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In this work, a distributed control method to achieve the leaderless consensus of heterogeneous Euler-Lagrange (EL) systems with bounded time-varying communication delays while simultaneously rejecting periodic external disturbances is reported. The robust controller has a simple-toimplement structure of proportional-integral-derivative scheme that employs the internal model approach to reject the disturbance. We consider that the network of EL-systems is interconnected through an undirected weighted graph that is static and we assume that the information exchange between any connected nodes is subjected to bounded variable time-delays. The efficacy of the proposed method is shown in a numerical simulation using a network of ten robotic manipulators.

I. INTRODUCTION

Consensus for multiple systems means that the state variables of all agents converge to a common agreement value [START_REF] Jadbabaie | Coordination of groups of mobile autonomous agents using nearest neighbor rules[END_REF]. Several solutions to this problem and for linear agents are well-studied under many different scenarios [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF], [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF]. However, these solutions become more complex if one considers the agents' nonlinear dynamics [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF], [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF], communication delays [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] and input disturbances [START_REF] Wu | tributed formation control of manipulators' end-effector with internal model-based disturbance rejection[END_REF], [START_REF] Wang | Leaderless consensus of heterogeneous multiple euler-lagrange systems with unknown disturbance[END_REF], [START_REF] Persis | On the internal model principle in the coordination of nonlinear systems[END_REF]. There are two possible consensus problems: the leaderless, where all agents are required to agree at a common non-specified value, and the leader-follower, where the agents have to converge to a common pre-specified point [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF].

A variety of physical (mechanical and electrical) systems can be represented by nonlinear system equations through the well-known Euler-Lagrange (EL) equations of motion [START_REF] Ortega | Passivitybased Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications[END_REF]. The first results on consensus (synchronization) for agents with EL-dynamics have been reported in [START_REF] Chopra | On synchronization of networked passive systems with time delays and application to bilateral teleoperation[END_REF] and in [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF] for nonidentical EL-systems with interconnecting delays. Since then, a plethora of different controllers have been proposed to ensure consensus, from simple Proportional plus damping (P+d) schemes [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF], [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] to more elaborate adaptive [START_REF] Chung | Cooperative robot control and concurrent synchronization of Lagrangian systems[END_REF], [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF], [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF] and sliding-mode controllers [START_REF] Klotz | Asymptotic synchronization of a leader-follower network of uncertain Euler-Lagrange systems[END_REF].

In this work we focus on ensuring the leaderless consensus of EL-systems while rejecting non-vanishing time-varying external disturbances. Closely related to this work are the solutions provided in [START_REF] Wu | tributed formation control of manipulators' end-effector with internal model-based disturbance rejection[END_REF] and in [START_REF] Wang | Leaderless consensus of heterogeneous multiple euler-lagrange systems with unknown disturbance[END_REF], where a robust controller E. Nuño is with the Department of Computer Science, University of Guadalajara. Guadalajara, Mexico (e-mail: emmanuel.nuno@academicos.udg.mx).
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H. Yin and B. Jayawardhana are with the Engineering and Technology Institute Groningen, University of Groningen. Groningen, The Netherlands (e-mail: {b.jayawardhana, hao.yin}@rug.nl). is proposed, via the internal model approach, for the consensus of EL-systems but without accounting for delays in the interconnections. However, in real-life scenarios, time-delays naturally appear when communicating the state variables among agents [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF]. Moreover, recently, the sliding-mode technique has also been employed to deal with parameter uncertainty and with external perturbations [START_REF] Ye | Leader tracking of Euler-Lagrange agents on directed switching networks using a modelindependent algorithm[END_REF], [START_REF] Feng | Distributed coordination of multiple unknown Euler-Lagrange systems[END_REF], [START_REF] Long | Model-independent robust consensus of multiple euler-lagrange systems[END_REF]. However, these solutions can be prone to chattering [START_REF] Boiko | Analysis of chattering in continuous slidingmode controllers[END_REF], [START_REF] Rosales | Chattering analysis of hosm controlled systems: Frequency domain approach[END_REF].

