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Abstract: Cisplatin (cis-diamminedichloroplatinum I) is a platinum-based drug, the mainstay of
anticancer treatment for numerous solid tumors. Since its approval by the FDA in 1978, the drug has
continued to be used for the treatment of half of epithelial cancers. However, resistance to cisplatin
represents a major obstacle during anticancer therapy. Here, we review recent findings on how the
mTORC1 pathway and autophagy can influence cisplatin sensitivity and resistance and how these
data can be applicable for the development of new therapeutic strategies.
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1. Biochemical Mechanisms of Cisplatin Cytotoxicity

Cisplatin is a first line drug for many cancers, especially for lung, ovarian, head and
neck, testicular and colorectal cancers (Figure 1). During anticancer therapy, cisplatin is
injected intravenously. A high concentration of chloride ions (~100 mM) in the bloodstream
suppresses the hydrolysis of the drug and maintains it in a neutral state. The binding of
cisplatin to the plasma proteins, mainly to albumin, results in the deactivation of up to 95%
of the injected drug.
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Figure 1. Cancers where cisplatin is used as a mainstream drug.

Cisplatin enters the cells by passive diffusion through plasma membrane or by active
transport via copper influx transporter 1 (CTR1) [1] and volume-regulated anion channel
(VRAC) [2] (Figure 2). The majority of cytoplasmic cisplatin accumulates in vesicles that
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contain copper efflux transporters ATP7A or ATP7B rather than being diffusely localized
throughout the cytoplasm. These intracellular secretory vesicles can further traffic and fuse
with the plasma membrane, releasing cisplatin by exocytosis as a free drug, as a conjugate
or as a complex with cellular proteins [3]. Copper transporters can be used by malignant
cells to detoxify cisplatin, thereby promoting tumor resistance to chemotherapy [4].
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Figure 2. Main factors of cisplatin resistance. Cancer cells can develop resistance to cisplatin via
decreased drug influx or increased efflux, because of the drug inactivation through the interaction
with glutathione (GSH) and metallothioneins (MT), because of enhanced DNA damage response and
alternations in signaling pathways.

Once in the cytoplasm, cisplatin undergoes aquation due to much lower chloride
concentrations (~4–20 mM) than in the bloodstream. The displacement of one or two
chloride ions by water molecules results in the generation of a highly electrophilic molecule
that can interact with nucleic acids, phospholipids and proteins.

DNA is a primary target of cisplatin. Aquated cisplatin induces DNA damage by the
forming of intrastrand and interstrand DNA cross-links through the preferential binding to
the N7 position of guanine [5]. DNA lesions that are not resolved by DNA repair pathways
block the production of DNA, mRNA and proteins and activate several transduction
pathways, which finally lead to necrosis or apoptosis. Many cancers have defective DNA
repair pathways; therefore, while normal cells can cope with the harm caused by cisplatin,
cancer cells will die.
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It is estimated that only ~1% of cisplatin interacts with nuclear DNA [6], the rest
interacts with the mitochondrial DNA (mtDNA), lipids and sulfur donors (thiols as well as
cysteines, methionines of cytoplasmic, mitochondrial and membrane proteins) [7–9]. The
binding of aquated cisplatin to cytoplasmic molecules, including reduced glutathione (GSH)
and metallothioneins (MTs), results in the accumulation of reactive oxygen species (ROS)
that also triggers mitochondrial outer membrane permeabilization (MOMP) and DNA
damage [8]. Cisplatin forms 4–6 times more DNA adducts with mtDNA than with gDNA.
One of the reasons for the preference for mtDNA is due to a higher initial binding, because
of the absence of histones in mitochondria. Another important reason is that nucleotide
excision repair (NER), a major pathway for removing cisplatin damage in genomic DNA,
does not function in mitochondria [10], which leads to the accumulation of cisplatin–DNA
adducts. Increased mitochondrial biogenesis and dynamic alteration are essential factors in
developing drug resistance [8,11].

