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Spontaneous periodic orbits in the Navier-Stokes flow
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Abstract

In this paper, a general method to obtain constructive proofs of existence of periodic
orbits in the forced autonomous Navier-Stokes equations on the three-torus is proposed.
After introducing a zero finding problem posed on a Banach space of geometrically decay-
ing Fourier coefficients, a Newton-Kantorovich theorem is applied to obtain the (computer-
assisted) proofs of existence. The required analytic estimates to verify the contractibility
of the operator are presented in full generality and symmetries from the model are used to
reduce the size of the problem to be solved. As applications, we present proofs of existence
of spontaneous periodic orbits in the Navier-Stokes equations with Taylor-Green forcing.
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1 Introduction

The Navier-Stokes equations for a fluid of constant density ρ can be expressed as

#

Btu` pu ¨∇qu´ ν∆u`∇p “ f

∇ ¨ u “ 0,
(1.1)

where u “ upx, tq is the velocity, ppx, tq “ P px, tq{ρ is the pressure scaled by the density, ν is
the kinematic viscosity and f “ fpx, tq is an external forcing term. These equations can be con-
sidered on compact or unbounded domains, complemented by boundary and initial conditions.
The first equation, which expresses momentum balance, has a quadratically nonlinear advection
term. While the presence of the nonlinearity generally obstructs obtaining closed form solutions,
there are some notable exceptions. In parallel shear flows, the advection term vanishes identically
and analytic solutions are available. Examples include Hagen-Poiseuille flow in pipes [34] and
Taylor-Couette flow between co-axial cylinders [36]. In Beltrami flows, the nonlinearity takes
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the form of a gradient and can be absorbed in the pressure. An example of an explicit solution
with this property is the ABC flow [7]. Explicit solutions with non-trivial nonlinearities are rare,
but some are known. For instance, exact vortical solutions include Burgers’ vortex on R3 [3] and
the periodic vortex array of Taylor and Green [37]. However, it has been known for a long time
that, even in fluids with strong viscous damping, more complicated, time-periodic motions can
occur. A classical experiment is that of a fluid flowing past a stationary cylinder. Experiments
started by von Kármán at the beginning of the twentieth century, and carried on by his stu-
dents, showed that, at a well-defined flow rate, the motion in the wake of the cylinder becomes
time-periodic, as alternating clockwise and counter clockwise vortices travel downstream [19].

While there is little hope of writing down explicit solutions that describe such oscillatory
behaviour, a number of authors have attempted to at least establish the existence of time-periodic
solutions. The earliest contribution was likely the work of James Serrin. In 1959, he published
two papers on the existence and stability of certain solutions to the Navier-Stokes equations
in the limit of large viscosity. In the first one, he established the existence of globally stable
equilibrium solutions by finding bounds for the nonlinear and forcing terms, and by showing
that a certain energy decays [32]. In the second one, he considered large viscosity and gave a
criterion for the existence of periodic solutions on a three-dimensional bounded domain subject
to time-periodic boundary data and body forces [31].

Many authors followed Serrin in studying the periodically forced non-autonomous Navier-
Stokes system dominated by viscosity. Kaniel and Shinbrot [15] considered bounded domains
with fixed boundaries and showed the existence of periodic strong solutions for small time-
periodic forcing f . Without making any assumption about the size of f , Takeshita [35] showed
the same result as Kaniel and Shinbrot. Some time later, Teramoto [38] proved the existence of
time-periodic solutions for domains with slowly moving boundaries. Then, Maremonti [23] and
Kozono and Nakao [20] extended the results from bounded domains to R3. The latter made use
of the Lp theory of the Stokes operator rather than the energy method. A similar result, relying
on a milder condition on the forcing function, was derived by Kato [16]. Other extensions were
those to inhomogeneous boundary conditions on compact domains by Farwig and Okabe [8] and
to the case of a rotating fluid in two dimensions by Hsia et al. [14]. The latter paper also
contains a fairly extensive list of references of which only a fraction is discussed here.

Thus, our understanding of periodic flows in response to time-periodic forcing is rather ad-
vanced. The same cannot be said about spontaneous periodic motions, which we refer to as
being periodic flows driven by a time-independent forcing. In other words, spontaneous periodic
motions are periodic orbits in the autonomous Navier-Stokes equations. The regular vortex
shedding in the wake of a cylinder, for instance, arises in the absence of a body force and as a
consequence of the nonlinearity of the Navier-Stokes equation, not by virtue of the advection
being dominated by viscous damping. In an attempt to address the difficulties in studying spon-
taneous motions, the present paper proposes a general (computer-assisted) approach to prove
existence of time-periodic Navier-Stokes flows on the three-torus for given time-independent
forcing terms f “ fpxq.

The novelty of our paper is threefold. Foremost, it provides the first computer-assisted proof
of existence of spontaneous periodic Navier-Stokes flows. Second, it introduces general analytic
bounds applicable to prove existence of three-dimensional time-periodic solutions for any time-
independent forcing term. Third, it uses the symmetries present in Navier-Stokes to significantly
reduce the size of the problem to work with.

A few comments on the symmetries are in order. Our approach permits one to take advantage
of symmetries of the forcing f , and in particular of those (subgroup of) symmetries that are also
obeyed by the examined solution. We allow general time-independent forcings with zero spatial
average (so that periodic solutions are not ruled out a priori, see Equation (2.5)). Any time-
periodic solution thus spontaneously breaks the shift symmetry in time, and other symmetries
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of f may also be broken by the solution. However, the bigger the symmetry group of the solution
is, the more we can reduce the computational cost (in terms of time and, especially, memory).

While all of the analysis is performed in full generality on the 3-torus, the solutions we
present in Theorem 1.1 below are two-dimensional (in space) time-periodic solutions. Indeed,
they are homogeneous in one spatial variable and can thus be interpreted as solutions on the
2-torus. The only reason for this reduction is that the physical memory requirements for a three-
dimensional solution are, for now, prohibitive in our current implementation. To be precise, we
consider the so-called Taylor-Green forcing

f “ fpxq “

¨

˝

2 sinx1 cosx2

´2 cosx1 sinx2

0

˛

‚, (1.2)

which corresponds to counter rotating vortex columns. Clearly, this forcing allows one to restrict
to the first two spatial variables. It is expected that some periodic solutions in fact break the
2D symmetry of the forcing (1.2), see also Section 5. While we aim to investigate such solutions
in future work, the solutions obtained in the current paper respect the 2D symmetry: they are
independent of x3 and the third component of the velocity vanishes. We call such a solution
an (essentially) 2D solution. In addition, the solutions that we find here are invariant under
a symmetry group with 16 elements, see Section 5 for details. This allows us to reduce the
number of independent Fourier modes on which we perform the computational analysis by a
factor 16, which represents considerable savings in memory requirements. Finally, due to the
shift-invariance of the torus, in general it may be appropriate to look for solutions which are shift-
periodic, but such complications do not arise when studying 2D solutions for the forcing (1.2).

Before we state a representative sample result, we note that determining the period of the so-
lution is part of the problem. Hence the frequency Ω̄ of a numerical approximate solution pū, p̄q
only approximates the true frequency Ω. The solution of (1.1) will therefore be close to a
slightly time-dilated version pūθ, p̄θq of the numerical data, where θ is the dilation factor, see
Remark 2.17. As outlined below in more detail, we use a Newton operator to show that, under
computable conditions, there is a solution to (1.1) near the numerically obtained approxima-
tion pū, p̄q, where the error is bounded explicitly. As an example, we prove the following result.

Theorem 1.1. Consider (1.1) defined on the three-torus T3 (with size length L “ 2π) and
consider the time-independent forcing term (1.2). Let ν “ 0.265 and pū, p̄q be the numerical
solution whose Fourier coefficients and time frequency Ω̄ are given in the file dataorbit2.mat

and can be downloaded at [41] (and whose vorticity is represented in Figure 1). Let rΩ
sol “

2.2491 ¨ 10´6, rusol “ 2.2491 ¨ 10´6, and rpsol “ 5.6486 ¨ 10´5. There exists a 2π
Ω -periodic solution

pu, pq of (1.1) with |Ω´ Ω̄| ď rΩ
sol and such that

}u´ ūΩ{Ω̄}C0 ď rusol and }p´ p̄Ω{Ω̄}C0 ď rpsol.

We point out that the C0-norm is only used here to get a simple statement. A more general
version of Theorem 1.1, with a stronger norm which is the one actually used in the analysis, is
presented in Theorem 5.2 in Section 5.

It is important to recognize that in the last forty years, important open problems were
settled with computer-assisted proofs: the universality of the Feigenbaum constant [22], the
four-colour theorem [27], the existence of the strange attractor in the Lorenz system [39] (i.e.
Smale’s 14th problem) and Kepler’s densest sphere packing problem [12]. We refer the interested
to reader to the expository works [42, 11, 18, 24, 25, 26, 29, 40] and the references therein, for
a more complete overview of the field of rigorously verified numerics. Let us however mention
some results related to the present work. In [46], Watanabe proposes an approach to obtain
computer-assisted proofs of existence of stationary solution in the Navier-Stokes equation, which
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Figure 1: The third component of ω̄ “ ∇ ˆ ū of the spontaneous periodic flow obtained in
Theorem 1.1, normalized by the amplitude of the equilibrium solution defined in (5.3). Snap
shots are depicted at times 0, π

2Ω̄
, π

Ω̄
and 3π

2Ω̄
.

then lead to the rigorous computation of equilibria in a three-dimensional thermal convection
problem [17] and in Kolmogorov flow, i.e. flow with periodic boundary conditions and a constant
body force with a simple structure [44, 45]. Independently, Heywood et al. [13] established fixed-
point theorems for steady, two-dimensional Kolmogorov flows. Their results fall short of a proof
of existence only because of the presence of round-off error, which Watanabe avoided by using
interval arithmetic. The rigorous computation of time-dependent solutions to the autonomous
Navier-Stokes equation has so far been out of reach. We note that computer-assisted proofs for
periodic orbits, along lines similar to the current paper, have been obtained for the Kuramoto-
Shivashinsky PDE [1, 9, 10, 48] and the ill-posed Boussinesq equation [5].

Our strategy begins by identifying a problem of the form FpW q “ 0 posed on a Banach
algebra of geometrically decaying Fourier coefficients, whose solutions yield the time-periodic
orbits. This zero finding problem is derived by applying the curl operator to (1.1) and solving
for the periodic orbits in the vorticity equation. Expressing a periodic orbit using a space-time
Fourier series and plugging the series in the vorticity equation yields the infinite dimensional
nonlinear problem FpW q “ 0, where W corresponds to the sequence of Fourier coefficients of
the vorticity ω “ ∇ˆ u. The details of the derivation of the map F are given in Section 2.1. A
proof that the solutions of F “ 0 correspond to time-periodic Navier-Stokes flows is presented in
Lemma 2.5. The next step is to consider a finite dimensional projection of F and to numerically
obtain an approximation W̄ of a zero of F , that is FpW̄ q « 0. Next, we turn the problem
FpW q “ 0 into an equivalent fixed point problem of the form T pW q “ W ´DFpW̄ q´1FpW q.
We then set out to prove that T is a contraction on a neighborhood of W̄ . The advantage is
that instead of trying to prove equalities in the formulation FpW q “ 0, contractivity involves
inequalities only. The proof then proceeds by a Newton-Kantorovich type argument (see Theo-
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rem 2.15 and Theorem 4.23) to find a ball centered at W̄ on which the map T is a contraction
mapping. Having done the hard work in the analysis of reducing the problem to finitely many
explicit inequalities, one therefore resorts to interval arithmetic computer calculations for this
final step of the proof.

The paper is organized as follows. In Section 2, we introduce the rigorous computational
approach and the zero finding problem FpW q “ 0, as well as the Banach space in which we solve
for the zeros of F . The Newton-Kantorovich type theorem is presented in Theorem 2.15. In
Section 3, we introduce the general bounds necessary to verify the hypotheses of Theorem 2.15.
Then in Section 4 we describe how the symmetries of the model can be used to simplify solving
the zero-finding problem, by reducing significantly its size. Using this reduction based on sym-
metries a modified Newton-Kantorovich theorem is proved (Theorem 4.23) and the associated
symmetry-adapted estimates are derived in Section 4.6. Sample results are then presented in
Section 5. All the estimates obtained in this paper culminate in Theorems 5.1 and 5.2, which
allows us to validate periodic solutions ω of the vorticity equation, with explicit error bounds.
In the Appendix we describe how to recover errors bounds for the associated velocity u and
pressure p that solve the Navier-Stokes equations.

2 The rigorous computational approach

This section is devoted to the presentation of the framework that is needed to study periodic
solutions of (1.1) by computer-assisted means. We first derive a suitable F “ 0 problem in
Section 2.1 and introduce the proper Banach spaces to study that problem in Section 2.2.
Well chosen approximations of DF and DF´1 are then introduced in Section 2.3, and used in
Section 2.4 to state Theorem 2.15, which provides us with sufficient conditions for the existence
of non trivial zeros of F .

