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Abstract 

 

It has long been suggested that environmental exposures (i.e., the exposome) play a 

dominant role in shaping trajectories of human aging and premature mortality. Here we aimed to 

quantify the contribution of the exposome and genome to aging and mortality. We conducted an 

exposome-wide analysis in the UK Biobank (n=492,567) to systematically identify exposures 

associated with mortality while accounting for exposure correlation and mismeasurement. We 

found that the exposome is a major mortality determinant irrespective of genetic disease risk via 

shaping distinct biological and multimorbidity patterns. We identified 41 independent exposures 

associated with mortality, and demonstrate that most identified exposures are associated with a 

common signature of age-related multimorbidity, aging biomarkers, and major cardiometabolic 

risk factors. Compared with age and sex, polygenic risk for 22 major diseases and aging 

phenotypes explained an additional 2% of mortality variation, whereas the exposome explained 

an additional 19%. While genetics explained the majority of variation in dementias and breast, 

prostate, and colorectal cancers, the exposome explained the majority of variation for diseases 

of the lung, heart, and liver. Our findings provide a comprehensive map of the contributions of 

environment and genetics to mortality and common age-related diseases.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2023. ; https://doi.org/10.1101/2023.03.10.23286340doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23286340
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3 

Main 

 

Human aging is a complex process that initially manifests as sub-clinical and biological 

changes that begin to accumulate from mid-life onwards 1-3. These systemic biological changes 

are major drivers of common age-related diseases 4-6 and disease multimorbidity 7,8, which in 

turn are the major causes of premature mortality worldwide 9. While there have been major 

advancements in understanding the complex genetic etiology of age-related diseases, genetic 

studies show only a modest effect of the genome on lifespan 10,11. Instead, the nearly twofold 

increase in global human lifespan during the past 200 years 12 has been largely attributed to 

changes in human environments 13. While epidemiological research has made progress in 

relating individual environmental and behavioral exposures to age-related diseases and 

mortality, few studies have comprehensively examined the exposome (i.e., the total set of 

interrelated environmental exposures throughout the lifecourse) in relation to these outcomes 

14,15. In the field of genetic epidemiology, the use of genome-wide approaches has greatly 

increased the positive predictive value 16 and reproducibility 17 of findings. Transitioning to 

exposome-wide study designs will provide similar advancements.  

We conducted an exposome-wide analysis using data from the UK Biobank (n=492,567) 

to systematically identify exposures associated with mortality and multiple stages of the aging 

process. We first systematically identified exposures that associate with the most critical 

outcome of all age-related diseases – mortality. Exposures associated with mortality were then 

tested in relation to: (i) incidence of age-related diseases that are either major causes of death 

or highly prevalent in aging populations (25 total); (ii) cross-sectional patterns of all age-related 

blood biomarkers available in the UK Biobank (25 total); and (iii) prevalence of three major 

cardiometabolic risk factors (obesity, hypertension, dyslipidemia). Lastly, we used publicly 

available polygenic risk scores to quantity the relative contribution of the exposome vs. 

polygenic risk to explaining variation in mortality and age-related diseases. 
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Mortality and age-related disease rates 

 

The final study sample included 492,567 UK Biobank participants (Fig. 1). All analyses 

were carried out using UK Biobank participants recruited in England (n=436,891). Participants 

recruited in Scotland/Wales (n=55,676) were held out as a validation set used only to validate 

final multivariable disease models. There were 31,716 deaths from all causes among 

participants recruited in England after a median 12.5 years of follow up (Table S1). The majority 

(74.5%) of deaths were premature deaths (i.e., occurring before 75 years of age; Fig. 2a) and 

75% of deaths occurred in those who were overweight or obese with a body mass index (BMI) ≥ 

25 kg/m2 (Fig. 2b). Women had a lower all-cause mortality rate compared with men (5.4% in 

women vs 9.4% in men; Table S1). Mortality by cause of death for all participants is given in 

Tables S4-S5. 

The number of incident cases for all age-related diseases studied in participants 

recruited in England ranged from 856 (brain cancer) to 45,879 (osteoarthritis), as shown in Fig. 

