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Robust Leaderless Consensus of Euler-Lagrange Systems with
Interconnection Delays

Emmanuel Nuño Ioannis Sarras Hao Yin Bayu Jayawardhana

Abstract— In this work, a distributed control method to
achieve the leaderless consensus of heterogeneous Euler-
Lagrange (EL) systems with bounded time-varying communi-
cation delays while simultaneously rejecting periodic external
disturbances is reported. The robust controller has a simple-to-
implement structure of proportional-integral-derivative scheme
that employs the internal model approach to reject the distur-
bance. We consider that the network of EL-systems is inter-
connected through an undirected weighted graph that is static
and we assume that the information exchange between any
connected nodes is subjected to bounded variable time-delays.
The efficacy of the proposed method is shown in a numerical
simulation using a network of ten robotic manipulators.

Index Terms— Disturbance Rejection, Euler-Lagrange Sys-
tems, Consensus, Time-Delays, Internal Model

I. INTRODUCTION

Consensus for multiple systems means that the state
variables of all agents converge to a common agreement
value [1]. Several solutions to this problem and for linear
agents are well-studied under many different scenarios [2],
[3]. However, these solutions become more complex if one
considers the agents’ nonlinear dynamics [4], [5], communi-
cation delays [6] and input disturbances [7], [8], [9]. There
are two possible consensus problems: the leaderless, where
all agents are required to agree at a common non–specified
value, and the leader–follower, where the agents have to
converge to a common pre-specified point [10].

A variety of physical (mechanical and electrical) systems
can be represented by nonlinear system equations through the
well-known Euler–Lagrange (EL) equations of motion [11].
The first results on consensus (synchronization) for agents
with EL-dynamics have been reported in [12] and in [6] for
nonidentical EL-systems with interconnecting delays. Since
then, a plethora of different controllers have been proposed
to ensure consensus, from simple Proportional plus damping
(P+d) schemes [4], [13] to more elaborate adaptive [14], [6],
[15] and sliding-mode controllers [16].

In this work we focus on ensuring the leaderless consensus
of EL-systems while rejecting non-vanishing time-varying
external disturbances. Closely related to this work are the
solutions provided in [7] and in [8], where a robust controller
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is proposed, via the internal model approach, for the consen-
sus of EL-systems but without accounting for delays in the
interconnections. However, in real-life scenarios, time-delays
naturally appear when communicating the state variables
among agents [17]. Moreover, recently, the sliding-mode
technique has also been employed to deal with parameter
uncertainty and with external perturbations [18], [19], [20].
However, these solutions can be prone to chattering [21],
[22].

The controller that we propose here is smooth and it
is composed of two terms, a Proportional plus damping
(P+d) scheme, which drives the agents towards a consensus
position, and an extra integral term, which is used to reject
the external disturbances. The integral term design hinges
upon the internal model approach [23], [24] and the resulting
scheme has the structure of a simple-to-implement PID
controller. We assume that the EL-systems are interconnected
through an undirected weighted graph that is static and that
the information exchange between any connected nodes is
subjected to bounded variable time-delays. For this scenario
we provide a sufficient condition for the proportional and
the derivative gains of the controller to ensure that the
network finds an agreement position and that the velocities
converge to zero, globally. Up to the authors’ knowledge, this
work provides the first solution to the leaderless consensus
problem for EL-agents when variable time-delays appear in
the interconnections and with disturbance rejection capabil-
ities with a uniformly continuously differentiable controller,
which does not exhibit a chattering phenomenon. Therefore,
this work extends the previous P+d scheme reported in [13]
to the case when external disturbances arise. Simulations,
with ten robot manipulators are shown to provide evidence
of the performance of the controller.

II. BACKGROUND

This paper deals with the leaderless consensus of a net-
work of n degrees-of-freedom EL-systems. The network
has N heterogeneous EL-systems and each ith-system (also
referred to as agent) has the following dynamics

Mi(qi)q̈i +Ci(qi, q̇i)q̇i +
∂

∂qi
Ui(qi) = τ i + di, (1)

where qi ∈ Rn is the generalized position coordinates, the
matrix Mi : Rn → Rn×n is the generalized inertia matrix,
Ui : Rn → R is the potential energy function, τ i ∈ Rn

is the control input and di ∈ Rn is an external disturbance
generated by an exosystem (defined later below). The matrix
Ci(qi, q̇i) := Ṁi(qi)q̇i − 1

2
∂

∂qi
q̇⊤
i Mi(qi)q̇i is defined via



the Christoffel symbols of the first kind. The dynamics of
each agent satisfies the following properties [25], [26].

