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Generalized Lyapunov conditions for k-contraction:
analysis and feedback design

Andreu Cecilia, Samuele Zoboli, Daniele Astolfi, Ulysse Serres and Vincent Andrieu

Abstract— Recently, the concept of k -contraction has been in-
troduced as a promising generalization of contraction for dy-
namical systems. However, the study of k -contraction properties
has faced significant challenges due to the reliance on complex
mathematical objects called matrix compounds. As a result, related
control design methodologies have yet to appear in the literature.
In this paper, we overcome existing limitations and propose new
sufficient conditions for k -contraction which do not require matrix
compounds computation. Notably, these conditions are also nec-
essary in the linear time-invariant framework. Leveraging on these
findings, we propose a feedback design methodology for both the
linear and the nonlinear scenarios which can be used to enforce
k -contractivity properties on the closed-loop dynamics.

Index Terms— Contraction analysis, Nonlinear systems, Linear
matrix inequalities, Inertia Theorems, Compound matrices.

I. INTRODUCTION

Contraction theory is an emerging topic that has been used in nu-
merous applications, such as observer design [1], multi-agent system
synchronization [2]–[4] and controller design [5]–[7]. Nonetheless,
many systems cannot present classical contractivity properties, e.g.
multi-stable systems or systems that admit a (non-trivial) periodic so-
lution. This fact motivated the study of suitable generalizations, such
as horizontal contraction [8, Section VII] and transversal exponential
stability [9]. Motivated by the results of Muldowney [10], the recent
work [11] presented the notion of k-contraction as the generalization
to k-dimensional objects of the standard contraction concept for
distances. As such, k-contraction includes classical contraction as
the special case k = 1. For k > 1, this property can be used to
analyze the asymptotic behavior of systems that are not contractive
in the classical sense. For example, for 2-contractive time-invariant
systems, every bounded solution converges to an equilibrium point
(which may not be the same for every solution).

Existing sufficient conditions for k-contraction are given in terms
of a particular matrix compound of the Jacobian of the vector field
dynamics [10]–[12]. Although these conditions are adequate for
system analysis, their application for feedback design is limited. First,
matrix compounds rapidly explode in dimension for low values of k
and systems of large dimension. This fact drastically increases the
computational complexity of potential feedback design algorithms.
Second, the use of matrix compounds hinders the derivation of
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a tractable matrix inequality problem for feedback design. Conse-
quently, a k-contractive design methodology has yet to be developed.

Considering these limitations, this work presents alternative design-
oriented conditions for k-contraction that do not rely on matrix
compounds, but rather on matrix inequalities on the given system
dynamics. In particular, we build upon the generalized Lyapunov
matrix inequalities studied for instance in [13], [14]. By exploiting
these novel conditions, we devise a feedback design methodology
in both the linear and the nonlinear framework. In the linear time-
invariant framework, our design is based on a new generalization
of the notion of stabilizability, which is, then, generalized to the
nonlinear framework.

The remainder of this document is organized as follows. In Sec-
tion II, we provide a refined definition of k-contraction which strongly
focuses on its geometrical interpretation. Then, we recover the notion
of infinitesimal k-contraction, which has been used in [15], and link it
to the proposed definition of k-contraction. Subsequently, we recall
matrix compound-based sufficient conditions for k-contraction and
discuss their limitations. Section III focuses on linear systems. First,
we derive necessary and sufficient conditions for k-contraction that
do not require matrix compounds, but rather generalized Lyapunov
matrix inequalities. Then, based on these results, we propose the
notion of k-order stabilizability together with a new k-contractive
feedback design. In doing so, we also collect and recall in a unified
theorem a series of results on inertia theorems (see, e.g. [16, Lemma
1, Section 3] and [17, Theorem 2.5]) and we provide new inertia
results on algebraic inequalities of the form WA⊤+AW−BB⊤ ≺ 0
not requiring any controllability assumption (see for instance [18]).
Section IV focuses on extending these results to nonlinear systems.
Similarly, we first provide sufficient conditions for k-contraction in
nonlinear systems and, then, propose a design methodology for k-
contraction. In section IV-D, we discuss asymptotic behaviors of k-
contractive dynamics. The results are validated in some numerical
simulations in Section V. All the proofs are postponed in Sections VI-
VIII and in the Appendix. Finally, some conclusions and future
perspectives are drawn in Section IX.

Contribution: This work builds on the initial results published in
the conference paper [19]. The main differences between [19] and
the current paper are summarized in the following points:

• We refine the necessary and sufficient conditions for k-
contraction in linear systems presented in [19] and provide a
general result for state matrices with arbitrary eigenvalues.

• We present a state-feedback design methodology for linear
systems. In doing so, we introduce the notion of k-order
stabilizability and an associated generalized Lyapunov test.

• We extend the proposed design to nonlinear dynamics.
• We discuss the asymptotic behavior of k-contractive systems,

with a specific focus on k ∈ {1, 2, 3, n}.
• We provide multiple numerical examples of k-contraction anal-

ysis and design, with a particular focus on the multi-stability
properties of a grid-connected synchronverter [20], [21].

Notation: R⩾0 := [0,∞) and N := {0, 1, 2, . . .}. | · | denotes the



standard Euclidean norm. Given x ∈ Rn, y ∈ Rm, we set (x, y) :=
(x⊤, y⊤)⊤. We denote

(n
k

)
:= n!

k!(n−k)! as the binomial coefficient,
with n! denoting the factorial of n ∈ N. The inertia of a matrix P is
defined by the triplet of integers In(P ) := (π−(P ), π0(P ), π+(P )),
where π−(P ), π+(P ) and π0(P ) denote the numbers of eigenvalues
of P with negative, positive and zero real part, respectively, counting
multiplicities. The cardinality of a set is denoted as card(·). A ≻ 0
(resp. A ⪰ 0) denotes A being a positive definite (resp. positive
semidefinite) matrix.

II. PRELIMINARIES ON k-CONTRACTION

A. Definition of k -contraction

In this work, we consider nonlinear systems of the form

ẋ = f(x), x ∈ Rn (1)

where f is sufficiently smooth. The flow of f is denoted by ψt, and
ψt(x0) is the trajectory of (1) at time t. By definition, ψ0(x0) = x0.
We now formally define the property of k-contraction studied in this
article. Our definition strongly focuses on a geometrical interpretation
and it is related to the notion presented in the works [10], [11].
Moreover, when considering objects of dimension 1 (k = 1), it
matches the definition of contraction presented in [9], [22].

In [9], [22], 1-contraction expresses the fact that the length of any
parametrized and sufficiently smooth curve exponentially decreases
with time. To extend such a notion to any positive integer k ∈ [1, n],
we consider a set of sufficiently smooth functions Ik defined on
[0, 1]k, namely

Ik :=
{
Φ : [0, 1]k → Rn | Φ is a smooth immersion

}
. (2)

Let P ∈ Rn×n be a positive definite symmetric matrix. For each Φ
in Ik, we define the volume V k(Φ) of Φ as

V k(Φ) :=

∫
[0,1]k

√
det

{
∂Φ

∂r
(r)⊤P

∂Φ

∂r
(r)

}
dr . (3)

Note that, since f in (1) is sufficiently smooth, for each t in R⩾0

the corresponding flow ψt is also sufficiently smooth. Consequently,
for each Φ in Ik, ψt ◦ Φ belongs to Ik.

Remark 1 When Φ is injective and P is the identity matrix, the
volume V k defined in (3) coincides with the standard Euclidean k-
volume of the submanifold Φ([0, 1]k) ⊊ Rn. Note that 1-volumes are
lengths, 2-volumes are areas and 3-volumes are standard volumes.

Remark 2 The volume definition (3) can be generalized to the
Riemannian framework by substituting the Euclidean metric P with
a symmetric positive definite 2-tensor P : Rn → Rn×n, see [23,
Lemma 3.2]. However, in this paper, we will focus on the Euclidean
scenario in order to obtain more tractable conditions.

From now on, we let k be a fixed integer between 1 and n. We
now define k-contraction for nonlinear systems of the form (1).

Definition 1 (k-contraction) System (1) is said to be k-contractive
on a forward invariant set S ⊆ Rn if there exist real numbers a, b >
0 such that, for every Φ ∈ Ik satisfying Im(Φ) ⊆ S, the following
holds

V k(ψt ◦ Φ) ⩽ b e−at V k(Φ), ∀t ∈ R⩾0. (4)

In other words, a system is k-contractive if, for any parametrized k-
dimensional submanifold of Rn from which trajectories are complete,
its volume exponentially shrinks along the system dynamics. An

Fig. 1. Flow of a 2-contractive system. The initial submanifold of initial
conditions is described by Φ. The volume of this submanifold decreases
exponentially along the trajectories of the system.

intuitive representation of the required volume convergence condition
is presented in Fig. 1. When k = 1, (4) implies that the length of
any sufficiently smooth curve exponentially decreases, matching the
definition in [9]. Moreover, this definition includes the ones in [10],
and [11, Section 3.2]. We highlight the following property, which is
directly obtained by using the definition of the volume V k.

Lemma 1 If system (1) is k-contractive for an integer 1 ⩽ k < n,
then it is also (k + 1)-contractive.

We remark that Definition 1 is invariant under globally Lipschitz
diffeomorphism on S, due to the presence of the overshoot term b.

Lemma 2 Assume that the system (1) is k-contractive on a forward
invariant set S ⊆ Rn for some positive constants a, b > 0. Moreover,
let φ : S → S be a diffeomorphism which satisfies for some positive
constants c̄, c > 0

cI ⪯ ∂φ

∂x
(x)⊤

∂φ

∂x
(x) ⪯ c̄I, ∀x ∈ S. (5)

Then, there exists a positive constant b̄ > 0 such that for every
Φ ∈ Ik satisfying Im(Φ) ⊆ S, the following holds

V k(φ ◦ ψt ◦ Φ) ⩽ b̄e−at V k(φ ◦ Φ),

The proof is postponed to Appendix A.

B. Infinitesimal k -contraction
Inspired by classical works on contraction theory [24], we now

provide a result linking the exponential stability properties of the
variational system of (1) to the k-contraction property proposed in
Definition 1. We start by recalling the dynamics of the variational
system, which describe the evolution of an infinitesimal displacement
along the trajectories of the system. Specifically, the variational
system of (1) along the trajectory ψt(x0) is

v̇ =
∂f

∂x
(ψt(x0)) v, v ∈ Rn. (6)

Then, ∂ψ∂x
t
(x0)v0 is a trajectory of (6) at time t initialized at v0 at

t = 0. From linearity, we have that ∂ψ
∂x

t
(x0) is the state transition

matrix of (6). Thus, ∂ψ∂x
t
(x0)v0 depicts the infinitesimal displacement

with respect to the solution ψt(x0) induced by the initial condition
x0 + v0.

We recall that the trajectory ψt(x0) is locally exponentially stable,
that is, the trajectory generated from any initial condition close
enough to x0 will exponentially converge to ψt(x0), if and only
if the variational system (6) is exponentially stable [25, Theorem
3.13]. In classical contraction theory [24], this property is generalized
by considering simultaneously all the trajectories in a set. That is,
system (1) is contracting in a forward invariant set S ⊆ Rn if the
variational system (6) is exponentially stable for all x0 ∈ S. Then,



Fig. 2. Flow of an infinitesimally 3-contractive system.

contraction on S implies that every solution in S converges to the
same trajectory [24], or equivalently, the distance between any pair
of trajectories shrinks to zero. In a sense, contraction exemplifies
how the local linearization along trajectories can be used to derive
global incremental properties of the original system. In this section,
we generalize this idea by considering k-contraction properties on
the variational system (6).

Pick any x0 ∈ Rn and consider any k initial conditions v10 , . . . , v
k
0

of the variational system (6). We define the following matrix

Ψ(t, x0) :=
[
∂ψ
∂x

t
(x0)v

1
0 · · · ∂ψ

∂x

t
(x0)v

k
0

]
∈ Rn×k. (7)

Note that Ψ(0, x0) =
∂Φloc
∂r (r), where Φloc is an immersion

parameterized by the variable r ∈ [0, 1]k and whose image is an
infinitesimal k-order parallelotope with vertices at x0 and vi0 + x0,
namely,

Φloc(r) =

k∑
i=1

ri(v
i
0 + x0) +

(
1−

k∑
i=1

ri

)
x0,

with ri ∈ [0, 1] for i ∈ {1, . . . , k} being the i-th component of r.
For k = 1, Φloc(r) defines a straight line between x0 and x0 + v10 .
The volume of the infinitesimal parallelotope can be computed by
means of the multiplicative compound, which is defined as follows.

