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Generalized Lyapunov conditions for k-contraction:
analysis and feedback design

Andreu Cecilia, Samuele Zoboli, Daniele Astolfi, Ulysse Serres and Vincent Andrieu

Abstract— Recently, the concept of k -contraction has been in-
troduced as a promising generalization of contraction for dy-
namical systems. However, the study of k -contraction properties
has faced significant challenges due to the reliance on complex
mathematical objects called matrix compounds. As a result, related
control design methodologies have yet to appear in the literature.
In this paper, we overcome existing limitations and propose new
sufficient conditions for k -contraction which do not rely on matrix
compounds. Our design-oriented conditions stem from a strong
geometrical interpretation and establish a connection between k -
contraction and p-dominance. Notably, these conditions are also
necessary in the linear time-invariant framework. Leveraging on
these findings, we propose a feedback design methodology for
both the linear and the nonlinear scenarios.

Index Terms— Contraction analysis, Nonlinear systems, Linear
matrix inequalities, Inertia Theorems, Compound matrices, Linear
Systems.

I. INTRODUCTION

Contraction theory is an emerging topic that has been used in nu-
merous applications, such as observer design [1], multi-agent system
synchronization [2]–[4] and controller design [5]–[9]. Nonetheless,
many systems cannot present classical contractivity properties, e.g.
multi-stable systems or orbitally stable systems. This fact motivated
the study of suitable generalizations. Some notable examples are
horizontal contraction [10, Section VII], transversal exponential sta-
bility [11] and p-dominance [12], [13]. Motivated by the results of
Muldowney [14], the recent work [15] presented the notion of k-
contraction as the generalization to k-dimensional objects of the
standard contraction concept for distances. As such, k-contraction
includes classical contraction as the special case k = 1. For k > 1,
this property can be used to analyze the asymptotic behavior of
systems that are not contractive in the classical sense. For example,
for 2-contractive time-invariant systems, every bounded solution
converges to an equilibrium point (not necessarily unique).

Existing sufficient conditions for k-contraction are given in terms
of a particular matrix compound of the Jacobian of the vector field
dynamics [14]–[16]. Although these conditions are adequate for sys-
tem analysis, their application for feedback design are limited. First,
matrix compounds rapidly explode in dimension for low value of k
and systems of large dimension. This fact drastically increases the
computational complexity of potential feedback design algorithms.
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Second, the use of matrix compounds hinder the derivation of a
tractable matrix inequality problem for feedback design. Conse-
quently, a k-contractive design methodology has yet to be developed.

Considering these limitations, this work presents alternative design-
oriented conditions for k-contraction that do not rely on matrix com-
pounds, but rather on simple matrix inequalities on the given system
dynamics. In particular, we build upon the generalized Lyapunov ma-
trix inequalities studied for instance in [13], [17] and [18, Section 5].
Moreover, the connections between k-contraction, infinitesimally k-
contraction, and p-dominance [12], [13] are discussed. By exploiting
these novel conditions, we devise a feedback design methodology
in both the linear and the nonlinear framework. In the linear time-
invariant framework, our design is based on a new generalization of
the notion of stabilizability. In the nonlinear framework, we restrict
the design to linear feedback laws and propose a controller that
guarantees 2-contractivity of the closed-loop.

The remainder of this document is organized as follows. In Sec-
tion II, we provide a refined definition of k-contraction which strongly
focuses on its geometrical interpretation. Then, we recover the notion
of infinitesimal k-contraction, which has been used in [19], and link
it to the proposed definition of k-contraction. Subsequently, we recall
matrix compounds-based sufficient conditions for k-contraction and
discuss their limitations. Section III focuses on linear systems. First,
we derive necessary and sufficient conditions for k-contraction that do
not require matrix compounds, but rather on generalized Lyapunov
matrix inequalities. Then, based on these results, we propose the
notion of k-order stabilizability together with a new k-contractive
feedback design. In doing so, we also collect and recall in a unified
theorem a series of results on inertia theorems (see, e.g. [20, Lemma
1, Section 3] and [21, Theorem 2.5]) and we provide new inertia the-
orems on algebraic inequalities of the form WA⊤+AW−BB⊤ ≺ 0
not requiring any controllability assumption (cfr. [22]). Section IV
focuses on extending these results to nonlinear systems. Similarly,
we first provide sufficient conditions for k-contraction in nonlinear
systems and, then, propose a design methodology for 2-contraction. In
section V, we discuss the similarities, differences and links between
k-contraction and p-dominance. All the proofs are postponed in
Sections VI-VIII and in the Appendix to ease the reading of the
article. Finally, some conclusions and future perspectives are drawn
in Section IX.

Notation: R⩾0 := [0,∞) and N := {0, 1, 2, . . .}. | · | denotes
the standard Euclidean norm. Given x ∈ Rn, y ∈ Rm, we set
(x, y) := (x⊤, y⊤)⊤. The operation

(n
k

)
:= n!

k!(n−k)! depicts the
binomial coefficient, with n! denoting the factorial of n ∈ N. The
inertia of a matrix P [21, Definition 2.1] is defined by the triplet of
integers In(P ) := (π−(P ), π0(P ), π+(P )), where π−(P ), π+(P )
and π0(P ) denote the numbers of eigenvalues of P with negative,
positive and zero real part, respectively, counting multiplicities. The
cardinality of a set is denoted as card(·). A ≻ 0 (resp. A ⪰ 0)
denotes A being a positive definite (resp. positive semidefinite)
matrix.



II. PRELIMINARIES ON k-CONTRACTION

A. Definition of k -contraction

In this work, we consider nonlinear systems of the form

ẋ = f(x), x ∈ Rn (1)

where f is sufficiently smooth. The flow of f is denoted by ψt, and
ψt(x0) is the trajectory of (1) at time t. By definition, ψ0(x0) = x0.
We now formally define the property of k-contraction studied in this
article. Our definition strongly focuses on a geometrical interpretation
and it is related to the notion presented in the works [14], [15].
Moreover, when considering objects of dimension 1 (k = 1), it
matches the definition of contraction presented in [11], [23].

In [11], [23], 1-contraction expresses the fact that the length of
any C1 curve from [0, 1] to Rn of initial conditions decreases with
time. To extend such a notion to any positive integer k ∈ [1, n], with
n being the state dimension of (1), we consider a set of sufficiently
smooth functions Ik defined on [0, 1]k, namely

Ik :=
{
Φ : [0, 1]k → Rn | Φ is a smooth immersion

}
. (2)

Let P ∈ Rn×n be a positive definite symmetric matrix. For each Φ
in Ik, we define the volume V k(Φ) of Φ as

V k(Φ) :=

∫
[0,1]k

√
det

{
∂Φ

∂r
(r)⊤P

∂Φ

∂r
(r)

}
dr . (3)

Note that, since f in (1) is sufficiently smooth, for each forward
invariant set and for each t in R⩾0 the corresponding flow ψt is also
sufficiently smooth in this set. Consequently, for each Φ in Ik such
that Im(Φ) is in a forward invariant set, ψt ◦ Φ is in Ik.

Remark 1 When Φ is injective and P is the identity matrix, the
volume V k defined in (3) coincides with the standard Euclidean k-
volume of the submanifold Φ([0, 1]k) ⊊ Rn. Note that 1-volumes are
lengths, 2-volumes are areas and 3-volumes are standard volumes.

Remark 2 Note that the volume definition (3) can be generalized
to the Riemannian framework by substituting the Euclidean metric
P with a symmetric positive definite 2-tensor P : Rn → Rn×n,
see [24, Lemma 3.2]. However, in this paper, we will focus on the
Euclidean scenario in order to obtain more tractable conditions.

From now on, we let k be a fixed integer between 1 and n. We
now define k-contraction properties for nonlinear systems of the form
(1), which will be used throughout the article.

Definition 1 (k-contraction) System (1) is said to be k-contractive
on a forward invariant set S ⊆ Rn if there exist real numbers a, b >
0 such that, for every Φ ∈ Ik satisfying Im(Φ) ⊆ S, the following
holds

V k(ψt ◦ Φ) ⩽ be−at V k(Φ), ∀t ∈ R⩾0. (4)

In other words, a system is k-contractive if, for any parametrized k-
dimensional submanifold of Rn from which trajectories are complete,
its volume is exponentially shrinking along the system dynamics. An
intuitive representation of the required volume convergence condition
is presented in Fig. 1. When k = 1, this means that the length of any
sufficiently smooth curve is exponentially decreasing, matching the
definition in [11]. Moreover, this definition includes the ones in [14],
and [15, Section 3.2]. We remark that Definition 1 is invariant under
uniformly bounded diffeomorphic coordinate changes on S. This fact
is formalized through the following lemma.

Fig. 1. Flow of a 2-contractive system. The initial submanifold of
initial conditions, described by Φ, is some surface with points at x1

0, x
2
0

and x3
0. The volume of this submanifold V k(·) decreases exponentially

along the trajectories of the system.

Lemma 1 Assume that the system (1) is k-contractive on a forward
invariant set S ⊆ Rn for some positive constants a, b > 0. Moreover,
consider a diffeomorphism φ : S → S, which satisfies for some
positive constant c̄, c > 0

cI ⪯ ∂φ

∂x
(x)⊤

∂φ

∂x
(x) ⪯ c̄I, ∀x ∈ S. (5)

Then, there exists a positive constant b̄ > 0 such that for every
Φ ∈ Ik satisfying Im(Φ) ⊆ S, the following holds

V k(φ ◦ ψt ◦ Φ) ⩽ b̄e−at V k(φ ◦ Φ),

The proof is postponed to Appendix A.

B. Infinitesimal k -contraction

Inspired by classical works on contraction theory [25], we now
provide a result linking the exponential stability properties of the vari-
ational system to the k-contraction property proposed in Definition 1.
We remark that the definition of k-contraction for the variational
system was used in [19]. However, to the best of our knowledge,
the connection between k-contraction (as presented in Definition 1)
and k-contraction of the variational system has not been properly
characterized. In this section, we recall this definition and we provide
further geometrical interpretation of it, along the lines of Definition 1.
We start by recalling the dynamics of the variational system, which
is defined as the system describing the evolution of an infinitesimal
displacement along the trajectories of the system. The linearization
of (1) about the trajectory ψt(x0) is

v̇ =
∂f

∂x
(ψt(x0)) v, (6)

where v belongs to the tangent space Tψt(x0)
Rn = Rn. Then,

∂ψ
∂x

t
(x0)v0 is a trajectory of (6) at time t initialized at v0 at

t = 0. From linearity, it can be deduced that ∂ψ
∂x

t
(x0) is the state

transition matrix of (6). Then, ∂ψ
∂x

t
(x0)v0 depicts the infinitesimal

displacement with respect to the solution ψt(x0) induced by the
initial condition x0 + v0.

We recall that the trajectory ψt(x0) is locally exponentially stable,
that is, the trajectory generated from any initial condition close
enough to x0 will exponentially converge to ψt(x0), if and only if
the variational system (6) is exponentially stable [26, Theorem 3.13].
In classical contraction theory [25], this property is generalized by
considering simultaneously all the trajectories in a set. That is, the
system (1) is contracting in a forward invariant set S ⊆ Rn if the
variational system (6) is exponentially stable for all x0 ∈ S. Then,
contraction on a forward invariant set S implies that every solution in
S converge to the same trajectory [25], or equivalently, the distance
between any pair of trajectories shrinks to zero. In a sense, contraction
exemplifies how the linearization along trajectories can be used to



derive incremental properties of the original system. In this section,
we generalize this idea by considering a k-contracting property on
the variational system (6).

Precisely, pick any x0 ∈ Rn and k initial conditions of the
variational system in (6) v10 , . . . , v

k
0 . We define the following matrix

Ψ(t, x0) :=
[
∂ψ
∂x

t
(x0)v

1
0 · · · ∂ψ

∂x

t
(x0)v

k
0

]
∈ Rn×k.