2.1 The zero finding problem in Fourier space

In this section, we introduce the zero finding problem F “ 0 that we are going to work with.
We start by some (somewhat algebraic) manipulations and then explain in Lemma 2.5 how the
zero finding problem is related to the original Navier-Stokes equations.

We consider the 3D incompressible Navier-Stokes equations (1.1) on the three-torus T3 and
look for time-periodic solutions. As mentioned in the introduction, both the numerical and the
theoretical part of our work are based on Fourier series, for which we will use the following
notations. For n “ pn1, n2, n3, n4q P Z4, we write n “ pñ, n4q where ñ “ pn1, n2, n3q and
ñ2 def
“ n2

1`n
2
2`n

2
3. If u : T3ˆRÑ R3 is a time-periodic function (that is periodic in the fourth

variable), we denote by punqnPZ4 P
`

C3
˘Z4

its Fourier coefficients:

upx, tq “
ÿ

nPZ4

une
ipñ¨x`n4Ωtq,

where Ω is the a-priori unknown angular frequency.

Remark 2.1. In this paper, we are only concerned with smooth (that is analytic) periodic
functions. Therefore, we can identify a function with its sequence of Fourier coefficients, and
to make the notations lighter we use the same symbol to denote both of them. It should be clear
from context whether u (and similarly later for ω, f , fω, etc.) denotes a periodic function or a
sequence of Fourier coefficients.

For 1 ď l ď 3, we use uplq P CZ4
to denote the Fourier sequence of the l-th component

of u. For any Fourier sequence a “ panq P CZ4
and any 1 ď l ď 3 we define the sequence Dla
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corresponding to the partial derivative of a with respect to xl (up to a factor i):

pDlaqn
def
“ nlan for all n P Z4.

For any Fourier sequence a “ panq and b “ pbnq in CZ4
we define their convolution product as

pa ˚ bqn
def
“

ÿ

kPZ4

akbn´k.

Finally, given a, b P
`

C3
˘Z4

we define

”´

a ‹ D̃
¯

b
ıplq

def
“

3
ÿ

m“1

apmq ˚
´

Dmb
plq
¯

for all 1 ď l ď 3,

which is the l-th component in Fourier space of pa¨∇qb, again up to a factor i. We will frequently
use the following lemma.

Lemma 2.2. Let a, b P
`

C3
˘Z4

be such that
ř3
m“1Dma

pmq “ 0. Then, for all l P t1, 2, 3u,

”´

a ‹ D̃
¯

b
ıplq

“

3
ÿ

m“1

Dm

”

apmq ˚ bplq
ı

.

Proof. This is a consequence of the product rule:

”´

a ‹ D̃
¯

b
ıplq

“

3
ÿ

m“1

”

apmq ˚Dmb
plq
ı

“

3
ÿ

m“1

´

Dm

”

apmq ˚ bplq
ı

´

”

Dma
pmq ˚ bplq

ı¯

“

3
ÿ

m“1

Dm

”

apmq ˚ bplq
ı

.

We are now almost ready to set up our F “ 0 problem, but instead of looking directly at
periodic solutions of (1.1) we are going to work with the vorticity equation. Namely, we consider
the vorticity ω “ ∇ˆ u and look for the equation it satisfies. Using

pu ¨∇qu “ ∇
ˆ

|u|2

2

˙

´ uˆ ω,

we get

∇ˆ ppu ¨∇quq “ ∇ˆ pω ˆ uq
“ pu ¨∇qω ´ pω ¨∇qu` ω p∇ ¨ uq ´ u p∇ ¨ ωq , (2.1)

and since both u and ω are divergence free we end up with

∇ˆ ppu ¨∇quq “ pu ¨∇qω ´ pω ¨∇qu. (2.2)

The vorticity equation is then given by

Btω ` pu ¨∇qω ´ pω ¨∇qu´ ν∆ω “ fω on T3 ˆ R, (2.3)

where fω
def
“ ∇ˆ f .
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We are going to solve for the Fourier coefficients of ω satisfying the vorticity equation (2.3).
More precisely, our unknowns are the Fourier coefficients pωnqnPZ4 and the angular frequency Ω.
However, in (2.3) the unknowns ω and u both appear. To obtain an equation depending on the
vorticity ω only, we need to express u in term of ω by solving

#

∇ˆ u “ ω

∇ ¨ u “ 0.

Applying the curl operator to the first equation, and using that ∇ ¨ u “ 0, we get

´∆u “ ∇ˆ ω,

and so, formally,
u “ p´∆q´1∇ˆ ω. (2.4)

Remark 2.3. Expression (2.4) is not completely well defined because the Laplacian has, in
general, a non-zero kernel. In particular, the space average velocity

ż

T3

upx, tqdx “
ÿ

n4PZ
u0,n4e

in4Ωt

cannot be recovered from the vorticity ω. However, going back to (1.1) we have

d

dt

ż

T3

upx, tqdx “

ż

T3

fpxqdx. (2.5)

In this work, we consider a time independent forcing with spatial average equal to zero, therefore
the space average velocity is a conserved quantity, which can always be assumed to be zero by
Galilean invariance.

To give a well defined version of (2.4), we go through Fourier space and introduce

Mn
def
“

$

’

’

’

’

&

’

’

’

’

%

i

ñ2

¨

˚

˝

0 ´n3 n2

n3 0 ´n1

´n2 n1 0

˛

‹

‚

, ñ ‰ 0,

0, ñ “ 0,

(2.6)

and
Mω

def
“ pMnωnqnPZ4 ,

As mentioned previously, we can assume the space average velocity to be zero, which is why we
define pMωq0,n4 to be zero for all n4 P Z.

Remark 2.4. The above computations and construction of M can be summarized in the follow-
ing equivalence

$

&

%

∇ˆ u “ ω
∇ ¨ u “ 0
ş

T3 u “ 0
ðñ

"

u “Mω
∇ ¨ ω “ 0.

Going back to (2.3) and replacing u by Mω, we obtain the equation

Btω ` pMω ¨∇qω ´ pω ¨∇qMω ´ ν∆ω “ fω on T3 ˆ R, (2.7)

which is the one we are going to work with. More precisely, we first define

W “

ˆ

Ω
pωnqnPZ4zt0u

˙

, (2.8)
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which corresponds to all the unknowns we are solving for. Notice that ω0 is not part of the
unknowns, as it can always be taken equal to 0. In the sequel, to simplify the presentation we
introduce Z4

˚ “ Z4zt0u, and always identify pωnqnPZ4
˚

with pωnqnPZ4 where ω0 “ 0. In particular,
the representation in physical space associated to W is given by

ωpx, tq “
ÿ

nPZ4
˚

ωne
ipñ¨x`n4Ωtq “

ÿ

nPZ4

ωne
ipñ¨x`n4Ωtq. (2.9)

We then define F “ pFnqnPZ4
˚

by

FnpW q
def
“ iΩn4ωn ` i

”´

Mω ‹ D̃
¯

ω
ı

n
´ i

”´

ω ‹ D̃
¯

Mω
ı

n
` νñ2ωn ´ f

ω
n , (2.10)

for all n P Z4
˚, and aim to show the existence of a nontrivial zero of F .

For later use (see Section 3.4 and Section 4.6.3), we also introduce the notation Ψ “ pΨnqnPZ4
˚

for the nonlinear terms in (2.10):

Ψnpωq
def
“ i

”´

Mω ‹ D̃
¯

ω
ı

n
´ i

”´

ω ‹ D̃
¯

Mω
ı

n
for all n P Z4

˚. (2.11)

Lemma 2.5. Let W P RˆpC3qZ
4
˚ be such that the corresponding function ω is analytic. Assume

that F pW q “ 0 and ∇¨ω “ 0. Assume also that f does not depend on time and has space average
zero. Define u “ Mω. Then there exists a pressure function p : T3 ˆ RÑ R such that pu, pq is
a 2π

Ω -periodic solution of (1.1).

Remark 2.6. Let us mention that the analyticity condition could be considerably weakened: the
lemma would hold for any smoothness assumption allowing to justify all the taken derivatives
and the switches between functional and Fourier representation. In our case analyticity simply
happens to be the most natural assumption, because of the space of Fourier coefficients we end
up using, see Section 2.2 and Remark 2.8.

Proof. First, a straightforward computation gives that

D1 pMωqp1q `D2 pMωqp2q `D3 pMωqp3q “ 0,

for any ω, which amounts to saying that ∇ ¨Mω “ 0, therefore ∇ ¨ u “ 0.
The next step is to prove that ∇ˆ u “ ω (that is ∇ˆMω “ ω). Using the definition of Mn

and the fact that ∇ ¨ ω “ 0, another straightforward computation in Fourier space shows that
p∇ˆMωqn “ ωn for all ñ ‰ 0. To prove that p∇ˆMωqn “ ωn for all ñ “ 0, first observe that
p∇ˆMωqn “ 0 for ñ “ 0. Next, since ω and Mω are divergence free, we can use Lemma 2.2
on both nonlinear terms of F , and get that

”´

Mω ‹ D̃
¯

ω
ı

0,n4

“ 0 “
”´

ω ‹ D̃
¯

Mω
ı

0,n4

for all n4 P Z.

Therefore, F0,n4pW q “ 0 implies that ω0,n4 “ 0 for n4 ‰ 0, which concludes the proof that
∇ˆ u “ ω.

Finally, we define the periodic function

Φ
def
“ Btu` pu ¨∇qu´ ν∆u´ f. (2.12)

Using ∇ˆ u “ ω we get that, for all n ‰ 0, p∇ˆ Φqn “ FnpW q, and since p∇ˆΦq0 vanishes as
well, we conclude that ∇ˆΦ “ 0. Recalling that u “Mω is divergence free, Lemma 2.2 yields
that

”´

Mω ‹ D̃
¯

Mω
ıplq

0,n4

“ 0, for all n4 P Z.
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Also using that pMωq0,n4
“ 0 and that f0,n4 “ 0 (since f does not depend on time and has

average zero), we get that Φ0,n4 “ 0 for all n4 P Z. We have shown that

#

∇ˆ Φ “ 0

Φn “ 0, for all ñ “ 0.

Therefore (see Lemma 6.1) there exists a p such that Φ “ ´∇p, that is

Btu` pu ¨∇qu´ ν∆u`∇p “ f.

Since we had already shown that u is divergence free, this completes the proof.

Finally, in view of the contraction argument that we are going to apply, we add a phase
condition in order to isolate the solution. Assume that we have an approximate periodic orbit
given by ω̂. A common choice for the phase condition (see e.g. [21]) is to require that the orbit
ω satisfies

2π
Ω
ż

0

ż

T3

ωpx, tq ¨ Btω̂px, tq dxdt “ 0.

Hence, we define the phase condition

FKpW q “ i
3
ÿ

l“1

ÿ

nPZ4
˚

ωplqn n4

´

ω̂plqn

¯˚

, (2.13)

where the superscript ˚ denotes complex conjugation, and we assumed that the reference orbit

given by ω̂ is real-valued, that is ω̂
plq
´n “

´

ω̂
plq
n

¯˚

.

We now consider the enlarged problem

F “
ˆ

FK

pFnqnPZ4
˚

˙

. (2.14)

In view of the similarity between (2.8) and (2.14), we will abuse notation and refer to the set of
elements of such variables via

tQnunPtK,Z4
˚u
,

where QK P C and Qn P C3 for n P Z4
˚, rather than introducing notation for the projections onto

different components.

2.2 Banach spaces, norms, index sets

In this section we introduce the Banach spaces on which we are going to study F , as well as
some additional notations that are going to be used throughout this paper.

For η ě 1, we denote by `1ηpCq the subspace of all sequences a P CZ4
˚ such that

}a}`1η
def
“

ÿ

nPZ4
˚

|an|η
|n|1 ă 8,

with |n|1 “
ř4
j“1 |nj |. We also introduce the subspaces `1η,´2,´1pCq, `1η,´1,´1pCq and `1η,´1,0pCq

of CZ4
˚ , associated to the norms

}a}`1η,´2,´1

def
“

ÿ

nPZ4
˚

|an|
η|n|1

maxp|ñ|28, |n4|q
, }a}`1η,´1,´1

def
“

ÿ

nPZ4
˚

|an|
η|n|1

|n|8

9



and

}a}`1η,´1,0

def
“

ÿ

nPZ4
˚

|an|
η|n|1

|ñ|8
,

with |n|8 “ max1ďjď4 |nj | and |ñ|8 “ max1ďjď3 |nj |.

The main space in which we are going to work is the Banach space X “ Cˆ
`

`1ηpCq
˘3

with
the norm

}W }X “ |Ω| `
ÿ

1ďlď3

}ωplq}`1η .

Remark 2.7. Since Ω and ω are incommensurable, Ω and ω do not live in the same space it is
prudent to introduce an extra weight in the norm for the |Ω| term. Depending on the application
at hand this may indeed be necessary, but for the results in the current paper setting this weight
to unity suffices.