Definition 2 (Multiplicative Compound [26]) Consider a matrix
Q ∈ Rn×m and select an integer k ∈ [1,min{n,m}]. Moreover,
define a minor of order k of the matrix Q as the determinant of
some k× k submatrix of Q. The k-th multiplicative compound of Q,
denoted as Q(k), is the

(n
k

)
×
(m
k

)
matrix including all the minors

of order k of Q in a lexicographic order.

As an example, consider a 3 × 3 matrix Q with entries qij for
i, j = 1, . . . , 3. The 2nd multiplicative compound Q(2) is

Q(2) =

det ( q11 q12q21 q22

)
det
( q11 q13
q21 q23

)
det
( q12 q13
q22 q23

)
det
( q11 q12
q31 q32

)
det
( q11 q13
q31 q33

)
det
( q12 q13
q32 q33

)
det
( q21 q22
q31 q32

)
det
( q21 q23
q31 q33

)
det
( q22 q23
q32 q33

)
 .

Note that for a Q ∈ Rn×n, Q(n) = det(Q) and Q(1) = Q.
Thanks to the previous definition, by considering P = I , we can

compute the volume of Φloc and ∂ψ
∂x

t
◦ Φloc as follows [11]

V k(Φloc) = |Ψ(0, x0)
(k)|, V k(∂ψ∂x

t
◦ Φloc) = |Ψ(t, x0)

(k)|.

The second equality is a consequence of the linearity of the dynamics
of Ψ(t, x0)

(k) and we postpone further details at the beginning of
Appendix B. Given these notions, we have the next definition.

Definition 3 (Infinitesimal k-contraction) System (1) is said to be
infinitesimally k-contractive on a forward invariant set S ⊆ Rn if
there exist real numbers a, b > 0 such that∣∣∣Ψ(t, x0)

(k)
∣∣∣ ⩽ be−at

∣∣∣Ψ(0, x0)
(k)
∣∣∣ , (8)

for all (t, x0) ∈ R⩾0 × S and any Ψ(0, x0) defined as in (7).

Roughly speaking, the bound in (8) implies that the volume of
any infinitesimal parallelotope connected to the trajectory ψt(x0) and
generated by the vectors ∂ψ

∂x

t
(x0)v

1
0 , · · · ,

∂ψ
∂x

t
(x0)v

k
0 exponentially

shrinks to zero. A depiction of this property is presented in Fig. 2.
Notice that, for the case k = 1, Definition 3 boils down to (6) being
exponentially stable for all x0 ∈ S, which is a sufficient condition
for the classical notion of contraction [24]. In the next proposition,
we link the notion of infinitesimal k-contraction to k-contraction.

Theorem 1 Suppose system (1) is infinitesimally k-contractive on a
forward invariant set S. Then, it is also k-contractive on S according
to Definition 1.

The proof is postponed to Appendix B. We highlight that in [22] it
has also been shown that for k = 1, that is, standard contraction,
the converse is also true, namely contraction of the system implies
infinitesimally contraction. For k > 1 the problem is currently open.

C. Sufficient conditions based on additive matrix compounds
Sufficient conditions for k-contraction were originally given in the

seminal work by Muldowney [10] and were recently re-proposed in
the works [11], [27]. These conditions strongly depend on the use of
the additive matrix compound, which is defined below.

Definition 4 (Additive Compound [26]) Consider a matrix Q ∈
Rn×n and select an integer k ∈ [1, n]. The k-th additive compound
of Q is the

(n
k

)
×
(n
k

)
matrix defined as

Q[k] :=
d

dϵ

∣∣∣∣
ϵ=0

(I + ϵQ)(k).

The additive compound can be explicitly computed in terms of the
entries of Q. For example, for Q ∈ Rn×n we have Q[n] = tr(Q)

and Q[1] = Q. More details on this operation can be found in [28].
Bearing this definition in mind, we now reframe the sufficient con-

dition for k-contraction presented in [10], [11] in the framework of
this paper, namely, we view them through the lenses of Definition 1.

Theorem 2 Let S ⊆ Rn be a forward invariant set and suppose
there exist a real number η > 0 and a symmetric positive definite
matrix Q ∈ R(

n
k)×(

n
k) such that

Q
(
∂f
∂x (x)

[k]
)
+
(
∂f
∂x (x)

[k]
)⊤
Q ⪯ −ηI, ∀x ∈ S. (9)

Then, system (1) is infinitesimally k-contractive on S (therefore, k-
contractive on S according to Definition 1).

The proof is postponed to Appendix C. The extension of Theorem 2
to time-varying systems can be found in [19].

Remark 3 Inequality (9) is equivalent to the condition in [11,
Theorem 9] using the logarithmic norm induced by the weighted
ℓ2 norm (e.g. [29, Equation 2.56]). However, in our statement, the
set S is allowed to be non-convex. Furthermore, when k = 1, we
recover the well-known Demidovich conditions (see [30]) and the
proof in [9] for contraction of lengths in the context of Euclidean
metrics. Nonetheless, it is worth noting that, similarly to the case of
standard contraction (see, e.g. [29, Section 3]), also k-contraction
can be studied through different logarithmic norms [11, Section 3.1].

Remark 4 Theorem 2 can be generalized to the case of Riemannian
volumes, see Remark 2. However, we omit these results to ease
the reading of the document. It should be remarked that such
generalization also expands on point IV in [31, Proposition 2.5],
since we consider volume objects of dimension lower than n.



D. Limitations of matrix compound-based conditions

Although Theorem 2 provides a suitable condition for system
analysis, we claim that the presence of matrix compounds hinders the
process of devising k-contractive feedback designs. Indeed, consider
a linear control system of the form

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, (10)

where u is the control input. Assume we want to design a state-
feedback controller of the form u = −Kx, with K ∈ Rn×m, such
that the closed-loop system is k-contractive. Then, Theorem 2 reduces
to designing K such that condition (9) is satisfied for the closed-loop
system, namely,

Q
(
(A−BK)[k]

)
+
(
(A−BK)[k]

)⊤
Q ⪯ −ηI.

However, this is a non-convex matrix inequality, due to the strong
coupling between the matrices B,K imposed by the additive matrix
compound. Consequently, even for a simple linear case, a design
methodology for the gain K cannot be straightforwardly derived.
Another motivation for deriving alternative conditions is related to
the computational complexity of the matrix inequality (9). Although
for k = n interesting properties may arise (see below Lemma 8),
most useful asymptotic behaviors (from a control perspective) require
small values of k, specifically k ∈ {1, 2, 3} (see [11] and Section IV-
D). Notice that matrix compounds rapidly grow in dimension when
the order of the system is large and the k is low, since they involve
matrices of dimensions

(n
k

)
×
(n
k

)
. Consequently, as highlighted in

previous works [32], compound-based conditions often explode in
size.

With this in mind, a consistent portion of the following sections is
dedicated the presentation of alternative design-oriented k-contraction
conditions that do not require matrix compound computation. These
conditions will be fundamental in the derivation of control laws
guaranteeing k-contractivity of the closed-loop.

III. k-CONTRACTION FOR LINEAR SYSTEMS

We start our analysis by focusing on the linear scenario. This will
provide fundamental intuitions on the notion of k-contraction that will
be instrumental in the subsequent analysis of nonlinear dynamics.

A. Generalized Lyapunov necessary and sufficient conditions

Consider a linear system of the form

ẋ = Ax, x ∈ Rn. (11)

We now provide a set of sufficient and necessary conditions guaran-
teeing that (11) is k-contractive according to Definition 1. This result
is based on the following two facts:

• a necessary and sufficient condition for system (11) to be k-
contractive is that the sum of the real part of any combination
of k eigenvalues of A is negative, see Lemma 9 below in
Section VI;

• the generalized Lyapunov matrix inequality (see, e.g [13], [16])

PA+A⊤P ≺ 2µP

admits a symmetric solution P of inertia In(P ) = (p, 0, n− p)
if and only if A has p eigenvalues with real part larger than µ
and n− p eigenvalues with real part smaller than µ, see below
Lemma 10 in Section VI.

Combining the two properties above, we state now the following main
result.

Theorem 3 System (11) is k-contractive if and only if there exist:

• a positive integer ℓ ∈ N satisfying 1 ⩽ ℓ ⩽ k,
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ− 1}, satisfying

0 =: d0 < d1 < · · · < dℓ−1 ⩽ k − 1,

• and ℓ symmetric matrices Pi ∈ Rn×n of respective inertia
(di, 0, n− di), with i ∈ {0, . . . , ℓ− 1},

such that

A⊤Pi + PiA ≺ 2µiPi, ∀i ∈ {0, . . . , ℓ− 1}, (12a)
ℓ−1∑
i=0

hi µi ⩽ 0 , (12b)

where h0 ⩾ 1 and hi = di+1 − di, for all i = {0, . . . , ℓ− 1} with
dℓ ∈ N satisfying dℓ−1 + 1 ⩽ dℓ ⩽ k.

The proof of Theorem 3 is postponed to Section VI-B. To provide
some intuition relative to Theorem 3, we anticipate that the constants
µi are bounding the real part of the eigenvalues of the matrix A.
That is, µ0 bounds the eigenvalue with largest real part of A, while
µ1 bounds the second largest eigenvalue with real part different from
the first, and so on. Then, (12b) can be interpreted as a bound in the
partial sum of eigenvalues of A, considering their multiplicities, in
turn implying k-contraction (see the proof in Section VI-B for more
details).

Remark 5 A particular case in which the former Theorem applies
is when ℓ = 1. In that case, the former condition reduces to the
existence of a real number µ0 ⩽ 0 and a symmetric positive definite
matrix P0 ≻ 0 such that A⊤P0 + P0A ≺ 2µ0P0 . This condition is
satisfied if and only if A is Hurwitz, which implies that system (11)
is k-contractive for all k ∈ {1, . . . , n} by means of Lemma 1.

Remark 6 The inertia requirements in (12a) cannot be repre-
sented as semidefinite constraints. However, these constraints can be
dropped without a significant impact on the solution of the inequality.
Indeed, by Lemma 10 in Section VI, a given constant µi imposes a
specific inertia on the matrix Pi, depending on the eigenvalues of A.

Remark 7 Other attempts at dropping the requirement of matrix
compound computations appeared in the literature [32]. However,
to the best of our knowledge, Theorem 3 is the first result proposing
necessary and sufficient conditions [19, Section IV.C].

B. Computational burden of Theorem 3

We now compare Theorem 2 and Theorem 3 in terms of the
computational burden imposed by the solution of the respective
matrix inequalities. We focus on the result in Theorem 3 for the
case ℓ = k and di = di−1 + 1, since it provides the largest set of
matrix inequalities. Let M ∈ Rr×r be an arbitrary square matrix
and Q ∈ Rr×r be a symmetric matrix. Since Q is symmetric, each
condition of the form QM +M⊤Q ⪯ µQ requires the computation
of N = r(r − 1)/2 + 1 variables, namely the entries of the top
triangular portion of Q and the scalar µ. Then, Theorem 2 requires
N1 =

(n
k

)((n
k

)
+ 1

)
/2 + 1 variables, while Theorem 3 requires

N2 = kn(n− 1)/2 + k variables.
To better understand how the size of the problem scales with

different values of k and n, we refer to Fig. 3. Clearly, for large
dimensional systems and low k, the conditions in Theorem 3 ask for
a significantly smaller number of variables. Moreover, even in the
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Fig. 3. Number of variables to be estimated by Theorem 2 (dashed)
and by Theorem 3 (solid) in function of k. Colors refer to different n.

worst case of k = n, Theorem 3 typically requires between 102 and
103 variables. Differently, Theorem 2 can easily reach 104 variables.

This computation shows that conditions in Theorem 3 do not grow
in dimension as fast as the condition in Theorem 2. Moreover, for
k sufficiently smaller than n, we have N2 ⩽ N1. We recall that
the cases k = {1, 2, 3} are interesting from a control viewpoint, see
Section IV-D.