2c and Table S6; summary statistics for all cross-sectional outcomes (3 cardiometabolic risk 

factors, 25 baseline aging biomarkers) are given in Tables S6-S7. Key demographic prevalence 

rates for participants recruited in England are shown in Fig. 2d. 

 

Exposome-wide analysis of mortality 

 

Exposome-wide association study (XWAS) analyses of all-cause mortality were 

conducted by serially testing 164 environmental exposures in relation to mortality via Cox 

proportional hazards models using independent discovery and replication subsets of the UK 

Biobank study population (Fig. 1). No significant differences were observed in XWAS regression 

betas when calculated separately in women and men (Fig. 3a). In a final mortality XWAS 

combining women and men, 110/164 exposures (67.1%) were significantly replicated (Fig. 3b). 
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Smoking, renting public housing (compared with home ownership), Townsend deprivation index, 

and living with a partner were the exposures most strongly associated with mortality. Sensitivity 

analyses (i) excluding participants who died within the first 4 years of follow up and (ii) testing 

interactions between each exposure and a baseline poor health indicator suggested that largely 

there is no strong statistical evidence for reverse causation bias in our XWAS results (Fig. S1-

S2), with only 15 exposures identified whose associations with mortality were likely completely 

explained by prevalent disease status (Fig. S1). These exposures were discarded, leaving 95 

remaining exposures. Summary statistics from all mortality XWAS analyses are given in 

Supplementary Files SF3-SF7. 

 

PheWAS of replicated exposures  

 

Each exposure replicated in the mortality XWAS and passing the above sensitivity 

analyses was checked for possible collinearity with other exposures and mismeasurement by 

conducting a phenome-wide association study (PheWAS) where the replicated exposure was 

treated as the outcome variable and regressed against all baseline phenotypes present in the 

UK Biobank using either logistic or linear regression (Supplementary Information). Using this 

method, we detected a further 10 exposures that associated extremely strongly with either: (i) 

disease, frailty, or disability phenotypes; or (ii) another exposure such that it likely does not 

represent new information. For example, we found that the number of vehicles in a participant’s 

household was very strongly associated with greater household income (Beta: 1.1, p < 8.1x10-

12), while inversely associated with living in council housing vs. home ownership (Beta: -0.98, p 

< 5x10-56) and being unemployed due to a disability (Beta: -0.62, p < 1.4x10-245). These findings 

indicate that this exposure is mostly capturing socioeconomic and disability status (Fig. S5). 

Exposures showing mismeasurement from PheWAS were discarded and not carried forward to 
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further analyses, leaving 86 remaining exposures. Summary statistics from all PheWAS are 

given in Supplementary Files SF62-SF177. 

 

Cluster architecture of the exposome 

 

We observed high degrees of correlation between exposures replicated in the XWAS 

(90% of variable pairs had a significant Bonferroni-corrected correlation p-value below 0.001), 

indicating that some mortality associations observed in the XWAS may be confounded due to 

this correlation structure. To address this, we used hierarchical clustering to organize replicated 

exposures that passed all sensitivity analyses into 9 unique clusters (Fig. 3c). We first 

conducted multivariable mortality models within each cluster by adding all exposures from the 

cluster into a single Cox model (Fig. S11a). We discarded exposures that did not pass 

multicollinearity tests or were not significant in this within-cluster model. We then grouped the 

remaining significant cluster exposures into two large superclusters (clusters 1-5 and 6-9) and 

conducted a Cox mortality model within each of these superclusters to also account for long-

range correlation confounding. Using this method, we identified 41 exposures that remained 

significant in these cluster multivariable models (Fig. S11b). 

 

Patterns of age-related multimorbidity and biological mechanisms 

 

To test whether the 41 identified exposures were associated with not just mortality but 

also multiple stages of the aging process, we tested each exposure individually in relation to 

incidence of 25 age-related diseases via Cox proportional hazards models (8-15 years of follow-

up), as well as cross-sectional patterns of 25 age-related biomarkers and 3 cardiometabolic risk 

factors (hypertension, obesity, dyslipidemia) via linear and logistic regression, respectively. 