Remark 2.8. Notice that, as soon as Ω P R and η ą 1, the function ω associated to an element
W of X via (2.9) is analytic.

Similarly, we introduce the Banach spaces X´2,´1 “ C ˆ
`

`1η,´2,´1pCq
˘3

and X´1,´1 “ C ˆ
`

`1η,´1,´1pCq
˘3

, respectively endowed with the norms

}W }X´2,´1
“ |Ω| `

ÿ

1ďlď3

}ωplq}`1η,´2,´1

and
}W }X´1,´1

“ |Ω| `
ÿ

1ďlď3

}ωplq}`1η,´1,´1
.

Notice that F defined in (2.14) maps X into X´2,´1. We are also going to consider subspaces
of divergence free sequences of X and X´2,´1, namely:

X div def
“

#

W P X :
3
ÿ

m“1

Dmω
pmq “ 0

+

, X div
´2,´1

def
“

#

W P X´2,´1 :
3
ÿ

m“1

Dmω
pmq “ 0

+

.

Notice that ω ÞÑ
ř3
m“1Dmω

pmq is a bounded linear map from
`

`1η
˘3

to `1η,´1,0, therefore X div is

a closed subspace of X and thus still a Banach space, with the norm }¨}X . Similarly, X div
´2,´1 is

a Banach space, with the norm }¨}X´2,´1
.

We recall that, in Lemma 2.5, we need the zero of F to be divergence free in order to prove
that it corresponds to a solution of Navier-Stokes equation (1.1). Therefore, when we later prove
the existence of a zero of F in X , it is crucial to be able to show that this zero is actually in X div.
To do so in Theorem 2.15, we will make use of the following observation.

Lemma 2.9. F maps X div to X div
´2,´1.

Proof. We need to show that, for all ω satisfying ∇ ¨ ω “ 0, we have ∇ ¨ F pW q “ 0. The only
term in F pW q that is not obviously divergence free is the nonlinear term, but since ∇ ¨ω “ 0 by
assumption and ∇ ¨Mω “ 0 by construction of M , we can proceed as in (2.1)-(2.2) to rewrite
the nonlinear term as a curl, therefore concluding that it is indeed divergence free.

Similarly, we want to obtain zero of F that corresponds to a real-valued function. To ensure
this, the following notation and observation are needed.
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Definition 2.10. We define the complex conjugation symmetry γ˚, acting on Cˆ
`

C3
˘Z4
˚, by

pγ˚Qqn “

#

Q˚K if n “ K

Q˚´n if n P Z4
˚,

where ˚ denotes complex conjugation, which is to be understood component-wise when applied
to Qn P C3. We still use the symbol γ˚ to denote the complex conjugation symmetry acting

on
`

C3
˘Z4
˚.

Notice that, thanks to the factor i in the definition (2.13) of FK, F is γ˚-equivariant. More
precisely, one has the following statement, which will be used for Theorem 2.15.

Lemma 2.11. Assume that ω̂ used in the phase condition (2.13) is such that γ˚ω̂ “ ω̂. Then

Fpγ˚W q “ γ˚FpW q for all W P X . (2.15)

We end this section with a last set of notations that will be useful to describe linear operators.

Notation 2.12. To work with a linear operator B : X Ñ X , it is convenient to introduce the
block notation

B “

¨

˚

˚

˚

˚

˚

˝

BpK,Kq BpK,1q BpK,2q BpK,3q

Bp1,Kq Bp1,1q Bp1,2q Bp1,3q

Bp2,Kq Bp2,1q Bp2,2q Bp2,3q

Bp3,Kq Bp3,1q Bp3,2q Bp3,3q

˛

‹

‹

‹

‹

‹

‚

,

where

• Bpl,mq is a linear operator from `1η to `1η, for all 1 ď l,m ď 3,

• BpK,mq is a linear operator from `1η to C, for all 1 ď m ď 3,

• Bpl,Kq is a linear operator from C to `1η, for all 1 ď l ď 3,

• BpK,Kq is a linear operator from C to C.

For all 1 ď l,m ď 3, we write Bpl,mq “
´

B
pl,mq
k,n

¯

k,nPZ4
˚

, so that, for all a P `1η and all k P Z4
˚,

´

Bpl,mqa
¯

k
“

ÿ

nPZ4
˚

B
pl,mq
k,n an.

Similarly, BpK,mq “
´

B
pK,mq
n

¯

nPZ4
˚

and Bpl,Kq “
´

B
pl,Kq
k

¯

kPZ4
˚

, so that, for all a P `1η, all Ω P C

and all k P Z4
˚,

BpK,mqa “
ÿ

nPZ4
˚

BpK,mqn an and
´

Bpl,KqΩ
¯

k
“ B

pl,Kq
k Ω.

We also use

Bp.,Kq “

¨

˚

˚

˝

BpK,Kq

Bp1,Kq

Bp2,Kq

Bp3,Kq

˛

‹

‹

‚

and Bp.,mq.,n “

¨

˚

˚

˚

˚

˚

˚

˚

˝

B
pK,mq
n

´

B
p1,mq
k,n

¯

kPZ4
˚

´

B
p2,mq
k,n

¯

kPZ4
˚

´

B
p3,mq
k,n

¯

kPZ4
˚

˛

‹

‹

‹

‹

‹

‹

‹

‚

to denote all the columns of B. Similar notations will be used when B is a linear operator from
X to X´2,´1, or vice versa.
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2.3 The operators pA and A

We now assume that we have an approximate zero W̄ “ pΩ̄, ω̄q P X of F . In practice W̄ will only
a have finite number of non zero coefficients (see (3.1)), but this is not crucial for the moment.

As mentioned in Section 1, our strategy to obtain the existence of a zero of F in a neighbor-
hood of W̄ is to show that a Newton-like operator of the form

T : W ÞÑW ´DFpW̄ q´1FpW q

is a contraction in a neighborhood of W̄ . To prove this directly, we would need to derive a
(computable) estimate of

›

›DFpW̄ q´1
›

›

BpX´2,´1,X q (see Remark 2.16), which would be a quite

formidable task. We circumvent this difficulty by working with an approximate inverse A
of DFpW̄ q´1, which is defined via a finite dimensional numerical approximation, and for which
estimates are much easier to obtain. More precisely, we are going to consider a finite dimensional
projection of DFpW̄ q, invert it numerically and then use the numerical inverse to construct A.
To define A precisely, it will be convenient to use the following notation.

Definition 2.13. Let ν be the kinematic viscosity used in (1.1) and Ω̄ be the time-frequency of
the numerical solution W̄ . For all n P Z4 and n P N, we define

µpnq
def
“

ˇ

ˇνñ2 ` iΩ̄n4

ˇ

ˇ ,

and the set:
EpNq def

“
 

n P Z4
˚ : µpnq ď N

(

.

We then fix N : P Nzt0u (to be chosen later) and consider the set E: def
“ EpN :q corresponding

to the subset of indices that are used in the definitions of pA and A below. The reasoning
for choosing such a set E: will become apparent later, when we have to control the dominant
linear part of F (see for instance Section 3.4). This choice is also quite natural from a spectral
viewpoint. Indeed E: is the set of all indices corresponding to eigenvalues of the heat operator
Bt ´ ν∆ with modulus less than N : (see Lemma 3.1).

Definition 2.14. We define the subspace X : of X as

X : “
 

W P X : ωn “ 0, @ n R E:
(

.

For a P CZ4
˚, we define

Π:a “ panqnPE: .

For W “ pΩ, ωq P X , this notation naturally extends to

Π:ω “

¨

˝

Π:ωp1q

Π:ωp2q

Π:ωp3q

˛

‚ and Π:W “

ˆ

Ω
Π:ω

˙

.

In the sequel, we identify the finite dimensional vector Π:W with its natural injection into X :,
and therefore interpret Π: as the canonical projection from X to X :. These notations also
naturally extend to X´1,´2.

We are now ready to introduce an approximation pA of DFpW̄ q and then an approximation
A of DFpW̄ q´1. The bounded linear operator pA : X Ñ X´2,´1 is defined by

$

&

%

pAΠ:W “ Π:DFpW̄ q|X :Π:W,
´

pA
`

I ´Π:
˘

W
¯

n
“

`

νñ2 ` iΩ̄n4

˘

ωn, for n R E:.

12



Notice that pA leaves both subspaces X : and pI ´Π:qX invariant, and that it acts diagonally on
pI ´Π:qX .

Next, we introduce ApN
:q, an approximate inverse of Π:DFpW̄ q|X : that is computed nu-

merically (interpreting it as a finite matrix), and the bounded linear operator A : X´2,´1 Ñ X
defined by

#

AΠ:W “ ApN
:qΠ:W

`

A
`

I ´Π:
˘

W
˘

n
“ λnωn, for n R E:,

where

λn
def
“

1

νñ2 ` iΩ̄n4
. (2.16)

Notice that A also leaves both subspaces X : and pI´Π:qX invariant, and that it acts diagonally
on pI ´Π:qX .

2.4 A posteriori validation framework

We are now ready to give sufficient conditions for the a posteriori validation of the solution W̄ ,
that is conditions under which the existence of a zero of F in a neighborhood of W̄ is guaranteed.
This is the content of the following theorem.

Theorem 2.15. Let η ą 1. With the notations of the previous sections, assume there exist
W̄ P X and non-negative constants Y0, Z0, Z1 and Z2 such that

›

›AFpW̄ q
›

›

X ď Y0 (2.17)
›

›

›
I ´A pA

›

›

›

BpX ,X q
ď Z0 (2.18)

›

›

›
A
´

DFpW̄ q ´ pA
¯›

›

›

BpX ,X q
ď Z1 (2.19)

›

›ApDFpW q ´DFpW̄ qq
›

›

BpX ,X q ď Z2

›

›W ´ W̄
›

›

X , for all W P X . (2.20)

Assume also that

• the forcing term f is time independent and has space average zero;

• W̄ is in X div;

• ω̂ (used to define the phase condition (2.13)) and W̄ are such that γ˚ω̂ “ ω̂ and γ˚W̄ “ W̄ .

If
Z0 ` Z1 ă 1 and 2Y0Z2 ă p1´ pZ0 ` Z1qq

2 , (2.21)

then, for all r P rrmin, rmaxq there exists a unique W̃ “ pΩ̃, ω̃q P BX pW̄ , rq such that FpW̃ q “ 0,
where BX pW̄ , rq is the closed ball of X , centered at W̄ and of radius r, and

rmin
def
“

1´ pZ0 ` Z1q ´

b

p1´ pZ0 ` Z1qq
2
´ 2Y0Z2

Z2
, rmax

def
“

1´ pZ0 ` Z1q

Z2
.

Besides, this unique W̃ also lies in X div. Finally, defining u “ Mω̃, there exists a pressure
function p such that pu, pq is a 2π

Ω̃
-periodic, real valued and analytic solution of Navier-Stokes

equations (1.1).
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Proof. First notice that we have

›

›

›
I ´A pA

›

›

›

BpX ,X q
ď Z0 ă 1,

hence A pA is a bounded linear and invertible operator from X to itself by a standard Neumann
series argument. Besides, since A and pA have diagonal tails that are the exact inverse of one
another, the above bound gives that the finite part of A is invertible and thus A´1 is a bounded
linear operator from X´2,´1 to X . We also have that

›

›I ´ADFpW̄ q
›

›

BpX ,X q ď Z0 ` Z1 ă 1,

and therefore Q
def
“ ADFpW̄ q is a bounded linear and invertible operator from X to itself.

Furthermore,
›

›Q´1
›

›

BpX ,X q ď p1´ pZ0 ` Z1qq
´1. Hence, we finally have that

DFpW̄ q “ A´1Q

is a bounded linear and invertible operator from X´2,´1 to X .
We can thus consider

T pW q
def
“ W ´DFpW̄ q´1FpW q (2.22)

which maps X to itself. We are now going to show that T is a contraction on BX pW̄ , rq for all
r P rrmin, rmaxq. It is going to be helpful to introduce the polynomial

P prq
def
“

1

1´ pZ0 ` Z1q

1

2
Z2r

2 ´ r `
1

1´ pZ0 ` Z1q
Y0.

Notice that by (2.21), the quadratic polynomial P has two positive roots, rmin being the smallest,
and that P prmaxq ă 0 since rmax is the apex of P . We estimate, for r ą 0 and W P BX pW̄ , rq,

›

›T pW q ´ W̄
›

›

X ď
›

›T pW q ´ T pW̄ q
›

›

X `
›

›T pW̄ q ´ W̄
›

›

X

ď

ż 1

0

›

›DT pW̄ ` tpW ´ W̄ qq
›

›

BpX ,X q dt
›

›W ´ W̄
›

›

X `
›

›DFpW̄ q´1FpW̄ q
›

›

X

ď
›

›Q´1
›

›

BpX ,X q
`

ż 1

0

›

›A
`

DFpW̄ ` tpW ´ W̄ qq ´DFpW̄ q
˘›

›

BpX ,X q dt
›

›W ´ W̄
›

›

X

`
›

›AFpW̄ q
›

›

X
˘

ď
›

›Q´1
›

›

BpX ,X q

ˆ

Z2r
2

ż 1

0
tdt` Y0

˙

ď
1

1´ pZ0 ` Z1q

ˆ

1

2
Z2r

2 ` Y0

˙

.