P1. The inertia matrix is symmetric and positive definite,
for all qi ∈ Rn.

P2. The matrix Ṁi(qi)− 2Ci(qi, q̇i) is skew-symmetric.
P3. The Coriolis matrix is bounded, for all qi ∈ Rn, as

|Ci(qi, q̇i)q̇i| ≤ kci|q̇i|2 for kci > 0.

We further assume that the external disturbance satisfies
the following,

A1. The disturbance di(t) ∈ Rn is generated by an exo-
system of the form

ẇi = Siwi, di = Ciwi, (2)

where wi ∈ Rpi , Si ∈ Rpi×pi and Ci ∈ Rn×pi . The
exosystem is assumed to be neutrally stable, i.e., all
the eigenvalues of Si are different and they lie on the
imaginary axis. ◁

The interconnection of the EL-agents is modeled through
a graph given by the standard Laplacian matrix L := [ℓij ] ∈
RN×N , whose elements are defined as

ℓii =
∑
j∈Ni

aij , ℓij = −aij , (3)

where aij > 0 if j ∈ Ni and aij = 0, otherwise. The set
Ni contains all the agents transmitting information to the i-
th agent. Regarding the agents’ interconnection, we assume
further that

A2. The graph is undirected, static and connected. ◁
A3. The information exchange, from the j-th agent to the

i-th agent, is subjected to a variable time-delay Tji(t)
with a known upper bound ∗Tji. Hence 0 ≤ Tji(t) ≤
∗Tji < ∞. Moreover, the time-delays are differentiable
and their derivatives are bounded. ◁

Remark 1: By construction, L has zero row sum, i.e.,
L1N = 0. Moreover, Assumption A2 ensures that rank(L) =
N − 1, that L has a single zero-eigenvalue and that the rest
of the spectrum has positive real parts [2]. Further, it also
holds that L = L⊤. ◁

The problem that we aim to solve in this work is

LC (Leaderless Consensus problem): For a network of
N heterogeneous n-DOF EL-systems (1) satisfying
A1–A3, design a distributed controller such that all
positions, globally and asymptotically converges to
a consensus point, i.e.,

lim
t→∞

qi(t) = qc; lim
t→∞

q̇i(t) = 0,

for some qc ∈ Rn.

III. ROBUST LEADERLESS CONSENSUS OF EL-AGENTS

The robust controller that we propose here is composed of
an integral term, which is designed using the internal model
principle, and a P+d scheme. This is precisely the object
study of this section.

A. Internal Model Dynamics

In order to counteract the input disturbance effects, an
internal model-based estimation term is employed in the
controller. This term employs the following realization

ẋi = Aixi −Biui, (4)

where, matrices Ai ∈ Rli×li and Bi ∈ Rli×n are such
that Ai + A⊤

i = 0 and the pair (Ai,Bi) is observable.
We should underscore that the eigenvalues of matrix Ai are
the same as those of Si. In this case, as in [7], there exists
a transformation matrix Ti ∈ Rli×pi , such that

TiSi = AiTi, B⊤
i Ti +Ci = 0. (5)

ui ∈ Rn is the input to the internal model dynamics and
it will be defined latter.

Defining the estimation error coordinates

x̃i := xi −Tiwi,

yields the error dynamics

˙̃xi =Aixi −Biui −TiSiwi,

=Ai(xi −Tiwi)−Biui

=Aix̃i −Biui,

(6)

where, to obtain the first equality, we have employed (2) and
(4), respectively. For the second equation, we use (5).

Defining, additionally,

d̃i := B⊤
i xi + di,

and using (2) and (5), we have that

d̃i =B⊤
i xi +Ciwi = B⊤

i (xi −Tiwi)

=B⊤
i x̃i.