The controller that we propose here is smooth and it is composed of two terms, a Proportional plus damping (P+d) scheme, which drives the agents towards a consensus position, and an extra integral term, which is used to reject the external disturbances. The integral term design hinges upon the internal model approach [START_REF] Jayawardhana | Tracking and disturbance rejection for passive nonlinear systems[END_REF], [START_REF] Jayawardhana | Tracking and disturbance rejection for fully actuated mechanical systems[END_REF] and the resulting scheme has the structure of a simple-to-implement PID controller. We assume that the EL-systems are interconnected through an undirected weighted graph that is static and that the information exchange between any connected nodes is subjected to bounded variable time-delays. For this scenario we provide a sufficient condition for the proportional and the derivative gains of the controller to ensure that the network finds an agreement position and that the velocities converge to zero, globally. Up to the authors' knowledge, this work provides the first solution to the leaderless consensus problem for EL-agents when variable time-delays appear in the interconnections and with disturbance rejection capabilities with a uniformly continuously differentiable controller, which does not exhibit a chattering phenomenon. Therefore, this work extends the previous P+d scheme reported in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] to the case when external disturbances arise. Simulations, with ten robot manipulators are shown to provide evidence of the performance of the controller.

II. BACKGROUND

This paper deals with the leaderless consensus of a network of n degrees-of-freedom EL-systems. The network has N heterogeneous EL-systems and each ith-system (also referred to as agent) has the following dynamics

M i (q i )q i + C i (q i , qi ) qi + ∂ ∂q i U i (q i ) = τ i + d i , (1) 
where q i ∈ R n is the generalized position coordinates, the matrix M i : R n → R n×n is the generalized inertia matrix, U i : R n → R is the potential energy function, τ i ∈ R n is the control input and d i ∈ R n is an external disturbance generated by an exosystem (defined later below). The matrix

C i (q i , qi ) := Ṁi (q i ) qi -1 2 ∂ ∂qi q⊤ i M i (q i ) qi is defined via
the Christoffel symbols of the first kind. The dynamics of each agent satisfies the following properties [START_REF] Kelly | Control of robot manipulators in joint space[END_REF], [START_REF] Spong | Robot Modeling and Control[END_REF].

P1. The inertia matrix is symmetric and positive definite, for all q i ∈ R n . P2. The matrix Ṁi (q i ) -2C i (q i , qi ) is skew-symmetric. P3. The Coriolis matrix is bounded, for all q i ∈ R n , as

|C i (q i , qi ) qi | ≤ k ci | qi | 2 for k ci > 0.
We further assume that the external disturbance satisfies the following, A1. The disturbance d i (t) ∈ R n is generated by an exosystem of the form

ẇi = S i w i , d i = C i w i , (2) 
where

w i ∈ R pi , S i ∈ R pi×pi and C i ∈ R n×pi .
The exosystem is assumed to be neutrally stable, i.e., all the eigenvalues of S i are different and they lie on the imaginary axis. ◁

The interconnection of the EL-agents is modeled through a graph given by the standard Laplacian matrix L := [ℓ ij ] ∈ R N ×N , whose elements are defined as

ℓ ii = j∈Ni a ij , ℓ ij = -a ij , (3) 
where a ij > 0 if j ∈ N i and a ij = 0, otherwise. The set N i contains all the agents transmitting information to the ith agent. Regarding the agents' interconnection, we assume further that A2. The graph is undirected, static and connected. ◁ A3. The information exchange, from the j-th agent to the i-th agent, is subjected to a variable time-delay T ji (t) with a known upper bound * T ji . Hence 0 ≤ T ji (t) ≤ * T ji < ∞. Moreover, the time-delays are differentiable and their derivatives are bounded. ◁ Remark 1: By construction, L has zero row sum, i.e., L1 N = 0. Moreover, Assumption A2 ensures that rank(L) = N -1, that L has a single zero-eigenvalue and that the rest of the spectrum has positive real parts [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. Further, it also holds that L = L ⊤ .