For all r P rrmin, rmaxs, we have P prq ď 0 and hence
›

›T pW q ´ W̄
›

›

X ď r, that is T maps BX pW̄ , rq
into itself.

Furthermore, for r ą 0 and W P BX pW̄ , rq we also have

}DT pW q}BpX ,X q “
›

›I ´DFpW̄ q´1DFpW q
›

›

BpX ,X q

ď
›

›Q´1
›

›

BpX ,X q
›

›A
`

DFpW̄ q ´DFpW q
˘›

›

BpX ,X q

ď
Z2r

1´ pZ0 ` Z1q
.

Hence, from the definition of rmax it follows that }DT pW q}BpX ,X q ă 1 for any r P r0, rmaxq.
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Thus we infer that T is a contraction on BX pW̄ , rq for any r P rrmin, rmaxq. Banach’s fixed
point Theorem then yields the existence of a unique fixed point W̃ “ pΩ̃, ω̃q of T in BX pW̄ , rq,
for all r P rrmin, rmaxq, which corresponds to a unique zero of F since DFpW̄ q´1 is injective.

In order to prove that ω̃ is divergence free, we then make use of the fact that FpX divq Ă

X div
´2,´1 (Lemma 2.9). Since X div

´2,´1 is a closed subspace of X´2,´1, this implies that for all

W P X div, DFpW q
`

X div
˘

Ă X div
´2,´1. In particular, since DFpW̄ q is invertible and W̄ P X div,

we have that DFpW̄ q´1
`

X div
´2,´1

˘

Ă X div, and hence that T pX divq Ă X div. Therefore, T is also

a contraction on BXdivpW̄ , rq
def
“ BX pW̄ , rq X X div and we now get the existence of a unique

fixed point W̃ of T in BXdivpW̄ , rq (which must be the same as the one obtained previously by
uniqueness).

Finally, concerning real-valuedness, by Lemma 2.11 we have Fpγ˚W̃ q “ γ˚FpW̃ q “ 0, and
since BX pW̄ , rq is invariant under γ˚, this “new” zero γ˚W̃ of F also belongs to BX . By
uniqueness we must have γ˚W̃ “ W̃ , which means that that Ω P R and that the functions
associated to ω̃ and u are real-valued.

The function associated to ω̃ is therefore divergence free, analytic since η ą 1, and Ω P R.
By Lemma 2.5, u then solves Navier-Stokes equations.

Remark 2.16. Many similar versions of this theorem have been used in the last decades, in a
posteriori error analysis and computer-assisted proofs (see for instance [4, 26, 47, 2, 6]). One
possible approach (which is maybe the most natural one) to show that the operator T defined
in (2.22) is a contraction from a small ball around W̄ into itself, is to directly estimate

›

›FpW̄ q
›

›

X´2,´1
,

›

›DFpW̄ q´1
›

›

BpX´2,´1,X q and sup
WPBpW̄ ,rq

›

›DFpW q ´DFpW̄ q
›

›

BpX ,X´2,´1q

instead of (2.17)-(2.20). The main difficulty of this approach in practice is to obtain a bound
for the inverse DFpW̄ q´1, which can sometimes be done using eigenvalue enclosing techniques
(see [26] and the references therein). Another possibility is to replace DFpW̄ q´1 by an approxi-
mate inverse A of DFpW̄ q, and to study the fixed point operator

Tapprox
def
“ I ´AF

instead of T . Estimating the quantities in (2.17)-(2.20) is then a good way to prove that Tapprox

is a contraction from a small ball around W̄ into itself (see for instance [47, 6]). The price
to pay for this approach is that one has to actually compute (partially numerically) a good
enough approximate inverse A of DFpW̄ q, but estimating the norm of A then becomes very
straightforward, compared to having to work with the exact inverse DFpW̄ q´1.

What Theorem 2.15 shows is that, when an approximate inverse A is used and when the
estimates (2.17)-(2.20) are good enough to show that Tapprox is a contraction from BpW̄ , rq
into itself for some r ą 0, then the same is actually true for T . This observation may seem
inconsequential, as what we really care about is the existence of a zero of F near W̄ , rather than
which fixed point operator was used to prove this fact (since both give the same error bound with
this approach). However, it turns out to be very advantageous in this work. Indeed, to show
that a zero W of F corresponds to a solution of Navier-Stokes equations, we need to know a
priori that ω is divergence free, see Lemma 2.5. Since F (and thus DFpW̄ q´1) preserves the
divergence free property, so does T , and hence we were able to obtain for free that our fixed point
is divergence free (by making sure that the numerical approximate solution W̄ itself is divergence
free). To obtain the same result with Tapprox, we would have to make sure that the approximate
inverse A also preserves exactly the divergence free property. For the approximate inverse A
described in Section 2.3 this could likely be achieved, albeit at a considerable computational cost.
However, as mentioned in the introduction, in practice we work with symmetry reduced variables
(see Section 4). Therefore we use a symmetrically reduced version of A instead of A itself.
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Making sure that this symmetrically reduced version of A preserves the divergence free property
without directly having access to A is a formidable task, which we are able to avoid by working
with T instead of Tapprox.

Remark 2.17. We note that the weighted `1-norm controls the C0-norm. Therefore, when the
assumptions of Theorem 2.15 are satisfied, we have the following explicit error control between
the exact vorticity ω̃ and the approximate vorticity ω̄:

sup
tPR
xPT3

3
ÿ

m“1

ˇ

ˇ

ˇ
ω̃pmqpx, tq ´ ω̄pmqpx, θtq

ˇ

ˇ

ˇ
ď

›

›

›
W̃ ´ W̄

›

›

›

X
ď rmin,

where θ “ Ω̃{Ω̄ accounts for the time dilation that occurs when the approximate period is not
exactly equal to the true period. We also point out that, for η ą 1, we could also obtain explicit
error estimates on derivatives of the vorticity. In Lemma 6.2 corresponding error bounds on the
velocity field and the pressure are presented.

While Theorem 2.15 is the cornerstone of our approach, the main difficulty still lies ahead
of us: we need to derive and implement explicit bounds satisfying (2.17)-(2.20), that are sharp
enough for (2.21) to hold. These bounds are obtained in Section 3. However, the computations
required to evaluate them are quite prohibitive due to the high dimension of the problem.
Therefore, in Section 4 we make use of the symmetries of the solution to reduce the amount of
computation needed, and update the bounds obtained in Section 3 accordingly, by showing that
they are in a certain precise sense compatible with the symmetries. The implementation in a
MATLAB code of the bounds in the symmetric setting can be found at [41], and the results are
discussed in Section 5.

3 Estimates without using symmetries

In this section, we derive bounds Y0, Z0, Z1 and Z2 satisfying (2.17)-(2.20). We first list a few
auxiliary lemmas that are going to be used several times, and then devote one subsection to
each bound. We assume throughout that the approximate solution W̄ only has a finite number
of non-zero modes. More precisely, writing W̄ “ pΩ̄, ω̄q P C ˆ CZ4

˚ , we assume there exists a
finite set of indices Ssol Ă Z4

˚ such that

ω̄n “ 0 for all n R Ssol. (3.1)

We also assume that ω̂ used in the phase condition (2.13) is chosen so that ω̂n “ 0 for all n R Ssol,
that N: P Nzt0u is fixed, and recall that E: is defined in Section 2.3.

3.1 Uniform estimates involving λn

We regroup here some straightforward lemmas that are going to facilitate estimates involving
the tail part of A, in Sections 3.4 and 3.5. Recall that EpNq was introduced in Definition 2.13
and λn in (2.16).

Lemma 3.1. For all N P Nzt0u
sup

nREpNq
|λn| ď

1

N
.

Proof. Simply notice that µpnq “ 1
|λn|

.
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Lemma 3.2. For all N P Nzt0u and all m P t1, 2, 3u,

sup
nREpNq

|λn| |nm| ď
1

?
νN

.

Proof. We note that

|nm| ď

c

µpnq

ν
,

hence

|λn| |nm| ď
1

a

νµpnq
.

Lemma 3.3. For all N P Nzt0u

sup
nREpNq

|λn|
3
ÿ

m“1

|nm| ď

?
3

?
νN

.

Besides, for all p P t1, 2, 3u, we also have

sup
nREpNq

|λn|
ÿ

1ďmď3
m‰p

|nm| ď

?
2

?
νN

.

Proof. Just notice that

3
ÿ

m“1

|nm| ď

g

f

f

e3
3
ÿ

m“1

n2
m ď

c

3µpnq

ν
,

where the first inequality follows from the Cauchy-Schwarz inequality. Therefore

|λn|
3
ÿ

m“1

|nm| ď

?
3

a

νµpnq
.

The second estimate is obtained similarly, using that

ÿ

1ďmď3
m‰p

|nm| ď

g

f

f

e

2
ÿ

1ďmď3
m‰p

n2
m ď

g

f

f

e2
3
ÿ

m“1

n2
m.

Lemma 3.4. For all N P Nzt0u

sup
nREpNq

|λn| |n|8 ď max

ˆ

1
?
νN

,
1

Ω̄

˙

.

Proof. Let n R EpNq. If |n|8 “ |n4|, then clearly

|λn| |n|8 ď
1

Ω̄
.

Otherwise, |n|8 “ |nm| for m P t1, 2, 3u and we conclude by Lemma 3.2.
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3.2 Y0 bound for AFpW̄ q

We start by giving a computable bound for
›

›AFpW̄ q
›

›

X .

Proposition 3.5. Assume that fωn “ 0 for n R Ssol ` Ssol def
“ tn1 ` n2 | n1, n2 P Ssolu, and that

A is defined as in Section 2.3. Then (2.17) is satisfied with

Y0
def
“

›

›

›
ApN

:qΠ:FpW̄ q
›

›

›

X
`

ÿ

nPpSsol`SsolqzE:

3
ÿ

m“1

|λn|
ˇ

ˇ

ˇ
F pmqn pW̄ q

ˇ

ˇ

ˇ
η|n|1

“

ˇ

ˇ

ˇ

´

ApN
:qΠ:FpW̄ q

¯

K

ˇ

ˇ

ˇ
`

ÿ

nPE:

3
ÿ

m“1

ˇ

ˇ

ˇ

ˇ

´

ApN
:qΠ:FpW̄ q

¯pmq

n

ˇ

ˇ

ˇ

ˇ

η|n|1

`
ÿ

nPpSsol`SsolqzE:

3
ÿ

m“1

|λn|
ˇ

ˇ

ˇ
F pmqn pW̄ q

ˇ

ˇ

ˇ
η|n|1 .

Proof. The only thing to notice is that the approximate solution W̄ only has a finite number of
non-zero modes, hence the same is true for FpW̄ q. More precisely, since F is quadratic we infer
that FnpW̄ q “ 0 for all n R Ssol ` Ssol. Recalling the definition of A and using the splitting

›

›AFpW̄ q
›

›

X “
›

›Π:AFpW̄ q
›

›

X `
›

›pI ´Π:qAFpW̄ q
›

›

X

“
›

›AΠ:FpW̄ q
›

›

X `
›

›ApI ´Π:qFpW̄ q
›

›

X ,

then directly yields Y0.

3.3 Z0 bound for I ´A pA

We now give a computable bound for
›

›

›
I ´A pA

›

›

›

BpX ,X q
.

Proposition 3.6. Assume that pA and A are defined as in Section 2.3. Then (2.18) is satisfied
with

Z0
def
“

›

›

›
I ´ApN

:qDF:|X :pW̄ q
›

›

›

BpX ,X q
.

Proof. We recall that we defined pA and A in such a way that their tails are exact inverses of
each other, that is

`

I ´Π:
˘

´

I ´A pA
¯

“ 0, and
´

I ´A pA
¯

`

I ´Π:
˘

“ 0.

Therefore, the only non-zero part of I ´A pA is the finite part Π:
´

I ´A pA
¯

Π:, which yields Z0.

Besides, for a linear operator B : X Ñ X , the operator norm of B is nothing but the
supremum of the norm of each of its column, with a weight, since we use a weighted `1 norm
on X :

}B}BpX ,X q “ max

«

›

›

›
Bp.,Kq

›

›

›

X
, max

1ďmď3
sup
nPZ4

˚

1

η|n|1

›

›

›
Bp.,mq.,n

›

›

›

X

ff

.