C. k -order stabilizability

Consider a linear system of the form (10). It is well-known
that stabilizability of the pair (A,B) is a necessary and sufficient
condition for the existence of a stabilizing controller. A similar
property can be defined when considering k-contractive designs. We
refer to this property as k-order stabilizability.

Definition 5 (k-order stabilizability) System (10) is k-order stabi-
lizable if there exists a matrix K ∈ Rn×m such that the closed-loop
system ẋ = (A−BK)x is k-contractive.

Conditions for k-order stabilizability can be easily derived by
transforming the system into a suitable form. Using standard Kalman
decomposition, system (10) is algebraically equivalent to a system of
the form [

ẋc
ẋu

]
=

[
Ac A12

0 Au

] [
xc
xu

]
+

[
Bc
0

]
u (13)

where xc ∈ Rnc , xu ∈ Rnu , nc + nu = n and the pair (Ac, Bc)
is controllable. The non-negative integer nu is the dimension of the
null-space of the controllability matrix of (10). Consequently, we
admit the possibility of nu = 0 and Au being non-existing.

Lemma 3 System (10) is k-order stabilizable if and only if its canon-
ical Kalman decomposition (13) satisfies one of the two following
conditions:

• the integer nu satisfies 0 ⩽ nu < k;
• the autonomous system ẋu = Auxu, is k-contractive.

The proof of Lemma 3 is postponed to Section VII-A. Intuitively,
Lemma 2 asks for the uncontrollable part to be already k-contractive
(or of dimension smaller than k). For the case k = 1, Lemma 3
reduces to nu = 0, a necessary and sufficient condition for control-
lability in linear systems, or ẋu = Auxu, being stable, which is
a sufficient condition for the classical notion of stabilizability. We
also remark that similar definitions could be developed for k-order
controllability, observability, and detectability.

D. k -contractive feedback design

Starting from a k-order stabilizability property and the decompo-
sition (13), one can easily derive a k-contractive feedback design,
e.g., via pole placement on the pair (Ac, Bc). Nonetheless, in view
of an extension of these notions to the nonlinear context, we look
for coordinate-free conditions, i.e. that do not rely on change of
coordinates and decompositions that would not be easy to extend
to nonlinear systems.

Motivated by the result in Theorem 3, we now derive construc-
tive conditions for designing k-contractive controllers. This section
presents a design methodology that follows the philosophy of feed-
back stabilization based on Lyapunov tests for stabilizability [33,
Section 14.5]. That is, we first solve a set of matrix inequalities, which
are feasible if and only if the system is k-order stabilizable. Then,
the controller is derived from the result of these inequalities. We start
by presenting a generalized Lyapunov test for k-order stabilizability.

Theorem 4 System (10) is k-order stabilizable if and only if there
exist:

• a positive integer ℓ ∈ N satisfying 1 ⩽ ℓ ⩽ k,
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ− 1}, satisfying

0 = d0 < d1 < · · · < dℓ−1 ⩽ k − 1,

• and ℓ symmetric matrices Wi ∈ Rn×n of respective inertia
(di, 0, n− di), with i ∈ {0, . . . , ℓ− 1},

such that

WiA
⊤ +AWi −BB⊤ ≺ 2µiWi, ∀i ∈ {0, . . . , ℓ− 1}, (14a)

ℓ−1∑
i=0

hi µi ⩽ 0 , (14b)

where h0 ⩾ 1, hi = di+1 − di, for all i = {1, . . . , ℓ − 1} with
dℓ ∈ N satisfying dℓ−1 + 1 ⩽ dℓ ⩽ k.

The proof of Theorem 4 is postponed to Section VII-C. Notice that
for k = 1, inequalities (14a)- (14b) reduce to the existence of a
constant µ0 ⩽ 0 and a symmetric positive definite matrix W0 ≻ 0
such that

W0A
⊤ +AW0 −BB⊤ ≺ 2µ0W0.

Hence, we recover the well-known Lyapunov test for stabilizability
[33, Section 14.4]. Differently put, the inequalities (14) can be seen as
a generalization of the Lyapunov test for stabilizability to the context
of k-contraction.

Now, based on the presented generalized Lyapunov test for k-
order stabilizability, we can directly derive a k-contractive feedback
controller for the linear system (10). The result is summarized in the
following proposition.

Proposition 1 Assume that (10) is k-order stabilizable. Then, there
exist:

• a positive integer ℓ ∈ N satisfying 1 ⩽ ℓ ⩽ k,
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ− 1}, satisfying

0 = d0 < d1 < · · · < dℓ−1 ⩽ k − 1,

• and ℓ symmetric matrices Wi ∈ Rn×n of respective inertia
(di, 0, n− di), with i ∈ {0, . . . , ℓ− 1},

such that (14) is satisfied, and the following colinearity relation holds

B⊤W−1
i = B⊤W−1

0 , ∀ i ∈ {0, . . . , ℓ− 1}. (15)



Furthermore, with this solution, system (10) is k-contractive with the
feedback law

u = −Kx, K =
ρ

2
B⊤W−1

0 , ∀ ρ ⩾ 1. (16)

The proof is postponed to Section VII-D. We highlight that, since
k-contraction for the closed-loop system is preserved for all ρ ⩾
1, the proposed controller presents a generalization of the infinite-
gain margin property [34, Section 3.2.2] to the framework of partial
stabilization. Consequently, this result expands similar infinite-gain
margin designs [7] from 1-contraction to k-contraction.

IV. k-CONTRACTION FOR NONLINEAR SYSTEMS

As a follow-up to the linear scenario, we now move to the analysis
of k-contraction for nonlinear systems. The main goal is to provide
sufficient conditions inspired by the results in Section III.

A. Sufficient conditions
Consider a nonlinear system of the form (1). The following

theorem provides sufficient conditions for k-contraction.

Theorem 5 Let S ⊊ Rn be a compact forward invariant set.
Suppose there exist two symmetric matrices P0, P1 ∈ Rn×n of
respective inertia (0, 0, n) and (k−1, 0, n−k+1), and µ0, µ1 ∈ R
such that

∂f

∂x
(x)⊤P0 + P0

∂f

∂x
(x) ≺ 2µ0P0, (17a)

∂f

∂x
(x)⊤P1 + P1

∂f

∂x
(x) ≺ 2µ1P1, (17b)

µ1 + (k − 1)µ0 < 0, (17c)

for all x ∈ S. Then, system (1) is infinitesimally k-contractive on S
(therefore, k-contractive on S).

A detailed discussion of Theorem 5 is postponed to Section VIII-B,
along with the associated proof. Intuitively, inequality (17a) bounds
the expansion rate for the variational system (6) by a factor µ0.
Differently, the second inequality (17b) bounds the contraction rate
for the variational system on a subsapce by a factor µ1. Consequently,
inequality (17c) constraints the contraction rate to be faster than the
expansion rate. This resembles the eigenvalue bounding approach
of Section III. However, a simple eigenvalue interpretation is not
applicable in the nonlinear framework. Hence, we directly bound the
fastest diverging direction and the slowest converging one, asking for
the latter to be sufficiently fast through (17c).

Notice that Theorem 5 considers constant matrices P0, P1. In view
of recent results on Riemannian contraction analysis, e.g. [1], [9],
[31], we claim that the use of constant metrics is restrictive and
that state-dependant metrics can help in widening the result to more
general cases. A direct consequence of this observation is the fact
that, contrarily to the linear case, the conditions of Theorem 5 are
in general not equivalent to those of Theorem 2. Nonetheless, we
highlight that restricting ourselves to the case of constant matrices
can help to derive some new asymptotic behavior for k-contractive
systems, as discussed at the end of Section II-C. Finally, we remark
that, under linear dynamics, Theorem 5 recovers Theorem 3 for the
particular case ℓ = 2 and d1 = k − 1.

Remark 8 Theorem 5 requires solving an infinite set of matrix
inequalities. Nonetheless, there are multiple strategies that can be
used to reduce it to a feasible problem. For instance, one could exploit
convex relaxation, as explained in [14, Section VI]. Alternatively, for
systems with a semi-linear structure (namely, f(x) = Ax + g(x)),
one can obtain a finite set of LMIs if the nonlinear term satisfies a
monotonic or a sector-bounded condition [35].

B. Relaxing conditions for the planar case

Note that, differently from Theorem 2, in Theorem 5 we require
the set S to be compact. We conjecture this compactness assumption
can also be dropped in Theorem 5. This conjecture is motivated by
the following result for the planar case n = k = 2.

Lemma 4 Let S ⊆ R2 and assume there exist symmetric matrices
P0, P1 ∈ R2×2 of inertia In(P0) = (0, 0, 2), In(P1) = (1, 0, 1)
and µ0, µ1 ∈ R such that, for all x ∈ S, inequalities in (17) are
satisfied. Then, system (1) is 2-contractive on S.

The proof of Lemma 4 is postponed to Section VIII-C. This result
shows that the inequalities in (17) may be valid on the whole Rn.
Consequently, in future works, we aim at exploring if Theorem 5 can
be expanded to the whole Rn. Currently, the technical obstruction that
prevents us to conclude the conjecture is the use of Theorem 6 and
Lemma 16 in Theorem 5 proof, which require S ⊊ Rn in order to
guarantee a bounded invariant subspace splitting.

C. k -contractive feedback design

Following the lines of the linear results presented in Section III,
we now elaborate on the conditions for k-contraction proposed in
Theorem 5. We aim at devising k-contractive controllers for nonlinear
systems. Precisely, we consider nonlinear systems of the form

ẋ = f(x) +Bu (18)

where u ∈ Rm and f is sufficiently smooth. In the next proposition,
we provide a result on k-contractive controller design.

Proposition 2 Let S ⊊ Rn be a compact set, and assume there
exist two symmetric matrices W0,W1 ∈ Rn×n, with W0 ≻ 0 and
inertia In(W1) = (k − 1, 0, n− k + 1) and a pair of real numbers
µ0, µ1 ∈ R, such that, for all x ∈ S,

W0
∂f
∂x (x)

⊤ + ∂f
∂x (x)W0 −BB⊤ ≺ 2µ0W0 (19a)

W1

(
∂f
∂x (x)−

1
2BB

⊤W−1
0

)⊤
+
(
∂f
∂x (x)−

1
2BB

⊤W−1
0

)
W1

−BB⊤ ≺ 2µ1W1. (19b)

Then, there exists a real number ω > 0 such that if

(k − 1)µ0 + µ1 + ω < 0, (20)

the feedback law u = −Kx with

K = 1
2B

⊤(W−1
0 +W−1

1 ). (21)

makes the system (18) k-contractive on S, if S is forward invariant
for the closed-loop system.

The proof of Proposition 2 is postponed to Section VIII-D.
Proposition 2 is an extension of the result for linear systems in
Theorem 3 to the nonlinear framework. However, besides the nonlin-
earities, we highlight some main differences between the two results.
First, since we require constant matrices Wi, the nonlinear result
cannot be proven to be necessary in general. Second, even if such
constant matrices do exist, there is no guarantee that they satisfy
a colinearity condition (15) uniformly on x. Hence, Proposition 2
proposes an alternative design that trades the colinearity condition
(15) for conservativeness in the sum of rates (20), i.e. the addition of
ω > 0. A similar approach can be used in the linear scenario to avoid
the colinearity condition (15) at the price of the necessity result.



D. Asymptotic behavior

In this section, we describe some asymptotic behaviors for k-
conctractive systems. In particular, for the cases k = {1, 2} we can
directly rely on Definition 1 to establish the existence of a unique
or multiple equilibria and exclude more complex behaviors (such as
limit cycle or chaotic ones). For k = 3, the sufficient conditions
of Theorem 5 allow to conclude the existence of simple attractors,
that is, fixed points or limit cycles. Finally, for k = n, the sufficient
condition of Theorem 2 allows to exclude the existence of repelling
equilibria.

1 -contractivity: For k = 1, we recover the asymptotic behavior
of the classical notion of contraction (see, e.g. [29] and references
therein). Namely, one can deduce the existence and attractiveness of
a unique equilibrium.

Lemma 5 Assume that system (1) is 1-contractive (according to
Definition 1) in a closed and forward invariant set S ⊆ Rn. Then,
system (1) has a unique equilibrium which is exponentially stable
with a domain of attraction including S.

