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Abstract:

The mobilization of retrotransposons yields major-effect mutations. Here, we report an

adaptive retrotransposon insertion within the first intron of the Arabidopsis floral-repressor

locus FLOWERING LOCUS C (FLC). The insertion-mutation augments the environmental

sensitivity of FLC by affecting the balance between coding and non-coding transcript

isoforms in response to environmental threads. We show that this balance is modulated

epigenetically by DNA methylation and orchestrated by IBM2, a factor involved in the

processing of intronic heterochromatin. The stress-sensitive allele of FLC has recently

spread across populations subjected to recurrent chemical weeding, and we demonstrate

that retrotransposon-driven acceleration of life cycle represents a rapid response to

herbicide. Our findings illustrate how retrotransposition can create

environmentally-sensitive alleles that facilitate adaptation to anthropogenic disturbances

of the environment.
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INTRODUCTION

Environmental changes due to direct human activities have impacted biodiversity at

unprecedented pace, putting a countless number of natural populations at evolutionary risk.

Cropland expansion, intensified chemical input, and urbanization of natural habitats have

favored the replacement of native populations by colonizing ruderal species. Identifying the

type, mode of action, and history of mutations enabling adaptation to ruderal habitats is

crucial to forecast the impact of ongoing and future anthropogenic activity on biodiversity.

Among the different types of mutations, those that occur spontaneously following

DNA replication errors or damage are arguably the best characterized (Mackay, Stone, and

Ayroles 2009; Weigel and Nordborg 2015). However, structural variants, notably those

produced by the mobilization of transposable elements (TEs), which are DNA sequences

that have the ability to self-propagate within and across genomes, account for the largest

fraction of varying base pairs among individuals (Michael et al. 2017; Sudmant et al. 2015;

Weischenfeldt et al. 2013). TE mobilization has been proposed to have a greater potential

than single nucleotide polymorphisms to generate large effect mutations (Schrader and

Schmitz 2019), which may be further accentuated by the exquisite sensitivity of some TEs

to environmental signals (Casacuberta and González 2013). Despite these considerations,

the actual contribution of new TE insertions to adaptive walks remains controversial.

Previous analyses of TE insertions polymorphisms based on population genomics

data for hundreds of accessions of the model species Arabidopsis thaliana revealed that the

first intron of the Flowering Locus C (FLC) gene is the most frequent target of TE insertions

in nature, with up to 16 independent TE-containing alleles (Quadrana et al. 2016; Baduel et

al. 2021). FLC encodes a MAD-box transcription factor that negatively regulates floral

transition by impairing the expression of flowering signals. Vernalization (i.e. overwintering

or long cold exposure at the seedling stage) represses FLC and this repression is

maintained epigenetically upon the return to warmth, allowing plants to flower in spring

(Bastow et al. 2004). However, with few exceptions (Qüesta et al. 2016), we currently have

limited knowledge about how mutations at FLC modulate flowering time variation in

nature.

RESULTS
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A recent retrotransposon insertion within FLC modulates flowering response

Using long-read sequencing data, we assembled a highly contiguous,

telomere-to-telomere, genome assembly of the Arabidopsis accession Ag-0

(Supplementary Figure 1), which carries a retrotransposon insertion within FLC (Quadrana

et al. 2019). Our assembly confirmed the localization and identity of a full-length

ATCOPIA78/ONSEN retrotransposon insertion within FLC’s first intron (Figure 1a). Based

on the nucleotide divergence between retrotransposon’s LTRs (SanMiguel et al. 1998) we

estimated that this insertion is less than 0.16 million years old (MYO). The Ag-0 genome

has two additional full-length ONSEN insertions, located in chromosomes 1 and 3. LTRs of

these copies were significantly divergent (2.27% and 0.66%, respectively), suggesting they

inserted ~2.27 and ~0.66 MYO, respectively. Consistently, these insertions are respectively

fixed or at intermediate frequency (14%) among 1069 natural Arabidopsis accessions

previously characterized (Baduel et al. 2021). The insertion within FLC is more closely

related to ONSEN copies carried by the reference accession Col-0 than the ones on

chromosome 1 and 3 of Ag-0 (Figure 1b), suggesting that none of these two served as

donors for the insertion within FLC. To characterize the origin of that insertion, we set out to

identify accessions carrying the same FLC haplotype as Ag-0 using SNP data available for

the 1069 natural accessions (1001 Genomes Consortium 2016). Twenty-seven accessions,

mostly from northern latitudes, carry the Ag-0 haplotype (Hap1) but lack the

retrotransposon insertion (Figure 1c). Based on the number of SNPs accumulated in the

haplotype block we estimated that the transposon insertion within FLC occurred less than

246 years ago. Considering that Ag-0 was collected by Denis Ratcliffe almost 60 years ago

from a railway ballast (Kranz and Kirchheim 1987), it is most likely that the insertion within

FLC took place during the XIX century.