◁ The problem that we aim to solve in this work is LC (Leaderless Consensus problem): For a network of N heterogeneous n-DOF EL-systems (1) satisfying A1-A3, design a distributed controller such that all positions, globally and asymptotically converges to a consensus point, i.e.,

lim t→∞ q i (t) = q c ; lim t→∞ qi (t) = 0,
for some q c ∈ R n .

III. ROBUST LEADERLESS CONSENSUS OF EL-AGENTS

The robust controller that we propose here is composed of an integral term, which is designed using the internal model principle, and a P+d scheme. This is precisely the object study of this section.

A. Internal Model Dynamics

In order to counteract the input disturbance effects, an internal model-based estimation term is employed in the controller. This term employs the following realization

ẋi = A i x i -B i u i , (4) 
where, matrices A i ∈ R li×li and B i ∈ R li×n are such that A i + A ⊤ i = 0 and the pair (A i , B i ) is observable. We should underscore that the eigenvalues of matrix A i are the same as those of S i . In this case, as in [START_REF] Wu | tributed formation control of manipulators' end-effector with internal model-based disturbance rejection[END_REF], there exists a transformation matrix T i ∈ R li×pi , such that

T i S i = A i T i , B ⊤ i T i + C i = 0. (5) 
u i ∈ R n is the input to the internal model dynamics and it will be defined latter.

Defining the estimation error coordinates

xi := x i -T i w i ,
yields the error dynamics

ẋi = A i x i -B i u i -T i S i w i , = A i (x i -T i w i ) -B i u i = A i xi -B i u i , (6) 
where, to obtain the first equality, we have employed ( 2) and (4), respectively. For the second equation, we use [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF]. Defining, additionally,

di := B ⊤ i x i + d i ,
and using (2) and ( 5), we have that

di = B ⊤ i x i + C i w i = B ⊤ i (x i -T i w i ) = B ⊤ i xi . (7) 
Consider now the Lyapunov candidate function

H i (x i ) = 1 2 |x i | 2 ,
then Ḣi evaluated along (6) yields

Ḣi = x⊤ i (A i xi -B i u i ) = -x ⊤ i B i u i ,
where we have used the fact that A i = -A ⊤ i . Hence, this means that ( 6) is passive from the input B i u i to the output xi and this property is employed in the controller design.

B. Robust P+d Scheme

Our proposed robust P+d with gravity cancellation controller is given by

τ i = B ⊤ i x i -p i j∈Ni a ij (q i -q j (t -T ji (t)))-d i qi + ∂ ∂q i U i , (8) 
where p i > 0 and d i > 0 are the proportional and the damping injection gains, respectively. These controllers are the robust extension of the scheme reported in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF].

The closed-loop system of ( 1) with [START_REF] Wang | Leaderless consensus of heterogeneous multiple euler-lagrange systems with unknown disturbance[END_REF] 

yields qi = -M -1 i (q i ) C i (q i , qi ) qi + d i qi -B ⊤ i x i -d i -p i M -1 i (q i ) j∈Ni a ij (q i -q j (t -T ji (t))) ,
and hence, using [START_REF] Wu | tributed formation control of manipulators' end-effector with internal model-based disturbance rejection[END_REF] it holds that

qi = -M -1 i (q i ) C i (q i , qi ) qi + d i qi -B ⊤ i xi -p i M -1 i (q i ) j∈Ni a ij (q i -q j (t -T ji (t))) . ( 9 
)
Note that, if we take the kinetic energy of each agent to be

K i ( qi , q i ) = 1 2 q⊤ i M i (q i ) qi , then, simple calculations show that Ki = -d i | qi | 2 -p i q⊤ i j∈Ni a ij (q i -q j (t -T ji (t))) + q⊤ i B ⊤ i xi .
Therefore, we can see that

Ḣi + Ki = -d i | qi | 2 -p i q⊤ i j∈Ni a ij (q i -q j (t -T ji (t))) ,
provided that the input of the internal model scheme u i is given by qi .

We can now state our main result as follows.

