J, θ, Z, |Ψ|2

) (267)

= J (θ, Z)− Γ∇θ |Ψ (θ, Z)|2 + Γ
δΨ (θ, Z)∫ θ
δΨ (θ, Z)

(
G0 (Z) + |Ψ (θ, Z)|2

)
' J (θ, Z)− Γ

√
X0∇θδΨ (θ, Z) + Γ

G0 (Z) +X0 +
√
X0δΨ (θ, Z)∫ θ

δΨ (θ, Z)
δΨ (θ, Z)

' J (θ, Z) + Γ
G0 (Z1) +X0∫ θ

δΨ (θ, Z)
δΨ (θ, Z)

We set:
Y = ln

(∫
δΨ (θ, Z)

)
and (267) writes:

G−1

(
−U

′′ (X0)

X0
expY

)
= J (θ, Z) + Γ (G0 (Z1) +X0)∇θY (268)

' 〈J〉 (Z) + Γ (G0 (Z1) +X0)∇θY

where 〈J〉 (Z) is the current averaged over time. The solution of (268) is:∫
δΨ (θ, Z) = exp (Y ) = exp

(
H−1

(
θ

Γ (G0 (Z1) +X0)
+ d

))
with:

H (Y ) =

∫
dY

G−1
(
−U ′′(X0)

X0
expY

)
− 〈J〉 (Z)
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and:

δΨ (θ, Z) =

(
G−1

(
−U

′′ (X0)

X0
exp

(
H−1

(
θ

Γ
(
G0 (Z1) +

√
X0

) + d

)))
− 〈J〉 (Z)

)
(269)

× exp

(
H−1

(
θ

Γ
(
G0 (Z1) +

√
X0

) + d

))

The constant d is chosen so that limθ→∞ δΨ (θ, Z) = 0. For slowly varyng currents, 〈J〉 (Z) can
replaced by J (θ, Z) in the formula.
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