Note that Ψ(0, x0) =
∂Φloc
∂r (r), where Φloc is an immersion param-

eterized by the variable r ∈ [0, 1]k whose image is an infinitesimal
k-order parallelotope with vertices at x0 and vi0 + x0, namely

Φloc(r) =

k∑
i=1

ri(v
i
0 + x0) +

(
1−

k∑
i=1

ri

)
x0,

with ri ∈ [0, 1] for i ∈ {1, . . . , k} being the i-th component of r.
For k = 1, Φloc(r) defines a straight line between x0 and x0 + v10 .
The volume of the infinitesimal parallelotope can be computed by
means of the multiplicative compound which is defined as follows.

Definition 2 (Multiplicative Compound [27]) Consider a matrix
Q ∈ Rn×m and select an integer k ∈ [1,min{n,m}]. Moreover,
define a minor of order k of the matrix Q as the determinant of
some k× k submatrix of Q. The k-th multiplicative compound of Q,
denoted as Q(k), is the

(n
k

)
×
(m
k

)
matrix including all the minors

of order k of Q in a lexicographic order.

As an example, consider a 3 × 3 matrix Q with entries qij for
i, j = 1, . . . , 3. The 2nd multiplicative compound Q(2) is

Q(2) =

det ( q11 q12q21 q22

)
det
( q11 q13
q21 q23

)
det
( q12 q13
q22 q23

)
det
( q11 q12
q31 q32

)
det
( q11 q13
q31 q33

)
det
( q12 q13
q32 q33

)
det
( q21 q22
q31 q32

)
det
( q21 q23
q31 q33

)
det
( q22 q23
q32 q33

)
 .

Note that for a Q ∈ Rn×n, Q(n) = det(Q) and Q(1) = Q.
Thanks to the previous definition, by considering P = I , we can

compute the volume of Φloc and ∂ψ
∂x

t
◦ Φloc as follows

V k(Φloc) = |Ψ(0, x0)
(k)|, V k(∂ψ∂x

t
◦ Φloc) = |Ψ(t, x0)

(k)|.
The second equality is a consequence of the linearity of the dynamics
of Ψ(t, x0)

(k) and we postpone further details at the beginning
of Appendix C. Given the aforementioned notions, we have the
following definition.

Definition 3 (Infinitesimal k-contraction) System (1) is said to be
infinitesimally k-contractive on a forward invariant set S ⊆ Rn if
there exist real numbers a, b > 0 such that∣∣∣Ψ(t, x0)

(k)
∣∣∣ ⩽ be−at

∣∣∣Ψ(0, x0)
(k)
∣∣∣ , (7)

for all (t, x0) ∈ R⩾0 × S.

Roughly speaking, the bound in (7) implies that the volume of
an infinitesimal parallelotope connected to the trajectory ψt(x0) and
generated by the vectors ∂ψ

∂x

t
(x0)v

1
0 , · · · ,

∂ψ
∂x

t
(x0)v

k
0 exponentially

shrinks to zero. An intuitive depiction of this property is presented
in Fig. 2.

Notice that, for the case k = 1, Definition 3 boils down to (6) being
exponentially stable for all x0 ∈ S, which is a sufficient condition
for the classical notion of contraction [25]. In the next proposition,
we link the notion of infinitesimal k-contraction to k-contraction as
presented in Definition 1.

Proposition 1 Suppose system (1) is infinitesimally k-contractive on
a forward invariant set S. Then, it is also k-contractive on S.

The proof is postponed to Appendix C.

Fig. 2. Flow of an infinitesimally 3-contractive system.

C. Sufficient conditions based on additive matrix compounds

Sufficient conditions for k-contraction were originally given in the
seminal work by Muldowney [14] and were recently re-proposed in
the works [15], [28]. These conditions strongly depend on the use of
additive matrix compound, which is defined as follows.

Definition 4 (Additive Compound [27]) Consider a matrix Q ∈
Rn×n and select an integer k ∈ [1, n]. The k-th additive compound
of Q is the

(n
k

)
×
(n
k

)
matrix defined as

Q[k] :=
d

dϵ

∣∣∣∣
ϵ=0

(I + ϵQ)(k).

The additive compound can be explicitly computed in terms of the
entries of Q. For example, for Q ∈ Rn×n we have Q[n] = tr(Q)

and Q[1] = Q. More details on this operation can be found in [29].
Bearing this definition in mind, we now reframe the sufficient con-

dition for k-contraction presented in [14], [15] in the framework of
this paper, namely, we view them through the lenses of Definition 1.

Theorem 1 Let S ⊆ Rn be a forward invariant set and suppose
there exist a real number η > 0 and a symmetric positive definite
matrix Q ∈ R(

n
k)×(

n
k) such that

Q

(
∂f

∂x
(x)[k]

)
+

(
∂f

∂x
(x)[k]

)⊤
Q ⪯ −ηI, ∀x ∈ S. (8)

Then, system (1) is k-contractive on S according to Definition 1.

The proof is postponed to Appendix B. The extension of Theorem 1
to time-varying systems can be found in [30].

Remark 3 Inequality (8) is equivalent to the condition in [15,
Theorem 9] using the logarithmic norm induced by the weighted ℓ2
norm (e.g. [31, Equation 2.56]). However, in our statement, the set S
is allowed to be non-convex. Furthermore, when k = 1, we recover
the well-known Demidovich conditions (see [32]) and the proof in
[11] for contraction of lengths in the context of Euclidean metrics.

Remark 4 Theorem 1 can be generalized to the case of Riemannian
volumes, see Remark 2. However, we omit these results to ease
the reading of the document. It should be remarked that such
generalization also expands on point IV in [33, Proposition 2.5],
since we consider volume objects of dimension lower than n.

D. Limitations of matrix compound-based conditions

Although Theorem 1 provides a suitable condition for system
analysis, we claim that the presence of matrix compounds hinders the
process of devising k-contractive feedback designs. Indeed, consider
a linear control system of the form

ẋ = Ax+Bu, x ∈ Rn, u ∈ Rm, (9)



where u is the control input. Assume we want to design a state-
feedback controller of the form u = −Kx, with K ∈ Rn×m, such
that the closed-loop system is k-contractive. Then, Theorem 1 reduces
to designing K such that condition (8) is satisfied for the closed-loop
system, namely,

Q
(
(A−BK)[k]

)
+
(
(A−BK)[k]

)⊤
Q ⪯ −ηI.

However, this is a non-convex matrix inequality, due to the strong
coupling between the matrices B,K imposed by the additive matrix
compound. Consequently, even for a simple linear case, a design
methodology for the gain K cannot be straightforwardly derived.

Additionally, notice that matrix compounds rapidly grow in dimen-
sion when the order of the system is large and the k is low, since
they involve matrices of dimensions

(n
k

)
×
(n
k

)
. We remark that, to

the best of the authors’ knowledge, interesting asymptotic properties
of k-contractive systems have been shown only for small values of k,
specifically k ∈ {1, 2, 3} (see [15] and Section V-A). Consequently,
as highlighted in previous works [34], compound-based conditions
often explode in computational complexity.

With this in mind, a consistent portion of the following sections is
dedicated to presenting alternative design-oriented conditions for k-
contraction of linear and nonlinear systems which do not depend on
matrix compounds. These conditions will be the fundamental building
blocks in the derivation of control laws guaranteeing k-contractivity
of the closed-loop.

III. k-CONTRACTION FOR LINEAR SYSTEMS

We start our analysis by focusing on the linear scenario. This will
provide fundamental intuitions on the notion of k-contraction that will
be instrumental in the subsequent analysis of nonlinear dynamics.

A. Generalized Lyapunov necessary and sufficient conditions

Consider a linear system of the form

ẋ = Ax, x ∈ Rn. (10)

We now provide a set of sufficient and necessary conditions guaran-
teeing that (10) is k-contractive according to Definition 1. This result
is based on the following two facts:

• a necessary and sufficient condition for system (10) to be k-
contractive is that the sum of the real part of any combination
of k-eigenvalues of A is negative, see Lemma 5 below in
Section VI;

• the generalized Lyapunov matrix inequality (see, e.g [17], [20])

PA+A⊤P ≺ −2µP

admits a symmetric solution P of inertia In(P ) = (p, 0, n− p)
if and only if A has p eigenvalues with real part larger than µ
and n− p eigenvalues with real part smaller than µ, see below
Lemma 6 in Section VI;.

Consequently, combining the previous two properties, we state now
the following main result.

Theorem 2 System (10) is k-contractive if and only if there exist:
• a positive integer ℓ ∈ N satisfying 1 ⩽ ℓ ⩽ k,
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ− 1}, satisfying

0 = d0 < d1 < · · · < dℓ−1 ⩽ k − 1,

• and ℓ symmetric matrices Pi ∈ Rn×n of respective inertia
(di, 0, n− di), with i ∈ {0, . . . , ℓ− 1},

such that

A⊤Pi + PiA ≺ 2µiPi, ∀i ∈ {0, . . . , ℓ− 1}, (11a)
ℓ−1∑
i=0

hi µi ⩽ 0 , (11b)

where h0 ⩾ 1 and hi = di+1 − di, for all i = {0, . . . , ℓ− 1} with
dℓ ∈ N satisfying dℓ−1 + 1 ⩽ dℓ ⩽ k.

The proof of Theorem 2 is postponed to Section VI-B. To provide
some intuition relative to Theorem 2, we anticipate that the constants
µi are bounding the eigenvalues of the matrix A. That is, µ0 bounds
the largest eigenvalue of A, while µ1 bounds the second largest
eigenvalue with real part different from the first, and so on. Then,
(11b) can be interpreted as a bound in the partial sum of eigenvalues
of A, considering their multiplicities, in turn implying k-contraction
(see the proof in Section VI-B for more details).

Remark 5 A particular case in which the assumption of the former
Theorem applies is when ℓ = 1. In that case, the former condition
reduces to the existence of a real number µ0 and a symmetric positive
definite matrix P0 ≻ 0 such that

A⊤P0 + P0A ≺ 2µ0P0 ,

with µ0 ⩽ 0. This condition is satisfied if and only if A is Hurwitz,
which would imply that system (10) is k-contractive for all k ∈
{1, . . . , n}.

Remark 6 The inertia constraints in (11a) cannot be represented as
semidefinite constraints. However, these constraints can be dropped
without a significant impact on the solution of the inequality. Indeed,
by Lemma 6 in Section VI, a fixed constant µi imposes a specific
inertia on the matrix Pi, depending on the eigenvalues of A.
Consequently, by correctly fixing µi we can obtain a matrix Pi of
the desired inertia, without explicitly imposing it as a constraint. A
similar strategy was explored in [35] for discrete-time systems.

Remark 7 Some authors have previously proposed alternative con-
ditions for k-contractions without matrix compounds, e.g. [34].
Nonetheless, as commented in the conference version of this paper
[30], our conditions are necessary and sufficient for linear systems,
while the conditions in [34] are only sufficient.

B. Computational burden of Theorem 2
We now compare Theorem 1 and Theorem 2 in terms of the

computational burden imposed by the solution of the respective
matrix inequalities. We focus on the result in Theorem 2 for the
case ℓ = k and di = di−1 + 1, since it provides the largest set of
matrix inequalities. Let M ∈ Rr×r be an arbitrary square matrix
and Q ∈ Rr×r be a symmetric matrix. Since Q is symmetric, each
condition of the form QM +M⊤Q ⪯ µQ requires the computation
of N = r(r − 1)/2 + 1 variables, namely the entries of the top
triangular portion of Q and the scalar µ. Then, Theorem 1 requires
N1 =

(n
k

)((n
k

)
− 1

)
/2 + 1 variables, while Theorem 2 requires

N2 = kn(n− 1)/2 + k variables.
To better understand how the size of the problem scales with

different values of k and n, we refer to Fig. 3. Clearly, for large
dimensional systems and low k, the conditions in Theorem 2 ask for
a significantly smaller number of variables. Moreover, even in the
worst case of k = n, Theorem 2 typically requires between 102 and
103 variables. Differently, Theorem 1 can easily reach 104 variables.