Therefore, if B only has a finite number of non-zero columns B
p.,mq
.,n , and if each of these columns

only has a finite number of non-zero terms, (which is the case for the operator involved in Z0)
we can evaluate such a norm on a computer.
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3.4 Z1 bound for A
`

DFpW̄ q ´ pA
˘

In this section, we give a computable bound for
›

›A
`

DFpW̄ q´ pA
˘›

›

BpX ,X q. Because of the way pA

and A are defined, and since we only consider here the derivative of F at a numerical solution W̄
(which only has a finite number of nonzero coefficients), each column of A

`

DFpW̄ q ´ pA
˘

also
only has a finite number of nonzero coefficients. Therefore, we can numerically evaluate the
norm of any finite number of columns of A

`

DFpW̄ q´ pA
˘

. Our strategy to obtain the Z1 bound

is thus to compute the norm of a finite (but large enough) number of columns of A
`

DFpW̄ q´ pA
˘

,
and to then get an analytic estimate for the remaining columns. To describe for which columns
we compute the norm explicitly, we introduce the following set of indices.

Definition 3.7. Let Ñ P N. We define the set rSsolpÑq by

rSsolpÑq
def
“ EpÑq ` Ssol, (3.2)

Remark 3.8. In the sequel, we will have to estimate quantities such as

sup
nRS, kPSsol

|λn`k|, (3.3)

for a given set S. By definition (3.2) of rSsolpÑq, and assuming ´Ssol “ Ssol, we have

´

rSsolpÑq
¯c
` Ssol Ă

´

EpÑq
¯c
,

hence for S “ rSsolpÑq we can bound (3.3) by

sup
nR rSsolpÑq, kPSsol

|λn`k| ď sup
nREpÑq

|λn|,

and we can thus use the estimates of Section 3.1 to control such terms.

Remark 3.9. Whereas the computational parameter N : determines the size of the “computa-
tional/finite” part ApN

:q of the linear operator A, the computational parameter Ñ can be chosen
(for fixed choice of N :) to balance the quality of the estimates and the computational costs. We
will always need to choose Ñ so that EpÑq contains E: “ EpN :q, i.e. take Ñ ě N :, to ensure
that the finite part of A does not influence the tail estimate, see equation (3.9) below.

Proposition 3.10. Assume that W̄ P X div, E: Ă EpÑq, and that pA and A are defined as in
Section 2.3. Define C “ DFpW̄ q ´ pA. Then (2.19) is satisfied with

Z1
def
“ max

ˆ

›

›

›
ACp.,Kq

›

›

›

X
, max

1ďmď3

´

Zfinite
1

¯pmq
, max

1ďmď3

´

Ztail
1

¯pmq
˙

,

where
´

Zfinite
1

¯pmq
“ max

nP rSsolpÑq

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X
,

and

´

Ztail
1

¯pmq
“

?
3

a

νÑ

›

›

›

›

max
1ďpď3

pMω̄qppq
›

›

›

›

`1η

`
1

Ñ

˜

3

2

3
ÿ

p“1

›

›

›
ω̄ppq

›

›

›

`1η
´

1

2

›

›

›
ω̄pmq

›

›

›

`1η

¸

`
1

Ñ

3
ÿ

l“1

˜

›

›

›
DmpMω̄qplq

›

›

›

`1η
`

3
ÿ

p“1

›

›

›
Dpω̄

plq
›

›

›

`1η
´

›

›

›
Dmω̄

plq
›

›

›

`1η

¸

, (3.4)

where
?

3 can be replaced by
?

2 for an (essentially) 2D solution.
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Proof. We have

}AC}BpX ,X q “ max

«

›

›

›
pACqp.,Kq

›

›

›

X
, max

1ďmď3
sup
nPZ4

˚

1

η|n|1

›

›

›
pACqp.,mq.,n

›

›

›

X

ff

“ max

«

›

›

›
ACp.,Kq

›

›

›

X
, max

1ďmď3
sup
nPZ4

˚

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X

ff

,

and we want to show that this quantity is bounded by Z1. From the definition of Zfinite
1 and Ztail

1 ,
and the splitting

sup
nPZ4

˚

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X
“ max

˜

max
nP rSsolpÑq

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X
, sup
nR rSsolpÑq

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X

¸

,

we see that we only have to prove that

sup
nR rSsolpÑq

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X
ď

´

Ztail
1

¯pmq
, @ 1 ď m ď 3. (3.5)

In order to do so, it is helpful to first have a look at the structure of C.
By definition of pA, we have that Π:CΠ: “ 0, and that the remaining coefficients are given

by DΨpω̄q, since the linear part of DFpW̄ q is also present in pA, that is: if k R E: or n R E: then

C
pl,mq
k,n “ pDΨpω̄qq

pl,mq
k,n ,

with Ψ as defined in (2.11). Using the block-notation introduced in Section 2.2, we write

C “

¨

˚

˚

˚

˚

˚

˝

0 CpK,1q CpK,2q CpK,3q

Cp1,Kq Cp1,1q Cp1,2q Cp1,3q

Cp2,Kq Cp2,1q Cp2,2q Cp2,3q

Cp3,Kq Cp3,1q Cp3,2q Cp3,3q

˛

‹

‹

‹

‹

‹

‚

,

with, for all 1 ď l,m ď 3,

Cpm,Kqn “

#

0 n R Ssol or n P Ssol X E:,
in4ω̄

pmq
n n P SsolzE:,

and

CpK,mqn “

$

&

%

0 n R Ssol or n P Ssol X E:,
in4

´

ω̂
pmq
n

¯˚

n P SsolzE:.

Furthermore, using that for all k P Z4
˚

pDΨpω̄qωqk “ i
´”´

Mω̄ ‹ D̃
¯

ω
ı

k
´

”´

ω ‹ D̃
¯

Mω̄
ı

k
(3.6)

`

”´

Mω ‹ D̃
¯

ω̄
ı

k
´

”´

ω̄ ‹ D̃
¯

Mω
ı

k

¯

,

we obtain

C
pl,mq
k,n “

$

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

%

0, k, n P E:,

iδl,m

3
ÿ

p“1

kppMω̄q
ppq
k´n ´ i

´

DmpMω̄qplq
¯

k´n

` i
3
ÿ

p“1

M pp,mq
n

´

Dpω̄
plq
¯

k´n
´ i

3
ÿ

p“1

npM
pl,mq
n ω̄

ppq
k´n, k R E: or n R E:,

(3.7)
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where M
pl,mq
n is the coefficient on row l and column m in the matrix Mn, see (2.6). Each of the

four terms in C
pl,mq
k,n comes from one of the four terms in DΨpω̄qω, and it should be noted that

we used Lemma 2.2 on the first of those four terms to obtain this expression (see Remark 3.11
below).

From the expression of C we see that
›

›ACp.,Kq
›

›

X and max1ďmď3

`

Zfinite
1

˘pmq
can indeed be

evaluated with a computer, since we only consider a finite number of columns, each having only

a finite number of non-zero components. In particular, for any n P rSsolpÑq the coefficient C
pl,mq
k,n

vanishes for k outside EpÑq ` 2Ssol.
We now focus on proving (3.5). First, we recall that ω̄k´n “ 0 if k ´ n R Ssol. By definition

of rSsolpÑq this means that for any 1 ď l,m ď 3

C
pl,mq
k,n “ 0 and CpK,mqn “ 0 for all n R rSsolpÑq and all k P E:. (3.8)

In particular, provided E: Ă EpÑq, see Remark 3.9, for all 1 ď m ď 3 and n R rSsolpÑq the

non-zero coefficients of the column C
p.,mq
.,n only get hit by the tail part of A. Therefore, we

obtain for all 1 ď l,m ď 3 and n R rSsolpÑq

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X
“

1

η|n|1

3
ÿ

l“1

›

›

›
Apl,lqCpl,mq.,n

›

›

›

`1η

ď
1

η|n|1

3
ÿ

l“1

ÿ

kRE:
|λk|

ˇ

ˇ

ˇ
C
pl,mq
k,n

ˇ

ˇ

ˇ
η|k|1 (3.9)

ď

3
ÿ

l“1

»

–δl,m
ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

kp

η|n|1
pMω̄q

ppq
k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1

`
ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

1

η|n|1

´

DmpMω̄qplq
¯

k´n

ˇ

ˇ

ˇ

ˇ

η|k|1

`
ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

M
pp,mq
n

η|n|1

´

Dpω̄
plq
¯

k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1

`
ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

npM
pl,mq
n

η|n|1
ω̄
ppq
k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1

fi

fl .

We are going to bound the supremum over n R rSsolpÑq of each of the four terms in the sum
over l separately. For the first term, using Lemma 3.3 we estimate

sup
nR rSsolpÑq

ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

kp

η|n|1
pMω̄q

ppq
k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1 (3.10)

ď sup
nR rSsolpÑq

3
ÿ

p“1

ÿ

kPSsol

|λk`n||kp ` np||Mω̄|
ppq
k η|k|1

ď sup
nR rSsolpÑq

ÿ

kPSsol

˜

3
ÿ

p“1

|λk`n||kp ` np|

¸

max
pPt1,2,3u

|Mω̄|
ppq
k η|k|1

ď

˜

sup
kREpÑq

|λk| p|k1| ` |k2| ` |k3|q

¸

›

›

›

›

max
pPt1,2,3u

pMω̄qppq
›

›

›

›

`1η

ď

?
3

a

νÑ

›

›

›

›

max
pPt1,2,3u

pMω̄qppq
›

›

›

›

`1η

. (3.11)
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Notice that, if we have an (essentially) 2D solution (see Section 1), then one component of Mω̄
is zero, which allows us to use the second estimate of Lemma 3.3, to get

sup
nR rSsolpÑq

ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

kp

η|n|1
pMω̄q

ppq
k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1 ď

?
2

a

νÑ

›

›

›

›

max
pPt1,2,3u

pMω̄qppq
›

›

›

›

`1η

,

For the second term, using Lemma 3.1 instead of Lemma 3.3, we get

sup
nR rSsolpÑq

ÿ

kRE:
|λk|

1

η|n|1

ˇ

ˇ

ˇ
DmpMω̄qplq

ˇ

ˇ

ˇ

k´n
η|k|1 ď sup

nR rSsolpÑq

ÿ

kPSsol

|λk`n|
ˇ

ˇ

ˇ
DmpMω̄qplq

ˇ

ˇ

ˇ

k
η|k|1

ď

˜

sup
kREpÑq

|λk|

¸

›

›

›
DmpMω̄qplq

›

›

›

`1η

ď
1

Ñ

›

›

›
DmpMω̄qplq

›

›

›

`1η
.

For the third term, again using Lemma 3.1, as well as the fact that M
pp,mq
n “ 0 if p “ m and

|M
pp,mq
n | ď 1 if p ‰ m, we infer that

sup
nR rSsolpÑq

ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

M
pp,mq
n

η|n|1

´

Dpω̄
plq
¯

k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1 ď
1

Ñ

ÿ

1ďpď3
p‰m

›

›

›
Dpω̄

plq
›

›

›

`1η
.

Finally, to bound the fourth term, we observe that

ˇ

ˇ

ˇ
npM

pl,mq
n

ˇ

ˇ

ˇ
ď χtl,mu,p

def
“

$

’

&

’

%

0 if l “ m,
1
2 if l ‰ m and p P tl,mu,

1 if l ‰ m and p R tl,mu.

Hence

sup
nR rSsolpÑq

ÿ

kRE:
|λk|

ˇ

ˇ

ˇ

ˇ

ˇ

3
ÿ

p“1

npM
pl,mq
n

η|n|1
ω̄
ppq
k´n

ˇ

ˇ

ˇ

ˇ

ˇ

η|k|1 ď
1

Ñ

3
ÿ

p“1

χtl,mu,p

›

›

›
ω̄ppq

›

›

›

`1η
.

Putting everything together, we get that

sup
nR rSsolpÑq

1

η|n|1

›

›

›
ACp.,mq.,n

›

›

›

X
“ sup

nR rSsolpÑq

3
ÿ

l“1

1

η|n|1

›

›

›
ACpl,mq.,n

›

›

›

`1η

ď

?
3

a

νÑ

›

›

›

›

max
1ďpď3

pMω̄qppq
›

›

›

›

`1η

`
1

Ñ

3
ÿ

p“1

ˆ

1`
1

2
p1´ δp,mq

˙

›

›

›
ω̄ppq

›

›

›

`1η

`
1

Ñ

˜

3
ÿ

l“1

˜

›

›

›
DmpMω̄qplq

›

›

›

`1η
`

3
ÿ

p“1

p1´ δp,mq
›

›

›
Dpω̄

plq
›

›

›

`1η

¸¸

,

(3.12)

where
?

3 can be replaced by
?

2 for a 2D solution, and (3.5) is proven, which concludes the
proof of Proposition 3.10.