Cisplatin does not show its highest potential in anticancer treatment because of side
effects and drug resistance. The major adverse events that arise from cisplatin therapy
are nephro-, hepato-, neuro- and gastrointestinal toxicities [12,13]. To overcome these
limitations, great efforts have been made to search for cisplatin analogues which are
better tolerated by patients and/or show anticancer activity in cisplatin-resistant tumors.
The most widely used cisplatin derivatives are carboplatin and oxaliplatin (Figure 3).
Carboplatin shows less toxicity than cisplatin at equimolar concentrations. It is used as
a first-line treatment for patients with advanced ovarian cancer and advanced small-cell
and non-small-cell lung cancer, while it shows a lower activity than cisplatin in germ cell
tumors, bladder and head and neck cancers [14]. While the adducts formed by cisplatin
and carboplatin are identical, the rate of formation of adducts is 10 times slower and 20- to
40- times higher concentrations of carboplatin are needed to obtain the same number of
adducts [15]. Oxaliplatin forms different types of adducts than cisplatin and carboplatin,
resulting in an altered DNA damage response. Oxaliplatin is used in combination with
5-fluorouracil for the treatment of metastatic colorectal cancer, which is insensitive to
treatment with cisplatin and carboplatin [16].

Drug resistance is a serious problem in the treatment with platinum-based drugs.
Cisplatin resistance could be both intrinsic (occurs from the beginning of treatment) and
acquired (initially sensitive cells develop resistance to the drug over time). One of the
major determinants of resistance is the type of cancer [17]. For example, small-cell lung
cancer (SCLC; 10–15% of all lung cancers) is very sensitive to cisplatin, while non-small-cell
lung cancer (NSCLC; about 80% to 85% of lung cancers) is quite resistant. Many cancers
will eventually develop resistance against the drug with one notable exception, testicular
germ cell cancer, which demonstrates a durable complete remission of ~80% of the patients
treated with cisplatin.

Resistance to cisplatin depends on both the inner adaptive mechanisms of cancer cells
and the tumor microenvironment, where hypoxic conditions increase the tolerance of cancer
cells to the drug [18,19] (Figure 2). Among intercellular adaptive factors, the most important
are: (1) a reduced drug accumulation due to either a decreased influx or an increased efflux;
(2) an increase in DNA repair and changes in DNA damage response (DDR); (3) an alteration
of apoptosis; (4) changes in signaling pathways, notably the mTORC1 pathway. These
factors were conveniently classified by Galluzi et al. as pretarget, on-target, post-target
and off-target, respectively [20]. There are numerous reviews addressing pre-, on- and
post-target mechanisms [20–24], although relatively few are devoted to the changes in
signaling pathways [25–27]. Here, we describe recent findings that connect platinum-based
resistance mechanisms with major metabolic signaling networks—the mTORC1 pathway
and autophagy. Metabolic remodeling is one of the main characteristics of tumors. Changes
in glucose, amino acid and lipid metabolism, all these processes being under the control of
the mTORC1 pathway, affect cisplatin resistance in tumor cells [28].
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2. Molecular Basis of the mTORC1 Pathway and Autophagy

Mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that be-
longs to the phosphatidylinositol 3-kinase PI3K-related family (PIKK). As a part of two struc-
turally and functionally different complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2),
mTOR maintains the balance between anabolism and catabolism in response to nutritional
or environmental conditions via the phosphorylation of its multiple substrates [29]. Among
nearly 60 direct targets of mTORC1, the most known and well-characterized are p70S6
Kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1),
involved in protein translation; transcription factor EB (TFEB), important for lysosome
biogenesis and lipid metabolism; and Unc-51-like autophagy activating kinase 1 (ULK1), a
member of the autophagy initiation complex.

The mTORC1 pathway is subjected to a tight regulation, allowing its activation, when
growth factors, energy, and nutrients are sufficient [30,31] (Figure 4). In order to have
an adequate and timely response to extra and intracellular inputs, mTORC1 responds to
upstream signals through two different sets of the small GTPases–RHEB (Ras homologue
enriched in brain) and RAGs (RAG guanosine triphosphatases). The activity of these
GTPases depends on their effectors, GTPase-activating proteins (GAPs), which stimulate
GTP hydrolysis, and guanine nucleotide exchange factors (GEFs).
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The major site of mTORC1 activation is the lysosomal surface, where mTORC1 is
recruited and induced in a RAG-GTPase-dependent manner when amino acids are abun-
dant [32,33]. Four RAGs exist as heterodimers (i.e., RAGA (or RAGB) with RAGC (or
RAGD)). In the presence of amino acids, RAGA/B is loaded with GTP while RAGC/D is
bound to GDP. RAGs interact with the pentameric RAGULATOR complex, which exerts
a GEF activity towards RAGA or RAGB [34,35]. Active RAGULATOR-RAG stimulates
the recruitment of mTORC1 to the lysosomal membrane where it is fully activated by
RHEB, loaded with GTP [36]. RHEB is under the control of another signaling node, the
tuberous sclerosis (TSC) complex, which acts as a GAP to inhibit RHEB. TSC is a nexus
of multiple physiological stimuli (e.g., energy status, growth factors, DNA damage) that
signal to mTORC1 through the PI3K-AKT network [37]. mTORC1 is a well-recognized
downstream effector of the PI3K/AKT signaling pathway, which responds to three main
inputs: growth factors, hormones, chemokines and cytokines. RAG GTPases regulate
the recruitment of TSC to the lysosome and its ability to interact with and inhibit RHEB
in response to amino acid starvation, growth factors removal and to other stresses that
inhibit mTORC1 [38–40]. Both RAGs and RHEB are necessary for mTORC1 activation at
the lysosome [40]. When amino acids are scarce, GEFs and GAPs (e.g., GAP activity toward
RAGs complex 1 (GATOR1) [41]) transform RAGs in their inactive form, which further
leads to mTORC1 suppression.

