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Abstract

In this paper, we develop a conditional copula model to analyze the distribution of
a claim that generates different types of costs and/or simultaneously impacts several
guarantees. Our methodology is adapted to taking into account the particular struc-
ture of our data, since observations are subject to right-censoring. Right-censoring
occurs since payment of a claim is not made instantaneously, and therefore unset-
tled claims only provide a partial information on the phenomenon that one wishes
to model. The new methodology that we develop is supported by theoretical results
that show the asymptotic normality of our estimators. A simulation study and a
real data analysis illustrate the method.
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1 Introduction

Analyzing and predicting the evolution of claims is a challenging aspect of risk man-
agement, especially in some branches where the volatility of the final amount may be
important. The question of computing the appropriate amount of reserve is, of course,
crucial, but such type of analysis also enable to take actions before the settlement of a
claim, in order to reduce its impact once a difficulty has been identified. In this paper, we
consider the particular situation where the final cost of a claim is decomposed between
several categories of costs. For example, a medical malpractice claim (example that we
consider in this paper) will lead to a direct compensation of the victim, but also legal fees
or experts costs. In the field of corporate insurance, incidents like mechanical failure, fire,
or even cyber attack, may cause direct damage to the type of equipment that is affected,
but may also generate business interruption. This problematic is also present for many
types of claims, for which, for example, several guarantees are simultaneously activated.
In any case, a clear analysis of what generates the expanses for the company is required
to improve the vision one has of the reserve, but also to develop product innovation via
a sharp tailoring of what precise type of cost should be covered in case of claim.

With the increase of available data to analyze claims, many techniques have been
proposed recently to perform an accurate evaluation of RBNS (Reported But Not Settled)
claims. Traditional aggregated methods like chain-ladder, see Mack (1993), Merz et al.
(2013) or Saluz et al. (2014), can be modified to incorporate additional informations. For
example, Wüthrich (2016) and Wüthrich (2017) considered the introduction of covariates
in the development factors, allowing to use machine learning techniques to increase the
precision of the reserve computation. Alternatively, micro-level reserving methods directly
consider the prediction of the evolution of a claim based on its characteristics. Such type
of methods have been proposed for example by Norberg (1993), Norberg (1999), Antonio
and Plat (2010), Antonio et al. (2016), or Pigeon et al. (2014) in a dynamic setting
(the time phenomena being modeled by Poisson processes). Lopez et al. (2016) proposed
regression tree techniques to predict the amount of a claim based on information available
at its occurrence, while Sabban et al. (2022) used deep learning methods to deduce from
insurance reports, the outcome of severe claims. A comparison between micro-level and
macro-level methods can be found for example in Jin and Frees (2013).

In the present paper, we develop a methodology that is close to Lopez (2019). Our
model to predict the outcome of a claim is based on incomplete data: settled claims
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but also unsettled one. This phenomenon is related to right-censoring, which is classical
in survival analysis, see Fleming and Harrington (2011) for example. The general idea
is the following: settled claims are, in average, closed faster than the one that are still
open at the extraction of the database. Consequently, calibrating a model based on the
settled claims solely typically tends to lead to an under-evaluation of the reserve. Hence
an adapted methodology should be developed to correct this bias. The second axis of our
methodology is to deal with an outcome of a claim which is multivariate, since the cost is
decomposed into several lines of businesses or types of expanses. Hence, it is natural to
rely on copula theory (see for example Nelsen (2006)) to model the dependence structure
of each component of the vector of losses.

An advantage of the copula approach is the possibility to use models of various types
to describe the distribution of each margin. Since the distribution type of each category
of expanse may be quite different (typically some may be heavy-tailed, some may not),
copula theory allows to perform the analysis of these marginal distributions separately,
while the dependence structure is, in a second step, done through the fitting of a para-
metric copula function. This explains the popularity of such techniques, see Zhao and
Zhou (2010), Bouyé et al. (2000) or Jaworski et al. (2010) for examples of applications.
Due to the presence of covariates describing the circumstances and nature of the claim,
the dependence structure may not be the same for all claims, leading to a conditional
copula modeling, see Fermanian and Wegkamp (2004) or Veraverbeke et al. (2011). Our
approach is then close to the semiparametric model developed by Abegaz et al. (2012),
but with an adaptation to the particular structure of our data. Apart from the bias
caused by censoring, a difficulty arises since, among the covariates that may have impact
on the dependence structure, one of them is unavailable for open claims (namely, the time
before settlement). Hence, when it comes to prediction, an evaluation of this time before
settlement must be combined with the conditional copula model we develop.

The rest of the paper is organized as follows. In Section 2, we describe the general
model we develop to analyse the joint distribution of the loss vector. Theoretical validity
of this approach is provided in Section 3. A simulation study and a real data analysis
demonstrate the practical feasibility of the method in Section 4.
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2 A model for the decomposition of the claim cost

This section is devoted to the description of the model used to describe the cost of a claim,
and to the techniques that can be used to calibrate its parameters. Section 2.1 describes
the structure of our data, with the description of the right-censoring phenomenon. Cor-
rection of the bias caused by right-censoring is considered in Section 2.2. As we already
mentioned, our approach is based on a separation between the margins, for which models
are proposed in Section 2.3, and the dependence structure via a conditional copula model
described in Section 2.4. The method to predict an open claim, once the model is fitted,
is summarized in Section 2.5.

2.1 Model and observations

In many situations, a single insurance claim can trigger several guarantees and generate
varied additional expanses, like expert cost, legal fees and so on. In Section 4.2, we give
an example in the case of medical malpractice claims, but many other fields may be
affected by such a decomposition of the costs. The cost of a claim is decomposed into
L = (L(1), ..., L(d)), the total cost being Ltot =

∑d
k=1 L

(k). It is expected that these partial
costs may not be independent from each other, since related to the same claim. Moreover,
their distributions may be quite different since they are not of the same nature (and not
affected with the same limits). Hence, a joint modeling of the different components of the
random vector L may be delicate.

Copula analysis is a convenient way to deal with such difficulties. Sklar’s Theorem,
see Sklar (1959), is at the core of the copula approach, and states that

F (l1, ..., ld) = C(F1(l1), ..., Fd(ld)),

where F (l1, ..., ld) = P(L1 ≤ l1, ..., Ld ≤ ld), F
(k)(l) = P(L(k) ≤ l), and C is a copula func-

tion, that is a function from [0, 1]d → [0, 1] which is the distribution of a d−dimensional
random vector whose margins are uniformly distributed over [0, 1]. The copula function
C is unique when the margins are continuous (which will be our assumption throughout
this paper), hence this object characterizes the dependence structure of the random vec-
tor L (informations on the marginal distributions are contained in the one-dimensional
cumulative distribution functions F (k)).

In our case, covariates are present since one has informations on the circumstances of
the claim and on the characteristics of the policyholder. This covariates X ∈ Rp have
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impact on the marginal distribution, but potentially also on the dependence structure.
Moreover, the time required to settle the claim, denoted by T in the following, is expected
to also have a strong correlation with the final cost. This variable has a specific role since,
unlike X, the information on T is available only at the final settlement, and not at the
opening of the claim. This is why this variable will require a specific treatment.Let
F (l1, ..., ld|x, t) = P(L(k) ≤ l1, ..., L

(d) ≤ ld|X = x, T = t), and F (k)(l|x, t) = P(L(k) ≤
lk|X = x, T = t). Then, the conditional copula of L conditionally to X = x and T = t

(see e.g. Veraverbeke et al. (2011)) is the copula function C(x,t) such that

F (l1, ..., ld|x, t) = C(x,t)(F (1)(l1|x, t), ..., F (d)(ld|x, t)).

Standard regression models can be used to estimate each of the marginal conditional
distribution functions, see examples in Section 2.3 below. Our main purpose is to focus
on the estimation of the dependence structure.