Noting that for k = 1 volumes boil down to distances, the previous
lemma can be proved by using Banach fixed point theorem as in [6,
Lemma 2]. Furthermore, we highlight that S is not required to be a
compact set, hence it can be equal to Rn.

2 -contractivity: The property of 2-contraction can be used to study
phenomena: non-existence of trivial periodic solutions and multi-
stability.

Lemma 6 Assume that system (1) is 2-contractive (according to
Definition 1) in a compact and forward invariant set S ⊊ Rn. Then,
the following holds:

1) [10] system (1) has no non-trivial periodic solutions in S;
2) [36] every solution of system (1) initialized in S converges to

an equilibrium point (which may not be the same for every
solution).

The first item of the previous lemma shows that 2-contraction and
the conditions in Theorem 5 could be understood as a generalization
of the Bendixson’s criteria for systems of dimension larger than 2.
The second item connects 2-contraction with multi-stability.

3–contractivity: For the case k = 3, the property of 3-contraction
can be used to study non-trivial periodic solutions of the system. In
this case, however, we don’t explicitly rely on the Definition 1, but
rather on the (more stringent) sufficient conditions of Theorem 5.

Lemma 7 Assume that system (1) satisfies the conditions of Theo-
rem 5 with k = 3 in a compact forward invariant set S ⊊ Rn. Then,
every solution of (1) with initial condition in S converges to a simple
attractor, namely, a fixed point or a limit cycle (which may not be
the same for every solution).

The proof of Lemma 7 is postponed to Section VIII-E. We remark
that this result is not generally true for 3-contractive systems and it
is a consequence of the condition (17) with constant matrices Pi. As
an example, consider the Rössler system [37]

ẋ1 = x2, ẋ2 = −x1 − x3,

ẋ3 = 0.5((x1 − x21)− x3).
(22)

The 3-additive compound of the Jacobian is ∂f
∂x (x)

[3] = −0.5.
Therefore, condition (9) is trivially satisfied and the system (22) is 3-
contractive. Nonetheless, the nonlinear term x21 prevents the existence

Fig. 4. Evolution of two trajectories of the system (22). The first
(blue) has an initial condition [0.1, 0.1, 0] and the second (red)
[0.099, 0.1, 0].

Fig. 5. Evolution of three trajectories of the system (23). The
first (blue) has an initial condition [0.2, 0.5, 0], the second (red)
[−0.3,−0.3,−0.5] and the third (yellow) [0.2,−0.5,−0.3].

of a constant matrix P1 in (17b). Therefore, even if the system is 3-
contractive and evolves in a compact set, (17) cannot be satisfied and
there is no guarantee it will converge to a fixed point or limit cycle.
Indeed, this system presents chaotic behavior and its trajectories do
not converge to a simple attractor, see Figure 4.

Alternatively, consider the following system,

ẋ1 = x2 − 2x3, ẋ2 = −x1 − x3,

ẋ3 = 0.5((x1 − x31)− x3).
(23)

In this case, the 3-additive compound of the Jacobian is ∂f
∂x (x)

[3] =
−0.5, similarly to (22). Then, the system is 3-contractive. Moreover,
it evolves in a compact forward invariant set. However, differently
from (22), inequalities (17a)-(17c) are satisfied with µ0 = 0.2, µ1 =

−0.45 and P0 =
[
1.45 0.20 0.13
0.20 2.09 0.26
0.13 0.26 0.67

]
, P1 =

[
−2.05 −1.02 −0.45
−1.02 26.75 14.47
−0.45 14.47 6.41

]
.

Therefore, by Lemma 7 we can conclude that the system will
converge to a simple attractor (which may not be the same for every
solution). This behavior is shown in Figure 5, which presents the
evolution of three trajectories.

Remark 9 The sufficient conditions in Theorem 5 resemble condi-
tions for dominance analysis through cone fields, see, e.g., [14],
[38]. However, this does not imply the topics are strongly related.
For instance, the proofs of the asymptotic properties of 2-contractive
systems and systems that admit an invariant cone of rank 1 are very
different. In the first case, one first proves that there are no periodic
solutions, see Lemma 6, and then the Pugh’s closing-lemma implies
that any bounded solution converges to an equilibrium. In the second
case, (almost all) the trajectories of the system can be projected in



one-to-one way onto a 1-dimensional linear space, which implies that
(almost all) trajectories converge to an equilibrium.

n-contractivity: Finally, for the case k = n, one can exclude
the existence of repelling equilibria, that is, equilibria such that
any infinitesimally small perturbation acting in an arbitrary direction
results in a diverging trajectory. This is formalized as follows.

Definition 6 (Infinitesimally repelling equilibrium) Given a dy-
namical system ẋ = f(x), we say that x◦ ∈ Rn is an infinitesimally
repelling equilibrium if f(x◦) = 0 and −∂f

∂x (x
◦) is Hurwitz.

Lemma 8 Assume that system (1) satisfies the conditions of The-
orem 2 with k = n in a set S ⊆ Rn. Then, system (1) has no
infinitesimally repelling equilibria in S.

The proof of Lemma 8 is postponed to Section VIII-F. A similar
result could be obtained using the conditions of Theorem 5. However,
for k = n, the conditions of Theorem 5 are more restrictive and
computationally heavier, see Section III-B. Therefore, we omit the
corresponding statement.

V. ILLUSTRATIONS

A. Multi-stability of a grid-connected synchronverter
Synchronverters are electrical inverters controlled to behave as a

synchronous generator. In this section, we will consider the fourth-
order model of the synchronverter presented in [21],

ẋ1 = −R
L
x1 + x2x3 +

V

L
sinx4

ẋ2 = −x1x3 − R

L
x2 − m

L
ifx3 +

V

L
cosx4

ẋ3 =
m

J
ifx2 − Dp

J
(x3 − wn) +

Tm
J

ẋ4 = x3 − wn.

(24)

Due to space restrictions, we omit the physical meaning of the
equations, and we refer to [21] for a detailed presentation.

Synchronverters properly operate when synchronized to the grid.
Using the notation in (24), this occurs when x3 = wn. With
this in mind, one may wonder if for any initial condition (inside
a predefined set) the synchronverter will converge to a state of
synchronization. Note that the x4 dynamics are just an integral of
the error x3−wn. Hence, any equilibrium point of (24) presents the
required synchronization behavior.

We highlight that (24) may present multiple equilibrium points
[21]. Therefore, the study of the eventual system’s synchronization
to the grid boils down to the study of its convergence properties to
any of its equilibria. Nonetheless, the complexity of such analysis led
to several works dedicated to answering this specific question [20].

In this section, we will use k-contraction as a simpler tool to
prove the convergence properties of the synchronverter model (24).
In particular, we will show that Theorem 5 can be used to prove 2-
contractivity of system (24). Then, by boundedness of the system’s
trajectories, the convergence of the system to a (possibly non-unique)
equilibrium point is guaranteed by item 2) of Lemma 6.

We consider the model parameters in [21], that is wn =
wg = 100π, V = 230

√
3, J = 0.2, R = 1.875, L =

0.05675, Dp = 10, m = 3.5, with Tm = 0, if =
1. Moreover, we consider the forward invariant set S de-
fined as x1 ∈

[
−81 5

]
, x2 ∈

[
−67 10.5

]
, x3 ∈[

298 315
]
, x4 ∈

[
1 −0.2

]
. Then, by means of the convex

relaxation approach mentioned in Remark 8, the matrix inequalities
(17a)-(17c) can be proven to hold with with µ0 = 14, µ1 =

−15 and P0 =

[
0.00007 0.000001 −0.0005 0.00145
0.000001 0.00006 −0.000076 0.001036
−0.0005 −0.000076 0.011 −0.02135
0.00145 0.001036 −0.02135 0.9882

]
, P1 =[

0.0007 0.00001 −0.00851 −0.0692
0.00001 0.00027 −0.000382 −0.00009
−0.00851 −0.000382 0.157 1.308
−0.0692 −0.00009 1.308 0.842

]
. Therefore, by Theo-

rem 17, (24) is 2-contractive on S and the desired stability property
follows by item 2) of Lemma 6.

B. Multi-stability via 2-contractive feedback

Consider the following nonlinear system:

ẋ1 = x2 − x3, ẋ2 = −x1 − x3 + u, ẋ3 = x1(x
2
1 − 0.25). (25)

In the absence of input (u = 0), the system trajectories present non-
trivial periodic solutions and the 3-additive compound is ∂f

∂x (x)
[3] =

0. Therefore, the system is not 3-contractive (nor 2-contractive nor
1-contractive). The objective is to design a linear state-feedback
controller u = −Kx, such that the system converges to a non-
necessarily unique equilibrium point.

The closed-loop system has 3 equilibrium points,

x∗1 = {0,−0.5, 0.5}, x∗2 = x3, x∗3 =
−(1 + k1)

1 + k3 + k2
x1,

where k1, k2, k3 are the components of the feedback gain K. The
existence of multiple equilibrium points prevents the design of a
1-contractive linear controller, e.g., [7]. Nonetheless, it may still
be possible to design a controller that guarantees 2-contraction of
the closed-loop. Since the system dynamics evolve a in compact
set, 2-contraction guarantees convergence to a (possibly non-unique)
equilibrium point by means of item 2) of Lemma 6.

With the aim of exploiting the results in Proposition 2, via the con-
vex relaxation technique mentioned in Remark 8 one can verify that
the matrix inequalities (19a)-(19b) are satisfied with µ0 = 0.3, µ1 =

−0.6 and W0 =

[
1.86 −1.21 −0.92
−1.21 2.13 0.86
−0.92 0.86 0.96

]
, W1 =

[
2.84 0.06 2.65
0.06 0.27 −5.16
2.65 −5.19 −2.29

]
.

With this specific selection, we have ω = 0.048, which implies (20)
is satisfied. Therefore, according to Proposition 2 the state-feedback
law u = −Kx with gain (21), namely K = [ 0.89 2.16 −1.18 ], makes
the closed-loop system 2-contractive. Indeed, the closed-loop system

satisfies (9) with η = 0.091 and Q =

[
1.26 −0.06 0.46
−0.05 2.74 −1.34
0.41 −1.34 2.33

]
, which

validates the result by means of Theorem 2. More precisely, the
closed-loop system presents 3 equilibrium points, one unstable at
the origin and 2 (locally) asymptotically stable.

VI. PROOF OF LINEAR RESULTS (ANALYSIS)
In the rest of this section, given a matrix A ∈ Rn×n, we order its

eigenvalues in such a way that

Re(λ1) ⩾ Re(λ2) ⩾ . . . ⩾ Re(λn). (26)

A. k -contraction properties and inertia theorem

The following result is a direct consequence of the additive
compound definition.

Lemma 9 A system ẋ = Ax, with x ∈ Rn is k-contractive if and
only if the eigenvalues λi of the matrix A satisfy

k∑
i=1

Re(λi) < 0 , (27)

according to the above mentioned ordering (26).

Proof: A necessary and sufficient condition for k-contraction
of a linear system ẋ = Ax is that the matrix A[k] is Hurwitz [11].



The necessity part can be proven by adapting [39, Lemma 1] to
continuous time. Moreover, recall that a spectral property of the
additive compound matrix is that the eigenvalues of the matrix A[k]

are all the possible sums of the form λi1 + λi2 + · · · + λik , with
1 ⩽ i1 < · · · < ik ⩽ n, see [11]. That is, a necessary and sufficient
condition for k-contraction is that the sum of any combination of k
eigenvalues of A is negative. In particular, this holds true if and only
if the first k eigenvalues satisfy condition (27) with the ordering (26).

Additionally, we state a lemma about inertia properties of the
Lyapunov equation (12a), collecting together various results from the
literature, e.g., [16, Lemma 1, Section 3], [17, Theorem 2.5].

Lemma 10 Given a matrix A ∈ Rn×n, a real constant µ, and an
integer p ∈ {0, . . . , n}, the following statements are equivalent:

1) A has p eigenvalues with real part larger than µ and n − p
eigenvalues with real part smaller than µ,

2) the matrix A− µI has inertia (n− p, 0, p),
3) there exists a symmetric matrix P ∈ Rn×n with inertia In(P ) =

(p, 0, n− p) satisfying A⊤P + PA ≺ 2µP .
4) given a symmetric positive definite matrix Q ≻ 0 there exists a

symmetric matrix P ∈ Rn×n with inertia In(P ) = (p, 0, n−p)
satisfying (A− µI)⊤P + P (A− µI) = −Q.