mTORC1 plays a central role as a negative regulator of autophagy, a catabolic process
by which cytosol and organelles are sequestered within double-membrane-bound vesicles
that deliver their contents to the lysosome for degradation and recycling [42]. mTORC1
is active and autophagy is suppressed under optimal growth conditions, e.g., a sufficient
quantity of amino acids and glucose. In order to inhibit autophagy initiation, active
mTORC1 associates with a ULK1 protein complex and phosphorylates its members, ULK1
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and autophagy-related protein 13 (ATG13) [43]. This phosphorylation prevents the kinase
activity of the ULK1 complex. mTORC1 also regulates autophagy at the transcriptional
level by modulating the localization of TFEB, which regulates the expression of autophagy
and lysosomal genes. mTORC1 phosphorylates TFEB, thereby inhibiting TFEB activity
when nutrients are present [44].

Finally, mTORC1 functioning is also important during DNA damage. The interaction
between the DNA damage response and the mTORC1 pathway is especially relevant in
the context of cisplatin treatment and can be considered as an outstanding example of how
genotoxic stress and metabolic pathways can be triggered to overcome the disease [45].
Ideally, during anticancer therapy, the DDR and mTORC1 pathways should be repressed in
cancer cells to provide a prodeath scenario, while in the healthy cells, these pathways should
be active to repair damage and maintain proliferation to enable survival. Accordingly, one
of the main causes of cancer therapy resistance is sustained DNA repair associated with
hyperactivated mTORC1 signaling.

3. mTORC1 Pathway and Cisplatin Resistance

In normal physiological conditions, the PI3K/AKT/mTOR pathway undergoes strin-
gent regulation to ensure the proper activity and balance necessary for healthy homeostasis.
In the context of numerous cancers, this pathway exhibits a persistent state of activa-
tion. Thus, the aberrant activation of the pathway has been detected in ~70% of ovarian
and breast cancers [46,47] and in ~90% of head and neck cancers and lung adenocarci-
noma [26,48]. The mechanisms behind this activation include the amplification of the
mutations of genes encoding PI3K subunits, AKT, inactivating mutations in TSC genes, or,
conversely, activating mutations in MTOR [49]. Interestingly, the mutation frequency of the
MTOR gene itself depends on the cancer type and is generally quite low (around 2–5%),
especially in comparison with p53, which is mutated in more than 25% of cancers [50–52].
Cancer cells with a subset of mTOR-activating mutations are hypersensitive to the mTOR
inhibitor rapamycin [51].

Tumors with acquired resistance to cisplatin often have a constitutive activation of
mTORC1 signaling [53]. mTORC1 can influence cisplatin resistance in many ways—at
the transcriptional and translational levels and by responding to various cues, such as
amino acids, energy, and DNA damage (Figure 5). One of the most important functions of
mTORC1 in cisplatin resistance takes place at the level of translational regulation. mTORC1
phosphorylation results in the activation of the p70S6K kinase activity, which, in turn, has
many substrates, including ribosomal protein S6 [54]. In its unphosphorylated state, 4E-BP1
binds and inhibits eIF4E to prevent translation initiation. The phosphorylation of 4E-BP1
by mTORC1 releases eIF4E, which can now bind to eIF4G and initiate translation [55,56].
The phosphorylation of p70S6K and 4E-BP1 was elevated in cells that acquired resistance
to cisplatin compared to parental sensitive cells in small-cell lung cancer [57] and ovarian
cancer cells [58]. The S6K1 inhibitor RAME, which blocks the interaction between S6K1
and mTOR, promoted autophagy and apoptosis and greatly enhanced the antitumor effect
of cisplatin in cisplatin-resistant cervical cancer cells [59].