Introducing a parametric copula family C = {Cθ : θ ∈ Θ}, where Θ ⊂ Rm is finite
dimensional, we assume that, for all possible values of x and t, C(x,t) ∈ C. Let θ(x, t)

denote the function such that C(x,t) = Cθ(x,t). Our aim is to retrieve this function, either
using a parametric model or a semiparametric model, as described in Section 2.4 below.

To estimate this function, we rely on observations of a set of n past claims. These
claims (Li,Xi)1≤i≤n are assumed to be i.i.d. In addition, let Ti denote the time required
to solve claim i, that is the difference between the date of occurrence of the claim and
the date of its settlement. In the database used to calibrate the model, all claims are not
closed. For ongoing ones, Ti is unknown. This is a classical right-censoring situation, see
Fleming and Harrington (2011): let Yi = inf(Ti, Ci) and δi = 1Ti≤Ci

, where Ci is a random
censoring variable. If δi = 1 the claim is closed, and one observes Yi = Ti. In the opposite
situation, the claim is still open since Yi = Ci, Ci being the difference between the date
of occurrence and the date at which one looses track on the claim (because data has been
extracted before its closure, or because the claim is part of a retroceded portfolio).

The reason for not calibrating the model only on claims such that δi = 1 is explained
in detail in Lopez (2019). Typically, a positive (and potentially strong) correlation is
expected between Ti and the total loss Ltot, based on the heuristic that "the longer it takes
for a claim to be solved, the higher it costs". Calibrating a model only on closed claims
is likely to tend to underestimate the typical values taken by Ltot, since the population of
closed claims is characterized by an overrepresentation of claims with small final amount.

This leads to the following set of observations, which are i.i.d. replications
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(Mi,Xi, Yi, δi)1≤i≤n of (M,X, Y, δ) where
Y = inf(T,C),

δ = 1T≤C ,

M = (M (1), ...,M (d)),

with M (k) = L(k) if δ = 1, and M (k) = L(k) otherwise. M (k) represents partial payments
done on the k−th line at the end of the observation of the claim. Each of these variables
can be understood as a right-censored variable, that is M (k) = inf(L(k), D(k)), where
D(k) > L(k) only when δ = 1.

2.2 Inverse probability of censoring weighting (IPCW)

Since a duration phenomenon is present in the data acquisition process (one must wait un-
til the settlement of a claim to know its final state), censoring would introduce some bias if
no correction is performed. The Inverse Probability of Censoring Weighting methodology
(IPCW), see for example Van der Laan and Robins (2003), is a simple way to proceed.
It consists of determining an appropriate weight to put on each observation to asymp-
totically cancel the bias caused by the censoring. Only the uncensored observations are
affected with a non-zero weight (since these observations are complete), but the partial
information contained in the censored one is used to determine these weights.

The core of such an approach is the following result. In the rest of the paper, we assume
that (T,L,X) is independent from the censoring mechanism C. Under this assumption,
for any function ϕ such that E[|ϕ(T,L,X)|] < ∞, and such that ϕ(y,m,x) = 0 if y is not
in the support of the distribution of Y,

E

[
δϕ(Y,M,X)

SC(Y )

]
= E [ϕ(T,L,X)] , (2.1)

where SC(y) = P(C ≥ y). In the following, we assume to simplify that T and C have the
same support, which guarantees that inf{t : P(T ≥ t) = 0} = inf{t : P(C ≥ t) = 0},
so that (2.1) holds for all function ϕ with first order finite moment. In the general case,
this would lead to consider truncated versions of functions whose support is not compact,
introducing some bias which can not be removed without some additional parametric
assumption (since one part of the distribution is not observed in this case).

Equation (2.1) implies that

1

n

n∑
i=1

δiϕ(Yi,Mi,Xi)

SC(Yi)
→n→∞ E[ϕ(T,L,X)], almost surely, (2.2)
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from the Strong Law of Large Numbers. The left-hand side quantity has the advantage
to be computable from observed quantities, while the limit is an expectation with respect
to the variables we are actually interested in (T, L and X). Nevertheless, the function SC

is in general unknown and hard to model, due to the lack of visibility on the censoring
process.

A Kaplan-Meier estimator (see Kaplan and Meier (1958)) can be used for SC , that is,
if T is continuous,

ŜC(t) =
∏
Yi≤t

(
1− δi∑n

j=1 Yj1Yj≥t

)
,

a more general expression can be found in Gill (1983) that covers also the discrete case.
Defining

Wi,n =
1

n

δi

ŜC(Yi)
, (2.3)

the IPCW approach consists in estimating any quantity of the type E[ϕ(T,L,X)] by

n∑
i=1

Wi,nϕ(Yi,Mi,Xi).

These computable weighted sums will replace every empirical mean that we would use in
the case of complete (uncensored) data.

2.3 Regression model for the margins

Since the margins are expected to have heterogeneous behaviors (some lines may be
very volatile while some others are not, some of them may have a low probability of
activation...), the models that are used to study the distribution of each L(k) may be
of different types. Typically we distinguish between fully parametric models, and semi-
parametric or non-parametric ones.

Fully parametric models. In a fully parametric model, one assumes that F (k)(l|x, t) =
Fβ(l|x, t), where {Fβ(·|x, t),x ∈ X , t ≥ 0, β ∈ B} is a parametric set of distribution func-
tions (here, X is the support of the random vector X). Typically, this is the framework
of the Generalized Linear Model (see Nelder and Baker (1972)). According to this model,
the distribution of L(k)|X = x, T = t has density fβ(x,t)(l), where {fβ : β ∈ B} is the
collection of densities from a given exponential-type distribution. Moreover, it is assumed
that

g(E[L(k)|X = x, T = t]) = h(β(x, t)) = α′z,
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where z = (x, t), g is a fixed monotonic function (h is deduced from g) and α a finite
dimensional parameter (here, the ′ symbol denotes the transpose of a vector). From
an estimator α̂ of α, one deduce an estimator of the conditional distribution function
F̂ (k)(l|x, t) =

∫ l

0
fg−1(α′(x,t)′)(u)du. Since L(k) is subject to censoring, a specific adaptation

of the log-likelihood estimation is required. Consistent estimators of α̂ can be used, such
as Stute (1999) (see also Lopez (2009)).

Semi-parametric or nonparametric models. Since the covariates are smooth, a
simple way to estimate the distribution nonparametrically consists in using kernel esti-
mator for the conditional distribution function.

This leads to

F̂ (k)(l|z) =
n∑

i=1

Wi,n

K̃
(
Zi−z
h′

)∑n
j=1 K̃

(
Zj−z

h′

)1Mi≤t, (2.4)

for some univariate kernel K̃. With some anticipation, let us note that the bandwidth
h′ should be different from the smoothing parameter h that will be used for the specific
estimation of the association parameter (see section 2.4).

More elaborate models, coming from example from machine-learning field, consist in
decomposing L(k) = m(k)(X, T ) + ε(k), where m is a function belonging to a potentially
infinite dimension class, and ε is a residual. For example, in the case where m(k)(x) =

E[L(k)|X = x, T = t], E[ε(k)|X = x, T = t] = 0, while in the case of median regression,
m(k)(x) is the conditional median and ε is such that P(ε(k) ≥ 0|X = x, T = t) = 1/2. If
one assumes that ε does not depend on X or T, F (k)(l|x, t) = F (ε(k))(l −m(x, t)). Based
on an estimator m̂(k) of m(k), one can define ε̂

(k)
i = L

(k)
i − m̂(k)(Xi, Ti), and

F̂ (ε(k))(e) =
n∑

i=1

Wi,n1ε̂
(k)
i ≤e

,

and F̂ (k)(l|x, t) = F̂ (ε(k))(l − m̂(k)(x, t)). Various machine learning techniques have been
proposed for censoring models, like regression trees (see Bou-Hamad et al. (2011)), random
forests (see Ishwaran et al. (2008), Gerber et al. (2021)) or neural networks (see Sabban
et al. (2022)).