Numerous TE insertions within FLC have been identified in Brassicaceae species,

most of which produce loss-of-function alleles (Quadrana 2020). To test if the

TE-containing FLC allele in Ag-0, which has one of the longest (8435nt-long) introns

described in Arabidopsis (Supplementary Figure 2), is functional and subjected to its

canonical regulation, we grew Ag-0 plants under standard long-days conditions or eight

weeks of vernalization. Vernalized plants flowered soon after the treatment (28±1.39 days
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after vernalization), while control plants flowered more than 120 days after germination

(Figure 1d). Consistently, FLC expression was initially high and strongly reduced following

vernalization (Supplementary Figure 3). Vernalization-induced down-regulation of FLC was

maintained at least four weeks after returning plants to warm temperatures, similarly to the

Northern Sweden ecotype Lov-1 (Coustham et al. 2012) that requires long cold exposure to

saturate the vernalization requirement (Supplementary Figure 3). These results confirm that

the FLC allele carried by Ag-0 is functional and characterized by a canonical vernalization

response.

Because ONSEN retrotransposons are induced by heat shock (HS) (Tittel-Elmer et

al. 2010), we tested the flowering response of Ag-0 to single or multiple HS (Figure 1d).

Compared to the late flowering response observed when plants are grown under control

conditions, plants subjected to heat stresses flowered much earlier (40-70 days after

germination). This acceleration in flowering correlates with the severity and number of

heat-shocks. For instance, while only 30% of plants subjected to a single day of heat shock

flower less than 50 days after germination, all plants subjected to three heat shocks

flowered ~40 days after germination.

To determine the genetic architecture of the flowering response to HS, we

generated an F2 population by crossing Ag-0 with two accessions with different degree of

vernalization response (Ws-2 and CIBC17). Bulk segregant analysis of F2 plants flowering

early in response to HS identified a single peak of association spanning the Ag-0 allele of

FLC in both crosses (Figure 1e), further suggesting that the TE-containing allele of this

gene is causal for the HS-induced flowering response.

Heat-induced retrotransposon activation impairs FLC activity

To investigate the molecular mechanisms underpinning the flowering response of

FLC to HS, we performed RNA-seq experiments on Ag-0 seedlings grown under control or

HS conditions. FLC was highly expressed in control plants (Figure 2a), in agreement with

the strong vernalization requirement observed for this accession. ONSEN was strongly

induced in response to HS (Figure 2a), consistent with previous work reporting activation of

this TE in several Arabidopsis accessions (Masuda et al. 2016). Alongside ONSEN

reactivation, the first intron of FLC is significantly retained and overall FLC expression  was
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markedly reduced in response to stress. RT-qPCR confirmed these observations (Figure 2b)

(Quadrana et al. 2019). We did not find, however, significant readthrough transcription from

the ONSEN insertion towards the first exon of FLC, suggesting that nonsense-mediated

degradation, rather than retrotransposon-derived antisense transcripts likely cause the

observed downregulation of FLC. Moreover, the canonical FLC antisense transcript

COOLAIR, which mediates the epigenetic silencing of FLC (Liu et al. 2010), is also

downregulated in response to heat stress (Supplementary Figure   4), excluding its

participation in the reduction of FLC expression. In addition, expression of FLM, another

negative regulator of flowering time known to be downregulated in response to warm

temperatures (Posé et al. 2013), is not altered in response to HS (Supplementary Figure 4).

Crucially, HS-induced downregulation of FLC was accompanied by a strong induction of

direct targets of FLC (Deng et al. 2011), such as the major flowering integrators

FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1

(SOC1), and AGAMOUS LIKE 24 (AGL24) (Figure 2b and Supplementary Figure 4). In

combination, these results indicate that environmental reactivation of ONSEN impairs FLC

expression, inducing the expression of flowering integrators that trigger flowering

transition.

Experimental loss of heterochromatin modifications, including DNA methylation, can

affect the expression of TE-containing genes (Saze et al. 2013; Berthelier et al. 2023).

