

Measurements of hydroperoxy and total organic peroxy radicals in an Indiana forest using laser induced fluorescence

C.M.F. Rosales, Ahmad Lahib, Brandon Bottorff, Emily K. Reidy, V. Kumar, Sébastien Dusanter, Alexandre Tomas, Philip Stevens

► To cite this version:

C.M.F. Rosales, Ahmad Lahib, Brandon Bottorff, Emily K. Reidy, V. Kumar, et al.. Measurements of hydroperoxy and total organic peroxy radicals in an Indiana forest using laser induced fluorescence. AGU Fall Meeting, Dec 2019, San francisco, USA, United States. hal-04300879

HAL Id: hal-04300879 https://hal.science/hal-04300879

Submitted on 24 Nov 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MEASUREMENTS OF HYDROPEROXY & TOTAL ORGANIC PEROXY RADICALS IN AN INDIANA FOREST USING LASER INDUCED-FLUORESCENCE **Colleen Marciel F. Rosales^{1*}**, Ahmad Lahib^{1,2}, Brandon P. Bottorff³, Emily K. Reidy³, Vinay Kumar¹, Sebastien Dusanter², Alexandre Tomas², and Philip Stevens^{1,3}

The OH radical initiates the oxidation of volatile organic compounds (VOCs), leading to HO₂ and RO₂ radicals whose chemistry, in the presence of nitrogen oxides (NO_x), can lead to the formation of ozone and secondary organic aerosols in the environment. Previous measurements of these radicals in forest environments characterized by high mixing ratios of NO_x have shown serious discrepancies with modeled predictions, bringing into question our understanding of isoprene oxidation in the atmosphere.

LASER-INDUCED FLUORESCENCE-FLUORESCENCE ASSAY BY GAS EXPANSION (LIF-FAGE)

- Measures OH & HO₂ by excitation and fluorescence of OH at 308 nm. Fluorescence is detected by a microchannel plate PMT (Fig. 1).
- Air is sampled via an inlet and is expanded under vacuum (~3.5 to 4 Torr).
- HO₂ in the detection cell is measured by addition of NO to produce OH within the cell: HO₂ + NO → OH + NO₂
- A low NO concentration (~3.6 to 7 x 10^{11} cm⁻³) is used in the detection cell for HO₂ measurements to minimize interference from RO₂ radicals (Lew, 2018). HO₂ to OH conversion efficiency in the detection cell is \sim 14%.

ROxLIF configuration • LIF-FAGE inlet was modified by attaching a 45-cm reactor flow tube (Fig.3, right) to convert RO_x and HO_x species to HO_2 , which is detected in the detection cell

(Fuchs, Holland et al. 2008).

• RO_x and HO_x modes are achieved by addition of CO and NO (Fig. 2), under low pressure conditions (~30 Torr) before reaching the detection cell. • Detection limits for HO₂ and RO₂ were $(2-4)\times 10^7$ cm⁻³, and $(1.5-3)\times 10^7$ cm⁻³, respectively, for S/N = 1 and 5-minute measurements.

Figure 2. Chemistry in the reactor flow tube. Propagation reactions are shown in red, while termination reactions are shown in gray. Loss reactions are mostly wall losses or recombination with

- of CO: $OH + CO \rightarrow H + CO_2$ $H + O_2 \rightarrow HO_2$
- reactor: $RO_2 + NO \rightarrow RO + NO_2$

• Known concentrations of OH and HO₂ were generated using the calibration source ple is directed to the detection cell shown in Fig.1. shown in Fig 4a. To generate RO₂, ethane was added to the calibration source and react with OH and introduced into the reactor. The RO_2 concentration was assumed to be equal to the initial OH concentration. • Sensitivity to RO₂, C_{RO2}, was calculated from ethane-RO₂ measurements (Fig 4b). • Chemistry within the reactor have been modeled using Master Chemical Mechanism v3.3.1, wall loss rate constants from experiments and literature (Fuchs, 2008; Mihele, 1999; Sander, 2003). Residence times of RO₂ species generated from methane, toluene and isoprene have been found to be within 10% of the residence time for ethane-RO₂. Thus, it is reasonable to assume a generic C_{RO2} for these RO₂ species.

CONCLUSIONS

This work presents the first successful ambient measurements of HO₂ and RO₂ in a forested environment by the newly constructed IU ROxLIF-FAGE system. The conversion efficiency for different RO₂ species within the flow tube have been estimated to be within $\sim 10\%$ of each other and have been detected using the ROxLIF method. Ambient concentrations of HO₂ and RO₂ were found to be around 4x10⁸ to 2x10⁹ molecules cm⁻³, similar to previous measurements at this site. Modeled HO₂ concentrations using MCM v.3.3.1 agree or underestimate the measurements on two days, while modeled RO₂ concentrations either under- or overestimate the measurements by a factor of

 $RO + O_2 \rightarrow R'O + HO_2$

Hg UV-ray penlamp

Figure 4. (a, top) Calibration source used to generate HO_2 and RO_2 radicals (Lew, 2018) (b, right) Calculated RO₂ and HO₂ sensitivity as function of water %.