Proposition 1: For any given proportional gains p i and any time-delay bounds * T ji , i = 1, . . . , N , if the damping injection gains d i satisfies

d i > 1 2 p i j∈Ni a ij α i + * T 2 ij α j , (10) 
for all i = 1, . . . , N and for some α i > 0 then the controller (4), with u i = qi , and (8) solves the LC problem globally. □ Proof: For all i, we consider a Lyapunov candidate function V i given by

V i = 1 p i (K i + H i ) + 1 4 j∈Ni a ij |q i -q j | 2 .
By evaluating Vi along the trajectories of closed-loop system (6) and ( 9), we obtain

Vi = - d i p i | qi | 2 - j∈Ni a ij q⊤ i (q i -q j (t -T ji (t))) + 1 2 j∈Ni a ij ( qi -qj ) ⊤ (q i -q j ).
Since the Laplacian matrix is symmetric [START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF], it holds that

1 2 N i=1 j∈Ni a ij ( qi -qj ) ⊤ (q i -q j ) = N i=1 j∈Ni a ij q⊤ i (q i -q j ).
Hence, by defining

V := N i=1 V i , it follows that V = - N i=1 d i p i | qi | 2 + j∈Ni a ij q⊤ i (q j -q j (t -T ji (t))) , = - N i=1 d i p i | qi | 2 + j∈Ni a ij q⊤ i t t-Tji(t) qj (σ)dσ ,
where, for the second equality, we have employed the fact that t t-Tji(t) qj (σ)dσ = q j -q j (t -T ji (t)).

Now, using Young's and Cauchy-Schwartz' inequalities we obtain that, for any α i > 0,

-q⊤ i t t-Tji(t) qj (σ)dσ ≤ α i 2 | qi | 2 + 1 2α i t t-Tji(t) qj (σ)dσ 2 ≤ α i 2 | qi | 2 + * T ji 2α i t t- * Tji | qj (σ)| 2 dσ.
Using these inequalities we can bound V as

V ≤ - N i=1 d i p i | qi | 2 - j∈Ni a ij α i 2 | qi | 2 + N i=1 j∈Ni a ij * T ji 2α i t t- * Tji | qj (σ)| 2 dσ.
Let us now consider

W i := j∈Ni a ij * T ji 2α i 0 - * Tji t t+σ | qj (θ)| 2 dθdσ, (11) 
and note that Ẇi is given by

Ẇi = j∈Ni a ij * T ji 2α i * T ji | qj | 2 - t t- * Tji | qj (σ)| 2 dσ .
By defining

E := N i=1 V i (q i , qi ) + W i ( qjt ) , we obtain Ė ≤ - N i=1 d i p i - α i ℓ ii 2 | qi | 2 - j∈Ni a ij * T 2 ji 2α i | qj | 2 ,
where ℓ ii is defined in (3). Now, as in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF], for compactness of presentation, we introduce

Q := | q1 | 2 • • • | qN | 2 ⊤ and Ψ =     d1 p1 -α1ℓ11 2 . . . - * T 2 N 1 a 1N 2α1 . . . . . . . . . - * T 2 1N a N 1 2α N . . . d N p N -α N ℓ N N 2     ,
so that we can write

Ė ≤ -1 ⊤ N ΨQ = - N i=1 λ i | qi | 2 ,
where

λ i = d i p i - 1 2 j∈Ni a ij α i + * T 2 ij α j .
Setting d i such that (10) holds, ensures that λ i are strictly positive numbers. It implies that

Ė ≤ - N i=1 λ i | qi | 2 ≤ 0.
Since E is positive definite then qi ∈ L 2 . Moreover, qi , xi , |q i -q j | ∈ L ∞ for all i ∈ N and j ∈ N i . Now, the error q i -q j (t -T ji (t)) can be written as

q i -q j (t -T ji (t)) = q i -q j + t t-Tji(t) qj (σ)dσ, ( 12 
)
and it can be proved that

|q i -q j (t-T ji (t))| ∈ L ∞ provided that |q i -q j | ∈ L ∞ and that qi ∈ L 2 .
Since all signals in the right-hand-side of the closed-loop system equations in ( 9) are bounded, then qi ∈ L ∞ . Hence, Barbalat's lemma allows us to conclude that lim t→∞ qi (t) = 0. This, in turn, implies that