However, whether HS-induced reactivation of ONSEN is associated with its

hypomethylation is still unclear (Tittel-Elmer et al. 2010; Sun et al. 2020), likely due to the

difficulty to investigate DNA methylation of such repetitive sequences. In contrast to the

reference Arabidopsis genome Col-0, which contains at least four nearly identical

full-length ONSEN copies, Ag-0 has only three, and significantly divergent, copies (Figure

1b). Indeed, bisulfite-sequencing (Bi-seq) data obtained from control Ag-0 plants provide

robust DNA methylation information across the complete ONSEN annotation and revealed

extensive non-CG methylation of the LTR sequences (Figure 2c). In response to HS, the 5’

LTR of ONSEN, which contains heat-shock response elements and acts as a promoter of

transcription (Pietzenuk et al. 2016), becomes strongly and rapidly hypomethylated,

indicating that transcriptional reactivation of ONSEN is accompanied by DNA methylation

loss.
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DNA methylation-dependent modulation of FLC

To test directly the role of DNA methylation in the modulation of flowering response

in Ag-0, we generated CRISPR-Cas9-mediated mutants of the SWI2/SNF2 chromatin

remodeler DDM1, which is required to maintain DNA methylation in Arabidopsis (Jeddeloh,

Stokes, and Richards 1999). After two generations with the CRISPR-Cas9 cassette,

transgene-free offspring were propagated and genotyped to identify plants carrying

mutations between the end of exon 6 and the beginning of exon 7 of DDM1, where guide

RNAs were targeted (Supplementary Figure 5a). Two lines (ddm1-5 and ddm1-6) were

obtained in this way (Figure 3a). Target sequencing revealed that both mutants carry a

similar frameshift mutation in exon 6 that generates multiple premature stops within the

ATPase domain of DDM1 (Supplementary Figure 5b). DNA methylation levels of ONSEN

were strongly reduced in the CRISPR-mutant compared to wild-type Ag-0 plants (Figure

3b), confirming the loss of DDM1 activity in these plants. Strikingly, compared to the late

flowering phenotype of control Ag-0 plants, ddm1 plants flower 25±6 days after

germination (Figure 3a). We then analyzed the expression of canonical as well as

intron-retention (IR) transcript isoforms of FLC. ddm1-induced hypomethylation of ONSEN

was accompanied by a dramatic downregulation of FLC expression and production of

IR-FLC transcript isoforms (Figure 3c and Supplementary Figure 5b). Notably, ONSEN

expression was not altered in ddm1 compared to wild-type Ag-0 plants (Supplementary

Figure 5c), In combination, these results established that it is the hypomethylation of

ONSEN, rather than its transcriptional activation, that modulates FLC expression and floral

transition in Ag-0 (Figure 3d).

 Processing of gene transcripts produced from intronic heterochromatin is mediated

by a protein complex comprising the RNA binding protein INCREASE IN BONSAI

METHYLATION 2 (IBM2) (Saze et al. 2013). To test the involvement of IBM2 in the

expression of FLC in Ag-0, we introduced the ibm2-4 mutant allele (Deremetz et al. 2019)

into Ag-0 plants. We selected F3 plants carrying the Ag-0 alleles of FLC in combination

with either the WT or the mutant IBM2 alleles (Figure 3e). These plants (Ag-0 ibm2-/-and

Ag-0 ibm2+/+, respectively) were grown under control conditions to measure flowering time.
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Ag-0 ibm2-/- mutant plants flowered 22 +/- 10 days after germination, while all Ag-0

ibm2+/+ control plants flowered more than 120 days after germination (Figure 3e).

Expression analysis showed that acceleration of flowering in Ag-0 ibm2-/- plants was

accompanied by a significant reduction in FLC expression and induction of IR-FLC

transcripts isoforms (Figure 3f). As expected, misregulation of FLC in ibm2 plants leads to

higher FT expression levels (Supplementary Figure 6), further supporting that failed

processing of the ONSEN-containing intron of FLC transcripts, such as in response to HS or

ddm1-induced hypomethylation, underlie the early flowering of Ag-0. Importantly, DNA

methylation of the ONSEN insertion was not affected in Ag-0 ibm2-/- plants (Figure 3g),

indicating that IBM2 functions downstream of DNA methylation. Altogether, these results

demonstrate that the environmental modulation of the TE-containing allele of FLC is

mediated by IBM2’s methylation-dependent transcript processing (Figure 3h).