Proof: The eigenvalues of A − µI are the shifted eigenvalues
λ1 − µ, . . . , λn − µ, ordered as in (26). If A− µI has inertia (n−
p, 0, p), it implies that Re(λp+1)− µ < 0. This shows that (1) and
(2) are equivalent. The equivalence between (3) and (2) is due to
[16, Lemma 1, Section 3] and the one between (2) and (4) is due
to [17, Theorem 2.5]. Finally, we have that (4) implies (3). Indeed,
since Q ≻ 0, (4) implies A⊤P + PA = −2µP −Q ≺ −2µP.

B. Proof of Theorem 3

The proof of Theorem 3 is obtained by combining the two previous
lemmas. To begin with, we introduce a new notation in order to
represent the eigenvalues of A and their associated multiplicities.
Precisely, consider the matrix A in (11) and let Π : C → R denote the
canonical projection onto the real axis. Let σ(A) be the spectrum of A
and suppose Π(σ(A)) = {α1, α2, . . . , αq} (q ⩽ n) with α1 > α2 >
· · · > αq. Set h̄i = card

(
Π−1(αi+1)

⋂
σ(A)

)
, where eigenvalues

have been counted with their algebraic multiplicities (so that h̄0 +
h̄1 + · · · + h̄q−1 = n). Finally, let d̄0 = 0 and d̄i =

∑i−1
j=0 h̄j , for

each i ∈ {1, . . . , q − 1}.
We remark that the variables d̄i, h̄i are related to variables di, hi

of Theorem 3, hence the similar notation. To see this relation, notice
that h̄i represents the number of eigenvalues that project to αi+1 and
d̄i represents the amount of eigenvalues with real part strictly larger
than αi+1. Therefore, for any constant µ ∈ R such that α1 < µ,
we have In(−A + µI) = (0, 0, n). Similarly, if αi+1 < µ < αi,
we have that In(−A + µI) = (d̄i, 0, n − d̄i). Consequently, if we
avoid the singular case π0(−A + µI) > 0, the matrix −A + µI
can only present a particular set of inertia (d̄i, 0, n − d̄i) with i ∈
{0, . . . , q − 1}. From this fact and Lemma 10, we obtain that the
matrix inequalities in (12a) are only feasible for the particular set of
inertia In(Pi) = (d̄i, 0, n − d̄i) with i ∈ {0, . . . , q − 1}. A direct
consequence of this result is that ℓ ⩽ q.

We now present the main arguments proving sufficiency and
necessity of the result in Theorem 3.
Sufficiency. In order to prove the sufficiency, we will show that the set
of inequalities (12) implies the condition (27). To this end, notice that
a solution of (12a) for some µi ∈ R and Pi with inertia In(Pi) =
(di, 0, n−di) implies that In(−A+µI) = (di, 0, n−di) by means of

Lemma 10. That is, A has only di eigenvalues with real part strictly
larger than µi. This is equivalent to the bound

Re(λdi+1
) ⩽ Re(λdi+1) < µi, ∀i ∈ {0, . . . , ℓ− 1}. (28)

Now, due to Lemma 10, we have that µi+1 < µi for all i ∈
{0, . . . , ℓ−2}. Therefore, the bound (12b) implies µℓ−1 ⩽ 0, which
combined with (28), implies λdℓ < 0. Additionally, because the
eigenvalues are ordered as per (26), the following bound trivially
holds for all i ∈ {0, . . . , ℓ− 1}

di+1∑
j=di+1

Re(λj) ⩽ (di+1 − di)Re(λdi+1) = hiRe(λdi+1),

where the definition hi = (di+1 − di) has been used. Combining
this bound with the fact that dℓ ⩽ k, the bound λdℓ < 0 and the fact
that the eigenvalues are ordered as in (26), we obtain the following,

k∑
i=1

Re(λi) ⩽
dℓ∑
i=1

Re(λi) =

ℓ−1∑
i=0

di+1∑
j=di+1

Re(λj)

⩽
ℓ−1∑
i=0

hiRe(λdi+1). (29)

Then, combining (28), (29) and (12b) we have

k∑
i=1

Re(λi) <

ℓ−1∑
i=0

hi µi ⩽ 0 . (30)

Consequently, the system is k-contractive by Lemma 9.
Necessity. Define

pk := max
(
{d̄0, d̄1, . . . , d̄q−1}

⋂
[0, k − 1]

)
,

ck := card
(
{d̄0, d̄1, . . . , d̄q−1}

⋂
[0, k − 1]

)
.

(31)

Then, the following equality holds

(k − pk)αck +

ck−2∑
i=0

hi αi+1 =

k∑
i=1

Re(λi). (32)

Hence, combining Lemma 9 and (32), if the system is k-contractive,
the next bound is satisfied

(k − pk)αck +

ck−2∑
i=0

hi αi+1 < 0. (33)

Then, by continuity, there exists a scalar ε > 0, such that

(k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0 .

Next, fix ℓ = ck, dℓ = k−pk+dℓ−1, di = d̄i for all i ∈ {0, . . . , ℓ−
1} and select µi−1 = ε+ αi, for all i ∈ {1, . . . , ℓ}. We have

ℓ−1∑
i=0

hiµi = (k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0,

thus showing (12b). Now, define matrices Âi := A − µiI with
i ∈ {0, . . . , ℓ − 1}. It is clear that, since µi−1 > αi by definition,
each matrix Âi has d̄i eigenvalues with positive real part and
n − d̄i eigenvalues with negative real part. That is In(Âi) =
(n− d̄i, 0, d̄i). Then, by Lemma 10, there exist symmetric matrices
Pi with In(Pi) = In(−Âi) = (d̄i, 0, n− d̄i) such that

A⊤Pi + PiA ≺ 2µiPi ∀i = 0, . . . , ℓ− 1 ,

thus concluding the proof.



VII. PROOF OF LINEAR RESULTS (DESIGN)

This section follows the next notation. First, we will consider that
every pair (A,B), is algebraically equivalent to the form in (13).
Second, we define Re(λu1 ) ⩾ . . . ⩾ Re(λunu), as the ordered set of
eigenvalues of Au.

A. Proof of Lemma 3

Sufficiency. Without loss of generality, consider a system in the form
(13). After a feedback design u = −Kx = −[Kc Ku](x

⊤
c , x

⊤
u )

⊤ is
selected, the closed-loop eigenvalues are given by σ(A) = σ(Ac −
BcKc) ∪ σ(Au). Then, we can arbitrarily assign the eigenvalues
of the closed-loop matrix Ac − BcKc, since the pair (Ac, Bc) is
controllable. As a consequence, let c = kλu1 and select Kc such
that the largest eigenvalue of Ac −BcKc has real part smaller than
−|Re(c)|. Then, the conditions of Lemma 9 are satisfied either if Au
is k-contractive or nu < k by construction.
Necessity. If nu ⩾ k and ẋ = Aux is not k-contractive, then, there
is a sum of k eigenvalues in the spectrum of Au that is positive,
see Lemma 9. Therefore, since the spectrum of Au is invariant to
the controller gain, the closed-loop system A − BK cannot be k-
contractive (invoking again Lemma 9), which proves necessity.

B. Inertia theorems generalizing stabilizability conditions

We state a set of new technical lemmas related to the feasibility
and the inertia of the generalized stabilizability-like inequality (14a).
Note that the following lemmas do not require the pair (A,B) to be
controllable, contrarily to [18].

Lemma 11 Consider a pair of matrices (A,B) and its canonical
decomposition (13). Suppose that for some µ ∈ R, In(Au − µI) =
(nu − ϱ, 0, ϱ) with ϱ ∈ {0, . . . , nu}. Then, there exists a symmetric
matrix W ∈ Rn×n, with inertia In(W ) = (ϱ, 0, n− ϱ), satisfying

WA⊤ +AW −BB⊤ ≺ 2µW. (34)

Proof: Without loss of generality, suppose that the pair (A,B) is
in the form (13). Moreover, define the shifted matrices Âc := Ac−µI
and Âu := Au − µI . Then, since In(Âu) = (nu − ϱ, 0, ϱ) and by
Lemma 10, there exist some symmetric matrix Wu ∈ Rnu×nu with
inertia In(Wu) = (ϱ, 0, nu − ϱ) such that

WuÂ
⊤
u + ÂuWu = −Q, (35)

with Q ≻ 0. Furthermore, since the pair (Ac, Bc) is controllable, the
pair (−γI −Ac, Bc) is also controllable for any γ ∈ R. Hence, for
γ > 0 large enough and from the Lypaunov test of controllability [33,
Theorem 12.4], there exist some positive symmetric matrix Wc ≻ 0

Wc(−γI − Âc)
⊤ + (−γI − Âc)Wc = −BcB⊤

c

which implies

WcÂ
⊤
c + ÂcWc −BcB

⊤
c = −2γWc. (36)

With this in mind, consider a symmetric matrix W with inertia
In(W ) = (ϱ, 0, n− ϱ) of the form

W =

[
Wc 0
0 κWu

]
where κ > 0 has to be fixed, with Wu and Wc satisfying (35) and
(36). Now, by subtracting 2µW from the left-hand side of (34), we

get the following equality[
Wc 0
0 κWu

][
Â⊤
c A⊤

12

0 Â⊤
u

]
+

[
Âc A12

0 Âu

] [
Wc 0
0 κWu

]
−
[
BcB

⊤
c 0

0 0

]
=

[
−2γWc κA12Wu

κWuA
⊤
12 −κQ

]
. (37)

Since Wc and Q are positive definite, the right hand side of identity
(37) can be made negative definite by taking κ > 0 sufficiently small,
see e.g. [33, Section 14.4].

Additionally, we present the following technical lemma.

Lemma 12 Consider a pair of matrices (A,B) and its canonical
decomposition (13). Moreover, assume there exists a (non-singular)
symmetric matrix W ∈ Rn×n and a constant µ ∈ R such that

WA⊤ +AW −BB⊤ ≺ 2µW. (38)

Then, π−(W ) ⩾ π−(−Au + µI).

Proof: Without loss of generality, we suppose that the pair
(A,B) is in the form (13). Moreover, notice that the inequality (38)
can be re-arranged as follows

WĀ⊤ + ĀW ≺ 2µW, (39)

where Ā := A − 1

2
BB⊤W−1. Now, recall the notation in (13)

and notice that the eigenvalues in the spectrum of Au cannot be

modified by the term
1

2
BB⊤P−1, thus, we have σ(Au) ⊊ σ(Ā),

or, equivalently, σ(Au−µI) ⊊ σ(Ā−µI). From this fact we obtain
that π−(−Ā + µI) ⩾ π−(−Au + µI). Then, by Lemma 10 we
have that any (non-singular) W that satisfies (39) necessarily implies
π−(−Ā+ µI) = π−(W ), which concludes the proof.

Finally, we present a technical lemma that relates the colinearity
condition in (15) and the stabilizability-like inequality (14a).

Lemma 13 Consider a pair of matrices (A,B) and its canonical
decomposition (13). Suppose that for some µ1, µ2 ∈ R with µ1 ⩽ µ2,
In(Au−µ1I) = (nu−ϱ1, 0, ϱ1), In(Au−µ2I) = (nu−ϱ2, 0, ϱ2)
with ϱ1, ϱ2 ∈ {0, . . . , nu}. Then, there exist a pair of symmetric
matrices W1,W2 ∈ Rn×n, with inertia In(W1) = (ϱ1, 0, n −
ϱ1), In(W2) = (ϱ2, 0, n− ϱ2), satisfying

W1A
⊤ +AW1 −BB⊤ ≺ 2µ1W1, (40a)

W2A
⊤ +AW2 −BB⊤ ≺ 2µ2W2, (40b)

B⊤W−1
2 = B⊤W−1

1 . (41)

Proof: Without loss of generality, we suppose the pair (A,B)
to be in the form (13). This is not a restrictive assumption since
the colinearity condition (41) is preserved under linear coordinate
changes z = Tx, for any non-singular constant matrix T ∈ Rn×n.