This computation shows that conditions in Theorem 2 do not grow
in dimension as fast as the condition in Theorem 1. Moreover, for k
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Fig. 3. Number of variables to be estimated by Theorem 1 (dashed)
and by Theorem 2 (solid) in function of k. Colors refer to different n.

sufficiently smaller than n, we have N2 ⩽ N1. We recall that, to the
best of our knowledge, only the cases k = {1, 2, 3} are interesting
from a control viewpoint, since they are the only ones presenting
interesting asymptotic behaviors, see [15] and Section V-A.

C. k -order stabilizability

Consider a linear system of the form (9). It is well-known that sta-
bilizability of the pair (A,B) is a necessary and sufficient condition
for the existence of a stabilizing controller. A similar property can
be defined when considering k-contractive designs. We refer to this
condition as k-order stabilizability.

Definition 5 (k-order stabilizability) System (9) is k-order stabi-
lizable if there exists a matrix K ∈ Rn×m such that the closed-loop
system ẋ = (A−BK)x is k-contractive.

Conditions for k-order stabilizability can be easily derived by
transforming the system into a suitable form. Using standard Kalman
decomposition, system (9) is algebraically equivalent to a system of
the form [

ẋc
ẋu

]
=

[
Ac A12

0 Au

] [
xc
xu

]
+

[
Bc
0

]
u (12)

where xc ∈ Rnc , xu ∈ Rnu , nc + nu = n and the pair (Ac, Bc)
is controllable. The non-negative integer nu is the dimension of the
null-space of the controllability matrix of (9). Consequently, we admit
the possibility of nu = 0 and Au being non-existing.

Lemma 2 System (9) is k-order stabilizable if and only if either
nu < k or the autonomous system ẋu = Auxu, is k-contractive
otherwise.

The proof of Lemma 2 is postponed to Section VII-A. Intuitively,
Lemma 2 asks the uncontrollable part to be already k-contractive (or
of dimension smaller than k). For the case k = 1, Lemma 2 reduces
to nu = 0, a necessary and sufficient condition for controllability in
linear systems, or ẋu = Auxu, being stable, which is a sufficient
condition for the classical notion of stabilizability. We also remark
that similar definitions could be developed for k-order controllability,
observability, and detectability, which however are out of this paper’s
scope.

D. k -contractive feedback design

Starting from a k-order stabilizability property and the decompo-
sition (12), one can easily derive a k-contractive feedback design,
e.g., via pole placement on the pair (Ac, Bc). Nonetheless, in view

of an extension of these notions to the nonlinear context, we look
for coordinate-free conditions, i.e. that do not rely on change of
coordinates and decompositions that would not be easy to extend
to nonlinear systems.

Motivated by the result in Theorem 2, we now derive construc-
tive conditions for designing k-contractive controllers. This section
presents a design methodology that follows the philosophy of feed-
back stabilization based on Lyapunov tests for stabilizability [36, Sec-
tion 14.5]. That is, first, we solve a set of matrix inequalities, which
are feasible if and only if the system is k-order stabilizable. Then,
the controller is derived from the result of these inequalities. First,
we present a generalized Lyapunov test for k-order stabilizability.

Theorem 3 System (9) is k-order stabilizable if and only if there
exist:

• a positive integer ℓ ∈ N satisfying 1 ⩽ ℓ ⩽ k,
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ− 1}, satisfying

0 = d0 < d1 < · · · < dℓ−1 ⩽ k − 1,

• and ℓ symmetric matrices Wi ∈ Rn×n of respective inertia
(di, 0, n− di), with i ∈ {0, . . . , ℓ− 1},

such that

WiA
⊤ +AWi −BB⊤ ≺ 2µiWi, ∀i ∈ {0, . . . , ℓ− 1}, (13a)

ℓ−1∑
i=0

hi µi ⩽ 0 , (13b)

where h0 ⩾ 1, hi = di+1 − di, for all i = {1, . . . , ℓ − 1} with
dℓ ∈ N satisfying dℓ−1 + 1 ⩽ dℓ ⩽ k.

The proof of Theorem 3 is postponed to Section VII-C. Notice that
for k = 1, inequalities (13a)- (13b) reduce to the existence of a
constant µ0 ⩽ 0 and a symmetric positive definite matrix W0 ≻ 0
such that

W0A
⊤ +AW0 −BB⊤ ≺ 2µ0W0.

Hence, we recover the well-known Lyapunov test for stabilizability
[36, Section 14.4]. Differently put, the inequalities (13) can be seen as
a generalization of the Lyapunov test for stabilizability to the context
of k-contraction.

Now, based on the presented generalized Lyapunov test for k-
order stabilizability, we can directly derive a k-contractive feedback
controller for the linear system (9). The result is summarized in the
following proposition.

Proposition 2 Assume that (9) is k-order stabilizable. Then, there
exist:

• a positive integer ℓ ∈ N satisfying 1 ⩽ ℓ ⩽ k,
• ℓ real numbers µi ∈ R, with i ∈ {0, . . . , ℓ− 1},
• ℓ positive integers di ∈ N, with i ∈ {0, . . . , ℓ− 1}, satisfying

0 = d0 < d1 < · · · < dℓ−1 ⩽ k − 1,

• and ℓ symmetric matrices Wi ∈ Rn×n of respective inertia
(di, 0, n− di), with i ∈ {0, . . . , ℓ− 1},

such that (13) is satisfied, and the following colinearity relation holds

B⊤W−1
i = B⊤W−1

0 , ∀ i ∈ {0, . . . , ℓ− 1}. (14)

Furthermore, with this solution, the system (9) is k-contractive with
the feedback law

u = −Kx, K =
ρ

2
B⊤W−1

0 , ∀ ρ ⩾ 1. (15)



The proof is postponed to Section VII-D. We highlight that, since
k-contraction for the closed-loop system is preserved for all ρ ⩾
1, the proposed controller presents a generalization of the infinite-
gain margin property [37, Section 3.2.2] to the framework of partial
stabilization. Consequently, this result expands similar infinite-gain
margin designs [6] from 1-contraction to k-contraction.

IV. k-CONTRACTION FOR NONLINEAR SYSTEMS

As a follow-up to the linear scenario, we now move to the analysis
of k-contraction for nonlinear systems. The main goal is to provide
sufficient conditions inspired by the results in Section III.

A. Sufficient conditions

Consider a nonlinear system of the form (1). The following
theorem provides sufficient conditions for k-contraction.

Theorem 4 Let S ⊊ Rn be a compact forward invariant set.
Suppose there exist two symmetric matrices P0, Pk−1 ∈ Rn×n of
respective inertia (0, 0, n) and (k−1, 0, n−k+1), and µ0, µk−1 ∈ R
such that

∂f

∂x
(x)⊤P0 + P0

∂f

∂x
(x) ≺ 2µ0P0, (16a)

∂f

∂x
(x)⊤Pk−1 + Pk−1

∂f

∂x
(x) ≺ 2µk−1Pk−1, (16b)

µk−1 + (k − 1)µ0 < 0, (16c)

for all x ∈ S. Then, system (1) is infinitesimally k-contractive on S
(therefore, k-contractive on S).

A detailed discussion of Theorem 4 is postponed to Section VIII-
B, along with the relative proof. Intuitively, inequality (16a) bounds
the expansion rate of the variational system (6) by a factor µ0.
Differently, the second inequality (16b) bounds the contraction rate
of a subspace of the tangent bundle by a factor µk−1. Consequently,
inequality (16c) constraints the contraction rate to be faster than the
expansion rate. This resembles the eigenvalue bounding approach
of Section III. However, a simple eigenvalue interpretation is not
applicable in the nonlinear framework. Hence, we directly bound the
fastest diverging direction and the slowest converging one, asking for
the latter to be sufficiently fast through (16c).

Notice that Theorem 4 considers constant matrices P0, P1. In view
of recent results on Riemannian contraction analysis, e.g. [1], [11],
[33], we claim that the use of constant metrics is restrictive and
that state-dependant metrics can help in widening the result to more
general cases. A direct consequence of this observation is the fact
that, contrarily to the linear case, the conditions of Theorem 4 are
in general not equivalent to those of Theorem 1. Nonetheless, we
highlight that restricting ourselves to the case of constant matrices
can help to derive some new asymptotic behavior for k-contractive
systems, as discussed at the end of Section II-C.

Remark 8 Theorem 4 requires solving an infinite set of matrix
inequalities. Nonetheless, there are multiple strategies that can be
used to reduce it to a feasible problem. For instance, one could exploit
convex relaxation, as explained in [13, Section VI]. Alternatively, for
systems with a semilinear structure (namely, f(x) = Ax + g(x)),
one can obtain a finite set of LMIs if the nonlinear term satisfies a
monotonic or a sector-bounded condition, similar to [38].

B. Relaxing conditions for the planar case
Note that, differently from Theorem 1, in Theorem 4 we require

the set S to be compact. We conjecture this compactness assumption
can also be dropped in Theorem 4. This conjecture is motivated by
the following result for the planar case n = k = 2.

Lemma 3 Let S ⊆ R2 and assume there exist symmetric matrices
P0, P1 ∈ R2×2 of inertia In(P0) = (0, 0, 2), In(P1) = (1, 0, 1)
and µ0, µ1 ∈ R such that, for all x ∈ S, inequalities in (16) are
satisfied. Then, system (1) is 2-contractive on S.

The proof of Lemma 3 is postponed to Section VIII-C. This result
shows that the inequalities in (16) do not necessarily need S ⊊
Rn to show k-contraction. Consequently, in future works, we aim
at exploring if Theorem 4 can be expanded to the complete Rn.
Currently, the technical obstruction that prevents us to conclude the
conjecture is the use of Theorem 5 and Lemma 12 in Theorem 4
proof, which require S ⊊ Rn in order to guarantee a bounded
invariant subspace splitting.

C. 2-contractive feedback design
Following the lines of the linear results presented in Section III,

we now elaborate on the conditions for k-contraction proposed in
Theorem 4. We aim at devising k-contractive controllers for nonlinear
systems. We will focus on the specific case of k = 2, due to the
interesting asymptotic properties shown by 2-contractive systems, see
Section V, and the reduced conservativity of Theorem 4 for k = 2.

Precisely, consider nonlinear systems of the form

ẋ = f(x) +Bu (17)

where u ∈ Rm and f is sufficiently smooth. In the next propostion,
we provide a result on 2-contractive controller design.

Proposition 3 Let S ⊊ Rn be a compact set, and assume there
exist a pair of symmetric matrices W0,W1 ∈ Rn, with W0 ≻ 0
and inertia In(W1) = (1, 0, n − 1) and a pair of real numbers
µ0, µ1 ∈ R, such that, for all x ∈ S,

W0
∂f

∂x
(x)⊤ +

∂f

∂x
(x)W0 −BB⊤ ≺ 2µ0P0 (18a)

W1

(
∂f

∂x
(x)− 1

2
BB⊤W−1

0

)⊤
+

(
∂f

∂x
(x)− 1

2
BB⊤W−1

0

)
W1

−BB⊤ ≺ 2µ1W1. (18b)

Then, there exists a real number ε > 0 such that if

µ0 + µ1 + ε < 0, (19)

the feedback law u = −Kx with

K = 1
2B

⊤(W−1
0 +W−1

1 ). (20)

makes the system (17) 2-contractive on S, if S is forward invariant
for the closed-loop.