Each of the 41 exposures was associated with a wide range of aging biomarkers that span 
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diverse organ systems and mechanisms (Fig. 4a). On average, each exposure was associated 

with 21.9 biomarkers (out of 25). Four exposures were associated with all 25 biomarkers 

(Townsend deprivation index, smoking status, hours of sleep, ethnicity) and nine with 24/25 

biomarkers in total (unenthusiasm frequency, total sedentary time, home ownership, taking 

multivitamin supplements, leisure time physical activity [LTPA], household income, years of 

education, relative body size at 10 years old, alcohol intake frequency). Cardiometabolic risk 

factors studied were cross-sectionally associated with nearly every exposure studied (Fig. 4b). 

Notably, hypertension was cross-sectionally associated with all exposures tested. 

Each of the 41 exposures was also prospectively associated with concurrent incidence 

of multiple age-related diseases (Fig. 4c), indicating that each exposure is a likely catalyst of 

disease multimorbidity. On average, each exposure was associated with 11.7 age-related 

diseases (out of 25). Smoking was associated with 21 (current smoking status) and 20 diseases 

(pack years). Household income and home ownership were associated with 19/25 diseases, 

followed by tiredness frequency and Townsend deprivation index (18/25), and IPAQ physical 

activity group (17/25). Of note, we found no associations between any exposure and incidence 

of brain cancer. 

Approximately 75% of exposures were associated with a consistent biological signature 

and multimorbidity pattern. For example, exposures associated with decreased mortality risk 

(employment, household income, education, living with a partner, IPAQ, LTPA, gym use, fish oil 

supplements, cereal fiber intake) were associated with decreased risk of nearly two thirds of all 

age-related diseases studied; decreased risk of obesity, dyslipidemia, and hypertension; 

increased levels of biomarkers indicating better health (vitamin D, HDL cholesterol, phosphate, 

albumin) or slower aging (LTL); and decreased levels of detrimental biomarkers (C-reactive 

protein, blood glucose, hbA1c, cystatin C, triglycerides). Exposures associated with increased 

mortality risk (smoking, lack of home ownership, being unemployed, deprivation, air pollution, 

maternal smoking around birth, sedentary lifestyle, poor mental health, poor sleep, processed 
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and red meat intake) were generally associated with opposite patterns of these same diseases, 

risk factors, and biological mechanisms. Summary statistics from all biomarker, age-related 

disease, and cardiometabolic risk factor analyses are given in Supplementary Files SF8-SF60. 

 

Environmental and genetic architectures of mortality and age-related diseases 

 

To determine the contribution of age and sex, exposome, and genetic risk in describing 

variation in mortality and each of the studied age-related diseases, we calculated stepwise 

multivariable Cox models beginning with just age and sex (model 1), then adding either 

polygenic risk scores (PRS) for the outcome (model 2) or exposome (i.e., all exposures 

associated with the outcome; model 3), and finally adding both the exposome and PRS together 

(model 4). Models were first calculated among participants recruited in England (n=436,891) 

and then validated in participants recruited in Scotland/Wales (n=55,676). 

Compared with a model containing age and sex, we found that adding PRS for 22 

diseases that are either major causes of death or aging phenotypes only increased the total 

mortality model R2 by 2% (Fig. 5a; Tables S15-S16). By contrast, we found that adding all 41 

exposures associated with mortality (i.e., exposome) to age and sex increased the total 

mortality model R2 by 17-19% (model 3 vs. 1). Adding the mortality exposome to the model with 

age, sex, and all PRS increased the total mortality model R2 by 16-17% (model 4 vs. 2). While 

the combined effect of the exposome explained a large proportion of mortality variation, we 

found that individually most exposures only explained a small proportion of total mortality 

variation (Fig. 3d). Effect estimates from model 3 for all exposures shown in Fig. S11c for 

mortality and Fig. S20-S44 for all age-related diseases studied. Exposure importance plots for 

all diseases studied are shown in Fig. S11-S19. 