Now, since In(Au − µ1I) = (nu − ϱ1, 0, ϱ1), we can follow
similar arguments as in Lemma 11 proof, to show that (40a) can be
satisfied with a symmetric matrix W1 of the form

W1 =

[
Wc 0
0 κ1W1,u

]
(42)

where κ1 > 0 is a sufficiently small constant, W1,u ∈ Rnu×nu is
a symmetric matrix with inertia In(W1,u) = (ϱ1, 0, nu − ϱ1) and
Wc ≻ 0 is a positive definite symmetric matrix computed from

Wc(Ac − µ1I)
⊤ + (Ac − µ1I)Wc −BcB

⊤
c = −2γWc. (43)

for some positive γ > 0.



With this in mind, we can construct a solution to (40b) such that
W1 and W2 are colinear according to (41). Since In(Au − µ2I) =
(nu − ϱ2, 0, ϱ2) and by Lemma 10, there exists some symmetric
matrix W2,u ∈ Rnu×nu with inertia In(W2,u) = (ϱ2, 0, nu − ϱ2)
such that, for some Q ≻ 0,

W2,u(Au − µ2I)
⊤ + (Au − µ2I)W2,u = −Q. (44)

Moreover, recall the relation (43), then, we derive the following

Wc(Ac − µ2)
⊤ + (Ac − µ2I)Wc −BcB

⊤
c

=Wc(Ac − µ1I)
⊤ + (Ac − µ1I)Wc + 2(µ1 − µ2)Wc −BcB

⊤
c

= −2(γ + µ2 − µ1)Wc.
(45)

With this in mind, consider a symmetric matrix W2 of the form

W2 =

[
Wc 0
0 κ2W2,u

]
(46)

where κ2 > 0 has to be fixed, with W2,u and Wc satisfying (44) and
(45). Now, by subtracting 2µ2W2 from the left-hand side of (40b)
and defining Âc := Ac − µ2I and Âu := Au − µ2I , we get the
following equality[

Wc 0
0 κW2,u

][
Â⊤
c A⊤

12

0 Â⊤
u

]
+

[
Âc A12

0 Âu

] [
Wc 0
0 κW2,u

]
−
[
BcB

⊤
c 0

0 0

]
=

[
−2(γ + µ2 − µ1)Wc κ2A12W2,u

κ2W2,uA
⊤
12 −κ2Q

]
. (47)

Recall that µ1 ⩽ µ2 by assumption and γ > 0,Wc ≻ 0 by design.
Consequently, −2(γ+µ2−µ1)Wc is negative definite and the right
hand side of identity (47) can be made negative definite by taking
κ2 > 0 sufficiently small.

Finally, since the system is in the form (13), we have that W1,W2

constructed as in the block-diagonal form (42) and (46) satisfy (41).

C. Proof of Theorem 4

Now, similar to the proof in Section VI-B, we introduce a notation
in order to represent the eigenvalues of Au and their associated
multiplicities. Precisely, consider the matrix Au in (13) and σ(Au)
its spectrum and suppose Π(σ(Au)) = {α1, α2, . . . , αq} (q ⩽
nu) where again Π : C → R denote the canonical projection
onto the real axis and with α1 > α2 > · · · > αq. Set h̄i =
card

(
Π−1(αi+1)

⋂
σ(Au)

)
, where eigenvalues have been counted

with their algebraic multiplicities (so that h̄1+h̄2+· · ·+h̄q−1 = nu).
Finally, let d̄0 = 0, d̄i =

∑i−1
j=1 h̄j , i ∈ {1, . . . , q − 1}. Similar

to Section VI-B, h̄i represents the number of eigenvalues of Au
projected to αi+1 and d̄i represents the amount of eigenvalues with
real part strictly than αi+1.

Finally, by recalling Lemma 3 and Lemma 9, a necessary and
sufficient condition for k-order stabilizability is either nu < k or

k∑
j=1

Re(λuj ) < 0. (48)

We now present the main arguments proving that the inequalities
(14) are necessary and sufficient for k-order stabilizability.

Sufficiency. The goal of this proof is to show that if (14) is satisfied,
then either (48) is satisfied or nu < k, hence showing the result
invoking Lemmas 3 and 9. Without loss of generality, we suppose
that the pair (A,B) is in the form (13).

Firstly, we assume the case k ⩽ nu and we show that (14) implies
(48). To this end and by means of Lemma 12, we have that inequality

(14a) implies that π−(Wi) ⩾ π−(−Au+µiI) for all i ∈ {0, . . . , ℓ−
1}. Recalling that Wi has inertia In(Wi) = (di, 0, n− di), we have
that Au has at most di eigenvalues with real part strictly larger than
µi. This is equivalent to the bound

Re(λudi+1
) ⩽ Re(λudi+1) < µi, ∀i ∈ {0, . . . , ℓ− 1}. (49)

Then, following similar arguments as in the sufficiency part of
Section VI-B, the next bound can be obtained.

k∑
i=1

Re(λui ) <

ℓ−1∑
i=0

hi µi ⩽ 0 . (50)

Thus, (48) is satisfied and the pair (A,B) is k-order stabilizable
invoking Lemmas 3 and 9.

Finally, for the case k > nu, we have k-order stabilizability
directly from Lemma 3, thus ending the sufficiency proof.
Necessity. As stated before, if the pair (A,B) is k-order stabilizable
then, either (48) or nu < k is verified. The goal of this proof is to
show that if one of these conditions are satisfied, then, there exists
a solution to the inequalities (14). We begin by assuming the case
k ⩽ nu and (48) is verified. Now, let the scalars pk and ck be defined
as in (31).

Then, the following equality holds

(k − pk)αck +

ck−2∑
i=0

hi αi+1 =

k∑
j=1

Re(λuj ). (51)

Hence, combining (48) and (51), if the system is k-order stabilizable
(with k ⩽ nu), the next bound is satisfied

(k − pk)αck +

ck−2∑
i=0

hi αi+1 < 0. (52)

Then, by continuity, there exist a scalar ε > 0, such that

(k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0

Now, fix ℓ = ck, dℓ = k−pk+dℓ−1, di = d̄i for all i ∈ {0, . . . , ℓ−
1} and select µi−1 = ε+ αi, for all i ∈ {1, . . . , ℓ},. We have

ℓ−1∑
i=0

hiµi = (k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0,

thus showing (14b). Now, since µi > αi+1 for all i ∈ {0, . . . , ℓ−1}
we have that Au has only d̄i eigenvalues strictly larger than µi and
the rest are strictly smaller. That is, In(Au−µiI) = (nu− d̄i, 0, d̄i)
for all i ∈ {0, ℓ − 1}. Then, by Lemma 11, there exist symmetric
matrices Wi with In(Wi) = {d̄i, 0, n− d̄i} such that

A⊤Wi +WiA−BB⊤ ≺ 2µiWi ∀i ∈ {0, . . . , ℓ− 1} ,

thus concluding the proof if (48) is verified and k ⩽ nu.
We now proceed with the necessity proof for the case k > nu.

For this proof, we remark that since a k-contractive system is also
k̄-contractive for all k̄ ∈ {k, . . . , n} [11], we have that if a pair
(A,B) is k-order stabilizable, then, it is also k̄-order stabilizable
for all k̄ ∈ {k, . . . , n}. Additionally, by means of Lemma 3, a pair
(A,B) is always k-order stabilizable if k = nu + 1. Therefore,
for all k > nu, k-order stabilizability necessarily implies k̄-order
stabilizability with k̄ = nu + 1. With this fact in mind, this proof is
based on showing that, if k = nu+1, then, there always exists a pair
of matrices W0,W1 and constants µ0, µ1 such that (14) is satisfied.
We highlight that this result does not require (48) to be satisfied.

Precisely, assume k = nu+1. Notice that we can always guarantee
In(Au−µ0I) = (nu, 0, 0) for any µ0 ∈ R large enough. Therefore,



by considering this sufficiently large µ0 and by means of Lemma 11,
we know that there exists a symmetric matrix W0 with inertia
In(W0) = (0, 0, n) solution of (14a). Furthermore, we can always
find a sufficiently negative constant µ1 < 0, such that

µ1 + nuµ0 ⩽ 0, (53)

and In(Au − µ1I) = (0, 0, nu). Therefore, by considering this µ1
and by means of Lemma 11, there exists a symmetric matrix W1

with inertia In(W1) = (nu, 0, n − nu) solution of (14a). Finally,
fix ℓ = 2 and select the aforementioned pair of matrices W0,W1

and pair of constants µ0, µ1 (these matrices and constants satisfy
(14a)). Moreover, fix dℓ = nu + 1. With this selection, we have
d0 = 0, d1 = nu and h0 = nu, h1 = 1. Thus, (53) implies (14b).

D. Proof of Proposition 1
The first part of the proof focuses on proving the existence of

solutions for the inequalities (14) considering the assumptions stated
in the theorem and in particular the colinearity condition in (15). An
immediate result of Lemma 13 is that there always exist a set of
constants µi and Wi such that (14b) and the colinearity condition in
(15) is simultaneously satisfied for all i ∈ {1, . . . , ℓ− 1}. Moreover,
notice that Lemma 13 preserves the relation between the inertia of
Au − µiI and Wi as in Lemma 11. Consequently, the arguments in
the necessity part of Section VII-C could be repeated to obtain the
existence of a solution from a k-order stabilizability assumption.

The second part of the proof consist in showing how the state-
feedback law (16) makes the closed-loop system

ẋ = (A−BK)x = (A− ρ

2
BB⊤W−1

0 )x, (54)

k-contractive for all ρ ⩾ 1. Note that, since Wi is non-singular and
symmetric for all i ∈ {0, . . . , ℓ− 1} and by means of the colinearity
condition (15), the left-hand side of (14a) can be rearranged as
follows for all i ∈ {0, . . . , ℓ− 1}

WiA
⊤ +AWi −BB⊤

=Wi(A− 1
2BB

⊤W−1
i )⊤ + (A− 1

2BB
⊤W−1

i )Wi

=Wi(A− 1
2BB

⊤W−1
0 )⊤ + (A− 1

2BB
⊤W−1

0 )Wi.

Combining this result with the right-hand side of (14a), we obtain
that for all i ∈ {0, . . . , ℓ− 1}

Wi(A− 1
2BB

⊤W−1
0 )⊤+(A− 1

2BB
⊤W−1

0 )Wi ≺ 2µiWi. (55)

Now, by adding (1− ρ)BB⊤ in both sides of (55) and considering
the fact that (1− ρ)BB⊤ ⪯ 0 for all ρ ⩾ 1, by (15) we get,

Wi(A− ρ

2
BB⊤W−1

0 )⊤ + (A− ρ

2
BB⊤W−1

0 )Wi

≺ 2µiWi + (1− ρ)BB⊤ ⪯ 2µiWi. (56)

By post-multiplying and pre-multiplying both side of (56) by W−1
i

and defining Pi :=W−1
i we get for all i ∈ {0, . . . , ℓ− 1}

(A− ρ

2
BB⊤W−1

0 )⊤Pi + Pi(A− ρ

2
BB⊤W−1

0 ) ≺ 2µiPi. (57)

Finally, combining (57) and (14b) with Theorem 3 proves that the
closed-loop system (54) is k-contractive.

VIII. PROOFS OF NONLINEAR RESULTS

A. Preliminary results
We provide in this section some preliminary results that will be

used in the proof of Theorem 5. We start by recalling the definition
of p-dominance [14].

Definition 7 (p-dominance) System (1) is said to be strictly p-
dominant on S ⊊ Rn if1 there exist a real number µ ⩾ 0 and a
symmetric matrix P ∈ Rn×n with inertia In(P ) = (p, 0, n − p)
such that

P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P ≺ −2µP , ∀x ∈ S. (58)

Then, we recall (with a mild reformulation) the following result
on p-dominance [14, Theorem 1].

Theorem 6 Suppose that system (1) is strictly p-dominant on a
compact forward invariant set A ⊊ Rn with rate µ > 0 and
symmetric matrix P with inertia In(P ) = (p, 0, n − p). Then, for
each x ∈ A, there exists an invariant splitting TxRn = Vx ⊕ Hx,
i.e. there exists a continuous mapping T : Rn → Rn×n invertible
for any x ∈ A and satisfying

T(x) :=
[
Th(x) Tv(x)

]
, (59a)

where Th : Rn → Rn×n−p and Tv : Rn → Rn×p satisfy

Im Th(x) = Hx, Im Tv(x) = Vx. (59b)

Moreover, there exist a scalar ch > 0 such that∣∣∣∂ψ∂x t(x) [Th(x) 0
]
v
∣∣∣ ⩽ che

−µt ∣∣[Th(x) 0
]
v
∣∣ (59c)

holds for all (t, x, v) ∈ R⩾0 ×A× TxRn.