The proof of Proposition 3 is postponed to Section VIII-D.
Proposition 3 is an extension of the result for linear systems in
Theorem 2 to the nonlinear framework, and restricted to the case
k = 2. However, besides the nonlinearities, we highlight some main
differences between the two results. First, since we require constant
matrices Wi, the nonlinear result cannot be proven to be necessary
in general. Second, even if such constant matrices do exist, there is
no guarantee that they satisfy a colinearity condition (14) uniformly
on x. Hence, Proposition 3 proposes an alternative design that trades
the colinearity condition (14) for conservativeness in the sum of rates



(19), i.e. the addition of ε > 0. Nonetheless, we remark that a similar
approach can be used in the linear scenario at the price of the result
necessity.

Remark 9 Substituting (19) with the condition µ1 ⩽ 0, we obtain
a feedback design methodology for 1-dominance, see Section V-
A, which can serve as an alternative to existing feedback design
methodologies for p-dominance, e.g. [39], [40].

Remark 10 The strategy of building a controller by recursively
computing matrices W in (18b) resembles the approach proposed in
[41, Lemma 2]. Consequently, Proposition 3 can also be interpreted
as an adaptation of the controller design suggested in [41, Lemma
2] to the context of k-contraction.

V. ASYMPTOTIC BEHAVIOURS

This section is dedicated to discussing the asymptotic behaviour
derived from a k-contractive property. Precisely, we discuss the
similarities and differences between the behaviour of k-contractive
systems and the recently proposed p-dominance analysis [12], [13].
Furthermore, this connection allows us to derive novel asymptotic
properties for 3-contractive systems.

A. Relation to p-dominance
Partial stability of dynamical systems via p-dominance has recently

attracted the attention of the control community, e.g., [35], [39]. In
what follows, we link our main result to recent developments in p-
dominance analysis [12], [13]. We start by recalling the definition of
p-dominance.

Definition 6 (p-dominance) System (1) is said to be strictly p-
dominant on S ⊊ Rn if1 there exist a real number µ ⩾ 0 and a
symmetric matrix P ∈ Rn×n with inertia In(P ) = (p, 0, n − p)
such that

P
∂f

∂x
(x) +

∂f

∂x
(x)⊤P ≺ −2µP , ∀x ∈ S. (21)

In general, p-dominance and k-contraction are different properties.
As an example, consider a linear system of the form (10) with
A =

[
2 0
0 −1

]
. This system satisfies (21) for all 0 < µ < 1 and

some symmetric matrix P with inertia In(P ) = (1, 0, 1). However,
we have A[2] = 1. Therefore, this system is 1-dominant, yet it is
not 2-contractive. An example of a k-contractive system that does
not satisfy p-dominance conditions can be found in equation (23).
Hence, there are p-dominant systems that are not k-contractive and
vice versa. Nonetheless, condition (16b) sheds light on a link between
these two properties. Interestingly, p-dominance has been related to
various differential properties [13, Section V], such as differential
positiveness [42] and monotonicity [43]. However, to the best of the
authors’ knowledge, the link between k-contraction and p-dominance
has not been properly clarified in the literature.

Precisely, consider the variational system of (1), presented in (6).
Then, the p-dominance condition (21) splits the tangent space in
a vertical subspace of dimension p and a horizontal subspace of
dimension n − p. Namely, for each initial condition x0 ∈ S the
tangent space can be divided in a horizontal distribution Hx and
a vertical distribution Vx. The property of p-dominance can be
interpreted as a form of horizontal contraction [10, Section VII], in
the sense that contraction is only imposed in the horizontal subspace.

1The definition can be extended to the full set Rn but in this case condition
(21) is modified into P ∂f

∂x
(x) + ∂f

∂x
(x)⊤P ⪯ −2µP − εI for all x ∈ Rn

where the term −εI is added to ensure uniformity.

However, horizontal contraction is not sufficient for k-contraction
[19], and a bound on the expansion rate of the vertical subspace has
to be imposed. This bound is obtained via (16a) paired with (16c).

With these similarities and differences in mind, the next section
is devoted to compare the asymptotic behaviour of k-contractive
systems and p-dominant ones.

B. 1-dominance and 2-contractive behaviours

We remark that k-contractive and p-dominant systems share
interesting guarantees on their asymptotic behaviors. In fact, the
asymptotic dynamics of both p dominant and k-contractive systems
(with k = p + 1) have been proven to evolve on a p-dimensional
object. This relationship explains why 1-dominance and 2-contraction
share similar convergence results in systems evolving in a bounded
set. More precisely, consider system (1) and assume S is compact
and forward invariant. In [44] it is shown that any bounded solution
converges to an equilibrium point if the system is 2-contractive.
Similarly, in [13, Corollary 1], it is proven that any bounded solution
converges to a fixed point if the system is 1-dominant.

Now, considering these similar asymptotic behaviors, one can
question the difference between p-dominance (21) and the proposed
conditions (16a)-(16c). For example, since any trajectory of a 1-
dominant system evolving in a compact set will eventually converge
to an equilibrium point, the area of any surface defined as in (3) will
eventually converge to zero. However, a uniform exponential decay
of such a 2-order volume is not guaranteed. As an example, consider
the following system

ẋ1 = θx1 − x31,

ẋ2 = −x2,
(22)

and its associated Jacobian ∂f
∂x =

[
θ−3x21 0

0 −1

]
, where θ is a positive

scalar. Consider any compact forward invariant set S which includes
the origin. Additionally, consider an initial condition with x1(0) ≈ 0.
Then, the system satisfies (21) in S with 0 < µ < 1 and some
symmetric matrix P with In(P ) = (1, 0, 1). In other words, the
system is 1-dominant and converges to a (non-unique) equilibrium
point. Indeed, the system converges to [x1, x2]

⊤ = [±
√
θ, 0].

Moreover, system (22) satisfies (16a) with µ0 > θ and (16b) with
k = 2 and µ1 > −1. Therefore, if θ ⩾ 1, condition (16c) is not
satisfied and there is no guarantees that the system is uniformly k-
contractive in S. To be more specific, the second additive compound

of the system is ∂f∂x
[2]

= θ−3x21−1. If θ > 1, the compound is non-

negative when |x1| ⩽
√
θ−1
3 and the area of any surface of initial

conditions will expand. Indeed, the system becomes 2-contractive
once |x1| becomes large enough, even if the system was uniformly
1-dominant in all the considered set.

C. 2-dominance and 3-contractive behaviours

Even if the asymptotic trajectories of p-dominant and k-contractive
systems (with k = p+1) lie on an object of the same dimension, they
may show different asymptotic behaviors. However, as (16a)-(16c)
are implemented with constant Pi, we inherit asymptotic properties
from p-dominance that are not typically obtained in more general k-
contractive systems. This fact is formalized in the following lemma.

Lemma 4 Assume that system (1) satisfies (16) with k = 3 in a
forward invariant set S ⊊ Rn. Then, any trajectory of (1) with
initial condition in S converges to a simple attractor, that is, a fixed
point or a limit cycle.



Fig. 4. Evolution of two trajectories of the system (23). The first
(blue) has an initial condition [0.1, 0.1, 0], the second (red) has an
initial condition [0.099, 0.1, 0]. The trajectories do not converge to any
specific limit cycle.

Fig. 5. Evolution of three trajectories of the system (24). The first
(blue) has an initial condition [0.2, 0.5, 0], the second (red) has an initial
condition [−0.3,−0.3,−0.5], the third (yellow) has an initial condition
[0.2,−0.5,−0.3].

The proof of Lemma 4 is postponed to Section VIII-E. We remark
that this result is not generally true for 3-contractive systems. As an
example, consider the Rössler system [45]

ẋ1 = x2, ẋ2 = −x1 − x3,

ẋ3 = 0.5((x1 − x21)− x3).
(23)

The 3-additive compound of the Jacobian is ∂f
∂x (x)

[3] = −0.5.
Therefore, condition (8) is trivially satisfied and the system (23) is
3-contractive. Nonetheless, the nonlinear term x21 is not monotonic
nor sector bounded. Consequently, this term prevents the existence
of a constant matrix P2 in (16b). Therefore, even if the system is
3-contractive and evolves in a compact set, there is no guarantee that
it will converge to a fixed point or limit cycle. Indeed, this system
presents chaotic behavior and its trajectories do not converge to a
simple attractor, as shown in Figure 4.

Alternatively, consider the following system,

ẋ1 = x2 − 2x3, ẋ2 = −x1 − x3,

ẋ3 = 0.5((x1 − x31)− x3).
(24)

In this case, the 3-additive compound of the Jacobian is ∂f
∂x (x)

[3] =
−0.5, similarly to (23). Then, the system is 3-contractive. Moreover,
it evolves in a compact forward invariant set. However, differently
from (23), inequalities (16a)-(16c) are satisfied with µ0 = 0.2, µ2 =

−0.45 and P0 =
[
1.45 0.20 0.13
0.20 2.09 0.26
0.13 0.26 0.67

]
, P2 =

[
−2.05 −1.02 −0.45
−1.02 26.75 14.47
−0.45 14.47 6.41

]
.

Therefore, by Lemma 4 we can conclude that the system will

converge to a (non-unique) simple attractor. This behavior is shown
in Figure 5, which presents the evolution of three trajectories.

D. An illustration
Consider the following nonlinear system:

ẋ1 = x2 − x3, ẋ2 = −x1 − x3 + u, ẋ3 = x1(x
2
1 − 0.25). (25)

In the absence of input (u = 0), the system trajectories present an
oscillatory behavior. Moreover, for the same conditions, the 3-additive
compound is ∂f∂x (x)

[3] = 0. Therefore, the system is not 3-contractive
(nor 2-contractive or 1-contractive). The objective is to design a linear
state-feedback controller u = −Kx, such that the system converges
to an equilibrium point. Note that we do not need the system to
reach a specific point, we only require the existence of (at least)
one attractive equilibrium. For this example, we restrict ourselves to
linear controllers.

A quick computation shows that the closed-loop system presents
3 equilibrium points,

x∗1 = {0,−0.5, 0.5}, x∗2 = x3, x∗3 =
−(1 + k1)

1 + k3 + k2
x1,

where k1, k2, k3 are the components of the feedback gain K. The
existence of multiple equilibrium points prevents the design of a
linear controller that achieves 1-contraction, e.g., [6]. Nonetheless,
it may still be possible to design a controller that guarantees 2-
contraction of the closed-loop. Since the system dynamics evolve a
in compact set, 2-contraction guarantees convergence to a (possibly
non-unique) equilibrium point, see Section V-B.

With the aim of exploiting the results in Proposition 3, the matrix
inequalities (18a)-(18b) are satisfied with µ0 = 0.3, µ1 = −0.6 and

W0 =

[
1.86 −1.21 −0.92
−1.21 2.13 0.86
−0.92 0.86 0.96

]
, W1 =

[
2.84 0.06 2.65
0.06 0.27 −5.16
2.65 −5.19 −2.29

]
. With this

specific selection of constant and matrices, we have ε = 0.048, which
implies that (19) is satisfied. Therefore, according to Proposition 3
the state-feedback law u = −Kx with gain (20), namely

K =
[
0.8978 2.1567 −1.1765

]
, (26)

makes the closed-loop system 2-contractive. Indeed, the closed-loop

system satisfies (8) with η = 0.091 and Q =

[
1.26 −0.06 0.46
−0.05 2.74 −1.34
0.41 −1.34 2.33

]
,

which validates the result by means of Theorem 1. More precisely,
the closed-loop system presents 3 equilibrium points, one unstable at
the origin and 2 (locally) asymptotically stable.

VI. PROOF OF LINEAR RESULTS (ANALYSIS)
In the rest of this section, given a matrix A ∈ Rn×n, we number

its eigenvalues in such a way that

Re(λ1) ⩾ Re(λ2) ⩾ . . . ⩾ Re(λn). (27)

A. k -contraction properties and inertia theorem
The following result is a direct consequence of the additive

compound definition.