Retrotransposon-mediated acceleration of life cycle in response to herbicide

 Given the key adaptive role of FLC in aligning flowering time with seasons, the

retrotransposon-driven HS impairment of FLC expression may reflect a more general ability

of Ag-0 plants to flower early in response to specific environmental conditions (Quadrana

et al. 2019). To investigate whether the TE-containing allele of FLC has spread across

populations experiencing similar climates as that of Ag-0, we collected in spring 2019 and

2021, 74 Arabidopsis accessions across a 160km2 area near the city of Argentat in central

France (Figure 4a and table S1), where Ag-0 was initially collected in the 50s (Kranz and

Kirchheim 1987). The newly collected accessions were growing in diverse habitats,

including brownfields, sidewalks, railways, and field margins. Genotyping showed that 23%

of the accessions carry the retrotransposon insertion in FLC, demonstrating that this allele

has been maintained in the area for the past 60 years. Intriguingly, none of the populations

from Argentat, or nearby cities, carry the insertion (Figure 4a), as the railway where Denis

Ratcliffe initially collected Ag-0 was dismantled in 1970 and the zone became heavily

urbanized since then. Conversely, the insertion is frequent (~40%) in Arabidopsis

populations nearby the city of Archignac and Turenne, yet carrier and non-carrier

populations share the same climate niche (Figure 4b). Therefore, the

retrotransposon-containing FLC allele more likely plays a role in adaptation to local
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environments, rather than providing an adaptive response to warmer climates as previously

proposed (Quadrana et al. 2019). Consistent with this possibility, carriers of the

TE-containing allele of FLC were found most often along railways and field margin strips

(Figure 4c), two environments exposed to intense chemical weeding (Marshall and Moonen

2002; Antuniassi, Velini, and Nogueira 2004). Selection of weeds in such environments has

been linked to mutations in several flowering pathways, notably FLC (Baduel et al. 2018),

enabling plants to cycle faster and complete a full life-cycle in high-stress and

high-disturbance environments (Kreiner et al. 2022). To test this hypothesis, we

investigated the presence of the retrotransposon-containing allele in 165 natural

populations of Arabidopsis collected across south-west of France in 2015 (Frachon et al.

2018). Remarkably, and despite its recent origin, the retrotransposon-containing allele of

FLC is present in 56% of these populations (Figure 4a, table S2). Carrier populations were

significantly enriched in railways, and, to a lesser extent, field margins, backyards, and silo

sites (Figure 4d), supporting a role for this allele in the response to chemical weeding. To

determine if this allele is under positive selection, we quantified haplotype-lengths using

the Extended Haplotype Homozygosity (EHH) test (Sabeti et al. 2002), which detects

recent selective sweeps associated with de novo mutations. This analysis showed that

haplotypes carrying retrotransposon insertions are more frequent and much longer than

ancestral haplotypes (Figure 4e), indicating recent or ongoing positive selection of the

insertion. In combination, these results demonstrate that the de novo retrotransposon

insertion within FLC is likely involved in adaptation to herbicide-heavy environments.

To test directly this possibility, we sprayed Ag-0 plants with sublethal doses of the

broad-spectrum herbicide Glufosinate. Strikingly, at least half of the Ag-0 plants treated

with herbicide flowered before 60 days, compared to none of the control plants (Figure 4f).

RT-qPCR experiments show that under these conditions ONSEN becomes strongly

upregulated in response to herbicide (Figure 4g), supporting the notion that this

retrotransposon is sensitive to severe stresses (Matsunaga et al. 2015), rather than being

induced by specific environmental signals such as HS. Together with retrotransposon

activation, the balance between full-length and IR FLC transcripts drastically shifts, leading

to high expression of the non-functional FLC isoform, FT induction, and early flowering

(Figure 4g).  In conclusion, the retrotransposon insertion within FLC enables plants to cycle
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faster in response to chemical spraying, providing a rapid adaptive response of Arabidopsis

to modern weed control practices (Supplementary Figure 7).