(7)

Consider now the Lyapunov candidate function

Hi(x̃i) =
1

2
|x̃i|2,

then Ḣi evaluated along (6) yields

Ḣi = x̃⊤
i (Aix̃i −Biui) = −x̃⊤

i Biui,

where we have used the fact that Ai = −A⊤
i . Hence, this

means that (6) is passive from the input Biui to the output
x̃i and this property is employed in the controller design.

B. Robust P+d Scheme

Our proposed robust P+d with gravity cancellation con-
troller is given by

τ i = B⊤
i xi−pi

∑
j∈Ni

aij (qi − qj(t− Tji(t)))−diq̇i+
∂

∂qi
Ui,

(8)
where pi > 0 and di > 0 are the proportional and the
damping injection gains, respectively. These controllers are
the robust extension of the scheme reported in [13].



The closed-loop system of (1) with (8) yields

q̈i =−M−1
i (qi)

[
Ci(qi, q̇i)q̇i + diq̇i −B⊤

i xi − di

]
− piM

−1
i (qi)

∑
j∈Ni

aij (qi − qj(t− Tji(t))) ,

and hence, using (7) it holds that

q̈i =−M−1
i (qi)

[
Ci(qi, q̇i)q̇i + diq̇i −B⊤

i x̃i

]
− piM

−1
i (qi)

∑
j∈Ni

aij (qi − qj(t− Tji(t))) . (9)

Note that, if we take the kinetic energy of each agent to
be

Ki(q̇i,qi) =
1

2
q̇⊤
i Mi(qi)q̇i,

then, simple calculations show that

K̇i =− di|q̇i|2 − piq̇
⊤
i

∑
j∈Ni

aij (qi − qj(t− Tji(t)))

+ q̇⊤
i B

⊤
i x̃i.

Therefore, we can see that

Ḣi + K̇i = −di|q̇i|2 − piq̇
⊤
i

∑
j∈Ni

aij (qi − qj(t− Tji(t))) ,

provided that the input of the internal model scheme ui is
given by q̇i.

We can now state our main result as follows.
Proposition 1: For any given proportional gains pi and

any time-delay bounds ∗Tji, i = 1, . . . , N , if the damping
injection gains di satisfies

di >
1

2
pi
∑
j∈Ni

aij

(
αi +

∗T 2
ij

αj

)
, (10)

for all i = 1, . . . , N and for some αi > 0 then the controller
(4), with ui = q̇i, and (8) solves the LC problem globally.
□

Proof: For all i, we consider a Lyapunov candidate
function Vi given by

Vi =
1

pi
(Ki +Hi) +

1

4

∑
j∈Ni

aij |qi − qj |2.

By evaluating V̇i along the trajectories of closed-loop system
(6) and (9), we obtain

V̇i =− di
pi
|q̇i|2 −

∑
j∈Ni

aijq̇
⊤
i (qi − qj(t− Tji(t)))

+
1

2

∑
j∈Ni

aij(q̇i − q̇j)
⊤(qi − qj).

Since the Laplacian matrix is symmetric [4], it holds that

1

2

N∑
i=1

∑
j∈Ni

aij(q̇i−q̇j)
⊤(qi−qj) =

N∑
i=1

∑
j∈Ni

aijq̇
⊤
i (qi−qj).

Hence, by defining V :=
N∑
i=1

Vi, it follows that

V̇ =−
N∑
i=1

[di
pi
|q̇i|2 +

∑
j∈Ni

aijq̇
⊤
i (qj − qj(t− Tji(t)))

]
,

=−
N∑
i=1

[di
pi
|q̇i|2 +

∑
j∈Ni

aijq̇
⊤
i

∫ t

t−Tji(t)

q̇j(σ)dσ
]
,

where, for the second equality, we have employed the fact
that ∫ t

t−Tji(t)

q̇j(σ)dσ = qj − qj(t− Tji(t)).

Now, using Young’s and Cauchy-Schwartz’ inequalities
we obtain that, for any αi > 0,

−q̇⊤
i

∫ t

t−Tji(t)

q̇j(σ)dσ ≤αi

2
|q̇i|2 +

1

2αi

∣∣∣∣∣
∫ t

t−Tji(t)

q̇j(σ)dσ

∣∣∣∣∣
2

≤αi

2
|q̇i|2 +

∗Tji

2αi

∫ t

t−∗Tji

|q̇j(σ)|2dσ.