2.4 Conditional copula model estimation

Let Ui = (U
(1)
i , ..., U

(d)
i ) where U

(k)
i = F (k)(L

(k)
i |Xi, Ti). The variables U

(k)
i are uniformly

distributed over [0, 1]. Moreover, the conditional density of Ui conditionally to Zi =

(Xi, Ti) is Cθ(Xi,Ti).
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If we had the ability to observe (Ui)1≤i≤n, one could rely on a localized version of the
maximum likelihood estimator. Let us introduce a kernel function K (that is function from
Rp to R such that

∫
K(z)dz = 1, with

∫
zK(z)dz = 0). To simplify, we will consider in

the following a product kernel, that is a function K(z) =
∏p+1

i=1 k(zi). One could maximize

1

hp+1

n∑
i=1

K

(
Zi − z

h

)
log cθ(Ui),

where cθ is the copula density associated with Cθ, that is
cθ(u) = ∂dCθ(u)/∂u

(1)...∂u(d). Here, we consider the same bandwidth h (which is of
course tending to zero with n) for each coordinate of z to simplify the notations, but
in full generality these bandwidths may be different.

In our case, the vectors (Ui)1≤i≤n are not directly observed, but one can compute

Û
(k)
i = F̂ (k)(M

(k)
i |Xi, Yi),

from the marginal distribution estimators of Section 2.3. Let us note that, because of
the censoring, this quantity will not be close to U

(k)
i when δi = 0, since, in this case,

M
(k)
i ̸= L

(k)
i . Nevertheless, we will require to compute this quantity only when δi = 1.

This is the consequence of the IPCW technique of Section 2.2 that is required to correct
the bias of the censoring: this technique leads to the following estimator

θ̂(x, t) = argmax
θ∈Θ

1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
log cθ(Ûi), (2.5)

where we recall that Wi,n = 0 if δi = 0. In this expression, the vectors Zi (which depend
on Ti) are fully observed only if δi = 1, but, again, their computation is not required
in case δi = 0 due to the nullity of the weight. The estimator (2.5) can be seen as an
adaptation of the estimator of Abegaz et al. (2012).

2.5 Prediction of an open claim

Let us consider an open claim with characteristics x. The claim is open since a duration y.

The conditional copula model and the marginal regression models described above allows
to determine the conditional distribution of L conditionally to X = x and T = t. When
it comes to predicting an open claim, they can not be used directly, since T is unknown
(one only knows that T ≥ y). A possibility is to rely on a predictor of T, say T̂ . Let

p̂(x, t) =

∫
Rd

l× cθ̂(x,t)(F̂
(1)(l(1)|x), ..., F̂ (d)(l(d)|x))dF̂ (1)(l(1)|x, t)...dF̂ (d)(l(d)|x, t),
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where we used the notation l = (l(1), · · · , l(d)). This is an estimator of p(x, t) = E[L|X =

x, T = t]. Based on T̂ , one can use p̂(x, T̂ ) to predict the final state of the claim. This
only gives the "central scenario". The fitted conditional copula density and the marginal
models can be used more generally to simulate the conditional distribution of L, and thus
to get an analysis on the volatility of this prediction.

The crucial question is hence to determine a proper prediction method T̂ . This can
be based on a standard regression model on the censored variable T. An accelerated
failure-time model (see Wei (1992)) can for example be fitted to obtain an estimator of
F T (t|x) = P(T ≤ t|X = x), or a Cox model (see Cox (1975)). Other semiparametric
models, like Stute (1999) or Lopez (2009) can also be used. Machine learning methods,
like for example survival forests (see Ishwaran et al. (2008)) are also available. In each
case, one obtains an estimator F̂ T (t|x) of F T , from which a predictor of T can be obtained.

For an open claim with characteristics x, open since y, the idea is to estimate E[T |X =

x, T ≥ y]. This leads to

T̂ =

∫∞
y

tdF̂ T (t|x)
ŜT (y|x)

, (2.6)

where ŜT (y|x) = 1− F̂ T (y − |x). The quality of the prediction will of course rely on the
regression model on T.

Remark 2.1 It is important to use a predictor T̂ of the form (2.6), that is an estimator
of E[T |X = x, T ≥ y], instead of a more simple estimator of E[T |X = x] : this alternative
method does not take into account all the available information on T, and could lead to
predictions for which T̂ < y.

3 Asymptotic consistency

To study the theoretical behavior of the method, we first describe in Section 3.1 the
assumptions required to obtain consistency of the estimation of the dependence structure.
Our asymptotic results are gathered in Section 3.2.

3.1 List of assumptions and discussion

We distinguish between three types of assumptions required to obtain the theoretical
results: on the copula family, on the estimation of the margins, and regularity assump-
tions related to kernel estimation. The assumptions are of the same type as the one used
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by Omelka et al. (2021) and Tsukahara (2005) to study the behavior of semiparametric
estimators of copulas (that is the copula structure is parametric, but the margins are es-
timated through a nonparametric estimator, namely the empirical distribution function),
but with small adaptations required by the context of censoring. In our case, we add as-
sumptions on how the margins are estimated, since we want to be able to consider various
types of models for the margins.

Assumptions on the copula family.

Before stating the assumptions, we need to introduce some notations. We use the
bracketing number (see, for example, Chapter 19 in Van der Vaart (2000)) to define
the richness of a class of functions. A bracket [u, l], where u and l are functions such
that u ≤ l, is the set of functions f such that u ≤ f ≤ l. A ε−bracket is such that
E [(u(U)− l(U))2] ≤ ε2. N[](ε,F) denotes the number of ε−brackets required to cover a
class of functions F . How fast N[](ε,F) explodes when ε tends to zero is an indication
about the complexity of the class of functions F .

Assumption 1 Let F1 = {u → log cθ(u) : θ ∈ Θ}, with | log cθ(u)| ≤ Φ(u) for all θ and
u with

E

[
Φ(U)

SC(T )ι

]
< ∞, (3.1)

for some ι > 0. Assume that N[](ε,F) ≤ Aε−κ, for some A and κ > 0.

Moreover, assume that there exists Φ1 such that, ∀ϕ ∈ F1, ∥∇uϕ(u) − ∇uϕ(u
′)∥ ≤

Φ1(u), where Φ1 is continuous and ∇uf denotes the gradient vector of a function f with
respects to its arguments, with E[Φ1(U)] < ∞.

This assumption is relatively easy to fulfill for a classical parametric copula family
(like Gaussian copula, standard Archimedean copulas...). Typically, a polynomial bound
Aε−κ for the covering number is obtained when the class F is regular enough (typically,
when this class is Lipschitz with respect to the parameter θ, see Example 19.7 in Van der
Vaart (2000)).

Next, we need to dominate the class of copula functions and some of their derivatives,
with an assumption which is close to the one present in Tsukahara (2005) and in Omelka
et al. (2021). The only difference stands in the presence of censoring in our case, which
strengthens the assumptions. Right-censoring induces potentially erratic behavior when
studying the right-tail of the distribution. Typically, this explains the introduction of SC

(the survival function of the censoring variable) and a function K in the last two moment
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conditions of Assumption 2, defined as

K(t) =

[
−
∫ t

∞

dSC(s)

SC(s)2ST (s)

]−1

,

where ST is the survival function of T. If these two functions decreased too fast (compared
to the tail of the distribution of T ), the proper convergence rate can not be achieved.
Truncation of the highest observations is required, leading to some bias that can not be
cancelled even asymptotically. This type of conditions is classical in presence of censoring,
see for example Gill (1983).

Assumption 2 Introduce

F2 = {u → ∇θ log cθ(u) : θ ∈ Θ} .

Let
∀u ∈ [0, 1], m(u) = u(1− u),

and assume that there exists some 0 ≤ β < 1/2, 0 < α < 1/2, and some positive constant
A2 such that

∀ϕ ∈ F2, ∀k ∈ {1, · · · , d}, |ϕ̇(j)(u)|m(u(k))α ≤
d∑

k=1

A2

m(u(k))β
,

where ϕ̇(j) denotes the derivative with respect to the j−th component of u.