Lemma 5 A system ẋ = Ax, with x ∈ Rn is k-contractive if and
only if the eigenvalues λi of the matrix A satisfy

k∑
i=1

Re(λi) < 0 , (28)

according to the above mentioned numbering (27).

Proof: A necessary and sufficient condition for k-contraction
of a linear system ẋ = Ax is that the matrix A[k] is Hurwitz [15].



Moreover, recall that a spectral property of the additive compound
matrix is that the eigenvalues of the matrix A[k] are all the possible
sums of the form λi1 + λi2 + · · · + λik , with 1 ⩽ i1 < · · · <
ik ⩽ n, see [15]. That is, a necessary and sufficient condition for
k-contraction is that the sum of any combination of k eigenvalues of
A is negative. In particular, this holds true if and only if the first k
eigenvalues satisfy condition (28) according to the numbering (27).

Second, we state a lemma about inertia properties of the Lyapunov
equation (11a), collecting together various results from the literature,
e.g., [20, Lemma 1, Section 3], [21, Theorem 2.5].

Lemma 6 Given a matrix A ∈ Rn×n, a real constant µ, and an
integer p ∈ {0, . . . , n}, the following statements are equivalent:

1) A has p eigenvalues with real part larger than µ and n − p
eigenvalues with real part smaller than µ,

2) the matrix A− µI has inertia (n− p, 0, p),
3) there exists a symmetric matrix P ∈ Rn×n with inertia In(P ) =

(p, 0, n− p) satisfying

A⊤P + PA ≺ 2µP (29)

4) given a symmetric positive definite matrix Q ≻ 0 there exists a
symmetric matrix P ∈ Rn×n with inertia In(P ) = (p, 0, n−p)
satisfying (A− µI)⊤P + P (A− µI) = −Q.

Proof: The eigenvalues of A − µI are the shifted eigenvalues
λ1 − µ, . . ., λn − µ, numbered as in (27). If A − µI has inertia
(n − p, 0, p), it implies that Re(λp+1) − µ < 0. This shows that
(1) ⇔ (2). The implication (3) ⇔ (2) is due to [20, Lemma 1,
Section 3]. The implication (2) ⇔ (4) is due to [21, Theorem 2.5].
Finally, we have that (4) ⇔ (3). Indeed, (4) implies

A⊤P + PA = −2µP −Q ≺ −2µP

because Q is positive definite.

B. Proof of Theorem 2

The proof of Theorem 2 is obtained by combining the two previous
lemmas. To begin with, we introduce a new notation in order to
represent the eigenvalues of A and their associated multiplicities.
Precisely, consider the matrix A in (10) and let Π : C → R denote the
canonical projection onto the real axis. Let σ(A) be the spectrum of A
and suppose Π(σ(A)) = {α1, α2, . . . , αq} (q ⩽ n) with α1 > α2 >
· · · > αq. Set h̄i = card

(
Π−1(αi+1)

⋂
σ(A)

)
, where eigenvalues

have been counted with their algebraic multiplicities (so that h̄0 +
h̄1 + · · · + h̄q−1 = n). Finally, let d̄0 = 0 and d̄i =

∑i−1
j=0 h̄j , for

each i ∈ {1, . . . , q − 1}.
We remark that the variables d̄i, h̄i are related to variables di, hi

of Theorem 2, hence the similar notation. To see this relation, notice
that h̄i represents the number of eigenvalues projected to αi+1 and
d̄i represents the amount of eigenvalues with real part strictly larger
than αi+1. Therefore, for any constant µ ∈ R such that α1 < µ,
we have In(−A + µI) = (0, 0, n). Similarly, if αi+1 < µ < αi,
we have that In(−A + µI) = (d̄i, 0, n − d̄i). Consequently, if we
avoid the singularity case π0(−A + µI) > 0, the matrix −A + µI
can only present a particular set of inertia (d̄i, 0, n − d̄i) with i ∈
{0, . . . , q − 1}. From this fact and Lemma 6, we obtain that the
matrix inequalities in (11a) are only feasible for the particular set of
inertia In(Pi) = (d̄i, 0, n − d̄i) with i ∈ {0, . . . , q − 1}. A direct
consequence of this result is that ℓ ⩽ q.

We now present the main arguments proving sufficiency and
necessity of the result in Theorem 2.

Sufficiency. In order to prove the sufficiency, we will show that the set
of inequalities (11) implies the condition (28). To this end, notice that
a solution of (11a) for some µi ∈ R and Pi with inertia In(Pi) =
(di, 0, n−di) implies that In(−A+µI) = (di, 0, n−di) by means
of Lemma 6. That is, A has only di eigenvalues with real part strictly
larger than µi. This is equivalent to the bound

Re(λdi+1
) ⩽ Re(λdi+1) < µi, ∀i ∈ {0, . . . , ℓ− 1}. (30)

Now, due to Lemma 6, we have that µi+1 < µi for all i ∈ {0, . . . , ℓ−
2}. Therefore, the bound (11b) implies µℓ−1 ⩽ 0, which combined
with (30), implies λdℓ < 0. Additionally, because the eigenvalues
are numbered as per (27), the following bound trivially holds for all
i ∈ {0, . . . , ℓ− 1}

di+1∑
j=di+1

Re(λj) ⩽ (di+1 − di)Re(λdi+1) = hiRe(λdi+1),

where the definition hi = (di+1−di) has been used. Combining this
bound with the fact that dℓ ⩽ k, the bound λdℓ < 0 and the fact that
the eigenvalues are numbered as in (27), we obtain the following,

k∑
i=1

Re(λi) ⩽
dℓ∑
i=1

Re(λi) =

ℓ−1∑
i=0

di+1∑
j=di+1

Re(λj)

⩽
ℓ−1∑
i=0

hiRe(λdi+1). (31)

Then, combining (30), (31) and (11b) we have

k∑
i=1

Re(λi) <

ℓ−1∑
i=0

hi µi ⩽ 0 . (32)

Consequently, by Lemma 5, we obtain that the system is k-
contractive.
Necessity. Define

pk := max
(
{d̄0, d̄1, . . . , d̄q−1}

⋂
[0, k − 1]

)
,

ck := card
(
{d̄0, d̄1, . . . , d̄q−1}

⋂
[0, k − 1]

)
.

(33)

Then, the following equality holds

(k − pk)αck +

ck−2∑
i=0

hi αi+1 =

k∑
i=1

Re(λi). (34)

Hence, combining Lemma 5 and (34), if the system is k-contractive,
the next bound is satisfied

(k − pk)αck +

ck−2∑
i=0

hi αi+1 < 0. (35)

Then, by continuity, there exist a scalar ε > 0, such that

(k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0 .

Next, fix ℓ = ck, dℓ = k−pk+dℓ−1, di = d̄i for all i ∈ {0, . . . , ℓ−
1} and select µi−1 = ε+ αi, for all i ∈ {1, . . . , ℓ}. We have

ℓ−1∑
i=0

hiµi = (k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0,

thus showing (11b). Now, define matrices Âi := A − µiI with i ∈
{0, . . . , ℓ− 1}. It is clear that, since µi−1 > αi by definition, each
matrix Âi has d̄i eigenvalues with positive real part and n − d̄i
eigenvalues with negative real part. That is In(Âi) = (n− d̄i, 0, d̄i).



Then, by Lemma 6, there exist symmetric matrices Pi with In(Pi) =
In(−Âi) = {d̄i, 0, n− d̄i} such that

A⊤Pi + PiA ≺ 2µiPi ∀i = 0, . . . , ℓ− 1 ,

thus concluding the proof.

VII. PROOF OF LINEAR RESULTS (DESIGN)
This section follows the next notation. First, we will consider that

every pair (A,B), is algebraically equivalent to the form in (12).
Second, we define Re(λu1 ) ⩾ . . . ⩾ Re(λunu), as the numbered set
of eigenvalues of Au.

A. Proof of Lemma 2

Sufficiency. Without loss of generality, consider a system in the form
(12). After a feedback design u = −Kx = −[Kc Ku](x

⊤
c , x

⊤
u )

⊤ is
selected, the closed-loop eigenvalues are given by σ(A) = σ(Ac −
BcKc) ∪ σ(Au). Then, we can arbitrarily assign the eigenvalues
of the closed-loop matrix Ac − BcKc, since the pair (Ac, Bc) is
controllable. As a consequence, let c = kλu1 and select Kc such
that the largest eigenvalue of Ac −BcKc has real part smaller than
−|Re(c)|. Then, the conditions of Lemma 5 are satisfied either if Au
is k-contractive or nu < k by construction.
Necessity. If nu ⩾ k and ẋ = Aux is not k-contractive, then, there
is a sum of k eigenvalues in the spectrum of Au that is positive,
see Lemma 5. Therefore, since the spectrum of Au is invariant to
the controller gain, the closed-loop system A − BK cannot be k-
contractive (invoking again Lemma 5), which proves necessity.

B. Inertia theorems generalizing stabilizability conditions

We state a set of new technical lemmas related to the feasibility
and the inertia of the generalized stabilizability-like inequality (13a).
Note that the following lemmas do not require the pair (A,B) to be
controllable, contrarily to [22].

Lemma 7 Consider a pair of matrices (A,B) and its canonical
decomposition (12). Suppose that for some µ ∈ R, In(Au − µI) =
(nu − ϱ, 0, ϱ) with ϱ ∈ {0, . . . , nu}. Then, there exists a symmetric
matrix W ∈ Rn×n, with inertia In(W ) = (ϱ, 0, n− ϱ), satisfying

WA⊤ +AW −BB⊤ ≺ 2µW. (36)

Proof: Without loss of generality, suppose that the pair (A,B) is
in the form (12). Moreover, define the shifted matrices Âc := Ac−µI
and Âu := Au − µI . Then, since In(Âu) = (nu − ϱ, 0, ϱ) and by
Lemma 6, there exist some symmetric matrix Wu ∈ Rnu×nu with
inertia In(Wu) = (ϱ, 0, nu − ϱ) such that

WuÂ
⊤
u + ÂuWu = −Q, (37)

with Q ≻ 0. Furthermore, since the pair (Ac, Bc) is controllable, the
pair (−γI −Ac, Bc) is also controllable for any γ ∈ R. Hence, for
γ > 0 large enough and from the Lypaunov test of controllability [36,
Theorem 12.4], there exist some positive symmetric matrix Wc ≻ 0

Wc(−γI − Âc)
⊤ + (−γI − Âc)Wc = −BcB⊤

c

which implies

WcÂ
⊤
c + ÂcWc −BcB

⊤
c = −2γWc. (38)

With this in mind, consider a symmetric matrix W with inertia
In(W ) = (ϱ, 0, n− ϱ) of the form

W =

[
Wc 0
0 κWu

]

where κ > 0 has to be fixed, with Wu and Wc satisfying (37) and
(38). Now, by subtracting 2µW from the left-hand side of (36), we
get the following equality[

Wc 0
0 κWu

][
Â⊤
c A⊤

12

0 Â⊤
u

]
+

[
Âc A12

0 Âu

] [
Wc 0
0 κWu

]
−
[
BcB

⊤
c 0

0 0

]
=

[
−2γWc κA12Wu

κWuA
⊤
12 −κQ

]
. (39)

Since Wc and Q are positive definite, the right hand side of identity
(39) can be made negative definite by taking κ > 0 sufficiently small,
see, e.g. [36, Section 14.4].

Additionally, we present the following technical lemma.

Lemma 8 Consider a pair of matrices (A,B) and its canonical
decomposition (12). Moreover, assume there exists a (non-singular)
symmetric matrix W ∈ Rn×n and a constant µ ∈ R such that

WA⊤ +AW −BB⊤ ≺ 2µW. (40)

Then, π−(W ) ⩾ π−(−Au + µI).