Models including age and sex, exposome, and PRS (model 4) captured >50% of 

variation in most outcomes studied, with the exception of colorectal cancer, pancreatic cancer, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 16, 2023. ; https://doi.org/10.1101/2023.03.10.23286340doi: medRxiv preprint 

https://doi.org/10.1101/2023.03.10.23286340
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

leukemia, breast and ovarian cancers, and osteoarthritis (Fig. 5a). For all-cause mortality and all 

age-related diseases studied, the relative importance of age, sex, exposome, and PRS are 

shown in Fig. 5b according to the relative proportions of the total model chi-squared (Χ2) that 

each variable category explained in model 4. The exposome explained the most amount of 

model variation for lung cancer, emphysema/COPD, chronic liver diseases, and rheumatoid 

arthritis. Certain outcomes seem to be more influenced by polygenic risk than the exposome, 

such as breast and prostate cancers, Alzheimer’s disease (AD), all-cause dementia, macular 

degeneration, and colorectal cancer. Of note, ovarian cancer and type 2 diabetes showed a 

smaller contribution of age and sex, with the exposome and PRS explaining the majority of 

variation in equal parts. Lastly, a number of outcomes showed age and sex as the most 

influential determinants, but also showed the exposome explaining the majority of the residual 

variation not explained by age and sex. These include all-cause mortality, esophageal cancer, 

ischemic heart disease, and cerebrovascular diseases.  

 

Discussion 

 

This study provides the first comprehensive assessment of the relative contributions of 

environmental and genetic influences to aging and mortality. We show that the exposome 

explains a large percentage of mortality variation beyond the contribution of age, sex, and 

polygenic disease risk. We further demonstrate that the exposome shapes mortality risk through 

influencing a common signature of aging biological mechanisms and disease multimorbidity. For 

most age-related disorders studied, we find that the effect of the exposome exceeds that of the 

genome. We also find that exposome risk is composed of many interrelated factors that, 

although individually may have small effects, when combined additively explain a substantial 

amount of variation for mortality and certain age-related diseases such as emphysema/COPD, 

lung cancer, chronic liver and kidney diseases, and rheumatoid arthritis. 
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Our results demonstrate that many age-related diseases share a common environmental 

etiology that drives disease multimorbidity and ultimately premature mortality. We found that 

generally diseases fell into two large blocks. The first included cardiometabolic diseases, lung 

and kidney disease, dementia, vascular dementia, osteoporosis, osteoarthritis, and rheumatoid 

arthritis, all of which showed a shared environmental etiology involving most exposures 

associated with mortality. The second block included most common cancers and 

neurodegenerative disorders (AD, Parkinson’s disease, macular degeneration), which were 

associated with fewer exposures but still showed similar directions of effect as the first block. 

The group of diseases with a small observed impact of the exposome relative to the 

genome in our study were neurodegenerative disorders and some cancers (breast, prostate, 

and colorectal). Of note, although we saw associations for known determinants of colorectal 

cancer such as physical activity, smoking, and intakes of cereal fiber, processed meat, and red 

meat, we found that the combined contribution of these exposures to explaining colorectal 

cancer variation was limited compared to polygenic risk.  

Throughout our analyses, measures of physical activity, smoking, and individual 

socioeconomic status (household income and home ownership) showed the strongest effects 

on mortality and were associated with the greatest number of age-related diseases and aging 

biomarkers. While numerous previous studies have documented the significant roles of these 

exposures in shaping mortality risk 18-21, we provide a more complete picture of the myriad 

biological mechanisms and disease pathways associated with each. 

Several findings ask for further research. We observed that frequency of alcohol intake 

was unexpectedly associated with decreased risk of diabetes, ischemic heart disease, and 

chronic kidney disease. However, a previous Mendelian randomization (MR) study shows an 

association of alcohol intake with increased risk of cardiometabolic diseases in the UK Biobank 

22. Further, while glucosamine supplementation was associated in our study with decreased risk 

of cardiometabolic diseases and with cardiometabolic disease mechanisms (lower glucose, 
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hbA1c, and triglycerides; higher HDL and total cholesterol), previous clinical trials have reported 

no effect of oral glucosamine on blood pressure, glucose, and lipids 23. Further mechanistic or 

MR studies will be needed to disentangle whether glucosamine intake has a causal effect on 

these outcomes or instead whether our results reflect the fact that those who take glucosamine 

are also likely to have higher socioeconomic status and less likely to be sick or disabled at 

baseline, as shown in the glucosamine PheWAS (Supplementary File SF98). 