Using these inequalities we can bound V̇ as

V̇ ≤ −
N∑
i=1

[di
pi
|q̇i|2 −

∑
j∈Ni

aij
αi

2
|q̇i|2

]

+
N∑
i=1

∑
j∈Ni

aij
∗Tji

2αi

∫ t

t−∗Tji

|q̇j(σ)|2dσ.

Let us now consider

Wi :=
∑
j∈Ni

aij
∗Tji

2αi

∫ 0

−∗Tji

∫ t

t+σ

|q̇j(θ)|2dθdσ, (11)

and note that Ẇi is given by

Ẇi =
∑
j∈Ni

aij
∗Tji

2αi

[
∗Tji|q̇j |2 −

∫ t

t−∗Tji

|q̇j(σ)|2dσ
]
.

By defining

E :=
N∑
i=1

[
Vi(qi, q̇i) +Wi(q̇jt)

]
,

we obtain

Ė ≤ −
N∑
i=1

[(di
pi

− αiℓii
2

)
|q̇i|2 −

∑
j∈Ni

aij

∗T 2
ji

2αi
|q̇j |2

]
,

where ℓii is defined in (3).
Now, as in [13], for compactness of presentation, we

introduce Q :=
[
|q̇1|2 · · · |q̇N |2

]⊤
and

Ψ =


d1

p1
− α1ℓ11

2 . . . −
∗T 2

N1a1N

2α1

...
. . .

...
−

∗T 2
1NaN1

2αN
. . . dN

pN
− αN ℓNN

2

 ,

so that we can write

Ė ≤ −1⊤
NΨQ = −

N∑
i=1

λi|q̇i|2,



where

λi =
di
pi

− 1

2

∑
j∈Ni

aij

(
αi +

∗T 2
ij

αj

)
.

Setting di such that (10) holds, ensures that λi are strictly
positive numbers. It implies that

Ė ≤ −
N∑
i=1

λi|q̇i|2 ≤ 0.

Since E is positive definite then q̇i ∈ L2. Moreover,
q̇i, x̃i, |qi − qj | ∈ L∞ for all i ∈ N̄ and j ∈ Ni.

Now, the error qi − qj(t− Tji(t)) can be written as

qi − qj(t− Tji(t)) = qi − qj +

∫ t

t−Tji(t)

q̇j(σ)dσ, (12)

and it can be proved that |qi−qj(t−Tji(t))| ∈ L∞ provided
that |qi − qj | ∈ L∞ and that q̇i ∈ L2.

Since all signals in the right-hand-side of the closed-loop
system equations in (9) are bounded, then q̈i ∈ L∞. Hence,
Barbalat’s lemma allows us to conclude that lim

t→∞
q̇i(t) = 0.

This, in turn, implies that

lim
t→∞

∫ t

0

q̈i(σ)dσ = −q̇i(0).

Furthermore, under Assumption A3, the time-derivative of
the right-hand-side of the closed-loop system equations (9)
is also bounded. Thus, d

dt q̈i ∈ L∞. In these conditions,
Barbalat’s lemma also ensures that lim

t→∞
q̈i(t) = 0.

Since velocities asymptotically converge to zero, then from
(12) and (9), the following limits hold

lim
t→∞

pi
∑
j∈Ni

aij (qi(t)− qj(t)) = lim
t→∞

B⊤
i x̃i(t).