Proof: Without loss of generality, we suppose that the pair
(A,B) is in the form (12). Moreover, notice that the inequality (40)
can be re-arranged as follows

WĀ⊤ + ĀW ≺ 2µW, (41)

where Ā := A − 1

2
BB⊤W−1. Now, recall the notation in (12)

and notice that the eigenvalues in the spectrum of Au cannot be

modified by the term
1

2
BB⊤P−1, thus, we have σ(Au) ⊊ σ(Ā), or,

equivalently, σ(Au−µI) ⊊ σ(Ā−µI). From this fact we obtain that
π−(−Ā+ µI) ⩾ π−(−Au + µI). Then, by Lemma 6 we have that
any (non-singular) W that satisfies (41) necessarily implies π−(−Ā+
µI) = π−(W ), which concludes the proof.

Finally, we present a technical lemma that relates the colinearity
condition in (14) and the generalized stabilizability-like inequality
(13a).

Lemma 9 Consider a pair of matrices (A,B) and its canonical
decomposition (12). Suppose that for some µ1, µ2 ∈ R with µ1 ⩽ µ2,
In(Au−µ1I) = (nu−ϱ1, 0, ϱ1), In(Au−µ2I) = (nu−ϱ2, 0, ϱ2)
with ϱ1, ϱ2 ∈ {0, . . . , nu}. Then, there exist a pair of symmetric
matrices W1,W2 ∈ Rn×n, with inertia In(W1) = (ϱ1, 0, n −
ϱ1), In(W2) = (ϱ2, 0, n− ϱ2), satisfying

W1A
⊤ +AW1 −BB⊤ ≺ 2µ1W1, (42a)

W2A
⊤ +AW2 −BB⊤ ≺ 2µ2W2, (42b)

B⊤W−1
2 = B⊤W−1

1 . (43)

Proof: Without loss of generality, we suppose the pair (A,B)
to be in the form (12). This is not a restrictive assumption since
the colinearity condition (43) is preserved under linear coordinate
changes z = Tx, for any non-singular constant matrix T ∈ Rn×n.

Now, since In(Au − µ1I) = (nu − ϱ1, 0, ϱ1), we can follow
similar arguments as in Lemma 7 proof, to show that (42a) can be
satisfied with a symmetric matrix W1 of the form

W1 =

[
Wc 0
0 κ1W1,u

]
(44)

where κ1 > 0 is a sufficiently small constant, W1,u ∈ Rnu×nu is
a symmetric matrix with inertia In(W1,u) = (ϱ1, 0, nu − ϱ1) and
Wc ≻ 0 is a positive definite symmetric matrix computed from

Wc(Ac − µ1I)
⊤ + (Ac − µ1I)Wc −BcB

⊤
c = −2γWc. (45)



for some positive γ > 0.
With this in mind, we can construct a solution to (42b) such that

W1 and W2 are colinear according to (43). Since In(Au − µ2I) =
(nu−ϱ2, 0, ϱ2) and by Lemma 6, there exists some symmetric matrix
W2,u ∈ Rnu×nu with inertia In(W2,u) = (ϱ2, 0, nu−ϱ2) such that

W2,u(Au − µ2I)
⊤ + (Au − µ2I)W2,u = −Q, (46)

for some Q ≻ 0. Moreover, recall the relation (45), then, we can
derive the following set of equalities

Wc(Ac − µ2)
⊤ + (Ac − µ2I)Wc −BcB

⊤
c

=Wc(Ac − µ1I)
⊤ + (Ac − µ1I)Wc + 2(µ1 − µ2)Wc −BcB

⊤
c

= −2(γ + µ2 − µ1)Wc.
(47)

With this in mind, consider a symmetric matrix W2 of the form

W2 =

[
Wc 0
0 κW2,u

]
(48)

where κ2 > 0 has to be fixed, with W2,u and Wc satisfying (46) and
(47). Now, by subtracting 2µ2W2 from the left-hand side of (42b)
and defining Âc := Ac − µ2I and Âu := Au − µ2I , we get the
following equality[

Wc 0
0 κW2,u

][
Â⊤
c A⊤

12

0 Â⊤
u

]
+

[
Âc A12

0 Âu

] [
Wc 0
0 κW2,u

]
−
[
BcB

⊤
c 0

0 0

]
=

[
−2(γ + µ2 − µ1)Wc κA12W2,u

κW2,uA
⊤
12 −κ2Q

]
. (49)

Recall that µ1 ⩽ µ2 by assumption and γ > 0,Wc ≻ 0 by design.
Consequently, −2(γ+µ2−µ1)Wc is negative definite and the right
hand side of identity (49) can be made negative definite by taking
κ2 > 0 sufficiently small.

Finally, since the system is in the form (12), it can be trivially seen
that W1,W2 constructed as in the block-diagonal form (44) and (48)
satisfy (43), which ends the proof.

C. Proof of Theorem 3

Now, similar to the proof in Section VI-B, we introduce a new
notation in order to represent the eigenvalues of Au and their
associated multiplicities. Precisely, consider the matrix Au in (12)
and σ(Au) its spectrum and suppose Π(σ(Au)) = {α1, α2, . . . , αq}
(q ⩽ nu) where again Π : C → R denote the canonical projection
onto the real axis and with α1 > α2 > · · · > αq. Set h̄i =
card

(
Π−1(αi+1)

⋂
σ(Au)

)
, where eigenvalues have been counted

with their algebraic multiplicities (so that h̄1+h̄2+· · ·+h̄q−1 = nu).
Finally, let d̄0 = 0, d̄i =

∑i−1
j=1 h̄j , i ∈ {1, . . . , q − 1}. Similar

to Section VI-B, h̄i represents the number of eigenvalues of Au
projected to αi+1 and d̄i represents the amount of eigenvalues with
real part strictly than αi+1.

Finally, by recalling Lemma 2 and Lemma 5, we see that a
necessary and sufficient condition for k-order stabilizability is either
nu < k or

k∑
j=1

Re(λuj ) < 0. (50)

We now present the main arguments proving that the inequalities
(13) are necessary and sufficient for k-order stabilizability.

Sufficiency. The goal of this proof is to show that if (13) is satisfied,
then either (50) is satisfied or nu < k, hence showing the result
invoking Lemmas 2 and 5. Without loss of generality, we suppose
that the pair (A,B) is in the form (12).

Firstly, we assume the case k ⩽ nu and we show that (13) implies
(50). To this end and by means of Lemma 8, we have that inequality
(13a) implies that π−(Wi) ⩾ π−(−Au+µiI) for all i ∈ {0, . . . , ℓ−
1}. Recalling that Wi has inertia In(Wi) = (di, 0, n− di), we have
that Au has at most di eigenvalues with real part strictly larger than
µi. This is equivalent to the bound

Re(λudi+1
) ⩽ Re(λudi+1) < µi, ∀i ∈ {0, . . . , ℓ− 1}. (51)

Then, following similar arguments as in the sufficiency part of
Section VI-B, the next bound can be obtained.

k∑
i=1

Re(λui ) <

ℓ−1∑
i=0

hi µi ⩽ 0 . (52)

Thus, (50) is satisfied and the pair (A,B) is k-order stabilizable
invoking Lemmas 2 and 5.

Finally, for the case k > nu, we have k-order stabilizability
directly from Lemma 2, thus ending the sufficiency proof.
Necessity. As stated before, if the pair (A,B) is k-order stabilizable
then, either (50) or nu < k is verified. The goal of this proof is to
show that if one of these conditions are satisfied, then, there exists
a solution to the inequalities (13). We begin by assuming the case
k ⩽ nu and (50) is verified. Now, let the scalars pk and ck be defined
as in (33).

Then, the following equality holds

(k − pk)αck +

ck−2∑
i=0

hi αi+1 =

k∑
j=1

Re(λuj ). (53)

Hence, combining (50) and (53), if the system is k-order stabilizable
(with k ⩽ nu), the next bound is satisfied

(k − pk)αck +

ck−2∑
i=0

hi αi+1 < 0. (54)

Then, by continuity, there exist a scalar ε > 0, such that

(k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0

Now, fix ℓ = ck, dℓ = k−pk+dℓ−1, di = d̄i for all i ∈ {0, . . . , ℓ−
1} and select µi−1 = ε+ αi, for all i ∈ {1, . . . , ℓ},. We have

ℓ−1∑
i=0

hiµi = (k − pk)(αck + ε) +

ck−2∑
i=0

hi (αi+1 + ε) ⩽ 0,

thus showing (13b). Now, since µi > αi+1 for all i ∈ {0, . . . , ℓ−1}
we have that Au has only d̄i eigenvalues strictly larger than µi and
the rest are strictly smaller. That is, In(Au−µiI) = (nu− d̄i, 0, d̄i)
for all i ∈ {0, ℓ − 1}. Then, by Lemma 7, there exist symmetric
matrices Wi with In(Wi) = {d̄i, 0, n− d̄i} such that

A⊤Wi +WiA−BB⊤ ≺ 2µiWi ∀i ∈ {0, . . . , ℓ− 1} ,

thus concluding the proof if (50) is verified and k ⩽ nu.
We now proceed with the necessity proof for the case k > nu.

For this proof, we remark that since a k-contractive system is also
k̄-contractive for all k̄ ∈ {k, . . . , n} [15], we have that if a pair
(A,B) is k-order stabilizable, then, it is also k̄-order stabilizable
for all k̄ ∈ {k, . . . , n}. Additionally, by means of Lemma 2, a pair
(A,B) is always k-order stabilizable if k = nu + 1. Therefore,
for all k > nu, k-order stabilizability necessarily implies k̄-order
stabilizability with k̄ = nu + 1. With this fact in mind, this proof is
based on showing that, if k = nu+1, then, there always exists a pair
of matrices W0,W1 and constants µ0, µ1 such that (13) is satisfied.
We highlight that this result does not require (50) to be satisfied.



Precisely, assume k = nu+1. Notice that we can always guarantee
In(Au−µ0I) = (nu, 0, 0) for any µ0 ∈ R large enough. Therefore,
by considering this sufficiently large µ0 and by means of Lemma 7,
we know that there exists a symmetric matrix W0 with inertia
In(W0) = (0, 0, n) solution of (13a). Furthermore, we can always
find a sufficiently negative constant µ1 < 0, such that

µ1 + nuµ0 ⩽ 0, (55)

and In(Au − µ1I) = (0, 0, nu). Therefore, by considering this µ1
and by means of Lemma 7, there exists a symmetric matrix W1

with inertia In(W1) = (nu, 0, n − nu) solution of (13a). Finally,
fix ℓ = 2 and select the aforementioned pair of matrices W0,W1

and pair of constants µ0, µ1 (these matrices and constants satisfy
(13a)). Moreover, fix dℓ = nu + 1. With this selection, we have
d0 = 0, d1 = nu and h0 = nu, h1 = 1. Thus, (55) implies (13b),
which ends the proof.

D. Proof of Proposition 2

The first part of the proof focuses on proving the existence of
solutions for the inequalities (13) considering the assumptions stated
in the theorem and in particular the colinearity condition in (14).
An immediate result of Lemma 9 is that there always exist a set of
constants µi and Wi such that (13b) and the colinearity condition in
(14) is simultaneously satisfied for all i ∈ {1, . . . , ℓ− 1}. Moreover,
notice that Lemma 9 preserves the relation between the inertia of
Au − µiI and Wi as in Lemma 7. Consequently, the arguments in
the necessity part of Section VII-C could be repeated to obtain the
existence of a solution from a k-order stabilizability assumption.

The second part of the proof consist in showing how the state-
feedback law (15) makes the closed-loop system

ẋ = (A−BK)x = (A− ρ

2
BB⊤W−1

0 )x, (56)

k-contractive for all ρ ⩾ 1. Note that, since Wi is non-singular and
symmetric for all i ∈ {0, . . . , ℓ− 1} and by means of the colinearity
condition (14), the left-hand side of (13a) can be rearranged as
follows for all i ∈ {0, . . . , ℓ− 1}

WiA
⊤ +AWi −BB⊤

=Wi(A− 1

2
BB⊤W−1

i )⊤ + (A− 1

2
BB⊤W−1

i )Wi

=Wi(A− 1

2
BB⊤W−1

0 )⊤ + (A− 1

2
BB⊤W−1

0 )Wi.