There are several limitations to note for our analysis. First, despite our prospective study 

design, we are unable to make causal conclusions based on our findings. Although consistent 

association patterns observed across different layers of outcomes (mortality, biomarkers, 

cardiometabolic risk factors, incident diseases) suggest that many exposures we identified may 

play early roles in shaping age-related disease and mortality risk, causality will need to be 

verified with further methods such as MR. Second, exposome influences are dynamic over time 

and our study design cannot capture this dynamic aspect of the exposome since all exposures 

were only measured at one time point in the full cohort. We also have not captured all 

exposome influences, as we were limited to the exposures available in the UK Biobank. 

Conspicuously absent from our analysis are chemical and toxicological exposures beyond air 

pollution. Furthermore, many exposures we tested come from self-reported questionnaire data, 

which introduces potential recall bias, mismeasurement, and uncertainty into the reliability and 

accuracy of the responses. Finally, the use of existing PRS as proxies for the inherited genetic 

component of each disease is somewhat preliminary, as these are still being updated and 

improved and do not include the component of rare variation in single genes such as BRCA1/2 

or the genes for familial hypercholesterolemia. 

Despite these limitations, we believe that our approach offers many advantages over 

traditional single exposure approaches in epidemiology. Through the use of: (i) independent 

discovery, replication, and validation stages; (ii) exposome-wide significance thresholds; (iii) 

sensitivity analyses to test for reverse causation bias; (iv) a comprehensively phenotyped cohort 
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in which we could systematically conduct PheWAS to test for exposure mismeasurement; and 

(v) within-cluster multivariable models to test for correlation bias, our approach greatly increases 

the reproducibility and positive predictive value of findings. This study design improves 

substantially upon XWAS and exposome analyses published to date (see our systematic review 

in the Supplementary Information). When compared with the only previously published 

“environment-wide” analysis of mortality 24 that focused on a narrower range of chemical and 

lifestyle exposures in a small sample (n=6,008), our study identified approximately 17x more 

factors associated with all-cause mortality and improved the final mortality variance explained 

(R2) by 31x from 2.1% in this previous study to 66%. This demonstrates the importance of using 

large datasets and testing as broad a range of exposome influences as possible. 

Overall, our results indicate that environment-focused interventions are likely to have the 

highest impact on ameliorating premature mortality and most age-related morbidity. We argue 

that greater use of exposome study designs will significantly accelerate identification of high-

priority population health targets for age-related morbidity and premature mortality. Our study 

also opens the door for further targeted proteomic, metabolomic, or other ‘omics studies to 

explore the biological effects of the exposures that we identified. 
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Methods 

 

Study design and participants 

 

The UK Biobank is a prospective cohort study with extensive genetic and phenotype 

data available for 502,505 individuals resident in the United Kingdom 25. The full UK Biobank 

protocol is available online.  

 

Exposures 

 

We considered as potential XWAS exposures all non-genetic variables available as of 

July 24, 2020 that were collected at baseline and were available for participants recruited across 

all assessment centers. After all exclusions, recoding, and quality control (Supplementary 

Information), 176 unique exposures remained that were available in the full cohort that were 

common to both women and men. All continuous exposure variables were centered and 

standardized before analysis, except for age at recruitment. All ordinal categorical variables 

were recoded to only test linear associations and other polynomial contrasts (e.g., quadratic or 

cubic associations) were not assessed. All nominal categorical exposures were analyzed with 

the most common category set as the reference. Detailed data dictionaries including all 

exposures used in imputation and XWAS steps are included in Supplementary Files SF1-SF2. 