Moreover, the convergence of velocities and accelerations
to zero along with the fact that accelerations are uniformly
continuous, ensure that lim

t→∞
d
dt q̈i(t) = 0. Hence, after

differentiating the accelerations in (9), we can establish that
lim
t→∞

B⊤
i
˙̃xi(t) = 0. By substituting this limit to the second

equation of (9), it holds that

lim
t→∞

B⊤
i
˙̃xi(t) = lim

t→∞
B⊤

i Aix̃i(t) = 0. (13)

Inductively, it follows that

lim
t→∞

B⊤
i A

2
i x̃i(t) = · · · = lim

t→∞
B⊤

i A
li
i x̃i(t) = 0. (14)

Hence, by invoking the Cayley-Hamilton theorem, there
exists a set of real numbers {ck}lik=1 such that

Ali
i + c1A

li−1
i + · · ·+ cli−1Ai + cliI = 0. (15)

Using (15), we can establish that

B⊤
i x̃i = − 1

cli
B⊤

i

(
Ali

i + c1A
li−1
i + · · ·+ cli−1Ai

)
x̃i = 0,

where to obtain the second equality we have employed (13)
and (14). Since lim

t→∞
B⊤

i x̃i(t) = 0, it holds that

lim
t→∞

∑
j∈Ni

aij (qi(t)− qj(t)) = 0. (16)

Finally, by concatenating the N positions as q :=
[q⊤

1 , ...,q
⊤
N ]⊤, we can arrive at

lim
t→∞

(L⊗ In)q(t) = 0,

which by the properties of the Laplacian matrix, together
with (16), implies that there exists qc ∈ Rn, such that

lim
t→∞

q(t) = 1N ⊗ qc.

IV. SIMULATION RESULT

A. Simulation setup

Using a network with ten 2-DOF revolute joint manipu-
lators, this section presents some simulations that illustrate
the solution to the control problem reported in this paper.
For simplicity, the interconnection variable time-delay for
all agents is the same, and it emulates an ordinary UDP/IP
Internet delay with a normal Gaussian distribution with
mean, variance, and seed equal to 0.45, 0.005, and 0.35,
respectively [27]. The Laplacian matrix of the system is given
by

L =


1.4 0 −0.3 0 0 0 0 −0.4 0 −0.7
0 0.9 0 −0.8 0 0 0 0 0 −0.1

−0.3 0 0.3 0 0 0 0 0 0 0
0 −0.8 0 1 0 0 0 0 −0.2 0
0 0 0 0 0.5 0 −0.5 0 0 0
0 0 0 0 0 0.6 0 −0.6 0 0
0 0 0 0 −0.5 0 1.4 0 0 −0.9

−0.4 0 0 0 0 −0.6 0 1 0 0
0 0 0 −0.2 0 0 0 0 0.2 0

−0.7 −0.1 0 0 0 0 −0.9 0 0 1.7

 .

Each manipulator dynamics follows the EL equations (1),
whose inertia and Coriolis matrices are given by

Mi(qi) =

[
αi + 2βici2 δi + βici2
δi + βici2 δi

]
,

and

Ci(qi, q̇i) = δi

[
−si2q̇i2 −si2(q̇i1 + q̇i2)
si2q̇i1 0

]
,

respectively. In these expressions, cik, sik are a short notation
of cos(qik) and sin(qik); qik is the angular position of link k
of manipulator i, with k ∈ 1, 2; αi = l2i2mi2+l2i1(mi1+mi2),
βi = li1li2mi2, and δi = l2i2mi2, where lik and mik are the
length and mass of each link, respectively. The exosystem’s
matrices that model the disturbance di(t) in (2) are

Si =

[
0 1
−1 0

]
; Ci =

[
1 0
0 1

]
.

The network is composed of three different groups of ma-
nipulators, where members of each group has the same
parameters. The physical parameters are m1 = 4 kg, m2 = 2
kg, and l1 = 0.2 = l2 = 0.4 m, for Agents 1, 2, and 3;
m1 = 3 kg, m2 = 2.5 kg, and l1 = 0.6 m, l2 = 0.5 m, for
Agents 4, 5, and 6; m1 = 3.5 kg, m2 = 2.5 kg, and l1 = 0.3
m, l2 = 0.35 m, for Agents 7, 8, 9, and 10

The proportional gains pi for the controllers (8) are all set
to 10 Nm. By letting αi = 1 and by using ∗Tji = 0.7 s and
pi = 10 Nm, condition (10) is given by di ≥ 8.5lii, where
lii corresponds to the ith-diagonal element of the Laplacian



matrix. Setting the damping gains as d1 = 12, d4 = 9,
and d2 = 7, 7, d3 = 2.6, d4 = 9.5, d5 = 4.3, d6 = 5, 2,
d7 = d9 = 7, d8 = 9, and d10 = 14, ensure that condition
(10) hold for all i.