DISCUSSION

Agricultural intensification and extensive urbanization, aided by the massification of

agrochemicals, has transformed natural habitats at unprecedented pace. How populations

react to such drastic environmental changes, and whether it relies on standing variation or

de novo mutations, is still a matter of debate. We demonstrate that a gain-of-function

retrotransposon insertion within the flowering gene FLC enables Arabidopsis plants to

cycle faster in response to herbicide-exposure, leading to an escape response to chemical

weeding. This escape mechanism may apply to a wide array of stresses, setting them apart

from conventional herbicide resistance responses, which entail the accumulation of

mutations at genes encoding specific herbicide target enzymes or related metabolic

pathways (Kreiner et al. 2022; Kersten et al. 2023). Additionally, while target-site herbicide

resistances are typically caused by fixed-effect mutations, the effect of the retrotransposon

insertion in FLC allele is stress-dependent. Such a type of mutation should reduce fitness

costs in the absence of stress, and therefore increase its chance to persist in the population

as segregating alleles (Merenciano and González 2023; Baduel et al. 2021). Indeed, this

insertion occurred before the discovery of herbicides in the late 1800s, and likely

maintained in the population . In line with this scenario, the TE-containing allele of FLC is

found only at intermediate frequencies across recently collected populations (Figure 4a).

Thus, environmentally-dependent fitness effects may facilitate the spreading of TE

insertions through balancing selection at the regional scale, providing an alternative

explanation for the excess of rare TE insertion alleles observed across natural populations

at the worldwide scale (Merenciano and González 2023; Baduel et al. 2021, 2019; Niu et

al. 2019).

Our findings provide a compelling example of a recent retrotransposon insertion

enabling a rapid evolutionary response to anthropogenic activities. Adaptive TE insertions

were previously reported (Casacuberta and González 2013). For instance, the industrial

melanism of the British peppered moths was caused by a de novo TE insertion within the

gene cortex involved, through still unclear mechanisms, in pigmentation of Lepidoptera’s
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wings (Van’t Hof et al. 2016). Similarly, natural pesticide resistance in Drosophila

melanogaster was found associated with the presence of a TE insertion within the gene

CHKov1, likely affecting a target of organophosphate pesticides (Aminetzach, Macpherson,

and Petrov 2005). Unlike these adaptive TE insertions mutations, however, the response

reported here relies on the ability of the retrotransposon ONSEN to respond to

environmental threats. The ONSEN-containing allele of FLC is reminiscent of the

retrotransposon KARMA within the gene MANTLED, the hypomethylation of which leads to

splicing alterations and somaclonal variations in oil palm (Ong-Abdullah et al. 2015).

Hypomethylation of KARMA occurs in response to repeated in vitro culture. Hence,

environmentally- and artificially-induced hypomethylation of intronic TEs can be an

important source of phenotypic changes in plants, with implications for adaptation and crop

production.

FLC, and notably its first intron, is a common target of TE insertions in Arabidopsis

and other Brassicaceae species (Quadrana 2020; Li et al. 2023), which adds to the

remarkable regulatory complexity of this gene. The large number of TE containing alleles of

FLC likely reflects the major adaptive role of this gene, which we show can be catalyzed by

complex mutations such as the insertion of environmentally-sensitive retrotransposon

sequences. The insertion-mutation carried by Ag-0 lies close to the H3K27me3 nucleation

region, a key sequence for vernalization response that plays a pivotal role in determining

FLC’s epigenetic state (Yang, Howard, and Dean 2014). If and how such TE insertion

modulates the chromatin-mediated vernalization response of FLC warrants further

investigation. Similarly, the large number of TE insertions within FLC offers a unique

opportunity to explore how transposition can contribute to novel gene regulation

mechanisms. Our findings reveal how retrotransposition can enable rapid response to

environmental threads, with implications for our understanding of the genetic basis of past

and future adaptations to anthropogenic activities.
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Materials and Methods

Samples and experimental models. The following A. thaliana plants were used: wild-type

Ag-0, Ws-2, CIBC-17, and Lov-1 obtained from the NASC collection. The Col-0 ibm2-4

mutant was obtained from Deremetz et al 2019. Ibm2 Ag-0 plants were obtained by

crossing Col-0 ibm2-4 with Ag-0. F2 plants were genotyped and ibm2-4-/-, FLCag-0/ag-0, and

FRIag-0/ag-0, as Col-0 has a week FRI allele that impairs FLC expression, were selected and

propagated till F3 for phenotypic and molecular characterization. Collections of seeds from

Arabidopsis plants around Argentat were carried out in May 2019, August 2019, and April