 

Outcomes 

 

Detailed information about the linkage procedure with national registries for mortality and 

cause of death information is available online. Mortality data were accessed from the UK 

Biobank data portal on May 4, 2022, with a censoring date of September 30, 2021 or October 
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31, 2021 for participants recruited in England/Scotland or Wales, respectively (11-15 years of 

follow-up).  

Aging biomarkers (Table S8) were measured using baseline non-fasting blood serum 

samples as previously described 26. Data on leukocyte telomere length (LTL) was only available 

in a slightly smaller sample (n=472,506) than other biomarkers and was not imputed. 

Biomarkers were previously adjusted for technical variation by the UK Biobank, with sample 

processing and quality control procedures described on the UK Biobank website.  

Data used to define chronic diseases and cardiometabolic risk factors are outlined in 

Table S9. Incident chronic disease diagnoses were ascertained using ICD diagnosis codes and 

corresponding dates of diagnosis taken from linked hospital inpatient records and death register 

data. ICD data were accessed from the UK Biobank data portal on May 30, 2022, with a 

censoring date of September 30, 2021; July 31, 2021; or February 28, 2018 for participants 

recruited in England, Scotland, or Wales, respectively (8-15 years of follow-up).  

 

Missing data imputation 

 

UK Biobank participants recruited from England were randomly assigned to a discovery 

(n=218,446) or replication set (n=218,445) while maintaining the same proportion of mortality 

cases in each. We performed missing data imputation separately in the discovery, replication, 

and Scottish/Welsh validation (n=55,676) datasets using the R package missRanger 27, which 

combines random forest imputation with predictive mean matching (Supplementary 

Information). We imputed 5 datasets, with a maximum of 10 iterations for each imputation. All 

subsequent study analyses were run independently in each of the five imputed datasets, and 

results were pooled using Rubin’s rule 28.  
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Exposome-wide association study 

 

XWAS of all-cause mortality were initially carried out separately in women and men, and 

then a final XWAS was calculated in the pooled dataset with both women and men to increase 

power. Exposures in the final pooled XWAS were limited to those asked to both women and 

men, omitting sex-specific reproductive factors. In each XWAS, we serially assessed 

associations of each individual exposure with all-cause mortality using Cox proportional hazards 

models with age as the time scale; stratified by 5-year birth cohorts and sex (in the pooled 

analysis only); and adjusted for assessment center, years of education (7 years, 10 years, 13 

years, 15 years, 19 years, 20 years), and ethnicity (White, Asian, Black, Mixed, Other). Since it 

has been shown that UK Biobank participants are likely to misreport alcohol consumption as a 

function of higher disease burden 29, self-reported overall health status was added as an 

additional XWAS covariate for the self-reported alcohol intake exposure only. P-values in the 

discovery and replication analyses were corrected using the false discovery rate (FDR; 

Benjamini-Hochberg method30) with a significance threshold of FDR p < 0.05. After completing 

the mortality XWAS, discovery and replication sets were recombined into the full English sample 

(n= 436,891) to complete further sensitivity analyses (Supplementary Information).  

 

Correlation and cluster analyses 

 

Correlation between all variables was calculated in the full English sample using the R 

package polycor 31 to create a heterogenous correlation matrix for each imputed dataset 

(Supplementary Information). We used hierarchical clustering via Euclidean distance to identify 

the cluster structure of exposures replicated in the pooled XWAS and not susceptible to reverse 

causation bias (plus education and ethnicity). Within-cluster Cox multivariable mortality models 

included all remaining variables in the cluster after removing collinear variables (Supplementary 
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Information), with additional adjustment for assessment center, household income (Less than 

18,000, 18,000 to 30,999, 31,000 to 51,999, 52,000 to 100,000, Greater than 100,000), 

Townsend deprivation index, years of education, and ethnicity (if those variables were not 

already in the cluster). The significance threshold used in cluster multivariable analyses was a 

nominal p < 0.05.  