Remark 3.11. To obtain the Z1 bound, we have had to estimate }AC}BpX ,X q. Since C is
unbounded as an operator from X to itself, we have to carefully handle the unbounded terms
appearing in C, or equivalently in the derivative DΨpω̄q. Indeed, the unboundedness of C is
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compensated by the decaying tail of A. Looking at (3.6), we see that the derivatives in the
second and the fourth term are not bothersome, as they are “balanced” by M (which, very
roughly speaking, acts as an antiderivative). The derivative in the third term of (3.6) is also not
an issue, since it applies to ω̄ which has only a finite number of non zero coefficients (hence its
derivative still belongs to X and its norm can be computed explicitly). However, something extra
has to be done to control the derivative appearing in the first term of (3.6). Using Lemma 2.2
on this specific term allows us to factor out the derivative from the convolution product, and
this derivative is then canceled by the tail part of A, which also acts like a kind of antiderivative

(see (3.10) for the actual estimate). This explains why we write
ř3
p“1 kppMω̄q

ppq
k´n rather than

the equivalent (in view of Mω̄ being divergence free)
ř3
p“1 nppMω̄q

ppq
k´n in the first term of (3.7).

3.5 Z2 bound for A
`

DFpW q ´DFpW̄ q
˘

In this section, we present the last missing estimate for Theorem 2.15, namely a computable
bound for

›

›A
`

DFpW q ´DFpW̄ q
˘
›

›

BpX ,X q in term of
›

›W ´ W̄
›

›

X .

Proposition 3.12. Assume that A is defined as in Section 2.3. Then (2.20) is satisfied with

Z2
def
“ p4`

?
2qNA,

where

NA def
“ max

„

max
1ďmď3

max
nPE:

|n|8

η|n|1

›

›

›
Ap.,mq.,n

›

›

›

X
,max

ˆ

1

Ω̄
,

1
?
νN :

˙

.

Proof. Let W 1,W 2 P X and consider

z “
`

DFpW̄ `W 1q ´DFpW̄ q
˘

W 2 “ D2FpW̄ qpW 1,W 2q.

Proving the proposition amounts to showing that

}Az}X ď Z2

›

›W 1
›

›

X
›

›W 2
›

›

X , @ W 1,W 2 P X .

By bi-linearity of D2FpW̄ q, it is enough to assume that }W 1}X , }W
2}X ď 1, and show that

}Az}X ď Z2. We start by taking a closer look at z, which can be expanded as

˜

0

i
“

Ω2D4ω
1 ` Ω1D4ω

2 `

´

Mω2 ‹ D̃
¯

ω1 `
´

Mω1 ‹ D̃
¯

ω2 ´
´

ω2 ‹ D̃
¯

Mω1 ´
´

ω1 ‹ D̃
¯

Mω2
‰

¸

,

where

D4ω “

¨

˝

D4ω
p1q

D4ω
p2q

D4ω
p3q

˛

‚.

Since the first component of z vanishes, we have

}Az}X ď }A}BpX 0
´1,´1,X q

}z}X´1,´1
, (3.13)

where X 0
´1,´1 is the subspace of X´1,´1 defined as t0uˆ p`1η,´1,´1pCqq3 (that is, the first column

Ap¨,Kq of A does not play any role, since we multiply A with a vector whose first component
vanishes).

We now proceed to estimate both terms in the right-hand side of (3.13). For the first one,
we infer from Lemma 3.4 that

}A}BpX 0
´1,´1,X q

ď max

„

max
1ďmď3

max
nPE:

|n|8

η|n|1

›

›

›
Ap.,mq.,n

›

›

›

X
,max

ˆ

1

Ω̄
,

1
?
νN :

˙

. (3.14)
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To bound the second term, we now use the splitting of z introduced earlier and estimate
each term separately. We start by

›

›

›

›

ˆ

0
Ω2D4ω

1 ` Ω1D4ω
2

˙›

›

›

›

X´1,´1

ď |Ω2|
3
ÿ

l“1

›

›

›
ω1plq

›

›

›

`1η
` |Ω1|

3
ÿ

l“1

›

›

›
ω2plq

›

›

›

`1η

ď
›

›W 1
›

›

X
›

›W 2
›

›

X
ď 1.

Next, we want to estimate

›

›

›

›

›

˜

0
´

Mω2 ‹ D̃
¯

ω1

¸›

›

›

›

›

X´1,´1

.

Thanks to Lemma 2.2, we can rewrite

´

Mω2 ‹ D̃
¯

ω1 “
3
ÿ

p“1

Dp

”

pMω2qppq ˚ ω1
ı

,

where pMω2qppq ˚ ω1 must be understood as

¨

˝

pMω2qppq ˚ ω1p1q

pMω2qppq ˚ ω1p2q

pMω2qppq ˚ ω1p3q

˛

‚.

For each p P t1, 2, 3u, we estimate

›

›

›

›

ˆ

0

Dp

“

pMω2qppq ˚ ω1
‰

˙›

›

›

›

X´1,´1

ď

›

›

›

›

ˆ

0

pMω2qppq ˚ ω1

˙›

›

›

›

X

ď

›

›

›
pMω2qppq

›

›

›

`1η

›

›W 1
›

›

X

ď

›

›

›
pMω2qppq

›

›

›

`1η
,

and using that
3
ÿ

p“1

›

›

›
pMω2qppq

›

›

›

`1η
ď

3
ÿ

p“1

›

›

›
ω2ppq

›

›

›

`1η
ď 1,

we get
›

›

›

›

›

˜

0
´

Mω2 ‹ D̃
¯

ω1

¸›

›

›

›

›

X´1,´1

ď 1.

Similarly, we get that
›

›

›

›

›

˜

0
´

Mω1 ‹ D̃
¯

ω2

¸›

›

›

›

›

X´1,´1

ď 1.

Finally, we have to estimate

›

›

›

›

›

˜

0
´

ω2 ‹ D̃
¯

Mω1

¸
›

›

›

›

›

X´1,´1

ď

›

›

›

›

›

˜

0
´

ω2 ‹ D̃
¯

Mω1

¸
›

›

›

›

›

X

.
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Starting from

›

›

›

›

›

˜

0
´

ω2 ‹ D̃
¯

Mω1

¸›

›

›

›

›

X

ď

3
ÿ

p“1

3
ÿ

l“1

›

›

›
ω2ppq

›

›

›

`1η

›

›

›
DppMω1qplq

›

›

›

`1η

we estimate

3
ÿ

l“1

›

›

›
DppMω1qplq

›

›

›

`1η
ď

3
ÿ

l“1

ÿ

nPZ4
˚

|np|
3
ÿ

m“1

ˇ

ˇ

ˇ
M pl,mq
n ω1pmqn

ˇ

ˇ

ˇ
η|n|1

ď
ÿ

nPZ4
˚

3
ÿ

m“1

˜

3
ÿ

l“1

|np|
ˇ

ˇ

ˇ
M pl,mq
n

ˇ

ˇ

ˇ

¸

ˇ

ˇ

ˇ
ω1pmqn

ˇ

ˇ

ˇ
η|n|1 .

Up to a permutation of the indices 1, 2 and 3, we have for any l,m, p P t1, 2, 3u that either

3
ÿ

l“1

|np|
ˇ

ˇ

ˇ
M pl,mq
n

ˇ

ˇ

ˇ
ď
|n1|p|n2| ` |n3|q

ñ2
ď 1,

or
3
ÿ

l“1

|np|
ˇ

ˇ

ˇ
M pl,mq
n

ˇ

ˇ

ˇ
ď
|n1|p|n1| ` |n2|q

ñ2
ď

1`
?

2

2
,

for all ñ P Z3zt0u. Therefore

3
ÿ

l“1

›

›

›
DppMω1qplq

›

›

›

`1η
ď

1`
?

2

2

›

›W 1
›

›

X ,

and we end up with

›

›

›

›

›

˜

0
´

ω2 ‹ D̃
¯

Mω1

¸›

›

›

›

›

X

ď
1`

?
2

2
.

Similarly, we have

›

›

›

›

›

˜

0
´

ω1 ‹ D̃
¯

Mω2

¸›

›

›

›

›

X

ď
1`

?
2

2
.

Adding everything up, we end up with

}z}X´1,´1
ď 4`

?
2,

which concludes the proof of Proposition 3.12

Remark 3.13. It should be noted that the slightly unusual step (3.13) is crucial for what is to
come in Section 4.6.4. Usually, one would try to postpone this step to directly “cancel” some
of the unbounded derivative operators in z with A, by first splitting z into several terms and
estimating then like

›

›

›

›

A

ˆ

0
Ω2D4ω

1 ` Ω1D4ω
2

˙
›

›

›

›

X
ď }AD4}BpX ,X q

›

›

›

›

ˆ

0
Ω2ω1 ` Ω1ω2

˙
›

›

›

›

X
.

However, this splitting may not conserve some of the symmetries that z has as a whole, and
therefore would not be compatible with the symmetry reduced variables used later on.
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4 The symmetries

In this section, we introduce the formalism that allows us to take advantage of the symmetries
through the a posteriori validation procedure. In Section 4.1, we introduce some group actions
that we use to explicitly describe the symmetries that we are considering, in the physical space
(that is symmetries acting on the velocity u or the vorticity ω, seen as functions). In Section 4.2,
we proceed to explain why the Navier-Stokes equations are equivariant under these group actions.
Equivalent group actions in Fourier space are then defined in Section 4.3, and the equivariance
of F is shown. In Section 4.4, we introduce the subspace X sym of X containing the symmetric
solutions, as well as a minimal (in term of number of Fourier mode used) subspace X red of X
that can be used to describe these solutions. A reduced version F red of F is then defined
on this subspace, and sufficient conditions for the existence of zeros of F red are then given in
Theorem 4.23, which mimics Theorem 2.15. Finally, in Section 4.6, we show that the bounds
obtained in Section 3 are compatible with the symmetries, and readily give us the estimates
needed to apply Theorem 4.23, which is then done in Section 5.

4.1 Symmetries in physical space

We will restrict our attention to solutions pu, pq, u : R3ˆRÑ R3 and p : R3ˆRÑ R which are
2π-periodic in space and 2π{Ω-periodic in time. We may thus interpret u and p as a function
on T3 ˆ S1, where T3 is a 3-dimensional torus and S1 “ R{p2π{Ωq is a circle.

We look for solutions with additional symmetries. In particular, we will consider periodic
solutions which are invariant under a symmetry group G, which acts on pu, pq through a right
action ag, g P G, of the form

raguspx, tq “ bgupcgx, dgtq, ragpspx, tq “ ppcgx, dgtq,

where bg is a right action on R3, while cg is a left action on T3 and dg is a left action on S1. We
abuse the notation slightly by using ag to denote both the action on the pair pu, pq and on each
of its components, but it should be clear from context which one is considered.

The symmetries under consideration in this work lead to actions of the form

raguspx, tq “ CTg upCgx`2πC̃g, t`2πDg{Ωq, ragpspx, tq “ ppCgx`2πC̃g, t`2πDg{Ωq, (4.1)

where Cg is a 3 ˆ 3 signed permutation matrix (it represents an element of Oh, the symmetry
group of the cube): there is a permutation τg of t1, 2, 3u and a map ρg : t1, 2, 3u Ñ t´1, 1u
such that pCgqmm1 “ ρgpm

1qδmτgpm1q, C̃g is a vector in R3 and Dg a real number. An explicit
description of the symmetries satisfied by the solutions considered in this work, together with
the associated Cg, C̃g and Dg is given in Section 5.2.

We now describe how these actions behave with respect to differential operators.

Lemma 4.1. Let u : R4 Ñ R3 and p : R4 Ñ R be smooth functions, and assume ag is defined
as in (4.1), with Cg an orthogonal matrix. Then

(a) ∇agp “ ag∇p,

(b) ∇ ¨ agu “ ag∇ ¨ u,

(c) ∆agu “ ag∆u,

(d) pagu ¨∇qagu “ agpu ¨∇qu,

(e) ∇ˆ agu “ detpCgqag∇ˆ u.

Proof. The first four identities follow directly from the chain rule, using that the change of
variable x ÞÑ Cgx` 2πC̃g transforms ∇ into CTg ∇. The last one is slightly less straightforward.
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Writing y “ Cgx` 2πC̃g, we have

r∇ˆ aguspx, tq “ rCTg ∇ˆ CTg uspy, t` 2πDg{Ωq.

For any v P R3 we then compute

CTg v ¨
`

CTg ∇ˆ CTg u
˘

“ detpCTg v, C
T
g ∇, CTg uq

“ detpCTg qdetpv,∇, uq
“ detpCgqv ¨ p∇ˆ uq.

Since this holds for all v P R3, we infer

CTg ∇ˆ CTg u “ detpCgqC
T
g ∇ˆ u,

which yields identity (e).

From the action ag on u, we can define a corresponding action ãg on ω “ ∇ˆ u, given by

ãgp∇ˆ uq “ ∇ˆ agu. (4.2)

From (4.1) and Lemma 4.1 we infer

rãgωspx, tq “ detpCgqC
T
g ωpCgx` 2πC̃g, t` 2πDg{Ωq. (4.3)

We note that detpCgq “ ˘1, since Cg is orthonormal, hence the only difference between the
action of ag and ãg is multiplication by a factor ˘1 (depending on g).

4.2 Invariance and equivariance

We say that u is G-invariant under the action ag if

agu “ u for all g P G.