lim t→∞ t 0 qi (σ)dσ = -qi (0).
Furthermore, under Assumption A3, the time-derivative of the right-hand-side of the closed-loop system equations ( 9) is also bounded. Thus, d dt qi ∈ L ∞ . In these conditions, Barbalat's lemma also ensures that lim t→∞ qi (t) = 0. Since velocities asymptotically converge to zero, then from ( 12) and ( 9), the following limits hold

lim t→∞ p i j∈Ni a ij (q i (t) -q j (t)) = lim t→∞ B i xi (t).
Moreover, the convergence of velocities and accelerations to zero along with the fact that accelerations are uniformly continuous, ensure that lim t→∞ d dt qi (t) = 0. Hence, after differentiating the accelerations in (9), we can establish that lim t→∞ B ⊤ i ẋi (t) = 0. By substituting this limit to the second equation of ( 9), it holds that

lim t→∞ B ⊤ i ẋi (t) = lim t→∞ B ⊤ i A i xi (t) = 0. (13) 
Inductively, it follows that

lim t→∞ B ⊤ i A 2 i xi (t) = • • • = lim t→∞ B ⊤ i A li i xi (t) = 0. (14) 
Hence, by invoking the Cayley-Hamilton theorem, there exists a set of real numbers {c k } li k=1 such that

A li i + c 1 A li-1 i + • • • + c li-1 A i + c li I = 0. (15) 
Using [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF], we can establish that

B ⊤ i xi = - 1 c li B ⊤ i A li i + c 1 A li-1 i + • • • + c li-1 A i xi = 0,
where to obtain the second equality we have employed ( 13) and ( 14). Since lim t→∞

B ⊤ i xi (t) = 0, it holds that lim t→∞ j∈Ni a ij (q i (t) -q j (t)) = 0. (16) 
Finally, by concatenating the N positions as q := [q ⊤ 1 , ..., q ⊤ N ] ⊤ , we can arrive at lim t→∞ (L ⊗ I n )q(t) = 0, which by the properties of the Laplacian matrix, together with [START_REF] Klotz | Asymptotic synchronization of a leader-follower network of uncertain Euler-Lagrange systems[END_REF], implies that there exists q c ∈ R n , such that

lim t→∞ q(t) = 1 N ⊗ q c .

IV. SIMULATION RESULT

A. Simulation setup

Using a network with ten 2-DOF revolute joint manipulators, this section presents some simulations that illustrate the solution to the control problem reported in this paper. For simplicity, the interconnection variable time-delay for all agents is the same, and it emulates an ordinary UDP/IP Internet delay with a normal Gaussian distribution with mean, variance, and seed equal to 0.45, 0.005, and 0.35, respectively [START_REF] Rossi | Joint endto-end loss-delay hidden markov model for periodic udp traffic over the internet[END_REF]. The Laplacian matrix of the system is given by

L =        1.4 0 -0.3 0 0 0 0 -0.4 0 -0.7 0 0.9 0 -0.8 0 0 0 0 0 -0.1 -0.3 0 0.3 0 0 0 0 0 0 0 -0.8 0 1 0 0 0 0 -0.2 0 0 0 0 0 0.5 0 -0.5 0 0 0 0 0 0 0 0 0.6 0 -0.6 0 0 0 0 0 0 -0.5 0 1.4 0 0 -0.9 -0.4 0 0 0 0 -0.6 0 1 0 0 0 0 0 -0.2 0 0 0 0 0.2 0 -0.7 -0.1 0 0 0 0 -0.9 0 0 1.7       
.