¹O'Neill School of Public and Environmental Affairs, and ³Department of Chemistry, Indiana University ²Atmospheric Sciences and Environmental Engineering, IMT Lille Douai, University of Lille, France *cfrosale@iu.edu

AMBIENT CHEMISTRY OF HYDROPEROXY (HO₂) AND PEROXY (RO₂) RADICALS

Conversion Efficiency and Sensitivity of ROxLIF

Figure 5. Measured (points) and modeled (dotted lines) instrument response to RO_x as function of (a) NO and (b) CO concentration added to reactor. Models were done for different residence times in the reactor. For the measured RO_2 , ethane was used as source of RO_2 .

Figure 3. (Left) ROxLIF deployed to the IURTP site. (Right) Diagram of the ROxLIF attachment. The top inlet is a pinhole while the bottom inlet is conical. From here, the sam

Figure 1. Diagram of the base LIF-FAGE detection cell. When the reactor is attached, the external C_3F_6 ring is removed (Dusanter,

PREVIOUS VS. CURRENT MEASUREMENTS AT THE IURTP SITE

• The Indiana University Research and Teaching Preserve (IURTP) is a mixed deciduous forest consisting of sugar maple, sycamore, tulip polar, ash and hickory trees (Lew et al., 2019). • It is located ~2.5 km NE of the center of the Indiana University campus, and 1 km from the IN 45/46 bypass at the northern perimeter.

Figure 7. Total HO₂+RO₂ measurements at the IURTP site in 2017 and 2019 compared with HO₂* measurements by the LIF-FAGE in 2015. HO₂* is HO₂ + α RO₂, where α is a fraction of alkene and aromatic hydrocarbons.

• Isoprene concentrations in 2019 were greater than that measured in 2017, but similar to that measured in 2015 (Fig. 8c). NO₂ concentrations in 2019 were lower than measurements in both 2015 and 2017 (Fig. 8b) suggesting that NO concentrations were also lower compared to 2015 and 2017.

• The higher HO₂ and RO₂ concentrations observed in 2019 may be consistent with lower NO concentrations at this site compared with 2017 and 2015 (Figs. 6 and 7).

Supporting Measurements: Isoprene, Ozone and NO_x

Figure 8. Concentrations of (a) NO, (b) NO₂, (c) Isoprene and (d) ozone at the IURTP site in 2015, 2017 and 2019. NO concentrations in 2019 are below LOD and are not shown in (a). Shaded areas, when visible, stand for standard error.

REFERENCES

- Dusanter, S., D. Vimal, P. S. Stevens, R. Volkamer and L. T. Molina (2009). Atmos. Chem. Phys. 9: 1665-1685.
- Fuchs, H., F. Holland and A. Hofzumahaus (2008), Rev Sci Instrum 79(8): 084104
- Lew, M. M., S. Dusanter and P. S. Stevens (2018), Atmos. Meas. Tech. 11(1): 95-109

rkholder, J.B., Sander, S.P., Abbatt, J. Barker, J.R., Huie, R.E., Kolb C.E., Kurvlo, M.J., Orkin, V.L. Wilmouth, D.M. and Wine, P.H., (2015) JPL Publication 15-10, Jet Propulsion Laboratory, Pasadena, http://jpldataeval.jpl.nasa.gov. Wolfe, G. M., M. R. Marvin, S. J. Roberts, K. R. Travis and J. Liao (2016). Geosci. Model Dev. 9(9): 3309-3319.

IMT Lille Douai École Mines-Télécom IMT-Université de Lille

Poster no. A11K-2702

Figure 10. Measured and modeled HO₂ and RO₂ concentrations are shown on (f), while the top panels (a-e) show the supporting measurements used as model constraints.

- HO₂ and RO₂ show a strong diurnal trend that is characteristic of photolytically-driven reactions.
- For most days, measured HO₂ =RO₂ except for July 24^{th} (Fig 9.), This day, isoprene was lower than the previous days (Fig 10a).
- To constrain a zero-dimensional box model based on the Master Chemical Mechanism (MCM) v.3.3.1, supporting measurements of photolysis rates, VOCs, O₃ and NO₂ (Fig. 10a-e) were used.
- Calculations were done using the Framework for O-D Atmospheric 🔤 🕫 Modeling (FOAM) (Wolfe, 2016).
- The model underestimates HO₂ concentrations on the 23rd, but seem to reproduce them well on the 24th.
- On the other hand, RO₂ is underestimated on the 23rd but overestimated on the 24th especially during the night.

Lew, M. L., P. S. Rickly, B. P. Bottorff, S. Sklaveniti, T. Leonardis, N. Locoge, S. Dusanter, S. Kundu, E. Wood and P. S. Stevens (2019). Atmos. Chem. Phys. Discuss. 2019: 1-35.