This assumption holds for standard classes of copula, see for example Remark 3 in
Omelka et al. (2021). It essentially controls the explosion of the score function close to
the limits of [0, 1]d. The fact that β < 1/2 allows E[m(U (k))−β] to be finite.

Assumptions on the estimation of the margins.

The margins estimation should satisfy the following assumption.

Assumption 3 Assume that

sup
i=1,...,n:δi=1

sup
k=1,...,d

∣∣∣∣∣U (k)
i

Û
(k)
i

+
1− U

(k)
i

1− Û
(k)
i

∣∣∣∣∣ = OP (1), (3.2)

sup
i=1,...,n:δi=1

sup
k=1,...,d

∣∣∣∣∣∣ U
(k)
i − Û

(k)
i[

U
(k)
i (1− U

(k)
i )
]α
∣∣∣∣∣∣ = OP (εn), (3.3)

for some sequence εn tending to zero, and where α is defined in Assumption 2.
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This conditions would be fulfilled if one would consider the empirical distribution
function to estimate the margins, or with parametric models. These condition also hold
for parametric estimation of the margins, as long as the model is regular enough. If a
parametric estimator is used for the margins, then one can expect εn = n−1/2. In absence
of covariates, if the margins are estimated by the empirical distribution function, (3.3)
holds easily from the uniform convergence of weighted empirical processes, see Example
19.12 in Van der Vaart (2000). The most delicate case concerns the estimator (2.4), where
the rate is slower. In section 6.5, we show that a proper choice of the bandwidth allows
to obtain a sufficiently fast convergence.

Assumptions on the kernel and on the regularity of the copula regression

model.

Let us recall that this last set of assumptions is only required if the simplifying as-
sumption does not hold.

Assumption 4 The kernel function K : Rp+1 → R, has the following properties:∫
K(u)du = 1,∫

uK(u)du = 0,∫
∥u∥22|K(u)|du < ∞.

Additionally, we need a regularity assumption on the conditional distribution of U

given Z.

Assumption 5 Let fU,Z(u, z) denote the joint density of (U,Z) computed at point (u, z).
Assume that, for all z ∈ Z,

∀v,
∣∣v′∇2

zfU,Z(u, z)v
∣∣ ≤ ∥v∥22s(u), (3.4)

with ∫
φ
(j,k)
θ(z) (u)s(u)du < ∞. (3.5)

3.2 Asymptotic behavior of the estimator of the association pa-

rameter

We now state our main theoretical result on the asymptotic behavior of the estimates of
the association parameter. We obtain an asymptotic representation of the estimator which

13



makes it asymptotically equivalent to the estimator we would compute if we knew exactly
the distribution of the margins and of the censoring mechanism. From this, asymptotic
normality is easily derived.

Theorem 3.1 Let θ∗h(z) = argmaxθ E
[
K
(
Z−z
h

)
log cθ(U)

]
, and

φθ(z)(u) = ∇θ log cθ(u),

φ
(j,k)
θ(z) (u) = ∂2

j,k log cθ(u),

where ∂2
j,k denotes the second order derivatives with respect to θj and θk. Assume that, for

some ι > 0,

E

[
φθ(z)(U)

K(T )1/2+ι

]
< ∞.

Under Assumptions 1 to 3, and under Assumption 4 and 5, and if

nε2nh
p+1 → 0, (3.6)

we have

θ̂(z)−θ∗h(z) = −Σ(z)−1

{
1

hp+1

n∑
i=1

W ∗
i,nK

(
Zi − z

h

)
φθ(z)(Ui)

}
+oP (n

−1/2h(p+1)/2), (3.7)

with Σ(z) =
(
σ(j,k)(z)

)
j,k

, is supposed to be invertible, with

σ(j,k)(z) = E
[
φ
(j,k)
θ(z) (Ui)|Z = z

]
.

Hence,

n1/2h(p+1)/2{θ̂(z)− θ∗h(z)} =⇒ N
(
0,Σ(z)−1S(z)S(z)′Σ(z)−1)

)
, (3.8)

where S(z) = E
[
φθ(z)(U)|Z = z

]
fZ(z), and the transpose of a matrix A is denoted by A′.

Let us note that (3.6) typically imposes that the margins are estimated at a rate
which is faster than the expected rate for the conditional copula parameter. It can be
easily shown, from the proof of Theorem 3.1, that if this condition does not hold, the rate
becomes εn.

Finally, let us note that (3.7) only concerns the stochastic part of the error, and does
not include the bias term, that is the difference between θ∗j (z) and θ(z). The bias term is
covered by the following Proposition 3.2.

Proposition 3.2 Under Assumptions 2, 4 and 5,

sup
z

∥θ∗h(z)− θ(z)∥ = O(h2).

All proofs are postponed to the appendix section 6.
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4 Empirical evidence

In this section, we provide empirical evidence on the behavior of the procedure. This is
done through a simulation study in section 4.1, and a real data application in section 4.2.

4.1 Simulation setting

In this section, we investigate the practical behavior of the procedure for finite sample
size. More precisely, we look at the impact of the following components of the model:

• the dependence structure, in terms of copula family, but also on the strength of the
dependence;

• the strength of the censoring (that is the average proportion of censored observations
in the sample);

• the smoothing parameter h > 0.

We consider a two-dimensional covariate X with independent margins uniformly dis-
tributed over [0, 1]. The conditional distribution of the duration T is lognormal, with
E[log T |X = x] = β0 +

∑2
j=1 βjX

(j) and V ar(log T |X = x) = 1. The censoring variable
C follows a Weibull distribution with shape parameter 1/2, that is with survival function

P(C ≥ t) = exp
(
−{t/c}1/2

)
,

where the parameter c is used to change the average proportion of censored observations
in the sample (30%, 40%, and 50%).

We consider the case of a two-dimensional loss vector L, where the margins are con-
ditionally log-Gamma distributed (that is logL(1) and logL(2) are Gamma distributed)
with rate 2 and shape parameter (sj for Lj) defined as

sj(x, t) = α0,j +
2∑

k=1

αk,jX
(k) + α3,jT̄ ,

where T̄ is a centered standardized version of T.
We then consider three families of copula functions to describe its dependence struc-

ture, namely Clayton, Frank and Gumbel families whose definitions are recalled in Ta-
ble 1. These three Archimedean families of copula (see Nelsen (2006) for the defini-
tion of the Archimedean class) present some interesting features for this comparison:
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Family Copula function Θ λL λU

Clayton Cθ(u, v) =
[
max{u−θ + v−θ − 1; 0}

]−1/θ
[−1;∞)− {0} 2−1/θ 0

Frank Cθ(u, v) = −1
θ
log
[
1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

]
R− {0} 0 0

Gumbel Cθ(u, v) = exp
[
−
(
(− log u)θ + (− log v)θ

)1/θ]
[1,∞) 0 2− 21/θ

Table 1: Copula families used in the simulation setting.

Clayton family presents lower tail dependence, that is, for (U, V ) with Clayton c.d.f.,
λL = limu→0 P(U ≤ u|V ≤ u) > 0; Gumbel has upper tail dependence, that is for, for
(U, V ) with Gumbel c.d.f., λU = limu→1 P(U ≥ u|V ≥ u) > 0; while Frank’s family is such
that λU = λL = 0.

Regarding the target function θ(x, t), we want to make things comparible between
the different families, therefore we need to take into account the fact that the meaning
of the association parameter is not the same from one family to another. Therefore, we
consider a common value for the conditional Kendall’s tau coefficient, rather than for the
association parameter directly. This dependence measure is defined as

τ(x, t) = P
(
[L

(1)
1 − L

(1)
2 ][L

(2)
1 − L

(2)
2 ] > 0|X = x, T = t

)
−P
(
[L

(1)
1 − L

(1)
2 ][L

(2)
1 − L

(2)
2 ] < 0|X = x, T = t

)
.