 

Aging mechanisms and incident chronic disease analyses 

 

Aging biomarker variables were log transformed and then were age-adjusted by 

regressing each onto age at recruitment separately in women and men. Across exposures 

replicated in the XWAS and passing all sensitivity tests, we serially assessed associations 

between each exposure and age-adjusted biomarker using cross-sectional linear regression 

models with covariates for sex, 5-year birth cohort, assessment center, years of education, 

ethnicity, number of medications, smoking status (current, previous, never), and IPAQ physical 

activity level (low, moderate, high). IGF-1, LTL, and vitamin D models included additional 

covariates for standing height (in cm), leukocyte count (109 cells/Liter), and month of biomarker 

assessment (to control for seasonality of sun exposure), respectively.  

For chronic disease analyses, we serially assessed associations between each 

exposure and incident disease using the Cox proportional hazards model, with all XWAS 

covariates plus household income, smoking status, and IPAQ physical activity group. Sex-

specific reproductive exposures (e.g., menopause) replicated in the female- and male-only 

XWAS analyses were also tested as exposures in analyses of sex-specific chronic disease 

outcomes (breast, ovarian, and prostate cancer).  

For cardiometabolic risk factors (obesity, hypertension, dyslipidemia), we serially 

assessed each exposure and risk factor pair using cross-sectional logistic regression models 
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adjusted for age, sex, assessment center, household income, years of education, ethnicity, 

smoking status, and IPAQ physical activity level.  

Across all biomarker, chronic disease, and cardiometabolic risk factor analyses, p-values 

were corrected separately for each outcome using FDR.  

 

Exposome and polygenic risk multivariable models 

 

For each outcome, five multivariable models were calculated. The first only includes age 

(scaled) and sex in the model (model 1). Model 2 includes age, sex, and the polygenic risk 

score (PRS) for the outcome, if available (see below for more detail). Model 3 includes age, sex, 

and all exposures associated with the outcome (exposome). Model 4 includes age, sex, 

exposome, and PRS. If a PRS was not available for a particular outcome, then models 2 and 4 

were not calculated for that outcome. Each model was validated in the independent 

Scottish/Welsh dataset (n=55,676) by obtaining the linear predicted values from the models in 

the English dataset and measuring the C-index and R2 for these values in relation to the 

outcome rates in the Scottish/Welsh population.  

In all multivariable Cox models, the proportional hazards assumption was tested by 

examining the Schoenfeld residuals, and an interaction with time was added to any variable with 

non-proportional hazards (Supplementary Information). Relative importance for each variable 

and category of variables within the multivariable models was calculated using Wald chi-

squared (Χ2) statistics via ANOVA, where the relative importance of each is the proportion of the 

variable/group Χ2 relative to the total model Χ2. 
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Figures 

 