2021. In order to break potential seed dormancy, seeds were kept at least four months at

15 degrees previous to germination. CRISPR-CAS9 ddm1 mutants of Ag-0 were generated

by floral-dip transformation using the binary vector pDE-Cas9-dsRed following reported

protocol (Morineau et al. 2017). Briefly, two guide RNAs targeting the end of exon 6 and

the beginning of exon 7 respectively (GAATTCTGCGGCACTATCCA and

GATAACAAACTTCTGCTGAC) were designed using CRISPOR

(http://crispor.tefor.net/crispor.cgi) and synthesized by Invitrogen GeneArt (ThermoFisher) in

tandem repeat, each preceded by a U6 promoter and separated by a tracrRNA

(GTTTAAGAGCTATGCTGGAAACAGCATAGCAAGTTTAAATAAGGCTAGTCC

GTTATCAACTTGAAAAAGTGGCACCGAGTCGGTGCTTTTTTT), and flanked by attB sites

within a pDONR221 plasmid. The guide RNA construct was then ligated into the

pDE-Cas9-dsRed vector by LR Gateway (ThermoFisher) by selection against ccdB.

Transgenic T1 plants were identified by seed fluorescence followed by PCR genotyping of

the transgenic cassette (primers: sgU6-F CGGTGCTTTTTTTGGATCC and DsRed-proR

TGCTTCTTGCTGAGCTCACA), and then propagated in the heterozygous state

(characterized by the production of both fluorescent and non-fluorescent seeds) for a

second generation. Non-fluorescent offspring (G1) plants of the T2s were genotyped by

PCR (primers ddm1-ex6F CACGCCTTCCATCAATGCAA and ddm1-in7R

AGCTGCCACCAGTGTTAACA) and candidate mutants validated by sanger sequencing. Two

ddm1 mutant lines were identified in this way. Heat shock stresses were performed as

previously described (Quadrana et al. 2019). Herbicide treatments were performed on two

weeks old plants by spraying 10mg/ml Glufosinate once per week, during three weeks.

Unless stated otherwise, all plants were grown in long-days (16h:8h light:dark) at 23°C.
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Vernalization treatments were performed by growing ten days old plants in short days at

6C for eight weeks.

De novo assembly and annotation of Ag-0. High-molecular weight genomic DNA of two

weeks old Ag-0 plants was extracted as previously reported (Mayjonade et al. 2016) with

minor modifications. Briefly, plant material was grinded under liquid nitrogen and 100mg of

powder was incubated in 1 ml of lysis buffer (PVP40 1%, NaCl 500mM, Tris ph8 100mM,

EDTA 50mM, SDS1.25%, Sodium bisulfite 1%, DRR5mM) during 30 minutes at 50 degrees.

DNA was cleaned using KOAc precipitations (1.3M, pH7.5) and DNA purified using 0.05X

of seraMAG beads. ONT library (LSK1010) was prepared using 1 ug of HMW DNA and

loaded in a R9.4 Minion flow-cell. Sequencing was performed in a Mk1C device during

72hs. Basecalling was performed using Guppy (V) with the HAC model. Long-read fastq

files were used for de novo genome assembly using CANU (Koren et al. 2017). low error

rate Illumina short reads from Ag-0 (1001 genomes project) were used for sequence

polishing using pilon software (Walker et al. 2014). Chromosome scaffolding was achieved

by running RagTag (Walker et al. 2014; Alonge et al. 2019) with default parameters. TEs

and repetitive sequences were annotated using REPET (Flutre et al. 2011).

Mapping by sequencing of HS-induced flowering. Ag-0 plants were crossed with Ws-2 or

CIBC-17, which show different degrees of vernalization response. Derived F1 plants were

backcrossed. Approximately 100 F2 plants were germinated in solid medium (½ MS

without sugar) and subjected to a 48h HS one week after germination. Plants were

transferred to soil after one week of recovery. Flowering plants were sampled 56 days after

germination (n=6 and n=20 for Ag-0 x Ws-2 and Ag-0 x CIBC17, respectively) and polled

for DNA extraction by CTAB. DNA was also extracted from pooled leaves of F2 plants as

control. One μg of total DNA was used to construct libraries and sequencing (paired-end

100nt reads) by BGI Tech Solutions (Hong Kong). Approximately 20M pair-end reads were

obtained for each sample and aligned to the Ag-0 genome assembly using Bowtie2 with

default parameters. Reads mapping to multiple locations or duplicates were removed using

samtools with parameter -q 5 and Picard MarkDuplicates with default parameters

(REMOVE_ DUPLICATES = true), respectively. SNPs were called using bcftools mpileup and