We set

logit{τ(x, t)} = γ0 +
2∑

j=1

γjX
(j) + γ3T̄ .

Then we compute, for each family of copula the corresponding θ(x, t) since a 1-1 corre-
spondence between these two quantities exist in the families we consider. The values of
the parameters used to simulate the sample are gathered in Table 2.

For a simulated sample, we estimate θ̂(x, t) for different value of the smoothing pa-
rameter, and, for each estimator, we measure the error based on the following criteria:

1. an empirical measure linked to the ability to estimate the copula function, that is

Ec =

{
n∑

i=1

Wi,n

(
Cθ̂(x,t)(Ûi)− Cθ(Xi,Yi)(Ûi)

)2}1/2

;

2. a way to measure the difference between the corresponding Kendall’s tau, in order
to get something which can be comparible from one family to another,

Eτ =

{
n∑

i=1

Wi,n (τ̂(Xi, Yi)− τ(Xi, Yi))
2

}1/2

.
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Parameter Value Parameter Value

α0,1 0.2 α0,2 0.2

α1,1 0.3 α1,2 0.3

α2,1 0.1 α2,2 0.1

α3,1 0.6 α3,2 0.8

β0 0.03 γ0 −3

β1 0.04 γ1 −1

β −0.03 γ2 1.5

γ3 2

Table 2: Value of the parameters used in the simulation setting.

On the other hand, the final aim is to estimate the amount of reserve. For each claim
that is open (that is with δi = 0), we develop the technique of section 2.5. Let L̂

(j)
i

denote the prediction of the j−th component of the loss for observation i. Next, we define
R̂(j) =

∑n
i=1(1− δi)L̂

(j)
i , that is the estimation of the reserve for the j−th component of

the loss, and R(j) =
∑n

i=1(1− δi)L
(j)
i is the true value.

To assess the quality of the reserve estimation, we compute

ER =
R̂(1) + R̂(2) −R(1) −R(2)

R(1) +R(2)
.

Regarding smoothing, we consider a Gaussian kernel and a grid of bandwidth h ∈
{1, 1.1, · · · , 2}. The average errors are reported in Table 3 to 5. These average errors
show a relative stability for the considered set of bandwidths. The percentage of censoring
generally diminishes the performance to estimate Kendall’s tau coefficient and the copula
function. The results are quite similar from one copula family to another in this example.
The impact of the copula family appears more clearly when it comes to considering the
reserve. Under Clayton and Frank copula models, the absence of upper tail dependence
makes the estimation of the reserve less volatile compared to Gumbel. Let us note that
an increase of the percentage of censoring here makes the error ER decrease. This is
essentially caused by the fact that the number of claims to evaluate becomes higher when
censoring increases. Hence, the individual errors are more absorbed by the more important
number of claims to evaluate. In Figure 1 and 2, we display some boxplots for a selected
number of configurations. The error on copula estimation is shown in Figure 1 while
Figure 2 shows the error for the reserve. For the sake of brevity, boxplots for Kendall’s
tau coefficient are not shown, since they give a similar picture as the one provided for
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the error Ec. We can see from these boxplots that the dispersion of the error over the
simulated sample stays relatively stable.
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X1 X2 X3 X4 T L(1) L(2)

Mean 176 43 56 882 9 944 744 163 397 38 379
q0.25 1 38 5 000 115 418 25 000 2 000
q0.5 6 43 14 875 2 500 682 60 000 12 843
q0.75 133 49 42 375 10 000 1009 175 500 41 000

Table 6: Descriptive statistics on closed claims. The notation qα refers to the α−th
empirical quantile.

4.2 Real data example

For this real data analysis, we consider a dataset from the Texas Department of Insurance
on medical malpractice claims. This dataset gathers 40 868 injury claims, closed between
2007 and 2012. This dataset comes from the annual reports of the Texas Department
of Insurance (https://www.tdi.texas.gov/). Additionally, the dataset for the claims
that were closed in 2007 is also available at https://doi.org/10.7910/DVN/2ZX2XS. We
consider the cost of each claim L(tot,i) to be composed of the indemnity for the injured
party, L(1)

i , and the expenses linked to justice expenses, L(2)
i . For simplicity, we focus on

claims with impacts on both margins, resulting to 21 680 claims. For a global approach,
the following models may be plugged to a mixture model, in order to incorporate models
of claims with univariate costs.

As already mentioned, the database is composed of closed claims. To put ourselves
in a situation where we need to predict open claims, we look at the status of a claim at
31/12/2010. Claims that occurred after this date are out of the scope of our analysis,
and claims that occurred before 31/12/2010 with a settlement between 2010 and 2012 are
considered as censored. This leaves 15 717 closed claims and 4 917 open claims, with the
aim to assess the costs of the last category.

We rely on 4 covariates to predict open claims costs : the delay between the injury
and the insurance report X(1), the age of the injured party X(2), the initial estimation of
the indemnity X(3), and the initial estimation of the expenses X(4). Descriptive statistics
of the dataset are given in Tables 7 and 6. As expected, the closing delay T is globally
inferior on closed claims than on open claims. The distributions of covariates X(1) and
X(2) are quite similar whereas the first estimations, as the final costs, are higher for closed
claims than open ones. In addition, the Kendall’s tau between L(1) and L(2) is higher on
closed claims (0.40) than for open claims (0.30).
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X1 X2 X3 X4 Y T L(1) L(2)

Mean 169 44 68 297 11 880 598 933 221 684 53 486
q0.25 1 40 6 000 103 254 621 50 000 7 000
q0.5 6 43 16 000 5 000 511 857 100 000 22 698
q0.75 138 49 50 000 12 993 844 1167 247 500 56 000

Table 7: Descriptive statistics on open claims. The informations of T, L(1) and L(2) are
assumed to be unknown on the 31/12/2010.

For the distribution of the margins, we consider:

• for logL(1) a Generalized Linear model with Gamma distribution and logarithmic
link function, that is the density of logL(1)|Z = z is

fκ,λ(l) = Γ(κ)−1lκ−1µ−κ exp(−l/µ),

with κ = κ1 and

E
[
logL(1)|Z = z

]
=

1

κ

(
α1 +

4∑
k=1

αkx
(k) + α5t

)
;

• for logL(2) a Weibull regression model, that is logL(1)|Z = z is distributed according
to the density

fκ,λ(l) = κlκ−1λ(z)−κ exp(−(l/λ(z))κ), (4.1)

with κ = κ2, and

λL(z) =
1

Γ(1 + 1/κ2)

(
α0,2 +

4∑
k=1

αk,2X
(k) + α4,2T

)
.

To predict the final value of open claims, we also need a model on T |Z. We consider
that log T |Z = z is Weibull distributed (density defined in (4.1)) with κ = κT fixed, and

λT (z) =
1

Γ(1 + 1/κT )

(
αT
0 +

4∑
k=1

αT
kX

(k)

)
.

The estimated parameters, given in Table 8, allow to obtain bivariate pseudo obser-
vations of

(
L(1), L(2)

)
illustrated in Figure 3.

Then, based on pseudo observations (Ui)1≤i≤n, we calibrate Clayton, Frank and Gum-
bel copulas and compute the log-likelihood of each model. We compare our kernel esti-
mator of the association parameter to the estimator that one can obtain if one assumes
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α0,1 2.201 α0,2 1.892 αT
0 1.864

α1,1 3.308 10−3 α1,2 1.672 10−2 αT
1 3.973 10−3

α2,1 −1.652 10−4 α2,2 −2.272 10−4 αT
2 1.652 10−4

L(1) α3,1 1.650 10−2 L(2) α3,2 8.342 10−3 T αT
3 −4.373 10−4

α4,1 3.226 10−3 α4,2 1.104 10−2 αT
4 2.273 10−3

α5,1 3.884 10−5 α5,2 0

κ1 4.459 κ2 5.195 κT 11.77

Table 8: Estimated parameters for the estimation of the marginal distributions.