Programmed cell death 4 (PDCD4) protein, which is not a direct target of mTORC1, can
suppress protein translation by interacting with EIF4A and EIF4G to inhibit the formation
of the translation initiation complex. An overexpression of PDCD4 enhances platinum
sensitivity, while a knockdown of PDCD4 reduces platinum sensitivity in ovarian cells and
in a xenograft model [60].

EIF3A, the largest subunit of the eIF3 translational initiation complex, downregulates
the translation of a number of nucleotide excision repair proteins. EIF3A knockdown or
ectopic overexpression, respectively, increases or decreases cellular resistance to cisplatin
in a number of cancer cell lines, including nasopharyngeal and ovarian carcinoma and
lung cancer cell lines, likely due to EIF3A’s role in the regulation of NER proteins [61,62].
Another recently proposed mechanism is that EIF3A regulates S6K1 activity by inhibiting
mTORC1 kinase via regulating the synthesis of its subunit RAPTOR. Thus, not only does
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mTORC1 regulate translational control, but it can also be regulated by translational control
in a feedback loop, which involves S6K1, contributing to cellular response to cisplatin [63].

Translationally controlled tumor protein (TCTP) stimulates mTORC1 by positively
regulating RHEB activity [64]. TCTP is overexpressed in many human tumor tissues [65].
The inhibition of mTORC1 by rapamycin in human lung cancer cells and an A549 lung
cancer xenograft model induces ubiquitin–proteasome degradation of TCTP. Moreover, the
minimal dose of rapamycin required to induce TCTP proteolysis enhances the efficacy of
cisplatin through the induction of apoptotic cell death in vitro and in vivo. This synergistic
cytotoxicity was induced irrespective of the functional status of p53 [66].
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Figure 5. mTORC1 pathway factors and effectors involved in cisplatin resistance. The factors and
effectors of the same signaling path are indicated with the same color. EIF3A translational factor
negatively regulates mTORC1 activity. Accordingly, EIF3A downregulation (black arrow) increases
mTORC1 activity. The activation of p70S6K by mTORC1 can be suppressed by RAME. Many onco-
genic mutations have been detected in eukaryotic translation initiation factors, a group of mTORC1
downstream effectors. In addition, PDCD4, which is not a direct target of mTORC1, can suppress
protein translation by interacting with EIF4A and EIF4G to inhibit the formation of the translation
initiation complex. A knockdown of PDCD4 (black arrow) reduces sensitivity to platinum drugs.
BCAT1 overexpression results in a decrease of leucine and other branched-chain amino acid levels.
As a consequence, mTORC1 cannot be effectively activated (dashed arrow), resulting in enhanced
autophagy and cisplatin resistance. NPRL2 downregulation (white arrow) results in mTORC1 ac-
tivation, compromised DNA damage response and cisplatin resistance. See text for more details.
RAGD promotes TFEB inhibition through its phosphorylation by mTORC1 and sequestration in the
cytoplasm, where TFEB cannot exert its function as a transcription factor. Cisplatin treatment induces
TFEB nuclear translocation and activation. Active TFEB increases the expression of programmed
cell death-ligands 1 and 2 (PD-L1 and PD-L2) to foster an immunosuppressive tumor microenviron-
ment that mediates drug resistance. The suppression of TFEB inhibits the expression of the copper
transporter ATP7B involved in cisplatin efflux and sensitizes initially resistant ovarian cancer cells
to cisplatin.