14

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2023. ; https://doi.org/10.1101/2023.09.06.556499doi: bioRxiv preprint 

https://paperpile.com/c/L5i30b/pYf5q
https://paperpile.com/c/L5i30b/ge9MU
https://paperpile.com/c/L5i30b/HrKfm
https://paperpile.com/c/L5i30b/HrKfm+d7uws
https://paperpile.com/c/L5i30b/lyBNi
https://doi.org/10.1101/2023.09.06.556499
http://creativecommons.org/licenses/by-nc-nd/4.0/


bcftools call commands. Variant calls with quality lower than 30 or covered by less than 10

reads were removed. Allele frequency of non-reference alleles were calculated and

averaged through windows of 200Kbp, with 100Kbp steps. The difference between allele

frequencies of HS-induced flowering F2 plants and control F2 plants were calculated and

plotted genome wide. Windows with the highest 1% Δ(SNP index) were considered as

significant.

Transcriptomic analysis. RNA from Ag-0 plants was isolated using Rneasy Plant Minikit

(Qiagen) according to the supplier’s instructions. One μg of total RNA was used to construct

directional libraries and sequencing (paired-end 100nt reads) by BGI Tech Solutions (Hong

Kong). About 20M 100nt-long pair-end reads were obtained per sample. Expression level

was calculated by mapping reads using STAR v2.5.3a63 on the Ag-0 reference genome

with the following arguments --outFilterMultimapNmax 50 --outFilterMatchNmin 30

--alignSJoverhangMin 3 --alignIntronMax 10000. Duplicated pairs were removed using

picard MarkDuplicates.

Quantification of expression by RT-qPCR. RNA was extracted using the RNeasy plant

mini kit (Qiagen) from plants. Contaminating DNA was removed using Turbo DNase

(Invitrogen) following manufacturer instructions. 1ug of RNA was used for RT using

SuperScriptIV (Invitrogen). RT-qPCR was performed using LightCycler 480 SYBR Green I

Master mix (Roche) and run in a LightCycler 480 System (Roche). Primer sequences are

provided in table S3. RT-qPCR expression levels relative to the PP2A housekeeping gene

were calculated using the 2–∆∆Ct method. DNA methylation of ONSEN was performed by

McrBC-digestion followed by qPCR as described before and using the primers listed in

table S3.

Methylome analysis. DNA from Ag-0 plants was extracted using a standard CTAB

protocol. Bisulfite conversion, BS-seq libraries and sequencing (paired-end 100nt reads)

were performed by BGI Tech Solutions (Hong Kong). Bioinformatic analysis was performed

as previously described (Sasaki et al. 2022). Paired-end reads were trimmed using

Trimmomatic program (version 0.33) with following parameters
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“ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15

MINLEN:36” (Bolger, Lohse, and Usadel 2014). Mapping of trimmed sequences to Ag-0

assembled genome, removal of identical reads, and counting of methylated and

unmethylated cytosines were performed by Bismark ver. 0.15.0 (Krueger and Andrews

2011).

Natural Arabidopsis populations from south-west of France. To call presence/absence of

the ONSEN insertion within FLC, Illumina re-sequencing data from (Frachon et al. 2018)

was aligned to 150bp sequence spanning each insertion extremity of the ONSEN insertion

within FLC from the Ag-0 assembly, as well as to the empty insertion site of the reference

Col-o genome (TAIR10). Reads mapping uniquely (qual greater than 24) and entirely

(CIGAR string lacking any S) to each extremity and the empty insertion site were counted

and compared to estimate the TE insertion allele frequency. Local environments at each

collection site were retrieved by inspecting satellite images and aerial pictures available at

GEOportail (https://www.geoportail.gouv.fr/carte). This process was performed without

knowing the presence/absence information. To investigate the presence of selective

sweeps, the same re-sequencing data (Frachon et al. 2018) was aligned to the Arabidopsis

reference genome TAIR10 using Bowtie2 with default parameters. Reads mapping to

multiple genomic locations or duplicates were removed using samtools with parameter -q

5 and Picard MarkDuplicates with default parameters (REMOVE_ DUPLICATES = true),

respectively. SNPs were called using bcftools mpileup and bcftools call commands. Variant

calls with quality lower than 30 or covered by less than 10 reads were removed. Biallelic