Figure 3: Scatter plot of pseudo observations
(
U (1), U (2)

)
. The pseudo observations with

high weight appear darker.

that θ(z) = θ0, that is under the so-called simplified assumption (see Derumigny and Fer-
manian (2017)) which corresponds to a situation where the dependence structure would
not change with the covariates.

We consider a Gaussian kernel. To select the bandwidth in our kernel estimator, we
rely on 3−fold cross validation techniques, using a weighted log-likelihood as a perfor-
mance measure. That is, for an estimator θ̂(z) in a given copula family, we compute∑n

i∈I Wi,n log cθ̂(Zi)
(Ûi)∑

i∈I Wi,n

,

as a measure on the fold identified to the set of indexes I. The results, for different
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bandwidths, are shown in Table 9.

h=0.05 h=0.1 h=0.15 h=0.2

Clayton 0.245 0.275 0.143 0.0866
Frank 0.0506 0.130 0.118 0.103

Gumbel 0.0281 0.123 0.110 0.0957

Table 9: 3−fold cross validation performances, in terms of log-likelihood, depending on
the parameter h of the Kernel K. For each copula family, the highest performance is in
bold, and lead to parameters used in Section 4.2 for semi-parametric copula estimation.

In the following, we therefore keep the value h = 0.1 for the smoothing parameter.
The comparisons in terms of weighted log-likelihood are gathered in Table 10. Globally,
the the semi parametric framework demonstrates its flexibility and the Clayton copula
turns out to be the more appropriate family to combine with the framework.

Then, based on the conditional copula model and the prediction T̂ for each open
claim, we simulate 1000 replications of the estimated conditional distribution of open
claims. Gathering the predictions for all claims gives a distribution for the reserve to
constitute, that can be compared to the true value of these claims. Resulting statistics
are given in Table 11 must be compared to the observed cost of open claims equal to
1.35 109. Clearly all models lead to higher estimations but the context of high volatility
nuance those disappointing prediction performances. In the same time, the confidence
intervals resulting from the model allow to rationalize this volatility.

5 Conclusion

In this paper, we considered the case of analyzing the cost of claims in the case where
this cost is decomposed in several lines of payment. In the framework we develop, the

Simplified Semi parametric

Clayton 4.335 10−2 1.991 10−1

Frank 1.108 10−1 1.516 10−1

Gumbel 1.354 10−1 1.715 10−1

Table 10: Comparison of simplified and semi-parametric models for each copula family,
in terms of empirical weighted log-likelihood.
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Copula 25% 50% 75% 90% 95% 99%

Clayton s 4.68 109 7.41 109 1.35 1010 4.94 1010 5.23 1011 6.18 1013

Clayton sp 5.09 109 8.11 109 2.42 1010 6.68 1010 1.18 1011 1.56 1013

Frank s 5.18 109 7.20 109 1.62 1010 6.88 1010 1.45 1011 9.26 1011

Frank sp 4.75 109 7.06 109 1.57 1010 4.18 1010 1.88 1011 2.76 1015

Gumbel s 4.62 109 8.32 109 2.37 1010 9.04 1010 2.51 1011 1.72 1013

Gumbel sp 5.07 109 6.91 109 1.43 1010 4.13 1010 1.39 1011 1.13 1012

Table 11: Quantiles predictions of the total cost of open claims, depending on copula
family. The "s" stands for estimation under the simplifying assumption (one uses a
copula model with a single parameter, not depending on z) and "sp" denotes the kernel
estimator developed in this paper. The empirical total cost is equal to 1.35 109.

interaction between these lines of payment is modeled using copulas. Moreover, we take
into account the link between the "lifetime of the claim" (time before settlement) and its
final cost, with the correction of the bias caused by censoring. This decomposition can be
useful to better understand what drives the severity of a claim, and potentially to improve
risk management by winning on some lines (like legal fees or expert costs) that can be
more easily controlled. Let us also mention another possible application to the proper
design of insurance products, through the example of cyber insurance. Due to the variety
of situations in cyber risk (data theft, business interruption, legal dispute after a data
breach, corporal prejudice...), an important question is to define which will be covered
or not by an insurance product. Romanosky et al. (2019) show some analysis of some
products available on the US market, showing that their nature may be strongly differ.
Carefully analyzing the different components of the loss is essential to better understand
which (and at which level) some types of losses can be covered or not.

6 Appendix

The Appendix section is organized as follows. In Section 6.1, we show the convergence
of the bias term of our kernel estimator. Preliminary results to show Theorem 3.1 are
gathered in Section 6.2 (convergence results) and 6.3 (rate of convergence). The proof of
Theorem 3.1 is then given in Section 6.4. Section 6.5 show the convergence rate for the
margins in the most delicate case where the estimator that is used is the nonparametric
estimator (2.4).
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6.1 Proof of Proposition 3.2

Let
M(θ, z) =

1

hp+1
E

[
log cθ(U)K

(
Z− z

h

)]
.

We have θ∗h(z) = argmaxθ M(θ, z). Since ∇θM(θ(z), z) = 0, a second order Taylor
expansion yields

θ∗h(z)− θ(z) = −∇2
θM(θ̃, z)−1∇θM(θ(z), z), (6.1)

where each component of θ̃ is between the corresponding components of θ∗h(z) and θ(z).

From Lemma 6.6,
∇θM(θ(z), z) = O(h2).

On the other hand, from dominated convergence,

∇2
θM(θ̃, z) = ∇2

θM(θ(z), z) + o(1),

and, from Lemma 6.6,
∇2

θM(θ(z), z) = Σ(z).

6.2 Technical results for convergence of the estimator

Proposition 6.1 Assume that supi=1··· ,n ∥Ûi−Ui∥ = oP (1). Consider a class of functions
F on [0, 1]d such that

∀ϕ ∈ F , ∀u ∈ [0, 1]d, ∥∇uϕ(u)∥ ≤ Φ(u), (6.2)

where Φ is continuous on (0, 1)d, and ∇u denotes the gradient vector with respect to the
arguments of the function. Moreover, assume that

E [Φ(U)] < ∞. (6.3)

Then,

sup
ϕ∈F

∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
{ϕ(Ui)− ϕ(Ûi)}

∣∣∣∣∣ = oP (1).

Proof. We have∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
{ϕ(Ui)− ϕ(Ûi)}

∣∣∣∣∣ ≤ sup
i=1,··· ,n

∥Ui − Ûi∥

×

∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nΦ(Ũi)|K|
(
Zi − z

h

)∣∣∣∣∣ ,
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where each component of Ũi is between the corresponding component of Ui and Ûi. Since
supi=1··· ,n ∥Ûi −Ui∥ = oP (1), Ũi can be replaced by Ui in the right-hand side of the last
equation. Hence, the proof will be complete if we show that∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nΦ(Ui)|K|
(
Zi − z

h

)∣∣∣∣∣ = OP (1).

This can be done by observing that∣∣∣∣Wi,n

W ∗
i,n

∣∣∣∣ ≤ sup
t≤Y(n)

SC(t)

ŜC(t)
= OP (1),

where Y(n) denotes the largest observation of the sample (Y1, · · · , Yn) (from Lemma 2.6
in Gill (1983)). This implies that∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nΦ(Ui)|K|
(
Zi − z

h

)∣∣∣∣∣ ≤ OP (1)×
1

hp+1

n∑
i=1

W ∗
i,nΦ(Ui)|K|

(
Zi − z

h

)
,

and the second term on the right hand side has finite expectation.

Proposition 6.2 Consider a class of functions F on [0, 1]d such that

∀ϕ ∈ F , ∀u ∈ [0, 1]d, |ϕ(u)| ≤ Φ(u),

with
E

[
Φ(U)

SC(T )ι

]
< ∞.