Int. J. Mol. Sci. 2023, 24, 10651 8 of 16

Chemotherapy can induce oxidative and genotoxic stress, triggering a senescence-like
state, which in many cancer cells causes treatment resistance, supporting tumor prolifera-
tion and cancer recurrence. mTORC1 activity is upregulated in senescent cells, which are
insensitive to serum and amino acid starvation. How this can be related to the senescence-
induced drug resistance was addressed in a recent study by Jiang et al., who investigated
the role of five small GTPases that can activate mTORC1 in response to amino acid stim-
ulation [67]. In the senescence-like hepatoma cell line HepG2, RAGC and RHEB, but not
RAB1A, RAB5 or ARF1, were required for persistent mTORC1 activity. One of the reasons
could be that senescence-like cells rely on amino acid supply resulting from the lysosomal
degradation of cellular components via autophagy. Out of the five studied small GTPases,
only RAGC and RHEB localized to the lysosome, while RAB1A and ARF1 preferentially
localized to ER/Golgi, and RAB5 to endosomes. The knocking down of RAGC or RHEB,
but not the other three GTPases, increased cisplatin sensitivity in senescence-like HEPG2,
which were significantly more resistant than their proliferating counterparts. Accordingly,
the expression of RAGC and RHEB, but not the other GTPases, is associated with a poor
prognosis in liver cancer patients. It will be important to find out if this effect can be ob-
served in different tumors and if other RAGs can also have a role in the cisplatin resistance
of senescence-like cancer cells. That would be of a particular interest, given the recent find-
ing that RAGs in heterodimers are not functionally redundant. This is especially relevant
to the function of transcription factors TFE3 and TFEB, which regulate the transcription
of many lysosomal genes. mTORC1 phosphorylates TFE3 and TFEB at the lysosomal
membrane, leading to their inactivation and sequestration in the cytoplasm [68]. RAGD
preferentially promotes mTORC1 phosphorylation of TFEB, which is linked to a stronger
association of RAGD with the lysosome, compared to RAGC, while TEF3 is preferentially
recruited by RAGC [69]. Recent findings demonstrate that TFEB regulates the expression of
ATP7B, a copper transporter involved in cisplatin efflux. The suppression of TFEB inhibits
ATP7B expression and sensitizes initially resistant ovarian cancer cells to cisplatin [70]. In
addition, in ovarian cancer cells, TFEB is involved in cisplatin resistance by regulating
the tumor microenvironment. Cisplatin treatment induced TFEB nuclear translocation,
increasing the expression of programmed cell death-ligands 1 and 2 (PD-L1 and PD-L2)
to foster an immunosuppressive tumor microenvironment that mediates immune evasion
and drug resistance [71].

An increased expression of branched-chain amino acid transaminase 1 (BCAT1) is cor-
related with a poor prognosis in many solid tumors and is also associated with decreased
cisplatin sensitivity. BCAT1 is responsible for facilitating the synthesis of α-ketoglutarates
from branched-chain amino acids (i.e., leucine), which are important activators of the
mTORC1 pathway. A recent study has demonstrated that BCAT1 decreases cisplatin sensi-
tivity by activating autophagy via the mTORC1 pathway [72]. Following treatment with cis-
platin, BCAT1 expression is initially upregulated, resulting in a decrease in branched-chain
amino acid levels due to the enzymatic activity of BCAT1. The deficiency of amino acids,
especially leucine, suppresses mTORC1 activity and subsequently enhances autophagy,
leading to a decrease in cisplatin sensitivity. Treatment with leucine or chloroquine, as
well as the knockdown of BCAT1, inhibits autophagy and increases cisplatin sensitivity in
cervical cancer and hepatocellular carcinoma cell lines and in mouse models. Thus, BCAT1
can be considered as a potential pharmacological target to overcome cisplatin resistance.

One of the major upstream regulators of the mTORC1 pathway, the GATOR1 complex,
is involved in the regulation of nutrient sensing and responding. Various mutations
of the genes encoding GATOR1 proteins have been detected in many solid tumors [73].
Notably, a low expression of NPRL2, one of the GATOR1 components, in different types of
lung cancers is correlated with cisplatin resistance [74,75]. The overexpression of NPRL2
in NPRL2-deficient and cisplatin-resistant NSCLC cells reactivates cellular response to
cisplatin and promotes tumor suppression activity in vitro and in mouse models [74]. The
reason for this resistance is still not clear, but it could be related to the role of NPRL2 in
DNA damage response [75,76].
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Recently, a number of different mTOR inhibitors in combination with various platinum
drugs have been applied to sensitize resistant cells. mTORC1 inhibitors can be generally
divided into four groups: (1) rapamycin and its analogs (rapalogues), which preferentially
target mTORC1, yet the 4E-BP1 branch is only partially sensitive to these inhibitors, activat-
ing a negative feedback loop of PI3K–AKT signaling; (2) pan-mTORC1 inhibitors (TORKIs),
which target the catalytic core of mTOR kinase and therefore suppress both mTORC1 and
mTORC2 (pp242, torin1, AZD8055); (3) bivalent inhibitors that target two domains of
mTOR and are effective in inhibiting the 4E-BP1 phosphorylation (RapaLink1); and (4)
dual inhibitors that can act on mTOR kinase and another protein, most often targeting
PI3K/AKT signaling (NVP-BEZ235) [45].