Similarly, we say that ω is G-invariant under the action ãg if

ãgω “ ω for all g P G.

If it is clear which action is meant between ãg and ag, we only speak about G-invariance without
mentioning the action. Notice that, by Lemma 4.1(b), the collection of divergence free vector
fields is invariant under G. Analogously, having zero spatial average, denoted by

ş

T3 u “ 0, is
also a G-invariant property. Since the Laplacian is invertible on the set of vector fields with
zero spatial average, and it commutes with the group action (Lemma 4.1(c)), it follows from
Lemma 4.1(e) that

agMω “Mãgω for all g P G. (4.4)

Next, we mention the equivariance properties of the Navier-Stokes equations that provide
intuition for the sequel. To formalize the discussion, we define the pair P “ pP1,P2q of maps

P1pu, pq
def
“ Btu` pu ¨∇qu´ ν∆u`∇p´ f,

P2pu, pq
def
“ ∇ ¨ u,

on some set X of smooth vector fields u and scalar functions p. Assuming that f is G-invariant
under the action ag, it follows from Lemma 4.1 that P is G-equivariant:

Ppagu, agpq “ pagP1pu, pq, agP2pu, pqq for all g P G and pu, pq P X.
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We note that Φ “ Φpuq defined in (2.12) is given by P1pu, 0q, hence Φ is also G-equivariant:
Φpaguq “ agΦpuq.

Next, we consider the vorticity formulation and set

Qpωq def
“ ∇ˆ P1pMω, 0q “ ∇ˆ ΦpMωq.

It then follows from (4.2), (4.4) and the equivariance of Φ that Q is G-equivariant under the
action ãg. As before, we simply refer to G-equivariance without mentioning the action, if the
latter is clear from the context. The explicit expression of Q is given by

Qpωq “ Btω ` pMω ¨∇qω ´ pw ¨∇qMω ´Mωp∇ ¨ ωq ´ ν∆ω ´ fω.

Notice that this expression is only equal to F pW q when ω is divergence free, hence a supplemental
argument is required to show that F is G-equivariant, which we provide next.

Lemma 4.2. F defined is (2.10) is G-equivariant, i.e.

F pãgW q “ ãgF pW q,

where ãgW “ ãgpΩ, ωq is defined as pΩ, ãgωq.

Proof. Looking at (2.7), the statement follows from (4.4) and Lemma 4.1.

Finally, obviously P1pu, pq is G-invariant if both u and p are G-invariant, and similarly for
Qpωq and F pW q.

Remark 4.3. Concerning the pressure term in the Navier-Stokes equation, in the appendix we
describe explicitly a well-defined map Γ (see Lemma 6.1) such that

$

&

%

∇ˆ Φ “ 0
ş

T3 Φ “ 0
p “ ΓΦ

ðñ

"

Φ “ ´∇p
ş

T3 p “ 0.

From this it follows that rΓagΦspx, tq “ rΓΦspcgx, dgtq. Hence, when recovering the pressure
from the vorticity, see the proof of Lemma 2.5, we can infer that G-invariance of ω implies
G-invariance of ΦpMωq, from which in turn G-invariance of p “ ΓΦpMωq follows.

4.3 Representation of the symmetry group in Fourier space

We recall (2.9) that we write the Fourier transform on the m-th component of the vorticity as

ωpmqpx, tq “
ÿ

nPZ4
˚

ωpmqn eipñ¨x`n4Ωtq, (4.5)

where ω0 is assumed to be zero. We note that, as in Section 2, it should be clear from the
context whether ω is to be interpreted in physical or Fourier space. From now on we will denote
j “ pn,mq P Z4

˚ ˆ t1, 2, 3u and write
ωj “ ωpmqn .

We define the index set
J

def
“ Z4

˚ ˆ t1, 2, 3u,

and the set of Fourier coefficients by

X
def
“

 

ω “ pωjqjPJ : ωj P C , }ω}X ă 8
(

, with }ω}X
def
“

ÿ

jPJ

ξj |ωj |,

where, for convenience, we introduce the weights

ξj
def
“ η|n|1 for j “ pn,mq P J. (4.6)
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Remark 4.4. Notice that the space X defined is Section 2.2 is nothing but CˆX. When looking
at the action ãg in Fourier space, it is enough to consider X because the action does neither
act on Ω nor depend on it (see Remark 4.6). The reason for grouping n and m as a duo in
j “ pn,mq is that the group action on the Fourier coefficients (made explicit below) permutes
the index duos j P J rather than n P Z4

˚ and m P t1, 2, 3u individually, see (4.11).

We define the basis vectors ej P X by

pejqj1 “ δnn1δmm1 , for j “ pn,mq, j1 “ pn1,m1q P J.

For g P G, the group actions ag and ãg described in Sections 4.1 and 4.2 correspond to a
right group action γg on the Fourier coefficients satisfying

rãgωs
pmqpx, tq “

ÿ

nPZ4
˚

rγgωs
pmq
n eipñ¨x`n4Ωtq. (4.7)

This action is represented component-wise by

pγgωqj “ αgpjqωβgpjq. (4.8)

Here βg is itself a left group action on J , i.e.,

βg1g2pjq “ βg1pβg2pjqq, (4.9)

whereas αgpjq P tz P C : |z| “ 1u for all j P J . The product structure on α is given by

αg1g2pjq “ αg1pβg2pjqqαg2pjq, (4.10)

which follows directly from γg1g2 “ γg2γg1 . Note that αg is not a group action.
Obviously, by (4.7) the G-equivariance of F in terms of the physical symmetries ãg induces

a G-equivariance in Fourier space, in term of the action γg.

Lemma 4.5. Let g P G. Then F pγgW q “ γgF pW q for all W “ pΩ, ωq P X , where again we
extend the action notation: γgpΩ, ωq “ pΩ, γgωq.

Remark 4.6. In terms of the notation introduced in (4.1), the expressions for βg and αg are,
with j “ pn,mq “ ppñ, n4q,mq,

βgppñ, n4q,mq “ pCgñ, n4, τgpmqq (4.11)

and
αgppñ, n4q,mq “ detpCgqρgpmqe

2iπpñ¨CTg C̃g`n4Dgq.

Explicit formulas for the symmetries under consideration in this work are given in Section 5.2.
Two straightforward properties that will be useful later are

if pn1,m1q “ βgpn,mq then βp´n,mq “ p´n1,mq, (4.12a)

and
αgp´n,mq “ pαgpn,mqq

˚. (4.12b)

Remark 4.7. The real-valuedness of u provides another symmetry, which in Fourier space cor-
responds to invariance under the transformation γ˚ introduced in Definition 2.10. One way to
deal with this symmetry is to consider the extended symmetry group pG generated by G and γ˚.
However, one would have to interpret α˚pjq as the complex conjugation operator on S1 Ă C,
which is not a multiplication operator, and it is also not differentiable, which would cause prob-
lems later on. One solution is to split ω into real and imaginary parts, but that is not the way
we proceed here. Instead, we stick with the symmetry group G and consider the action of γ˚
separately. We note that γ˚ commutes with γg:

γ˚γg “ γgγ˚ for all g P G, (4.13)

which follows either from straightforward symmetry consideration in physical space, or directly
in term of αg and βg from (4.12).
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4.4 Reduction to symmetry variables

The set of Fourier coefficients that are G-invariant is given by

Xsym def
“ tω P X : γgω “ ω for all g P Gu.

Again we have a correspondence with the physical space, by (4.7) elements of Xsym correspond
to functions that are G-invariant via the action ãg.

Lemma 4.8. Let W “ pΩ, ωq P C ˆ Xsym. Then ωpx, tq given by (4.5) satisfies rãgωspx, tq “
ωpx, tq for all g P G.

In this section we study the properties of Xsym. Some of the arguments in this section are
essentially the same as the ones in [43, Section 3.2]. Nevertheless we repeat the main arguments
and definitions here, since the setting and notation are slightly different. The short proofs of
some of the lemmas are also transcribed here to keep the current paper self-contained.

We first list some properties of α that will be useful in what follows.

Lemma 4.9. [43, Lemma 3.5] Let j P J and g, rg P G.

(a) αgpjqαg´1pβgpjqq “ 1.

(b) If βgpjq “ β
rgpjq and α

rg´1gpjq “ 1, then αgpjq “ α
rgpjq.

(c) If βgpjq “ j, then α
rggrg´1pβ

rgpjqq “ αgpjq.

Proof. For part (a) we use (4.10) to infer that

1 “ αepjq “ αg´1gpjq “ αg´1pβgpjqqαgpjq.

For part (b) we write g “ rgrg´1g. From the first assumption and (4.9) if follows that β
rg´1gpjq “ j.

By applying (4.10) to g1 “ rg and g2 “ rg´1g, we see that the second assumption implies that

αgpjq “ α
rgrg´1gpjq “ α

rgpβ
rg´1gpjqqαrg´1gpjq “ α

rgpjq.

For part (c) we write j1 “ β
rgpjq and apply (4.10) twice to obtain

α
rggrg´1pj1q “ α

rgpβgpβ
rg´1pj1qqqαgpβ

rg´1pj1qqα
rg´1pj1q “ α

rgpjqαgpjqα
rg´1pj1q “ αgpjq,

where the final equality follows from part (a).

The symmetry group G may be exploited to reduce the number of independent variables of
elements in Xsym. From now on we use the notation

g.j
def
“ βgpjq for g P G.

For any j P J we define the stabilizer

Gj
def
“ tg P G : g.j “ ju,

and the orbit
G.j

def
“ tg.j : g P Gu.

Remark 4.10 (Orbit-stabilizer). The orbit-stabilizer theorem implies that |Gj1 | “ |Gj | for all
j1 P G.j, where | ¨ | denotes the cardinality. Indeed, stabilizers of different elements in an orbit
are related by conjugacy, and |G| “ |Gj | ¨ |G.j|. More generally, when q is a function from J , or
from subset thereof that is G-invariant under the action βg, to some linear space, then we have

ÿ

gPG

qpg.jq “ |Gj |
ÿ

j1PG.j

qpj1q for any j P J. (4.14)
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Lemma 4.11. [43, Lemma 3.8] Let j P J be arbitrary. We have the following dichotomy:
(a) either αgpjq “ 1 for all g P Gj;
(b) or

ř

gPGj
αgpjq “ 0.

Proof. Fix j P J . We see from (4.10) that αg1g2pjq “ αg1pjqαg2pjq for all g1, g2 P Gj . Hence we
can interpret αgpjq as a group action of the stabilizer subgroup Gj , acting by multiplication on
the unit circle S1 “ tz P C : |z| “ 1u. We consider the stabilizer of 1 P S1:

H1
def
“ tg P Gj : αgpjq “ 1u,

and its orbit
O1

def
“ tαgpjq : g P Gju.

By the orbit-stabilizer theorem (we use Remark 4.10, but now for the Gj-action αgpjq)

ÿ

gPGj

αgpjq “ |H1|
ÿ

zPO1

z. (4.15)

The set O1 Ă S1 is invariant under multiplication and division. In particular, if |O1| “ N P N,
then O1 “ te

2πin{N : n “ 0, 1, . . . , N´1u. If N “ 1 we have H1 “ Gj and alternative (a) follows,

whereas if N ą 1 then we see that
ř

zPO1
z “

řN´1
n“0 e

2πin{N “ 0, hence we conclude from (4.15)
that alternative (b) holds.

The indices for which alternative (b) in Lemma 4.11 applies are denoted by

J triv def
“

!

j P J :
ÿ

gPGj

αgpjq “ 0
)

.

It follows from the next lemma, which is a slight generalization of Lemma 4.11, that the set J triv

is invariant under G.

Lemma 4.12. [43, Lemma 3.10] Let j P J be arbitrary. We have the following dichotomy:
(a) either αgpj

1q “ 1 for all g P Gj1 and all j1 P G.j;
(b) or

ř

gPGj1
αgpj

1q “ 0 for all j1 P G.j.

Proof. Let j P J and j1 P G.j. Let rg P G be such that rg.j “ j1. Then a conjugacy between Gj
and Gj1 is given by g Ñ rggrg´1. It follows from Lemma 4.9(c) that

ÿ

gPGj1

αgpj
1q “

ÿ

gPGj

α
rggrg´1pj1q “

ÿ

gPGj

αgpjq.

The assertion now follows from Lemma 4.11.

When considering ω P Xsym, the indices j in J triv are the ones for which ωj necessarily
vanishes.

Lemma 4.13. [43, Lemma 3.11] Let ω P Xsym. Then ωj “ 0 for all j P J triv.

Proof. Fix j P J . For any ω P Xsym we have in particular rγgωsj “ ωj for all g P Gj . By
summing over g P Gj and using that g.j “ j for g P Gj , we obtain

|Gj |ωj “
ÿ

gPGj

ωj “
ÿ

gPGj

pγgωqj “
ÿ

gPGj

αgpjqωj “ ωj
ÿ

gPGj

αgpjq.