With this in mind, it is clear that if µ1 is strictly negative, the
matrix inequality (17b) imposes a form of horizontal contraction on
the system [8, Section VII]. Nonetheless, horizontal contraction is not
a sufficient condition for k-contraction [15]. This motivates (17a). We
clarify the effects of (17a) via the following Lemma.

Lemma 14 Consider system (1) and assume there exist a forward
invariant compact set A ⊊ Rn, a symmetric positive definite matrix
P0 ∈ Rn×n and a scalar µ0 satisfying (17a) for all x ∈ A. Then
there exists a constant cv > 0 such that∣∣∣∂ψ∂x t(x) [0 Tv(x)

]
v
∣∣∣ ⩽ cve

µ0t
∣∣[0 Tv(x)

]
v
∣∣ (60)

for all (t, x, v) ∈ R⩾0 ×A× TxRn, with Tv as in (59b).

Proof: Consider the function, W := v⊤P0v. It satisfies

λ(P0)|v|2 ⩽W (v) ⩽ λ(P0)|v|2, (61)

where λ(·) and λ(·) represent the minimum and maximum eigenvalue
of their argument, respectively. By (6), its time-derivative satisfies

Ẇ = v⊤
(
P0
∂f

∂x
(x) +

∂f

∂x
(x)⊤P0

)
v

< 2µ0v
⊤P0v = 2µ0W.

Then, by Grönwall–Bellman inequality, we obtain

W (t) ⩽ e2µ0tW (0), ∀t ∈ R⩾0.

Invoking (61), we obtain for all (t, x, v) ∈ R⩾0 ×A× TxRn

∣∣∂ψ
∂x

t
(x)v

∣∣ ⩽
√
λ(P0)

λ(P0)
eµ0t|v|.

As
[
0 Tv(x)

]
v ∈ TxRn, the result trivially follows.

Given the above results, condition (17c) can be seen as imposing a
bound on the maximum expansion rate of the vertical subspace with

1The definition can be extended to the full set Rn but in this case condition
(58) is modified into P ∂f

∂x
(x) + ∂f

∂x
(x)⊤P ⪯ −2µP − εI for all x ∈ Rn

where the term −εI is added to ensure uniformity.



respect to the contraction rate of the horizontal one. In particular,
(17c) holds if the first is smaller than the latter. We now relate this
property to infinitesimal k-contraction. As a first step, we present a
technical lemma related to matrix compounds.

Lemma 15 Consider a time-varying matrix M(t) ∈ Rn×n

M(t) =
[
H(t) V (t)

]
,

with H(t) ∈ Rn×n−p, V (t) ∈ Rn×p and p ∈ [0, n). Assume there
exist real numbers ch, cv, α, β > 0 such that

|H(t)| ⩽ che
−αt, |V (t)| ⩽ cve

βt, ∀t ∈ R+. (62)

If α > (k − 1)β for some integer k ∈ [p + 1, n], there exist some
real numbers c, ε > 0 such that

|M(t)(k)| ⩽ ce−εt, ∀t ∈ R+. (63)

Proof: Consider the elements of the compound matrix M(t)(k).
Each one is a kth-order minor of the original matrix M(t), i.e., it
is the determinant of a k × k submatrix of M(t), see Definition 2.
Since k ⩾ p+1, each k× k submatrix contains at least one column
composed of elements of H(t). That is, in the minimum case

Mk(t) =
[
h(t) v1(t) . . . vk−1(t)

]
, (64)

where Mk(t) ∈ Rk×k is a submatrix of M(t), h(t) ∈ Rk is a vector
with components of H(t) and vi(t) ∈ Rk for i = 1, . . . , k − 1 is
a vector with components of V (t). In what follows, we show the
elements of M(t)(k) are bounded. Hence, we focus on submatrices
of the form (64), since their determinant represents the worst-case
scenario in a stability sense. By definition of the wedge product,

det(Mk(t)) = h(t) ∧ v1(t) ∧ · · · ∧ vk−1(t).

The wedge product can be represented using a basis ei, where
ei depicts the ith canonical vector of Rn. More specifically, by
bilinearity of the wedge product, we have

det(Mk(t)) =

n∑
i=1

hi(t)(ei ∧ v1(t) ∧ · · · ∧ vk−1(t)),

where hi(t) is the ith element of h(t). By performing similar
operations on the remaining vectors we deduce

det(Mk(t)) =

k∑
i1=1

· · ·
k∑

ik=1

hi1(t)v
i2
2 (t) . . . v

ik
k−1(t)Ek, (65)

where Ek := (ei1 ∧ ei2 ∧ · · · ∧ eik ). By (62), we have

|hi(t)| ⩽ che
−αt, |vi(t)| ⩽ cve

βt.

Moreover, the factor Ek will be either zero or an element of the
canonical basis in Rn multiplied by plus or minus one. Thus, using
the triangle inequality, one obtains

| det(Mk(t))| ⩽ κchc
k−1
v e(−α+(k−1)β)t

where κ > 0 is a positive constant related to the number of non-zero
instances of Ek. Now, since α − (k − 1)β > 0 by assumption, by
continuity there always exists ε > 0 such that α− (k−1)β− ε > 0.
Then,

|M(t)(k)| = |e−εteεtM(t)(k)| ⩽ e−εt|eεtM(t)(k)|.

By considering the worst-case (64), we have

eεt| det(Mk(t))| ⩽ c̄e(−α+(k−1)β+ε)t,

for some c̄ > 0. Hence, since α− (k−1)β−ε > 0, each element of
eεtM(t)(k) is exponentially decreasing and the norm |eεtM(t)(k)|
is uniformly bounded for all t ∈ R⩾0, thus concluding the proof.

Leveraging on the previous lemmas, we provide a bound on the
compound of the variational system (6) state transition matrix.

Lemma 16 Consider system (1) and assume there exist two sym-
metric matrices P0, P1 ∈ Rn×n of respective inertia (0, 0, n) and
(k − 1, 0, n − k + 1), and µ0, µ1 ∈ R such that (17) is satisfied.
Then, there exist ε, c > 0 such that∣∣∣∂ψ∂x t(x)(k)∣∣∣ ⩽ ce−εt, ∀(t, x) ∈ R⩾0 ×A. (66)

Proof: Consider (59a) in Theorem 6. Invertibility of T(x) yields

∂ψ
∂x

t
(x) = ∂ψ

∂x

t
(x)T(x)T(x)−1 = ψψψt(x)T(x)−1,

with ψψψt(x) :=
[
∂ψ
∂x

t
(x)Th(x)

∂ψ
∂x

t
(x)Tv(x)

]
. Given any v ∈

TxRn, consider the decomposition v = (vh, vv), where vh ∈ Rn−p
and vv ∈ Rp. Then, for an arbitrary vh, inequality (59c) of
Theorem 6 implies

|∂ψ∂x
t
(x)Th(x)v

h| ⩽ che
µ1 |Th(x)v

h| .

Recall the definition of matrix norm,∣∣∣∂ψ∂x t(x)Th(x)
∣∣∣ := max

|u|=1

∣∣∣∂ψ∂x t(x)Th(x)u
∣∣∣ .

By selecting vector u⋆ such that |u⋆| = 1, the previous exponential
relation and the triangular inequality yield∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣ = ∣∣∣∂ψ∂x t(x)Th(x)u
⋆
∣∣∣

⩽ che
µ1 |Th(x)u

⋆| ⩽ che
µ1 |Th(x)|.

Since A is compact and T is continuous, |Th(x)| is bounded for all
x ∈ A. Then, by (59c), and by (60) we obtain∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣ ⩽ che
µ1 |Th(x)| ⩽ c̄he

−µ1∣∣∣∂ψ∂x t(x)Tv(x)
∣∣∣ ⩽ cve

µ0 |Tv(x)| ⩽ c̄ve
µ0

for all x ∈ A. Finally, by boundedness of T(x) and Lemma 15,∣∣∣∂ψ∂x t(x)(k)∣∣∣ ⩽ |ψψψt(x)(k)||T(x)−1(k)| ⩽ ce−εt, ∀x ∈ A.

concluding the proof.

B. Proof Theorem 5

Consider the k-th multiplicative compound of matrix Ψ(t, x0)
defined as in Section II-B. From the Cauchy-Binet formula [40,
Chapter 1] we get:

Ψ(t, x0)
(k) =

[
∂ψ
∂x

t
(x0)v

1
0 . . . ∂ψ

∂x

t
(x0)v

k
0

](k)
= ∂ψ

∂x

t
(x0)

(k)Ψ(0, x0)
(k).

From (17) and Lemma 16 we obtain for all (x0, t) in S × R⩾0

|(Ψ(t, x0))
(k)| ⩽ ce−εt|(Ψ(0, x0))

(k)|.

Hence, the system is infinitesimally k-contractive on S and the k-
contractive property follows from Theorem 1.



C. Proof of Lemma 4

Let us decompose the Jacobian of the vector field f as follows

∂f

∂x
(x) =

[
Fs(x) G12(x)
G21(x) Fu(x)

]
.

Then, according to Theorem 2, a sufficient condition for 2-contraction
in a set A is:

∂f

∂x
(x)[2] = Fs(x) + Fu(x) < 0, ∀x ∈ S. (67)

By subtracting 2µ0P0 in both sides of (17a), the following inequality
is obtained(

Fs(x)−µ0 G12(x)
G21(x) Fu(x)−µ0

)
P0 + P0

(
Fs(x)−µ0 G21(x)
G12(x) Fu(x)−µ0

)
≺ 0.

Since P0 is positive definite, the previous inequality necessarily
implies that ∂f∂x (x)−µ0I is Hurwitz for all x ∈ A, and, consequently,
its determinant is positive. That is,

0 < Fs(x)Fu(x)−µ0(Fs(x)+Fu(x))+µ20−G12(x)G21(x). (68)

Similarly, by subtracting 2µ1P1 in both sides of (17b), the following
inequality is obtained(

Fs(x)−µ1 G12(x)
G21(x) Fu(x)−µ1

)
P1 + P1

(
Fs(x)−µ1 G21(x)
G12(x) Fu(x)−µ1

)
≺ 0.

Since In(P1) = (1, 0, 1), by Lemma 10, this inequality necessarily
implies that In

(
∂f
∂x (x)− µ1I

)
= (1, 0, 1) for all x ∈ A, and,

consequently, its determinant is negative. That is,

Fs(x)Fu(x)− µ1(Fs(x) + Fu(x)) + µ21 −G12(x)G21(x) < 0,

which can be rearranged as

Fs(x)Fu(x)−G12(x)G21(x) < µ1(Fs(x) + Fu(x))− µ21. (69)

Now, combining (68) and (69) we get

0 < (µ1 − µ0)(Fs(x) + Fu(x)) + µ20 − µ21. (70)

Then, since µ0 > µ1 we have that µ1−µ0 < 0, which, by combining
(17c) and the fact that µ0, µ1 are real, implies µ20 − µ21 < 0.
Additionally, the conditions (17a)-(17c) imply that Fs(x)+Fu(x) ̸=
0 for all x ∈ Rn by Lemma 10. Therefore, by combining (70) and
(17c) we get (67), which ends the proof.