Then,

sup
ϕ∈F

∣∣∣∣∣ 1

hp+1

n∑
i=1

[Wi,n −W ∗
i,n]K

(
Zi − z

h

)
ϕ(Ui)

∣∣∣∣∣ = oP (1).

Proof. Write

|Wi,n −W ∗
i,n| = |ŜC(Yi)− SC(Yi)|ι ×

[
|ŜC(Yi)− SC(Yi)|

ŜC(Yi)

]1−ι

×

[
SC(Yi)

ŜC(Yi)

]ι
× δi

nSC(Yi)1+ι
.

From Stute and Wang (1993), the first term on the right hand side tends to zero, while,
from (Gill (1983)), the next two terms are OP (1). The result then follows from the fact
that

E

[
δ

SC(Y )1+ι
Φ(U)|K|

(
Z− z

h

)]
= E

[
1

SC(T )ι
Φ(U)|K|

(
Z− z

h

)]
.
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6.3 Technical results with rates of convergence

Proposition 6.3 Under Assumption 2 and 3, let ϕ ∈ F2 where F2 is defined in Assump-
tion 2. Then ∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
{ϕ(Ui)− ϕ(Ûi)}

∣∣∣∣∣ = OP (εn).

Proof. We have ∣∣∣∣∣ 1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
{ϕ(Ui)− ϕ(Ûi)}

∣∣∣∣∣ ≤
sup

i=1,··· ,n,k=1··· ,n

∣∣∣∣∣U (k)
i − Û

(k)
i

m(U
(k)
i )α

∣∣∣∣∣×
∣∣∣∣∣ 1

hp+1

n∑
i=1

d∑
k=1

Wi,nm(U
(k)
i )αϕ̇(k)(Ũ

(k)
i )|K|

(
Zi − z

h

)∣∣∣∣∣ ,
where Ũ

(k)
i is between U

(k)
i and Û

(k)
i . From Assumption 3, we get the proper rate, we then

need to show that the last term in the previous equation is OP (1). To obtain this, first
replace Wi,n by W ∗

i,n by observing that, as in the proof of Proposition 6.1, the ratio of
these to weight is uniformly bounded by an OP (1) term. Moreover, define, for L ≥ 0,

EL,n =
d⋂

k=1

{
inf

1≤i≤n
inf

(
Û

(k)
i

U
(k)
i

,
1− Û

(k)
i

1− U
(k)
i

)
≥ 1

L

}
.

On the event EL,n, from Assumption 2,

m(U
(k)
i )αϕ̇(k)(Ũ

(k)
i ) ≤ m(U

(k)
i )α

m(Ũ
(k)
i )α

×

(
d∑

k=1

LβA2

m(U
(k)
i )β

)

≤ Lα+β

d∑
k=1

A2

m(U
(k)
i )β

.

The result then follows from the fact that

nE

[
W ∗

i,n

d∑
k=1

1

m(U
(k)
i )

]
= E

[
δi

SC(Yi)

d∑
k=1

1

m(U
(k)
i )β

]
= E

[
d∑

k=1

1

m(U
(k)
i )β

]
< ∞,

and that limL→∞ lim supn→∞ P(EL,n) = 0 from Assumption 3.

Proposition 6.4 Let ϕ denote a function such that E
[

|ϕ(Ui)|
K(Ti)1/2+ι

]
< ∞. Then, for all

phi ∈ F2, ∣∣∣∣∣ 1

hp+1

n∑
i=1

(Wi,n −W ∗
i,n)K

(
Zi − z

h

)
ϕ(Ui)

∣∣∣∣∣ = OP (n
−1/2).
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Proof. Decompose

|Wi,n −W ∗
i,n| = W ∗

i,n

|ŜC(Yi)− SC(Yi)|
ŜC(Yi)

=
W ∗

i,n

K(Yi)1/2+ι

K(Yi)
1/2+ι|ŜC(Yi)− SC(Yi)|

ŜC(Yi)

≤
W ∗

i,n

K(Yi)1/2+ι
× sup

t≤Y(n)

{
K(t)1/2+ι |ŜC(t)− SC(t)|

SC(t)

}
× sup

t≤Y(n)

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ .
From Theorem 2.1 in Gill (1983), we get

sup
t≤Y(n)

{
K(t)1/2+ι |ŜC(t)− SC(t)|

SC(t)

}
= OP (n

−1/2),

and, from Lemma 2.6 in Gill (1983),

sup
t≤Y(n)

∣∣∣∣∣SC(t)

ŜC(t)

∣∣∣∣∣ = OP (1).

This shows that ∣∣∣∣∣ 1

hp+1

n∑
i=1

(Wi,n −W ∗
i,n)K

(
Zi − z

h

)
ϕ(Ui)

∣∣∣∣∣
≤ OP (n

−1/2)×

(
1

hp+1

n∑
i=1

W ∗
i,n

K(Yi)1/2+ι
|K|

(
Zi − z

h

)
|ϕ(Ui)|

)
.

The term in parenthesis on the right hand side has finite bounded expectation since

nE

[
W ∗

i,n

K(Yi)1/2+ι
|ϕ(Ui)|

]
= E

[
δi|ϕ(Ui)|

SC(Yi)K(Yi)1/2+ι

]
= E

[
|ϕ(Ui)|

K(Ti)1/2+ι

]
.

6.4 Proof of Theorem 3.1

Let us define

M̂n(θ, z) =
1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
log cθ(Ûi),

M̃n(θ, z) =
1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
log cθ(Ui),

M∗
n(θ, z) =

1

hp+1

n∑
i=1

W ∗
i,nK

(
Zi − z

h

)
log cθ(Ui),

M(θ, z) = E

[
log cθ(U)K

(
Z− z

h

)]
.
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The first step of the proof is to show the consistency of θ̂(z), obtained in Proposition
6.5 below.

Proposition 6.5 Under the assumptions of Theorem 3.1,

θ̂(z)− θ∗h(z) = oP (1).

Proof. We shall get θ̂(z)− θ∗h(z) = oP (1), from the fact that

sup
θ∈Θ

|M̂n(θ, z)−M(θ, z)| = oP (1). (6.4)

From the triangular inequality,

|M̂n(θ, z)−M(θ, z)| ≤ |M̂n(θ, z)−M̃n(θ, z)|+ |M̃n(θ, z)−M∗
n(θ, z)|+ |M∗

n(θ, z)−M(θ, z)|.

Then, (6.4) will be obtained by showing that each of these three terms tends to zero in
probability.

The uniform convergence of the first one is a consequence of Proposition 6.1. Condi-
tions (6.2) and (6.3) correspond to the last part of Assumption 1, and the convergence of
the pseudo-observations comes from Assumption 3.

To obtain supθ∈Θ |M∗
n(θ, z) − M̃∗

n(θ, z)| = oP (1), we rely on Proposition 6.2, whose
assumptions hold thanks to Assumption 1.

Finally, supθ∈Θ |M(θ, z) − M̃∗
n(θ, z)| = oP (1) is a consequence from Theorem 4 in

Einmahl et al. (2005), where we use Assumption 1.
To get the convergence rate, we use the fact that, by definition, ∇θMn(θ̂(z)) = 0.

Moreover, from a Taylor expansion,

∇θM̂n(θ̂(z), z) = ∇θM̂n(θ
∗
h(z), z) +∇2

θM̂n(θ̃(z))(θ̂(z)− θ∗h(z)),

where each component of θ̃(z) is between θ̂(z) and θ∗h(z). Note that θ̃(z)− θ∗h(z) = oP (1)

from the consistency of θ̂(z) obtained in Proposition 6.5.
We can decompose

∇θM̂n(θ
∗
h(z), z) = ∇θ{M̂n(θ

∗
h(z), z)− M̃n(θ

∗
h(z), z)}+∇θ{M̃n(θ

∗
h(z), z)−M∗

n(θ
∗
h(z), z)}

+∇θ{M∗
n(θ

∗
h(z), z)−M(θ∗h(z), z)}.