Fig. 1. Study overview. (a) After participant exclusions, UK Biobank participants were split into independent discovery, 
replication, and validation sets. Missing values were imputed separately within each group using random forest multiple 
imputation, resulting in 5 imputed datasets for each dataset. (b) Among UK Biobank participants recruited in England 
(n=436,891), an exposome-wide association study (XWAS) for all-cause mortality was conducted using the discovery and 
replication sets. The discovery and replication sets were then pooled, and further analyses were conducted in the full 
sample to identify and remove replicated exposures that are sensitive to reverse causation (disease sensitivity), 
mismeasurement (PheWAS per exposure), and correlation bias (cluster analysis). (c) Exposures surviving all analyses in 
(b) were then tested in relation to 25 age-related biomarkers, 25 age-related diseases, and 3 cardiometabolic risk factors 
(hypertension, obesity, dyslipidemia). For mortality and each age-related disease, the relative contributions of age and 
sex, polygenic risk, and exposome were calculated via multivariable Cox proportional hazards models. Multivariable 
models were validated in participants recruited in Scotland/Wales (n=55,676), who were held out from all other analyses. 
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Fig. 2. Mortality and key exposure response rates among UK Biobank participants. (a) The number of deaths in 
women and men according to age at death (in years). (b) The number of deaths in women and men according to body 
mass index (BMI) at baseline. (c) Numbers of prevalent and incident cases for all age-related diseases studied. Note 
that diseases are put into two groups with different x-axis scales, since some diseases had far more cases than 
others. (d) Response rates for key exposures and covariates in both women and men. Percentages are for each sex 
separately and not across both sexes. All descriptive statistics are for UK Biobank participants recruited in England 
(n=436,891). 
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Fig. 3. Environmental architecture of mortality in the UK Biobank. (a) Correlation between betas for the association between each 
exposure and mortality calculated separately in women (n=237,637) and men (n=199,257). (b) Volcano plot of log-transformed p-values 
and fold change (calculated as log2 of the hazard ratio) for all mortality XWAS associations in the final pooled analysis. Each point 
represents the effect and p-value for the association between a single exposure and all-cause mortality from the XWAS discovery 
analysis (n=218,483). Exposures that were FDR significant in both the discovery and replication stages are colored, whereas associations 
that were not replicated are colored dark grey and grouped in the category “* Non-replicated.” The top 20 points according to strongest p-
value are labelled. (c) Cluster structure of exposures that were replicated in the mortality XWAS and not discarded during reverse 
causation and PheWAS sensitivity analyses. Heatmap along the cluster dendrogram shows the effect direction and significance of each 
exposure in the final cluster multivariable model, with exposures that were not significant at the level of p<0.05 in the cluster multivariate 
models colored grey. Note that while individual exposures are shown, exposures in clusters 1, 2, and the greenspace/natural environment 
exposures in cluster 9 were reduced to principal components for multivariable modeling due to extremely high correlation (> 0.90) among 
similar exposures. (d) Individual exposure importance from a multivariable model including age, sex, and all 41 exposures identified in 
cluster modeling (n=436,891). Variable importance was calculated using a Wald test from ANOVA, where the importance of each variable 
is the proportion of that variable’s Wald chi-squared (Χ2) relative to the total model Χ2. Note: the y-axis values were transformed by taking 
the square root to improve visualization. IPAQ: International Physical Activity Questionnaires; LTPA: leisure time physical activity; MH: 
mental health; OPA: occupational physical activity.
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Fig. 4. Environmental architectures of age-related biological mechanisms and diseases in the UK Biobank. (a) Associations between each mortality-associated 
exposure and aging biomarkers. (b) Associations between each mortality-associated exposure and cardiometabolic risk factors. (c) Associations between each 
mortality-associated exposure and age-related chronic diseases. Colors in the heatmaps represent betas for associations between exposures and 
biomarkers/diseases. A line annotation track is shown that counts the total number of FDR significant associations for each outcome. For heatmap (a), an addition 
annotation track shows the primary biological mechanism associated with each aging biomarker. Air pollution and greenspace are the first principal components 
combining all air pollution and greenspace variables, respectively. For nominal categorical variables with more than one response level, the association for the 
level with the strongest p-value is reported in this figure and the exposure’s label reflects the response category shown. COPD: chronic obstructive pulmonary 
diseases; IGF-1: insulin-like growth factor 1; LTL: leucocyte telomere length; LTPA: leisure time physical activity. 
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Fig. 5. Combined environmental and genetic architectures of mortality and age-related diseases. (a) R2 calculated 
across studied outcomes for several sequential multivariable models: model 1 containing age and sex (purple); model 
2 containing age, sex, and polygenic risk scores (PRS; yellow); and model 4 containing age, sex, PRS, and 
exposome (green). If a PRS was not available for a particular outcome, then the green R2 shows the results from 
model 3 (age, sex, exposome). R2 values are shown from the validation analyses (n=55,676). (b) Variable importance 
for age, sex, polygenic risk, and exposome for all outcomes studied in model 4 conducted among UK Biobank 
participants recruited in England (n=436,891). Variable importance is calculated as the proportional of the total model 
chi-squared (Χ2) that each variable category explains and is plotted as the relative contribution to the total model Χ2 
for each category so that they sum to 1. In all analyses, PRS includes polygenic risk scores, as well as genetic 
principal components and genotyping batch. PRS used for mortality models includes PRS for all other diseases and 
phenotypes shown in this figure (22 total). Note: PRS information was not available for liver cancer or lymphoma and 
is not included in models. Ovarian, breast, and prostate cancer models were sex-specific and sex was not included in 
model 4 for these outcomes. 
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