D. Proof of Proposition 2

Consider inequality (17a), pre-multiply and post-multiply both
sides of the inequality by P−1

0 and fix W0 = P−1
0 . Similarly,

pre-multiply and post-multiply both sides of the inequality (17b)
by P−1

1 and fix W1 = P−1
1 . Then, according to Theorem 5, the

closed-loop system will be k-contractive if there exist two symmetric
matrices W0,W1 ∈ Rn×n of inertia In(W0) = (0, 0, n), In(W1) =
(1, 0, n− 1) and µ̄0, µ̄1 ∈ R such that,

W0

(
∂f
∂x (x)−BK

)⊤
+
(
∂f
∂x (x)−BK

)
W0 ≺ 2µ̄0W0, (71a)

W1

(
∂f
∂x (x)−BK

)⊤
+
(
∂f
∂x (x)−BK

)
W1 ≺ 2µ̄1W1, (71b)

µ̄1 + (k − 1)µ̄0 < 0, (71c)

for all x ∈ S, where S is assumed to be compact and forward
invariant. In this proof, we show that if the inequalities in (19)-(20)
are satisfied and the gain matrix K is designed as in (21), then,
the inequalities in (71a)-(71c) are also satisfied. Thus, the closed-
loop system is k-contractive according to Theorem 5. To this end,

note that the left-hand side of (71a) with K fixed as in (21) can be
rewritten as:

W0
∂f
∂x (x)

⊤ + ∂f
∂x (x)W0 −BB⊤

− 1
2BB

⊤W−1
1 W0 − 1

2W0W
−1
1 BB⊤

≺ µ0W0 − 1
2BB

⊤W−1
1 W0 − 1

2W0W
−1
1 BB⊤, (72)

where the right hand side is obtained employing (19a). Now, let ω̄ >
0 such that[

I − 1
2BB

⊤W−1
1

]
W0

[
I − 1

2BB
⊤W−1

1

]⊤
⪯ (1 + ω̄)W0.

Furthermore, note that we have the identity

− 1
2BB

⊤W−1
1 W0 − 1

2W0W
−1
1 BB⊤ =[

I − 1
2BB

⊤W−1
1

]
W0

[
I − 1

2BB
⊤W−1

1

]⊤
−W0

− 1
4BB

⊤W−1
1 W0W

−1
1 BB⊤.

As a consequence, by adding and substracting ω̄W0 from the right
hand side of (72) and using the two previous equations, we obtain

W0
∂f

∂x
(x)⊤ +

∂f

∂x
(x)W0 −BB⊤

− 1
2BB

⊤W−1
1 W0 − 1

2W0W
−1
1 BB⊤ ≺ (µ0 + ω̄)W0

Thus, selecting µ̄0 = µ0 + ω̄, shows (71a). Then, inequality (19b)
can be re-organized to obtain the inequality (71b) with µ̄1 = µ1.
Finally, by fixing ω = (k − 1)ω̄, we have that (20) implies (71c).

E. Proof of Lemma 7
Due to Lemma 10, a necessary condition for the feasibility of

(17a)-(17c) for k = 3 is µ1 < µ0. Consequently, (17c) implies
µ1 < 0. Therefore, the inequalities (17a)-(17c) for k = 3 in a forward
invariant set S imply 2-dominance in S as defined in Definition 7.
Finally, the result follows from [14, Corollary 1] and that S ⊊ Rn.

F. Proof of Lemma 8
Let assumptions of Theorem 2 hold for k = n in a set S. We

have that ∂f∂x (x)
[n] = tr

(
∂f
∂x (x)

)
< 0 for all x ∈ S. Therefore, at

least one eigenvalue of ∂f
∂x (x) is negative for any x ∈ Rn and in

particular for all x◦ such that f(x◦) = 0, thus showing the result.

IX. CONCLUSIONS

We presented new conditions for k-contraction based on the use of
generalized Lyapunov matrix inequalities. The proposed conditions
can be checked without using matrix compounds. In the linear case,
they reduce the k-contraction analysis to solving a set of matrix
inequalities. In the nonlinear context, they extend the well-known
Demidovich conditions based on the Jacobian of the vector field
along the flow. Finally, we showed that the proposed conditions can
be used to develop new tools for k-contractive feedback design, so
that to extend existing conditions for standard 1-contraction.

Future works will focus on further studying the equivalence be-
tween k-contraction and infinitesimally k-contraction, and extending
the proposed conditions to the context of time-varying systems and
Riemannian metrics, similar to the context of 1-contraction, see, e.g.
[9], [24]. Another topic is the design of k-contractive observers.
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APPENDIX

A. Proof of Lemma 2

The uniformity condition in (5) and the fact that P is positive
definite and symmetric imply the existence of constants σ̄, σ > 0
such that, for all (r, x) in [0, 1]k × S

V k(φ ◦ Φ) =

∫
[0,1]k

√
det
{
∂Φ
∂r (r)

⊤ ∂φ
∂x (x)

⊤P ∂φ
∂x (x)

∂Φ
∂r (r)

}
dr

⩽
√
σ̄

∫
[0,1]k

√
det
{
∂Φ
∂r (r)

⊤P ∂Φ
∂r (r)

}
dr =

√
σ̄ V k(Φ)

and V k(Φ) ⩽ V k(φ ◦ Φ)/
√
σ. Consequently, if the system is k-

contractive in S in the original coordinates, we have

V k(φ ◦ ψt ◦ Φ) ⩽
√
σ̄V k(ψt ◦ Φ) ⩽

√
σ̄

√
σ
be−at V k(φ ◦ Φ),

for all (r, x) in [0, 1]k × S, thus showing k-contraction.

B. Proof of Theorem 1

Consider Φ ∈ Ik, where Ik is defined in (2), satisfying Im(Φ) ⊆
S. To simplify notation, let us denote for all (r, t) in [0, 1]k × R⩾0

Γ(r, t) := ψt ◦ Φ(r) , Γr(r, t) :=
∂Γ

∂r
(r, t). (73)

In words, the factor Γ(r, t) depicts the solution of (1) at time t taking
as a initial condition a point in Φ parametrized by r. Then, Γr(r, t)
represents the effect of infinitesimal variations in r on the solution
at time t. For all (r, t) in [0, 1]k × R⩾0, we have

d

dt
Γ(r, t) = f(Γ(r, t)).

Moreover, since S is forward invariant and Im(Φ) ⊆ S, we have
Γ(r, t) ∈ S for all (r, t) in [0, 1]k×R⩾0. Additionally, by the chain
rule, it follows that the point Γr(r, t) evolves according to

d

dt
Γr(r, t) =

∂2Γ

∂r∂t
(r, t) =

∂f

∂x
(Γ(r, t))Γr(r, t)

for all (r, t) in [0, 1]k × R⩾0. Since these dynamics are linear,
following similar steps as in [11, Section 2.5], we obtain

d

dt
Γr(r, t)

(k) =
∂f

∂x
(Γ(r, t))[k]Γr(r, t)

(k). (74)

Similarly, following [11, Section 2.5], it can be shown that the com-
pound matrix of Ψ(t, x0) evolves according to the linear dynamics

d

dt
(Ψ(t, x0))

(k) =
∂f

∂x
(ψt(x0))

[k]Ψ(t, x0)
(k). (75)

By (8), dynamics (75) are globally exponentially stable. Thus, con-
sidering (74), exponential stability and uniformity of (75) imply∣∣∣Γr(r, t)(k)∣∣∣ ⩽ be−at

∣∣∣Γr(r, 0)(k)∣∣∣ ,
for some positive constants a, b > 0. Now, from the Cauchy-Binet
formula [40, Chapter 1] , the following equality holds

det
(
Γr(r, t)

⊤P Γr(r, t)
)

=
(
Γr(r, t)

(k)
)⊤
P (k) Γr(r, t)

(k):=v(r, t).
(76)

Then, the volume V k(·) of ψt ◦ Φ computed according to (3) is

V k(ψt ◦ Φ) =
∫
[0,1]k

√
v(r, t)dr .

Finally, by selecting P in (76) as the identity matrix, we obtain

V k(ψt ◦ Φ) =
∫
[0,1]k

∣∣∣Γr(r, t)(k)∣∣∣ dr ⩽ ∫
[0,1]k

be−at
∣∣∣Γr(r, 0)(k)∣∣∣ dr

⩽ be−at
∫
[0,1]k

∣∣∣Γr(r, 0)(k)∣∣∣ dr ⩽ be−atV k(Φ) .

C. Proof of Theorem 2
Consider the state transition matrix ∂ψ

∂x

t
(x0) of the variational

system (6). Following [11, Section 2.5], it can be shown that the k-th
order multiplicative compound matrix of ∂ψ∂x

t
(x0) evolves according

to the following linear dynamics for all (x0, t) in S × R⩾0

d

dt

(
∂ψ
∂x

t
(x0)

)(k)
=
∂f

∂x
(ψt(x0))

[k] ∂ψ
∂x

t
(x0)

(k), ∂ψ
∂x

0
(x0) = I.

Therefore, from [11, Proposition 5], it can be shown that (9) implies
the existence of some positive constants c, ε > 0 such that

|∂ψ∂x
t
(x0)| ⩽ ce−εt, ∀(x0, t) ∈ S ∈ R⩾0

The proof concludes by repeating the arguments as in Section VIII-B.
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[16] R. A. Smith, “The Poincaré–Bendixson theorem for certain differential
equations of higher order,” Proceedings of the Royal Society of Edin-
burgh Section A: Mathematics, vol. 83, no. 1-2, pp. 63–79, 1979.



[17] T. Stykel, “Stability and inertia theorems for generalized Lyapunov
equations,” Linear Algebra and its Applications, vol. 355, no. 1-3, pp.
297–314, 2002.

[18] H. K. Wimmer, “On the algebraic Riccati equation,” Bulletin of the
Australian Mathematical Society, vol. 14, no. 3, p. 457–461, 1976.

[19] S. Zoboli, A. Cecilia, U. Serres, D. Astolfi, and V. Andrieu, “LMI
Conditions for k − contraction Analysis: A Step Towards Design,” in
2023 62nd IEEE Conference on Decision and Control (CDC), 2023, pp.
1903–1910.

[20] V. Natarajan and G. Weiss, “Almost global asymptotic stability of a grid-
connected synchronous generator,” Mathematics of Control, Signals, and
Systems, vol. 30, no. 2, p. 10, 2018.

[21] P. Lorenzetti, Z. Kustanovich, S. Shivratri, and G. Weiss, “The equi-
librium points and stability of grid-connected synchronverters,” IEEE
Transactions on Power Systems, vol. 37, no. 2, pp. 1184–1197, 2022.

[22] V. Andrieu, B. Jayawardhana, and L. Praly, “Transverse exponential
stability and applications,” IEEE Transactions on Automatic Control,
vol. 61, no. 11, pp. 3396–3411, 2016.

[23] M. Lee, Introduction to Riemannian Manifolds. Second edition.
Springer, 2018.

[24] W. Lohmiller and J.-J. E. Slotine, “On contraction analysis for non-linear
systems,” Automatica, vol. 34, no. 6, pp. 683–696, 1998.

[25] H. K. Khalil, Nonlinear Systems, Third Edition. Prentice Hall, 2002.
[26] E. Bar-Shalom, O. Dalin, and M. Margaliot, “Compound matrices in

systems and control theory: a tutorial,” Mathematics of Control, Signals,
and Systems, pp. 1–55, 2023.

[27] D. Angeli, M. A. Al-Radhawi, and E. D. Sontag, “A robust Lyapunov
criterion for nonoscillatory behaviors in biological interaction networks,”
IEEE Transactions on Automatic Control, vol. 67, no. 7, pp. 3305–3320,
2022.

[28] M. Fiedler, Special matrices and their applications in numerical math-
ematics. Courier Corporation, 2008.

[29] F. Bullo, “Contraction theory for dynamical systems,” Kindle Direct
Publishing, 2024.

[30] A. Davydov, S. Jafarpour, and F. Bullo, “Non-Euclidean contraction
theory for robust nonlinear stability,” IEEE Transactions on Automatic
Control, vol. 67, no. 12, pp. 6667–6681, 2022.

[31] J. W. Simpson-Porco and F. Bullo, “Contraction theory on Riemannian
manifolds,” Systems & Control Letters, vol. 65, pp. 74–80, 2014.

[32] O. Dalin, R. Ofir, E. Bar-Shalom, A. Ovseevich, F. Bullo, and M. Mar-
galiot, “Verifying k-contraction without computing k-compounds,” IEEE
Transactions on Automatic Control, vol. 69, no. 3, 2024.

[33] J. P. Hespanha, Linear Systems Theory. Princeton Press, 2018.
[34] R. S. M. Jankovic, Petar V. Kokotovic, Constructive nonlinear control.

Springer Science & Business Media, 2012.
[35] S. Zoboli, A. Cecilia, and S. Tarbouriech, “Quadratic abstractions for

k-contraction,” in 2024 63rd IEEE Conference on Decision and Control
(CDC), 2024.

[36] M. Y. Li and J. S. Muldowney, “On R.A. Smith’s Autonomous Con-
vergence Theorem,” Rocky Mountain Journal of Mathematics, vol. 25,
no. 1, pp. 365 – 378, 1995.
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