The first term is OP (εn) from Proposition 6.3. Proposition 6.4 shows that the second
term is OP (n

−1/2) = oP (n
−1/2h−(p+1)/2). The last term is

1

hp+1

n∑
i=1

W ∗
i,nK

(
Zi − z

h

)
φθ(z)(Ui),
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since ∇M(θ∗h(z, z) = 0.

On the other hand, ∇2
θM̂n(θ̃(z)) is a matrix whose coefficient (j, k) is

σ(j,k)
n =

1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
φ
(j,k)

θ̃(z)
(Ûi).

The consistency of θ̃(z) and the continuity of φ(j,k)
θ lead to

σ(j,k)
n =

1

hp+1

n∑
i=1

Wi,nK

(
Zi − z

h

)
φ
(j,k)

θ̃(z)
(Ui) + oP (1).

Then we apply Proposition 6.2 to show that

σ(j,k)
n =

1

hp+1

n∑
i=1

W ∗
i,nK

(
Zi − z

h

)
φ
(j,k)

θ̃(z)
(Ui) + oP (1).

Then, using the continuity of the map θ → φθ at point θ(z), we get

σ(j,k)
n =

1

hp+1

n∑
i=1

W ∗
i,nK

(
Zi − z

h

)
φ
(j,k)
θ(z) (Ui) + oP (1).

We then can apply Lemma 6.6 to show that

σ(j,k)
n = σ(j,k) + oP (1),

where σ(j,k) is the (j, k)−coefficient of the matrix Σ(z). This shows that

∇2
θM̂n(θ̃(z)) = Σ(z),

and shows (3.7), from which the asymptotic normality follows.

Lemma 6.6 Let ϕ be such that E[|ϕ(U)|] < ∞, and assume that the density of (U,Z),

fU,Z is continous. Then,

1

hp+1
E

[
δϕ(U)

SC(Y )
K

(
Z− z

h

)]
= E[ϕ(U)|Z = z]fZ(z) + o(1). (6.5)

Moreover, under (3.4) and assuming that∫
ϕ(u)s(u)du < ∞, (6.6)

we have
1

hp+1
E

[
δϕ(U)

SC(Y )
K

(
Z− z

h

)]
− E[ϕ(U)|Z = z]fZ(z) = O(h2). (6.7)
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Proof. We have

1

hp+1
E

[
δϕ(U)

SC(Y )
K

(
Z− z

h

)]
=

1

hp+1
E

[
ϕ(U)K

(
Z− z

h

)]
.

Through a change of variables,

1

hp+1
E

[
ϕ(U)K

(
Z− z

h

)]
=

∫
K(v)ϕ(t,u)fU,Z(u, z+ hv)dudv. (6.8)

Since h tends to 0 and fU,Z(t,u, z+hv) is continuous, then (6.5) follows from dominated
convergence and the fact that

∫
K(v)dv = 1.

To prove (6.7), apply a second order Taylor expansion to (6.8). We get, from (3.4)
and the fact that

∫
vK(v)dv = 0,∣∣∣∣ 1

hp+1
E

[
ϕ(T,U)|K|

(
Z− z

h

)]
−
∣∣∣∣ ≤ h2

∫
∥v∥22K(v)ϕ(u)s(u)dudv.

The result then follows from (6.6).

6.5 Rate of convergence of the margins for estimator (2.4)

In this section, we show that Assumption 3 holds for the kernel estimator (2.4). This is
in fact a consequence of Theorem 4 in Einmahl et al. (2005). We show the result under
three additional assumptions on the model:

1. we have
sup
z,y

∣∣∣∣ F (j)(l)

F (j)(l|z)
+

1− F (j)(l)

1− F (j)(l|z)

∣∣∣∣ ≤ a,

for some finite constant a, where F (j)(l) = P(L(j) ≥ l);

2. the kernel function K̃ is a continuous and bounded function, symmetric around 0,
such that

∫
u2K̃(u)du < ∞, the density z 7→ fZ(z) and z 7→ F (j)(l|z) are twice

continuously differentiable with respect to z, with uniformly bounded derivatives
up to order 2;

3. we assume that, for some ι > 0 and 0 < a < 1/2,

E

 1

SC(Yi)1+ι

(
1

[F (j)(L
(j)
i )]a

)2+ι
 < ∞,

and
E
[
K(Ti)

1/2+ι
]
< ∞.
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The first assumption is a way to consider that there is some kind of uniform domination of
the behavior of the conditional distributions when x changes. The second assumption is
classical in kernel regression, and will help to control the bias term involved in smoothing
techniques. Finally, the third assumption is required to deal with the censoring.

Introducing the kernel estimator of the density of Z,

f̂Z(z) =
1

h̃d

n∑
i=1

Wi,nK̃

(
Zi − z

h̃

)
,

we can write, for t ≤ 1/2,

f̂Z(z)
F̂ (j)(l|z)

[F (j)(l|z)(1− F (j)(l|z))]a
=

1

nh̃p

n∑
i=1

Wi,n

W ∗
i,n

K̃

(
Zi − Z

h̃

)
ft(M

(j)
i ),

where

ft(l) =
δi1l≤t

SC(Yi) [F (j)(t|x)(1− F (j)(t|x))]a

≤ 1

[F (j)(y|x)]a[1− F (j)(1/2|x)]a

≤ aa

[F (j)(y)]a[1− F (j)(1/2|x)]a
.

Since

E

[(
δi

SC(Yi)[F (j)(M
(j)
i )]a

)p]
= E

 1

SC(Yi)1+ι

(
1

[F (j)(L
(j)
i )]a

)2+ι
 < ∞,

for some ι > 0 and a < 1/2, and since the covering number of the class of functions ft

is controlled (see Example 19.12 in Van der Vaart (2000)), Theorem 4 in Einmahl et al.
(2005) applies, showing that

sup
t≤1/2,x

∣∣∣∣∣ 1

nh̃d

n∑
i=1

K̃

(
Zi − z

h̃

)
ft(M

(j)
i )− E

[
K̃

(
Zi − z

h̃

)
ft(M

(j)
i )

]∣∣∣∣∣ = OP

(
[log n]1/2n−1/2h̃−d/2

)
.

Then, from a Taylor expansion and the second assumption of this section, we get

E

[
ft(M

(j)
i )K̃

(
Zi − z

h̃

)]
= E

[
ft(M

(j)
i )|Zi = z

]
fZ(z) +O(h̃2)

=
F (j)(t|x)

[F (j)(t|x)(1− F (j)(t|x))]α
fZ(z) +O(h̃2).
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Let us note that the h̃2 rate for the bias term can be improved if one uses a degenerate
kernel with a sufficiently high number of moments equal to zero. Moreover, it can easily
be shown that

1

nh̃p

n∑
i=1

Wi,n

W ∗
i,n

K̃

(
Zi − Z

h̃

)
ft(M

(j)
i ) =

1

nh̃p+1

n∑
i=1

K̃

(
Zi − Z

h̃

)
ft(M

(j)
i )

+oP (h̃
2 + [log n]1/2n−1/2h̃−p+1/2),

provided that nh̃4 = o(1) and nh̃p+1 → ∞, using the same way to bound Wi,n/W
∗
i,n as we

did in the proof of Proposition 6.4 (using the third assumption of this section).
We can study f̂Z in the same way, to obtain the same convergence rate. This leads to

sup
t≤1/2,x

∣∣∣∣∣ F̂ (j)(t|x)− F (j)(t|x)
[F (j)(t|x)(1− F (j)(t|x))]α

∣∣∣∣∣ = OP (h̃
2 + [log n]1/2n−1/2h̃−d/2).

Studying the supremum for t > 1/2 can be done in the same way, by studying 1 − F (j)

instead of F (j).
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