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1. Introduction

A closed predictive model for the macroscopic pressure difference, often referred to as the macroscopic
capillary pressure, for two-phase flow in homogeneous porous media is of major importance to form a
complete set of governing macroscale equations. This has been a long-lasting subject of research during
the past 40 years [1, 3], and the majority of the existing models remain empirical at some level of their
derivation. A new closed macroscopic dynamic capillary pressure equation is reported in this work
on the basis of the existence of a representative (periodic) unit cell able to locally describe microscale
momentum transport in the system. This is carried out with an adjoint method together with a Green’s
formulation, requiring no other simplifying assumption.

2. Upscaled dynamic capillary pressure

The general framework of the analysis is the incompressible, creeping flow of two Newtonian fluids α
and β saturating a homogeneous porous medium whose rigid and spatially homogeneous solid skeleton
is the σ-phase.

2.1. Pore-scale and adjoint problems

The pore-scale flow problem can be written in a periodic unit cell representative of the domain as
follows (α = β, γ)

∇ · vα = 0, in Vα, (1a)

0 = ∇ · Tp̃α −∇Pα, in Vα, (1b)

vβ = vγ , at Aβγ , (1c)

nβγ · Tp̃β = nβγ · Tp̃γ + nβγ
(
〈pβ〉β − 〈pγ〉γ

)
rβγ

+ 2Hγnβγ +∇sγ, at Aβγ , (1d)

vα = 0, at Aασ, (1e)

vα|S −
αi

= vα|S +
αi
, i = 1, . . . , N, (1f)

(nα · Tp̃α)S −
αi

= − (nα · Tp̃α)S +
αi
, i = 1, . . . , N, (1g)

〈p̃α〉α = 0. (1h)

Here, vα is the velocity in the α-phase, in which the pressure, pα, is decomposed as pα = 〈pα〉α + p̃α,
Tp̃α = −p̃αI + µα

(
∇vα +∇vTα

)
, ∇Pα = ∇〈pα〉α − ραbα, H is the double mean curvature of the fluid-

fluid interface, Aβγ , which unit normal directed from the β phase to the γ phase is nβγ , µα and γ are
the dynamic viscosity and interfacial tension and ∇sγ stands for possible Marangoni effects; S ±

αi are
the entrances/exits of the α-phase at the ith edge of the periodic unit cell.

For the derivation of the upscaled model, an adjoint problem is now considered that writes

∇ · fβ =
1

Vβ
, in Vβ , ∇ · fγ = − 1

Vγ
, in Vγ , (2a)

0 = ∇ · Tfα , in Vα, (2b)
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Figure 1: ∆P∗, obtained from direct numerical simulation (DNS) and predicted from the upscaled equation (3) (UE),
along with the interfacial term contribution, s∗βγ , and classical Laplace capillary pressure, P∗

cL (see text), versus the

wetting phase saturation, Sβ . a) µ∗ = 0.1, Ca = 10; b) µ∗ = 10, Ca = 0.1. ε = 0.8.

fβ = fγ , nβγ · Tfβ = nβγ · Tfγ , at Aβγ , (2c)

fα = 0, at Aασ, (2d)

fα|S −
αi

= fα|S +
αi
, (nα · Tfα)S −

αi
= − (nα · Tfα)S +

αi
, i = 1, . . . , N, (2e)

fα = 0, at r0α. (2f)

2.2. Macrosocpic capillary pressure

Following the procedure detailed in [2], a Green’s formula can be used to combine the physical flow
problem and the adjoint (closure) problem that leads to the following macroscopic equation for the
dynamic capillary pressure

∆P = 〈pγ〉γ |xγ − 〈pβ〉
β
∣∣
xβ

= −ψβ · ∇〈pβ〉β + ρβbβ ·ϕβ −ψγ · ∇〈pγ〉γ + ργbγ ·ϕγ + sβγ , (3)

where ϕα =
∫

Vα

fα dV , ψα = ϕα −
∫

Aβγ

nακ · fαzα dA, and sβγ =
∫

Aβγ

(2Hγnβγ +∇sγ) · fβ dA. Here, zα

denotes the position of a point located at Aβγ relative to the α-phase barycenter in the unit cell.

3. Results

This predictive equation is tested in the simple case of two-phase flow within a square pattern of
parallel cylinders of circular cross section (see figure 1 in [2]) with flow along a principal axis of the
structure orthogonal to the cylinders axes. The wetting fluid flows under the form of sheets aligned with
the mean flow and attached to the cylinders, whereas the non-wetting phase flows in the core, between the
wetting fluid sheets sheets. The test consists in comparing the results on the dimensionless macroscopic
dynamic capillary pressure ∆P∗ obtained from the solution of the pore-scale flow problem (DNS), on the
one hand, and from the upscaled equation (3) (UE), on the other hand. Results are reported in figure
1 versus the wetting fluid saturation Sβ for a porosity ε = 0.8, two viscosity ratios µ∗ = µβ/µγ and two
values of the capillary number Ca = h`2/γ, h being the pressure gradient magnitude in both phases
and ` the periodic unit cell size. No volume force and no Marangoni effect are considered. The classical
Laplace pressure P∗

cL = 2〈H∗〉βγ/Ca, where 〈H∗〉βγ = 1
A∗
βγ

∫
Aβγ

H∗ dA∗ and A∗
βγ is the dimensionless

measure of Aβγ , is also reported in these figures. These results show the excellent agreement between
DNS and the uspcaled equation, and highlight the fact that the classical Laplace relationship cannot
represent a satisfactory estimate of ∆P∗. The influence of the pressure gradient in each phase (dynamic
effects) is also pinpointed.
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