Combining this result with the right-hand side of (13a), we obtain
that for all i ∈ {0, . . . , ℓ− 1}

Wi(A− 1

2
BB⊤W−1

0 )⊤+(A− 1

2
BB⊤W−1

0 )Wi ≺ 2µiWi. (57)

Now, by adding (1− ρ)BB⊤ in both sides of (57) and considering
the fact that (1− ρ)BB⊤ ⪯ 0 for all ρ ⩾ 1, by (14) we get,

Wi(A− ρ

2
BB⊤W−1

0 )⊤ + (A− ρ

2
BB⊤W−1

0 )Wi

≺ 2µiWi + (1− ρ)BB⊤ ⪯ 2µiWi.
(58)

By post-multiplying and pre-multiplying both side of (58) by W−1
i

and defining Pi :=W−1
i we get for all i ∈ {0, . . . , ℓ− 1}

(A− ρ

2
BB⊤W−1

0 )⊤Pi + Pi(A− ρ

2
BB⊤W−1

0 ) ≺ 2µiPi. (59)

Finally, combining (59) and (13b) with Theorem 2 proves that the
closed-loop system (56) is k-contractive.

VIII. PROOFS OF NONLINEAR RESULTS

A. Preliminary results

We provide in this section some preliminary results that will
be used in the proof of Theorem 4. First, we recall (with a mild
reformulation) the following result on p-dominance [13, Theorem 1].

Theorem 5 Suppose that system (1) is strictly p-dominant on a
compact forward invariant set A ⊊ Rn with rate µ > 0 and
symmetric matrix P with inertia In(P ) = (p, 0, n − p). Then, for
each x ∈ A, there exists an invariant splitting TxRn = Vx ⊕ Hx,
i.e. there exists a continuous mapping T : Rn → Rn×n invertible
for any x ∈ A and satisfying

T(x) :=
[
Th(x) Tv(x)

]
, (60a)

where Th : Rn → Rn×n−p and Tv : Rn → Rn×p satisfy

Im Th(x) = Hx, Im Tv(x) = Vx. (60b)

Moreover, there exist a scalar ch > 0 such that∣∣∣∂ψ∂x t(x) [Th(x) 0
]
v
∣∣∣ ⩽ che

−µt ∣∣[Th(x) 0
]
v
∣∣ (60c)

holds for all (t, x, v) ∈ R⩾0 ×A× TxRn.

With this in mind, it is clear that if µk−1 is strictly negative, the
matrix inequality (16b) imposes a form of horizontal contraction on
the system [10, Section VII]. Nonetheless, horizontal contraction is
not a sufficient condition for k-contraction [19]. This motivates (16a).
We clarify the effects of (16a) via the following Lemma.

Lemma 10 Consider system (1) and assume there exist a forward
invariant compact set A ⊊ Rn, a positive definite matrix P0 ∈ Rn×n
and a scalar µ0 satisfying (16a) for all x ∈ A. Then there exists a
constant cv > 0 such that∣∣∣∂ψ∂x t(x) [0 Tv(x)

]
v
∣∣∣ ⩽ cve

µ0t
∣∣[0 Tv(x)

]
v
∣∣ (61)

for all (t, x, v) ∈ R⩾0 ×A× TxRn, with Tv as in (60b).

Proof: Consider the function, W := v⊤P0v. It satisfies

λ(P0)|v|2 ⩽W (v) ⩽ λ(P0)|v|2, (62)

where λ(·) and λ(·) represent the minimum and maximum eigenvalue
of their argument, respectively. By (6), its time-derivative satisfies

Ẇ = v⊤
(
P0
∂f

∂x
(x) +

∂f

∂x
(x)⊤P0

)
v

< 2µ0v
⊤P0v = 2µ0W.

Then, by Grönwall–Bellman inequality, we obtain

W (t) ⩽ e2µ0tW (0), ∀t ∈ R⩾0.

Invoking (62), we obtain for all (t, x, v) ∈ R⩾0 ×A× TxRn

∣∣∂ψ
∂x

t
(x)v

∣∣ ⩽
√
λ(P0)

λ(P0)
eµ0t|v|.

As
[
0 Tv(x)

]
v ∈ TxRn, the result trivially follows.

Given the above results, condition (16c) can be seen as imposing a
bound on the maximum expansion rate of the vertical subspace with
respect to the contraction rate of the horizontal one. In particular,
(16c) holds if the first is smaller than the latter. We now relate this
property to infinitesimal k-contraction. As a first step, we present a
technical lemma related to matrix compounds.



Lemma 11 Consider a time-varying matrix M(t) ∈ Rn×n

M(t) =
[
H(t) V (t)

]
,

with H(t) ∈ Rn×n−p, V (t) ∈ Rn×p and p ∈ [0, n). Assume there
exist real numbers ch, cv, α, β > 0 such that

|H(t)| ⩽ che
−αt, |V (t)| ⩽ cve

βt, ∀t ∈ R+. (63)

If α > (k − 1)β for some integer k ∈ [p + 1, n], there exist some
real numbers c, ε > 0 such that

|M(t)(k)| ⩽ ce−εt, ∀t ∈ R+. (64)

Proof: Consider the elements of the compound matrix M(t)(k).
Each one is a kth-order minor of the original matrix M(t), i.e., it
is the determinant of a k × k submatrix of M(t), see Definition 2.
Since k ⩾ p+1, each k× k submatrix contains at least one column
composed of elements of H(t). That is, in the minimum case

Mk(t) =
[
h(t) v1(t) . . . vk−1(t)

]
, (65)

where Mk(t) ∈ Rk×k is a submatrix of M(t), h(t) ∈ Rk is a vector
with components of H(t) and vi(t) ∈ Rk for i = 1, . . . , k − 1 is
a vector with components of V (t). In what follows, we show the
elements of M(t)(k) are bounded. Hence, we focus on submatrices
of the form (65), since their determinant represents the worst-case
scenario in a stability sense. Recall that, by definition of the wedge
product,

det(Mk(t)) = h(t) ∧ v1(t) ∧ · · · ∧ vk−1(t).

The wedge product can be represented using a basis ei, where
ei depicts the ith canonical vector of Rn. More specifically, by
bilinearity of the wedge product, we have

det(Mk(t)) =

n∑
i=1

hi(t)(ei ∧ v1(t) ∧ · · · ∧ vk−1(t)),

where hi(t) is the ith element of h(t). By performing similar
operations on the remaining vectors we deduce

det(Mk(t)) =

k∑
i1=1

· · ·
k∑

ik=1

hi1(t)v
i2
2 (t) . . . v

ik
k−1(t)Ek, (66)

where Ek := (ei1 ∧ ei2 ∧ · · · ∧ eik ). By (63), we have

|hi(t)| ⩽ che
−αt, |vi(t)| ⩽ cve

βt.

Moreover, the factor Ek will be either zero or an element of the
canonical basis in Rn multiplied by plus or minus one. Thus, using
the triangle inequality, one obtains

| det(Mk(t))| ⩽ κchcve
(−α+(k−1)β)t

where κ > 0 is a positive constant related to the number of non-zero
instances of Ek. Now, since α − (k − 1)β > 0 by assumption, by
continuity there always exists ε > 0 such that α− (k−1)β− ε > 0.
Then,

|M(t)(k)| = |e−εteεtM(t)(k)| ⩽ e−εt|eεtM(t)(k)|.

By considering the worst-case (65), we have

eεt| det(Mk(t))| ⩽ c̄e(−α+(k−1)β+ε)t,

for some c̄ > 0. Hence, since α− (k−1)β−ε > 0, each element of
eεtM(t)(k) is exponentially decreasing and the norm |eεtM(t)(k)|
is uniformly bounded for all t ∈ R⩾0, thus concluding the proof.

Leveraging on the previous lemmas, we now provide a bound on
the k multiplicative compound of the state transition matrix of the
variational system (6).

Lemma 12 Consider system (1) and assume there exist a forward
invariant compact set A ⊊ Rn, constants µ0, µk−1 and matrices
P0, Pk−1 ∈ Rn×n such that (16) is satisfied. Then, there exist ε, c >
0 such that∣∣∣∂ψ∂x t(x)(k)∣∣∣ ⩽ ce−εt, ∀(t, x) ∈ R⩾0 ×A. (67)

Proof: Consider (60a) in Theorem 5. Invertibility of T(x) yields

∂ψ
∂x

t
(x) = ∂ψ

∂x

t
(x)T(x)T(x)−1 = ψψψt(x)T(x)−1,

with ψψψt(x) :=
[
∂ψ
∂x

t
(x)Th(x)

∂ψ
∂x

t
(x)Tv(x)

]
. Given any v ∈

TxRn, consider the decomposition v = (vh, vv), where vh ∈ Rn−p
and vv ∈ Rp. Then, for an arbitrary vh, inequality (60c) of
Theorem 5 implies

|∂ψ∂x
t
(x)Th(x)v

h| ⩽ che
µk−1 |Th(x)v

h| .

Recall the definition of matrix norm,∣∣∣∂ψ∂x t(x)Th(x)
∣∣∣ := max

|u|=1

∣∣∣∂ψ∂x t(x)Th(x)u
∣∣∣ .

By selecting vector u⋆ such that |u⋆| = 1, the previous exponential
relation and the triangular inequality yield∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣ = ∣∣∣∂ψ∂x t(x)Th(x)u
⋆
∣∣∣

⩽ che
µk−1 |Th(x)u

⋆| ⩽ che
µk−1 |Th(x)|.

Since A is compact and T is continuous, |Th(x)| is bounded for all
x ∈ A. Then, by (60c), and by (61) we obtain∣∣∣∂ψ∂x t(x)Th(x)

∣∣∣ ⩽ che
µk−1 |Th(x)| ⩽ c̄he

−µk−1∣∣∣∂ψ∂x t(x)Tv(x)
∣∣∣ < cve

µ0 |Tv(x)| ⩽ c̄ve
µ0

for all x ∈ A. Finally, by boundedness of T(x) and Lemma 11, we
obtain ∣∣∣∂ψ∂x t(x)(k)∣∣∣ ⩽ |ψψψt(x)(k)||T(x)−1(k)| ⩽ ce−εt

for all x ∈ A, concluding the proof.

B. Proof Theorem 4

Consider the k-th multiplicative compound of matrix Ψ(t, x0)
defined as in Section II-B. From the Cauchy-Binet formula [46,
Chapter 1] we get:

Ψ(t, x0)
(k) =

[
∂ψ
∂x

t
(x0)v

1
0 . . . ∂ψ

∂x

t
(x0)v

k
0

](k)
= ∂ψ

∂x

t
(x0)

(k)Ψ(0, x0)
(k).

From (16) and Lemma 12 we obtain for all x ∈ S

|(Ψ(t, x0))
(k)| ⩽ ce−εt|(Ψ(0, x0))

(k)|.

Hence, the system is infinitesimally k-contractive on S and the k-
contractive property follows from Proposition 1.

C. Proof of Lemma 3

Let us decompose the Jacobian of the vector field f as follows

∂f

∂x
(x) =

[
Fs(x) G12(x)
G21(x) Fu(x)

]
.

Then, according to Theorem 1, a sufficient condition for 2-contraction
in a set A is:

∂f

∂x
(x)[2] = Fs(x) + Fu(x) < 0, ∀x ∈ A. (68)



By subtracting 2µ0P0 in both sides of (16a), the following inequality
is obtained[

Fs(x)− µ0 G12(x)
G21(x) Fu(x)− µ0

]
P0

+ P0

[
Fs(x)− µ0 G21(x)
G12(x) Fu(x)− µ0

]
≺ 0.