The suppression of the mTOR activity by various inhibitors has been applied to
enhance cisplatin-induced apoptosis in ovarian cancer [77], head and neck cancer [26],
hepatocellular carcinoma [78], lung cancer [79] and nasopharyngeal carcinoma [80]. The
treatment of platinum-resistant ovarian cancer cells with carboplatin and a dual mTORC1/2
inhibitor resulted in a strong inhibition of cancer cell proliferation, improved tumor con-
trol, reduced metastasis and significantly increased survival in mice [77]. Due to these
promising results, several clinical trials (phase I/II) have been initiated recently in patients
with triple-negative breast cancer to see the effects of a combined therapy involving plat-
inum drugs and the mTORC1 inhibitor everolimus [81] or the dual PI3K/mTOR inhibitor
gedatolisib [82]. The results of these clinical trials did not demonstrate a significantly
improved response rate compared to cisplatin monotherapy. However, these results may
have been compromised by the small sample size (14 patients in the first trial, ~100 patients
in the second) and nonrandomized study design. Earlier clinical trials on different solid
tumors (phase I only) had a very small patient cohort and did not provide conclusive
results [83–85]. Further clinical trials encompassing a broader range of cancer types and
larger patient cohorts are necessary to determine the efficacy of combining platinum drugs
with PI3K/mTOR inhibitors and their potential to improve the outcomes of cancer patients.

4. Autophagy in Cisplatin Resistance

The activation of the mTORC1 pathway results in autophagy inhibition, while cisplatin
treatment generally promotes autophagy (Figure 6). One of the first reports about the
association between autophagy and cisplatin resistance dates back to 2010, when it was
demonstrated that the acquired cisplatin resistance in lung adenocarcinoma cells A549 was
associated with elevated autophagy [86]. The inhibition of autophagy is often observed
in cisplatin-sensitive cells, whereas the basal level of autophagy is elevated in cisplatin-
resistant cells. Accordingly, the suppression of autophagy, for example by chloroquine,
increases drug toxicity and can improve sensitivity in cisplatin-resistant cancer cells [87]. A
recently published resource database of genes associated with platinum resistance in cancer
demonstrates that genes involved in the production of autophagosomes, including ATG5,
ATG7, ATG12, ATG14 and BECN1, promote platinum resistance [88]. In the same line, an
elevated expression of LC3A was shown to be associated with platinum resistance and a
worse prognosis in ovarian clear cell carcinomas [89]. Thus, the inhibition of autophagy
can be considered as a strategy for improving cisplatin sensitivity.

Autophagy can also have a cytoprotective function, which is particularly important in
the context of adverse effects during cisplatin treatment. Notably, up to 30% of patients re-
ceiving cisplatin develop acute kidney injury (AKI), leading to a rapid loss of renal function
or renal failure. Autophagy is activated in renal tubules to protect against neurotoxicity
during the acute phase. On the other hand, the sustained activation of autophagy will limit
kidney repair. Thus, it is important to manipulate autophagy differently at the beginning
and after the cisplatin treatment, in order to protect kidneys and allow for their effective
recovery [90]. A recent review on cisplatin and autophagy extensively considered many
aspects of this catabolic process in drug treatment [91]. Therefore, here, we only outline the
most important features of the role of autophagy in cisplatin resistance.
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Following cisplatin treatment, autophagy induction is detected in both cisplatin-
sensitive and resistant cancer cells. Therefore, drug resistance is not necessarily a conse-
quence of autophagy induction. It is important, though, to evaluate what type of autophagy
is induced upon drug treatment because autophagy can participate in both cell survival
(cytoprotective autophagy) and cell death (cytotoxic autophagy) [92]. Moreover, Gewirtz
proposed to consider two additional types of autophagy: nonprotective and cytostatic [93].
These four forms of autophagy can be identified by the functional outcomes of their in-
hibition by drugs, but so far, there are no reliable morphological or biochemical methods
that would allow us to distinguish between autophagy types. Cisplatin generally induces
autophagy, which has a prosurvival role for cancer cells and, therefore, can participate in
drug resistance. The inhibition of this cytoprotective autophagy results in chemosensiti-
zation. In contrast, the inhibition of nonprotective autophagy does not lead to changes in
drug sensitivity [94,95]. Moreover, the functions of autophagy can be changed in response
to stimuli, stress or genetic alterations through a so-called “autophagic switch”.