SNPs around the FLC locus were extracted using bcftools view -v snps -M 2 and phased

using beagle (v5.2). Extended haplotype homozygosity (EHH) around the ONSEN insertion

within FLC was calculated using selscan (Szpiech and Hernandez 2014) with the –ehh

option.
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Figure 1. A recent retrotransposon insertion within FLC modulates flowering response.
a. Circos plot of Ag-0 genome assembly with full-length (violet) and truncated (yellow)
ATCOPIA78/ONSEN insertions. The localization, minor allele frequency (MARF) across
1069 natural accessions, and estimated age of full-length insertions are indicated. b.
Phylogenetic tree of full-length ONSEN insertions in Ag-0 and the reference genome Col-0.
Bootstrap probabilities are shown beside the branches. c. Polymorphisms along the FLC
haplotype block between accessions with related haplotypes. Ag-0 accession and location
of the ONSEN insertion are indicated. Geographic distribution of accessions sharing the
Ag-0 haplotype of FLC (Hap1) is shown. d. Boxplots of days to flowering of Ag-0 plants
grown under control conditions (Ctl.), subjected to eight weeks of vernalization (8W Vern.),
or subjected to a single, or repeated heat shock (HS) at the seedling stage. Timing of the
HSs are indicated by red bars. Statistical significance for differences were obtained using a
two-sided MWU test. e. Genome-wide Δ(SNP index) plot of F2 (Ag-0 x Ws-2 and Ag-0 x
CIBC-17) bulk segregant analysis of flowering responses to heat-shock. Red line indicates
the genome-wide 1% threshold. Localization of FLC locus is indicated.
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Figure 2. Heat-induced retrotransposon activation impairs FLC activity. a. Genome
browser view of normalized RNA-seq coverage at FLC locus in Ag-0 plants seven days
after a heat-shock (HS t7) or control treatment (Ctl. t7). Light blue and orange arrowheads
represent the location of primers used to quantify FLC and ONSEN expression, respectively.
b. Relative expression levels of ONSEN, FLC, SOC1, and FT in Ag-0 plants 14 days after a
heat-shock (HS t14) or control treatment (Ctl. t14). Data are mean ± s.d. (n>10 samples,
two biological experiments) and statistical significance for differences was obtained using
the MWU test. c. Genome browser tracks showing local CHH hypomethylation of the 5’
end of the ONSEN insertion (gray box) in response to heat-shock (HS t7).
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Figure 3. DNA methylation-dependent modulation of FLC. a. Wild-type (WT) and ddm1
mutant Ag-0 plants. b. DNA methylation levels of ONSEN in wild-type and ddm1 mutant
Ag-0 plants. c. Relative expression levels of full-length and intron-retention (IR) transcript
isoforms of FLC. Primers' locations are indicated in panel d. Data are mean ± s.d. (n>10
samples, two biological experiments) and statistical significance for differences was
obtained using the MWU test. d. Model summarizing the function of DDM1 in the
modulation of DNA methylation (red lollipops) and appropriate processing of FLC
transcripts. e. Wild-type (WT) and ibm2 mutant Ag-0 plants. f. Relative expression levels
of full-length and intron-retention (IR) transcript isoforms of FLC. Primers' locations are
indicated in panel d. Data are mean ± s.d. (n>10 samples, two biological experiments) and
statistical significance for differences was obtained using the MWU test g. DNA
methylation levels of ONSEN in wild-type and ibm2 mutant Ag-0 plants. h. Model
summarizing the function of IBM2 in the appropriate processing of FLC transcripts.

19

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2023. ; https://doi.org/10.1101/2023.09.06.556499doi: bioRxiv preprint 

https://doi.org/10.1101/2023.09.06.556499
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4. Retrotransposon-mediated acceleration of life cycle in response to
herbicide. a. Geographic distribution of Arabidopsis populations collected across France. A
detailed view of populations collected nearby the Argentat is shown. Carriers and
non-carriers of the ONSEN-containing allele of FLC are indicated in red and blue,
respectively. b. Climate niche description of populations nearby Argentat. Carrier and
non-carrier populations are indicated in red and blue, respectively. c. Picture of collection
sites where carrier populations were found. d. Relative enrichment (odds ratio) of carrier
populations from different local environments. Statistical significance for differences was
obtained using the chi-square test. e. Extended haplotype homozygosity (EHH) at varying
distances from the ONSEN insertion site for carriers and non-carriers. f. Percentage of
plants flowering within 60 days after germination grown under control conditions,
subjected to sub-lethal doses of Glufosinate, or vernalized. Statistical significance for
differences was obtained using the chi-square test. g. Relative expression levels of ONSEN,
full-length and intron-retention (IR) transcript isoforms of FLC, and FT. Data are mean ±s.d.
(n>10 samples, one biological experiment) and statistical significance for differences was
obtained using the MWU test.
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