Each manipulator dynamics follows the EL equations ( 1), whose inertia and Coriolis matrices are given by

M i (q i ) = α i + 2β i c i2 δ i + β i c i2 δ i + β i c i2 δ i , and 
C i (q i , qi ) = δ i -s i2 qi2 -s i2 ( qi1 + qi2 ) s i2 qi1 0 ,
respectively. In these expressions, c ik , s ik are a short notation of cos(q ik ) and sin(q ik ); q ik is the angular position of link k of manipulator i, with k ∈ 1, 2;

α i = l 2 i2 m i2 +l 2 i1 (m i1 +m i2 ), β i = l i1 l i2 m i2 , and δ i = l 2 i2 m i2
, where l ik and m ik are the length and mass of each link, respectively. The exosystem's matrices that model the disturbance d i (t) in (2) are The internal model-based estimation term in ( 4) is given by ẋi

S i = 0 1 -1 0 ; C i = 1 0 0 1 .
= 0 1 -1 0 x i - 1 0 0 1 qi ,
for agents 1,2,3,4 and 5; and

ẋi = 0 -1 1 0 x i - 1 0 0 -1 qi ,
for agents 6,7,8,9 and 10.

The initial positions for each agent are set as

q 1 (0) = [11, 8] ⊤ , q 2 (0) = [10, 7] ⊤ , q 3 (0) = [9, 6] ⊤ , q 4 (0) = [8, 5] ⊤ , q 5 (0) = [7, 4] ⊤ , q 6 (0) = [6, 3] ⊤ , q 7 (0) = [5, 2] ⊤ , q 8 (0) = [4, 1] ⊤ , q 9 (0) = [3, 0] ⊤ ,
and q 10 (0) = [2, -1] ⊤ . The initial velocities are the same as the initial positions.

B. Simulation results

Fig. 1 presents the simulation results for the positions q i . Note that the EL-systems asymptotically converge to the consensus point q c = [6.144, 1.072] ⊤ . Fig. 2 depicts the velocity behavior, from which one can observe that the generalized velocities asymptotically converge to zero.

As a comparison, we now apply the control method presented in [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] with the same conditions. Fig. 3 presents the simulation results for the positions q i . Clearly, we can observe that without the disturbance rejection term, consensus cannot be achieved.

V. CONCLUSIONS

Using the internal model approach [START_REF] Jayawardhana | Tracking and disturbance rejection for passive nonlinear systems[END_REF], [START_REF] Jayawardhana | Tracking and disturbance rejection for fully actuated mechanical systems[END_REF], we have modified the P+d controllers [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF] to globally solve the leaderless consensus problem in a network of heterogeneous ELsystems perturbed by external disturbances and with variable time-delays. Simulation results validate the robustness of the proposed P+d controllers. The proposed controller requires velocities to be measurable and this may not be practical in some applications. As a future research avenue, following the results in [START_REF] Nuño | Achieving consensus of Euler-Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control[END_REF] and in [START_REF] Cruz-Zavala | Finite-time consensus of Euler-Lagrange agents without velocity measurements via energy shaping[END_REF], we intend to relax such requirement. 

  The network is composed of three different groups of manipulators, where members of each group has the same parameters. The physical parameters are m 1 = 4 kg, m 2 = 2 kg, and l 1 = 0.2 = l 2 = 0.4 m, for Agents 1, 2, and 3; m 1 = 3 kg, m 2 = 2.5 kg, and l 1 = 0.6 m, l 2 = 0.5 m, for Agents 4, 5, and 6; m 1 = 3.5 kg, m 2 = 2.5 kg, and l 1 = 0.3 m, l 2 = 0.35 m, for Agents 7, 8, 9, and 10The proportional gains p i for the controllers (8) are all set to 10 Nm. By letting α i = 1 and by using * T ji = 0.7 s and p i = 10 Nm, condition[START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF] is given by d i ≥ 8.5l ii , where l ii corresponds to the ith-diagonal element of the Laplacian matrix. Setting the damping gains as d 1 = 12, d 4 = 9, and d 2 = 7, 7, d 3 = 2.6, d 4 = 9.5, d 5 = 4.3, d 6 = 5, 2, d 7 = d 9 = 7, d 8 = 9, and d 1 0 = 14, ensure that condition (10) hold for all i.
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 12 Fig. 1. Position trajectories (left plot: the first joints; right plot: the second joints) of the ten robots initialized at 11 8 , 10 7 , 9 6 , 8 5 , 7 4 , 6 3 ,

2 ,[START_REF] Ren | Distributed leaderless consensus algorithms for networked Euler-Lagrange systems[END_REF] 1 , 3 0 , and 2 -1 , respectively.