One example of this switch relevant to cisplatin treatment was recently demonstrated
by Patel et al. when comparing wild-type and functionally null p53 NSCLC H460 cells [94].
Cisplatin induced cytoprotective autophagy in p53-deficient cells, while p53 wild-type
cells had nonprotective autophagy. p53 wild-type H460 cells, where autophagy was
nonprotective, were more sensitive to cisplatin than the H460crp53 cells. However, both
types of cells had the same degree of apoptosis. Thus, the type of autophagy, and not
p53 function, largely determined cisplatin sensitivity. The inhibition of cytoprotective
autophagy was sufficient to restore cisplatin sensitivity in p53-deficient cells [94]. Therefore,
the combination of autophagy inhibitors and cisplatin seems to have a strong therapeutic
potential for resistant tumors, where autophagy plays a cytoprotective role, but this may
not be applicable to cisplatin-sensitive cancers. Nevertheless, it is currently unclear how
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these findings can be applied in the clinic, especially because there are no valid methods to
identify the nature of induced autophagy.

Many reports describe the regulation of cisplatin-induced autophagy in tumor cells
by various noncoding RNAs (ncRNAs), including long noncoding RNAs, microRNAs
and circular RNAs [91,96]. In the majority of cases, these ncRNAs inhibit autophagy via
different mechanisms and increase sensitivity to the drug in both sensitive and resistant
cancer cells. For example, the inhibition of autophagy via miR-205 sensitized castration-
resistant prostate cancer cells to cisplatin [97]. Another study demonstrated that the
overexpression of miRNA-1, -181, -223, -425-3p and lncRNA BLACAT1 in cisplatin-resistant
lung cancer cells upregulated cisplatin-induced autophagy [91]. LncRNA LUCAT1, highly
expressed in cisplatin-resistant NSCLC tissues and cells, contributes to cisplatin resistance
by negatively regulating miR-514a-3p, another noncoding RNA. miR-514a-3p, in turn,
negatively modulates ULK1 expression. LUCAT1 silencing enhances cisplatin sensitivity
by inducing cell apoptosis, suppressing autophagy and inhibiting cell metastasis in NSCLC.
Moreover, LUCAT1 regulates the sensitivity of NSCLC cells to cisplatin by upregulating
ULK1 via sponging miR-514a-3p [98].

The inhibition of autophagy via different micro-RNAs also sensitized gastric cancer
cells to cisplatin [99,100]. Thus, miR-148a-3p modulates cisplatin sensitivity by simul-
taneously regulating RAB12-mediated autophagy and AKAP1-mediated mitochondrial
fission [100]. RAB12 GTPase, a member of the RAS oncogene family, induces autophagy by
inhibiting mTORC1 activity [101] and accelerating autolysosome maturation [102]. RAB12
also interacts with optineurin (OPTN), an important mitophagy receptor. The suppression
of mTORC1 by RAB12 facilitates early autophagosome formation to protect gastric cancer
cells from cisplatin-induced cell death. miR-148a-3p can significantly reduce autophagic
flux and autophagosome formation by regulating RAB12. A-kinase anchoring protein
1 (AKAP1) is upregulated in cisplatin-resistant gastric cancer tissues and antagonizes
cisplatin-induced mitochondrial fission by the phosphorylation of dynamin-related pro-
teins 1 (DRP1), an important mitochondrial fission factor [100]. Because AKAP1 restrains
mitochondrial fission and reinforces cisplatin resistance in gastric cancer cells, targeting
this protein by miR-148a-3 sensitizes cells to cisplatin. The role of DRP1 in cisplatin resis-
tance is somewhat controversial and can be the opposite in different cancers. For example,
in cisplatin-resistant ovarian cancer cell lines SKOV3, DRP1 expression was downreg-
ulated, and the knockdown of DRP1 in parental sensitive cell lines provoked cisplatin
resistance [11]. Similarly, the ROS-promoted downregulation of DRP1 phosphorylation
triggered mitochondrial fission and cisplatin resistance in a number of ovarian cancer cells.
The inhibition of DRP1 by the specific inhibitor Mdivi-1 increased the cisplatin sensitivity
of ovarian cancer cells under hypoxia [103]. On the other hand, the inhibition of DRP1 by
Mdivi-1 sensitized lung, breast, colon and renal carcinoma cell lines to cisplatin [104].