Since P0 is positive definite, the previous inequality necessarily
implies that ∂f∂x (x)−µ0I is Hurwitz for all x ∈ A, and, consequently,
its determinant is positive. That is,

0 < Fs(x)Fu(x)−µ0(Fs(x)+Fu(x))+µ20−G12(x)G21(x). (69)

Similarly, by subtracting 2µ1P1 in both sides of (16b), the following
inequality is obtained[

Fs(x)− µ1 G12(x)
G21(x) Fu(x)− µ1

]
P1

+ P1

[
Fs(x)− µ1 G21(x)
G12(x) Fu(x)− µ1

]
≺ 0.

Since In(P1) = (1, 0, 1), by Lemma 6, this inequality necessarily
implies that In

(
∂f
∂x (x)− µ1I

)
= (1, 0, 1) for all x ∈ A, and,

consequently, its determinant is negative. That is,

Fs(x)Fu(x)− µ1(Fs(x) + Fu(x)) + µ21 −G12(x)G21(x) < 0,

which can be rearranged as

Fs(x)Fu(x)−G12(x)G21(x) < µ1(Fs(x) + Fu(x))− µ21. (70)

Now, combining (69) and (70) we get

0 < (µ1 − µ0)(Fs(x) + Fu(x)) + µ20 − µ21. (71)

Then, since µ0 > µ1 we have that µ1 − µ0 < 0. Moreover, (16c)
and the fact that µ0, µ1 are real implies µ20 − µ21 < 0. Therefore,
by combining (71) and (16c) we get the sufficient condition for 2-
contraction in (68), which ends the proof.

D. Proof of Proposition 3
Consider inequality (16a), pre-multiply and post-multiply both

sides of the inequality by P−1
0 and fix W0 = P−1

0 . Similarly,
pre-multiply and post-multiply both sides of the inequality (16b)
by P−1

1 and fix W̄1 = P−1
1 . Then, according to Theorem 4, a

sufficient condition for the closed-loop system to be 2-contractive
is the existence of symmetric matrices W0,W1 ∈ Rn×n of inertia
In(W0) = (0, 0, n), In(W1) = (1, 0, n − 1) and µ̄0, µ̄1 ∈ R such
that,

W0

(
∂f

∂x
(x)−BK

)⊤
+

(
∂f

∂x
(x)−BK

)
W0 ≺ 2µ̄0W0, (72a)

W1

(
∂f

∂x
(x)−BK

)⊤
+

(
∂f

∂x
(x)−BK

)
W1 ≺ 2µ̄1W1, (72b)

µ̄1 + µ̄0 < 0, (72c)

for all x ∈ S, where S is assumed to be compact and forward
invariant. In this proof, we show that if the inequalities in (18)-(19)
are satisfied and the gain matrix K is designed as in (20), then, the
inequalities in (72a)-(72c) are also satisfied. Thus, the closed-loop
system is 2-contractive according to Theorem 4.

To this end, note that the left-hand side of (72a) with K fixed as
in (20) can be rewritten as:

W0
∂f

∂x
(x)⊤ +

∂f

∂x
(x)W0 −BB⊤ − 1

2
BB⊤W−1

1 W0

−1

2
W0W

−1
1 BB⊤ ≺ µ0W0−

1

2
BB⊤W−1

1 W0−
1

2
W0W

−1
1 BB⊤,

(73)

where the right hand side is obtained employing (18a). Now, let ε > 0
such that[

I − 1

2
BB⊤W−1

1

]
W0

[
I − 1

2
BB⊤W−1

1

]⊤
⪯ (1 + ε)W0.

Furthermore, note that we have the identity

− 1

2
BB⊤W−1

1 W0 − 1

2
W0W

−1
1 BB⊤ =[

I − 1

2
BB⊤W−1

1

]
W0

[
I − 1

2
BB⊤W−1

1

]⊤
−W0

− 1

4
BB⊤W−1

1 W0W
−1
1 BB⊤.

As a consequence, by adding and substracting εW0 from the right
hand side of (73) and using the two previous equations, we obtain

W0
∂f

∂x
(x)⊤ +

∂f

∂x
(x)W0 −BB⊤

− 1

2
BB⊤W−1

1 W0 − 1

2
W0W

−1
1 BB⊤ ≺ (µ0 + ε)W0

Thus, selecting µ̄0 = µ0 + ε, shows (72a). Then, remark that
inequality (18b) can be re-organized to obtain the inequality (72b)
with µ̄1 = µ1. Finally, we have that (19) implies (72c), completing
the proof.

E. Proof of Lemma 4
Due to Lemma 6, a necessary condition for the feasibility of (16a)-

(16c) for k = 3 is µ2 < µ0. Consequently, (16c) implies µ2 <
0. Therefore, the inequalities (16a)-(16c) for k = 3 in a forward
invariant set S imply 2-dominance in S. Finally, the result follows
from [13, Corollary 1].

IX. CONCLUSIONS

We presented new conditions for k-contraction based on the use of
generalized Lyapunov matrix inequalities. The proposed conditions
do not rely on matrix compounds. In the linear case, they reduce the
k-contraction analysis to solving a set of matrix inequalities. In the
nonlinear context, they extend the well-known Demidovich conditions
based on the Jacobian of the vector field along the flow. Moreover,
these conditions provide a direct link between the p-dominance
theory and k-contraction one, which allows to further characterize
the asymptotic behavior of 3-contraction. Finally, we showed that
the proposed conditions can be used to develop new tools for k-
contractive feedback design, so that to extend existing conditions for
standard 1-contraction, see, e.g. [5], [6], [8] and references therein.

Future works will focus on extending the proposed conditions to
the context of time-varying systems and Riemannian metrics, similar
to the context of 1-contraction, see, e.g. [11], [25], and to discrete
time systems. Another topic of interest is the design of k-contractive
observers and their use in practical applications.

APPENDIX

A. Proof of Lemma 1
The uniformity condition in (5) and the fact that P is positive

definite and symmetric imply the existence of constants σ̄, σ > 0
such that,

V k(φ ◦ Φ) =

∫
[0,1]k

√
det

{
∂Φ

∂r
(r)⊤

∂φ

∂x
(x)⊤P

∂φ

∂x
(x)

∂Φ

∂r
(r)

}
dr

⩽
√
σ̄

∫
[0,1]k

√
det

{
∂Φ

∂r
(r)⊤P

∂Φ

∂r
(r)

}
dr =

√
σ̄ V k(Φ)



and V k(Φ) ⩽ V k(φ ◦ Φ)/
√
σ. Thus, exponential convergence of

V k(Φ) implies exponential convergence of V k(φ◦Φ). Consequently,
if the system is k-contractive in the original coordinates, we have

V k(φ ◦ ψt ◦ Φ) ⩽
√
σ̄V k(ψt ◦ Φ) ⩽

√
σ̄

√
σ
be−at V k(φ ◦ Φ),

thus showing k-contractivity with b̄ =
√
σ̄

√
σ
b in the new coordinates.

B. Proof of Theorem 1

Consider Φ ∈ Ik, where Ik is defined in (2), satisfying Im(Φ) ⊆
S. To simplify notation, let us denote for all (r, t) in [0, 1]k × R⩾0

Γ(r, t) := ψt ◦ Φ(r) , Γr(r, t) :=
∂Γ

∂r
(r, t).

In plain words, the factor Γ(r, t) depicts the solution of (1) at time
t taking as a initial condition a point in Φ parametrized by r. Then,
Γr(r, t) represents how a variation in the initial condition Φ(r) via a
change in r, modifies the solution at time t. Since Γ(r, t) represents
a solution of the system, for all (r, t) in [0, 1]k × R⩾0, we have

d

dt
Γ(r, t) = f(Γ(r, t)).

Moreover, since S is forward invariant and Im(Φ) ⊆ S, we have
Γ(r, t) ∈ S for all (r, t) in [0, 1]k×R⩾0. Additionally, by the chain
rule, it follows that the point Γr(r, t) evolves according to

d

dt
Γr(r, t) =

∂2Γ

∂r∂t
(r, t) =

∂f

∂x
(Γ(r, t))Γr(r, t)

for all (r, t) in [0, 1]k × R⩾0. Since these dynamics are linear,
following similar steps to the ones presented in [15, Section 2.5],
we obtain

d

dt
Γr(r, t)

(k) =
∂f

∂x
(Γ(r, t))[k]Γr(r, t)

(k). (74)

Next, fix a symmetric positive definite matrix Q such that Q = P (k).
Then, since Γr(r, t) ∈ Rn×k, from the Cauchy-Binet formula [46,
Chapter 1] the following equality holds

det
(
Γr(r, t)

⊤P Γr(r, t)
)

=
(
Γr(r, t)

(k)
)⊤
QΓr(r, t)

(k):=v(r, t).
(75)

Then, the volume V k(ψt ◦Φ) of ψt ◦Φ computed according to (3)
takes the form

V k(ψt ◦ Φ) =
∫
[0,1]k

√
v(r, t)dr .

In turn, the volume evolves according to

d

dt
V k(ψt ◦ Φ) =

∫
[0,1]k

d

dt

√
v(r, t) dr

=

∫
[0,1]k

1

2
√
v(r, t)

[(
Γr(r, t)

(k)
)⊤
Q d

dtΓr(r, t)
(k)

+

((
Γr(r, t)

(k)
)⊤
Q d

dtΓr(r, t)
(k)
)⊤
]
dr.

Hence, for all (r, t) in [0, 1]k × R⩾0, we obtain

d

dt
V k(ψt ◦ Φ) =

∫
[0,1]k

1

2
√
v(r, t)

(
Γr(r, t)

(k)
)⊤

×

(
Q
∂f

∂x
(Γ(r, t))[k] +

(
∂f

∂x
(Γ(r, t))[k]

)⊤
Q

)
Γr(r, t)

(k) dr .

Note that in view of (8), there exists µ > 0 satisfying

Q

(
∂f

∂x
(x)[k]

)
+

(
∂f

∂x
(x)[k]

)⊤
Q ⪯ −µQ, ∀x ∈ S

Then, invoking inequality (8) and recalling that Γ(r, t) ∈ S for all
(r, t) in [0, 1]k × R⩾0, the previous relation implies

d

dt
V k(ψt ◦ Φ) ⩽

∫
[0,1]k

− µ v(r, t)

2
√
v(r, t)

dr

⩽ −µ
2

∫
[0,1]k

√
v(r, t) dr ⩽ −µ

2
V k(ψt ◦ Φ)

for all (r, t) in [0, 1]k × R⩾0. The result follows by Grönwall’s
lemma.

C. Proof of Proposition 1

Following [15, Section 2.5], it can be shown that the compound
matrix of Ψ(t, x0) evolves according to the linear dynamics

d

dt
(Ψ(t, x0))

(k) =
∂f

∂x
(ψt(x0))

[k] (Ψ(t, x0))
(k) . (76)

By (7), such dynamics are globally exponentially stable. Consider
now an arbitrary Φ ∈ Ik satisfying Im(Φ) ⊆ S. By following the
first steps of the proof of Theorem 1, dynamics (74) and uniformity
of (76) imply ∣∣∣Γr(r, t)(k)∣∣∣ ⩽ be−at

∣∣∣Γr(r, 0)(k)∣∣∣ ,
Then, by selecting P in (3) as the identity matrix, by (75) we obtain

V k(ψt ◦ Φ) =
∫
[0,1]k

∣∣∣Γr(r, t)(k)∣∣∣ dr ⩽ ∫
[0,1]k

be−at
∣∣∣Γr(r, 0)(k)∣∣∣ dr

⩽ be−at
∫
[0,1]k

∣∣∣Γr(r, 0)(k)∣∣∣ dr ⩽ be−atV k(Φ) ,

and this concludes the proof.
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