The internal model-based estimation term in (4) is given
by

ẋi =

[
0 1
−1 0

]
xi −

[
1 0
0 1

]
q̇i,

for agents 1,2,3,4 and 5; and

ẋi =

[
0 −1
1 0

]
xi −

[
1 0
0 −1

]
q̇i,

for agents 6,7,8,9 and 10.
The initial positions for each agent are set as q1(0) =

[11, 8]⊤, q2(0) = [10, 7]⊤, q3(0) = [9, 6]⊤, q4(0) = [8, 5]⊤,
q5(0) = [7, 4]⊤, q6(0) = [6, 3]⊤, q7(0) = [5, 2]⊤, q8(0) =
[4, 1]⊤, q9(0) = [3, 0]⊤, and q10(0) = [2,−1]⊤. The initial
velocities are the same as the initial positions.

B. Simulation results

Fig. 1 presents the simulation results for the positions
qi. Note that the EL-systems asymptotically converge to
the consensus point qc = [6.144, 1.072]⊤. Fig. 2 depicts
the velocity behavior, from which one can observe that the
generalized velocities asymptotically converge to zero.

As a comparison, we now apply the control method
presented in [13] with the same conditions. Fig. 3 presents
the simulation results for the positions qi. Clearly, we can
observe that without the disturbance rejection term, consen-
sus cannot be achieved.

V. CONCLUSIONS

Using the internal model approach [23], [24], we have
modified the P+d controllers [13] to globally solve the lead-
erless consensus problem in a network of heterogeneous EL-
systems perturbed by external disturbances and with variable
time-delays. Simulation results validate the robustness of the
proposed P+d controllers. The proposed controller requires
velocities to be measurable and this may not be practical in
some applications. As a future research avenue, following
the results in [28] and in [29], we intend to relax such
requirement.
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[6] E. Nuño, R. Ortega, L. Basañez, and D. Hill, “Synchronization of
networks of nonidentical Euler-Lagrange systems with uncertain pa-
rameters and communication delays,” IEEE Transactions on Automatic
Control, vol. 56, no. 4, pp. 935–941, 2011.

Fig. 1. Position trajectories (left plot: the first joints; right plot: the second
joints) of the ten robots initialized at

[
11
8

]
,
[
10
7

]
,
[
9
6

]
,
[
8
5

]
,
[
7
4

]
,
[
6
3

]
,[

5
2

]
,
[
4
1

]
,
[
3
0

]
, and

[
2
−1

]
, respectively.

[7] H. Wu, B. Jayawardhana, H. Garcia De Marina, and D. Xu, “Dis-
tributed formation control of manipulators’ end-effector with internal
model-based disturbance rejection,” in 60th IEEE Conference on
Decision and Control (CDC), (Austin, TX, USA), pp. 5568–5575,
2021.

[8] S. Wang, H. Zhang, S. Baldi, and R. Zhong, “Leaderless consen-
sus of heterogeneous multiple euler-lagrange systems with unknown
disturbance. doi: 10.1109/tac.2022.3172594,” IEEE Transactions on
Automatic Control, 2022.

[9] C. D. Persis and B. Jayawardhana, “On the internal model principle in
the coordination of nonlinear systems,” IEEE Transactions on Control
of Network Systems, vol. 1, no. 3, pp. 272–282, 2014.

[10] W. Ren and R. W. Beard, Distributed consensus in multivehicle
cooperative control. Springer verlag, 2005.

[11] R. Ortega, A. Loria, P. Nicklasson, and H. Sira-Ramirez, Passivity-
based Control of Euler-Lagrange Systems: Mechanical, Electrical and
Electromechanical Applications. Springer, 1998.

[12] N. Chopra and M. Spong, “On synchronization of networked passive
systems with time delays and application to bilateral teleoperation,”
in Proc. of the IEEE/SICE Int. Conf. on Instrumentation, Control and
Information Technology, Aug. 2005.

[13] E. Nuño, I. Sarras, and L. Basañez, “Consensus in networks of
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