Despite promising in vivo and in vitro results in the application of noncoding RNAs
to reverse drug resistance, these strategies are far from being applied in the clinic. The main
difficulties concern the methods of expressing ncRNAs in a cancerous tissue or in organs,
the dosage in combination with cisplatin and other anticancer drugs used in the patient
undergoing therapy.

Finally, cisplatin resistance can also be associated with the changes of mitochondrial
autophagy (mitophagy). As mentioned above, cisplatin activates DRP1, leading to mito-
chondrial fragmentation. This results in the segregation of dysfunctional organelles and
their enhanced removal by mitophagy. The suppression of DRP1-mediated mitophagy by
Mdivi-1 increases the sensitivity of hepatocellular carcinoma cells to cisplatin [105]. Simi-
larly, in cisplatin-resistant ovarian carcinoma and osteosarcoma cell lines, mitochondria
are more fragmented. These cells exhibit an increased expression of mitophagy receptor
BNIP3. A silencing of BNIP3 resensitizes resistant cells to the drug [106]. A study in
cisplatin-resistant lung cancer cells also revealed that under hypoxic conditions, BNIP3-
dependent autophagy induction was enhanced, allowing cell survival, thus also pointing
to the importance of the microenvironment in cisplatin resistance [107].
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In contrast to mTORC1, which can now be targeted by the fourth generation of drugs,
the only autophagy inhibitors on the market remain chloroquine and hydroxychloroquine.
Recently, many efforts have been applied to search for autophagy-selective drugs, but
none of them are currently found in clinical development [108]. However, given the
progress in understanding the autophagy pathway at the molecular level that have been
achieved during recent decades and a growing number of biotech companies investing
in the developing of autophagic modulators, it is reasonable to expect the appearance of
new drugs that can specifically inhibit (or induce) autophagy. Most probably, some of these
drugs will be effective in combination with platinum drugs to sensitize cancers that have
been resistant so far to chemotherapies.

5. Conclusions

Cisplatin resistance is a significant challenge in cancer treatment, leading to decreased
efficacy and poorer patient outcomes. Recent studies on the involvement of the mTORC1
pathway and autophagy in this resistance mechanism offer potential avenues for thera-
peutic intervention. Many mTORC1 signaling components and effectors are frequently
deregulated or altered in different cancers. Cisplatin-resistant tumors often have a consti-
tutive activation of mTORC1 signaling. Targeting the mTORC1 pathway with inhibitors
has shown promising results in restoring cisplatin sensitivity, sensitizing resistant cells
to the drug. Autophagy has emerged as another important player in cisplatin resistance
because it can have a prosurvival role by protecting cancer cells from cisplatin-induced
stress. Combination therapies that inhibit mTORC1 while modulating autophagy may
provide a more effective strategy to sensitize resistant cancer cells to cisplatin. More clinical
trials covering different cancer types and larger patient cohorts are necessary to determine
the efficacy of such therapies.

Author Contributions: Conceptualization, Z.P. and S.D.; writing—original draft preparation, Z.P.,
H.Z. and S.D.; writing—review and editing, S.D.; visualization, Z.P. and H.Z.; supervision, S.D.;
funding acquisition, S.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by La Ligue contre le Cancer 94 (Comité du Val-de-Marne). Z.P.
and H.Z. are recipients of Chinese Scholarship Council fellowships.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors are grateful to Catherine Brenner for helpful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Howell, S.B.; Safaei, R.; Larson, C.A.; Sailor, M.J. Copper Transporters and the Cellular Pharmacology of the Platinum-Containing

Cancer Drugs. Mol. Pharmacol. 2010, 77, 887–894. [CrossRef]
2. Planells-Cases, R.; Lutter, D.; Guyader, C.; Gerhards, N.M.; Ullrich, F.; Elger, D.A.; Kucukosmanoglu, A.; Xu, G.; Voss, F.K.;

Reincke, S.M.; et al. Subunit Composition of VRAC Channels Determines Substrate Specificity and Cellular Resistance to P
T-based Anti-cancer Drugs. EMBO J. 2015, 34, 2993–3008. [CrossRef]
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