If j P J triv then the right hand side vanishes, hence ωj “ 0.
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Lemma 4.13 implies that

Xsym Ă tω P X : ωj “ 0 for all j P J trivu.

In other words, we may restrict attention to the Fourier coefficients corresponding to indices in
the complement

J sym def
“ JzJ triv.

Remark 4.14. On S1 we have z´1 “ z˚. In particular, Lemma 4.11 implies that

ÿ

gPGj

α´1
g pjq “

¨

˝

ÿ

gPGj

αgpjq

˛

‚

˚

“

#

0 for j P J triv,

|Gj | for j P J sym.
(4.16)

This identity is used, through Lemma 4.17, to extract both the set J triv and the values |Gj | for
j P J sym from what is computed in the code, see Remark 4.19.

For ω P Xsym the coefficients ωj with j P J sym are not all independent. To take advantage of
this, we choose a fundamental domain Jdom of G in J , i.e., Jdom contains precisely one element
of each group orbit. The arguments below are independent of which fundamental domain one
chooses. We now define the set of symmetry reduced indices as

J red def
“ Jdom X J sym,

and the space of symmetry reduced variables as

Xred def
“

 

φ “ pφjqjPJred : φj P C , }φ}Xred ă 8
(

, with }φ}Xred
def
“

ÿ

jPJred

|G.j| ξj |φj | .

In slight abuse of notation we will also interpret ej with j P J red as elements of Xred. We may
then interpret Xred as a subspace of X by writing φ “

ř

jPJred φjej for φ P Xred.
The action of γg on basis vectors is

pγgejqj1 “ αgpj
1qδjβgpj1q “ αgpj

1qδβg´1 pjqj1 “ αgpj
1qpeg´1.jqj1 ,

hence
γgej “ αgpg

´1.jqeg´1.j for all j P J. (4.17)

Before we specify the dependency of the coefficients tωjujPJsym on the symmetry reduced
variables tωjujPJred for ω P Xsym, we derive some additional properties of αgpjq for j P J sym.

Lemma 4.15. [43, Lemma 3.13] Let g1, g2 P G and j P J sym. If g1.j “ g2.j then αg1pjq “ αg2pjq.

Proof. Since g´1
2 g1.j “ j and j P J sym we have αg´1

2 g1
pjq “ 1 by Lemma 4.11(a). An application

of Lemma 4.9(b) concludes the proof.

Definition 4.16. Let j by any element of J sym and j1 any element in its orbit G.j. We can
choose an rg “ rgpj, j1q P G such that rg.j “ j1. For such j and j1 we define

rαpj, j1q
def
“ α´1

rgpj,j1qpjq for j P J sym and j1 P G.j. (4.18)

This is independent of the choice of rg by Lemma 4.15, and

α´1
g pjq “ rαpj, g.jq for all j P J sym and g P G. (4.19)

This rα will be used to define the natural map Σ from Xred to Xsym, defined below in (4.22).
It also appears in the description of the action of

ř

gPG γg on unit elements.

32



Lemma 4.17. We have

ÿ

gPG

γgej “

#

0 for j P J triv,

|Gj |
ř

j1PG.j rαpj, j
1q ej1 for j P J sym.

Proof. It follows from (4.17) and Lemma 4.9(a) that

ÿ

gPG

γgej “
ÿ

gPG

αgpg
´1.jq eg´1.j “

ÿ

gPG

αg´1pg.jq eg.j “
ÿ

gPG

α´1
g pjq eg.j . (4.20)

Based on the orbit-stabilizer theorem, we use the notation rgpj, j1q from Definition 4.16 to write
the right-hand side of (4.20) as

ÿ

gPG

α´1
g pjq eg.j “

ÿ

ĝPGj

ÿ

j1PG.j

α´1
rgpj,j1qĝpjq e

rgpj,j1qĝ.j

“
ÿ

ĝPGj

ÿ

j1PG.j

α´1
rgpj,j1qpjqα

´1
ĝ pjq e

rgpj,j1q.j

“
ÿ

ĝPGj

α´1
ĝ pjq

ÿ

j1PG.j

α´1
rgpj,j1qpjq ej1 , (4.21)

where we have used (4.10) in the second equality. By combining (4.20) and (4.21) with (4.16)
and (4.18) the assertion follows.

We define the projection Π : X Ñ Xred by

Πω “
ÿ

jPJred

ωjej .

Clearly Π2 “ Π. Next, the group average A : X Ñ Xsym is

Aω “ 1

|G|

ÿ

gPG

γgω.

We note that A2 “ A. To relate elements of Xred to elements of Xsym it turns out that it is
useful to introduce the rescaling R : X Ñ X

Rω “
ÿ

jPJ

|G.j|ωjej .

Finally, using rα introduced in Definition 4.16, we define the linear map Σ : Xred Ñ X by

Σφ
def
“

ÿ

jPJred

φj
ÿ

j1PG.j

rαpj, j1qej1 . (4.22)

Lemma 4.18.
(a) For φ P Xred we have Σφ “ ARφ, hence Σφ P Xsym.

(b) ΠΣ is the identity on Xred.

(c) ΣΠ is the identity on Xsym.

(d) Σ is bijective as a map from Xred to Xsym with inverse Π : Xsym Ñ Xred.

Proof. We start with part (a). Let φ P Xred. Then it follows from the definitions of A and R,
as well as Lemma 4.17 that

ARφ “
ÿ

jPJred

φj
1

|Gj |

ÿ

gPG

γgej “
ÿ

jPJred

φj
ÿ

j1PG.j

rαpj, j1q ej1 “ Σφ.
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Part (b) is an immediate consequence of (4.22) and rαpj, jq “ 1.
To prove part (c), let ω P Xsym be arbitrary and set rω “ ω ´ ΣΠω. Then from part (b) we

get
Πrω “ pIdXred ´ΠΣqΠω “ 0,

hence rωj “ 0 for all j P J red. Consider any fixed j1 P J sym, then there exists a j P J red X G.j1.
Let rg P G be such that rg.j “ j1. Since rω P Xsym we have

α
rgpjqrωj1 “ pγrgrωqj “ rωj “ 0.

Since α
rgpjq P S

1 this implies that rωj1 “ 0, and since j1 P J sym was arbitrary, we conclude that
rωj1 “ 0 for all j1 P J sym. It then follows from Lemma 4.13 that

rω “
ÿ

jPJ

rωjej “
ÿ

jPJsym

rωjej “ 0.

Hence, since ω P Xsym was arbitrary, ΣΠ is the identity on Xsym.
Part (d) follows immediately from (b) and (c).

We will need to determine rα, particularly for computing the derivative of F , see (4.40). The
next remark explains how this is accomplished in the code.

Remark 4.19. In the code we compute on a finite set of indices J: “ tj “ pn,mq : n P E:u. In
particular we determine

S “
ÿ

gPG

γg
ÿ

jPJdomXJ:

ej .

Since each orbit contains precisely one element of Jdom, it follows from Lemma 4.17 that

Sj1 “

#

0 for j1 P J:zJ sym

|Gj1 | rαpj, j
1q for j1 P J: X J sym, where j P J red XG.j1.

Since rαpj, j1q P S1 Ă C, it is straightforward to infer the index set J:XJ sym from S. Furthermore,
for j1 P J:XJ sym the value of Sj1 P C gives us direct access to both the order of the stabilizer |Gj1 |
and the value rαpj, j1q for the unique j P J red XG.j1.

We finish this subsection by extending the complex conjugate symmetry γ˚ to the reduced
space. We define a corresponding action rγ˚ on Xred by

rγ˚φ
def
“ Πγ˚Σφ for all φ P Xred.

Clearly γ˚ leaves Xsym invariant (see (4.13)). It then follows from Lemma 4.18(d) that

Σrγ˚ “ γ˚Σ. (4.23)

As one may expect, rγ˚ is an involution. In particular, this is useful in order to symmetrize φ by
1
2pφ` rγ˚φq, which is invariant under rγ˚.

Lemma 4.20. We have rγ2
˚ “ IdXred.

Proof. Let φ P Xred. Since γ˚ leaves Xsym invariant it follows that

rγ2
˚φ “ Πγ˚ΣΠγ˚Σφ “ Πγ2

˚Σφ “ ΠΣφ “ φ,

where in the third equality we have used 4.18(c), and in the final equality we have used 4.18(b).

34



4.5 Functional analytic setup in symmetry reduced variables

We now introduce the framework (with symmetry-reduced variables), where we define the fixed
point operator that is actually used in practice to validate the numerical solution.

First, we introduce the space
X red def

“ CˆXred.

Elements in X red are denoted by

ϕ “ pΩ, φq “
`

ϕK, pϕjqjPJred

˘

,

and the operators Π and Σ naturally extend to X and X red respectively via

ΠpΩ, ωq “ pΩ,Πωq and ΣpΩ, φq “ pΩ,Σφq.

Similarly, we extend the definition of rγ˚ to X red by

rγ˚pΩ, φq “ pΩ
˚, rγ˚φq.

For later use, we also define the space X sym def
“ CˆXsym.

Introducing the space X red
´2,´1, which is obtained from X´2,´1 the same way X red is obtained

from X , we define the map F red : X red Ñ X red
´2,´1 by

F red “

˜

F red
K

´

F red
j

¯

jPJred

¸

,

where
F redpΩ, φq

def
“ ΠF pΩ,Σφq, (4.24)

and the phase condition in the symmetrized setting is given by

F red
K pφq

def
“ i

ÿ

j

|G.j|n4φjpφ̂jq
˚, (4.25)

where j “ pñ, n4,mq, and φ̂ is some fixed element of Xred. Notice that, if we choose ω̂ “ Σφ̂
in (2.13), then F red

K pφq “ FKpΣφq and therefore

F redpϕq “ ΠFpΣϕq. (4.26)

Recalling (4.6), we also introduce the weights

ξs
j

def
“ ξj |G.j|. (4.27)

and (see Remark 2.7)
ξs

K “ 1,

together with the norm

}ϕ}X red
def
“ ξs

K|Ω| ` }φ}Xred “
ÿ

jPJ red

ξs
j |ϕj |,

with index set
J red def

“ KY J red.

We recall that |G.j| “ |G|{|Gj | by Remark 4.10. This observation is combined with Remark 4.14
to determine the weights ξs

j in the code. The next lemma shows that the norm } ¨ }X red is
compatible with the symmetrization, as well as complex conjugation.
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Lemma 4.21.
(a) For all ϕ P X red we have }ϕ}X red “ }Σϕ}X .

(b) For all ϕ P X red we have }rγ˚ϕ}X red “ }ϕ}X red.

Proof. We first observe that ξj is invariant underG. Namely, when we denote pn1,m1q “ g.pn,mq,
then it follows from (4.11) that |n1|1 “ |n|1 for any g P G, since Cg is a signed permutation matrix.

From the definition (4.22), we then obtain,

}Σϕ}X “ |Ω| `
ÿ

jPJred

ÿ

j1PG.j

ξj1 |φj rαpj, j
1q|

“ |Ω| `
ÿ

jPJred

|φj | ξj
ÿ

j1PG.j

|rαpj, j1q|

“ |Ω| `
ÿ

jPJred

|φj | ξj |G.j|

“ }ϕ}X red ,

since rα P S1. This proves part (a).
To prove part (b), we first note that, for all W P X , }γ˚W }X “ }W }X by Definition 2.10

and the observation ξj is invariant under γ˚, in the sense that |´n|1 “ |n|1. It then follows from
part (a) and (4.23) that

}rγ˚ϕ}X red “ }Σrγ˚ϕ}X “ }γ˚Σϕ}X “ }Σϕ}X “ }ϕ}X red .

To solve the zero finding problem F red “ 0 on X red, we analyse a fixed point operator as in
Section 2.4. The role of X is taken over by X red, and the norm } ¨ }X is replaced by the weighted
norm } ¨ }X red , which is symmetry compatible in the sense of Lemma 4.21.

Notice that F red inherits the equivariance property of F with respect to the complex conju-
gacy γ˚.

Lemma 4.22. Assume that ω̂ used in (2.13) is such that, ω̂ “ Σφ̂ for some φ̂ P Xred such that
rγ˚φ̂ “ φ̂. Then, for all ϕ P X red,

F redprγ˚ϕq “ rγ˚F redpϕq.

Proof. Using successively (4.26), (4.23) and Lemma 2.11, we obtain

F redprγ˚ϕq “ ΠFpΣrγ˚ϕq “ ΠFpγ˚Σϕq “ Πγ˚FpΣϕq “ rγ˚F redpϕq.

Having chosen N : and Ñ , we define the index sets

E:redpN
:q

def
“ tj “ pn,mq P J red : n P E:pN :qu,

rSsol
redpÑq

def
“ tj “ pn,mq P J red : n P rSsolpÑqu.

The size of the Galerkin projection is the number of elements in E:redpN
:q, which is substantially

smaller than the number of elements in E:pN :q, since we restrict to symmetry reduced variables.
Indeed, the number of independent variables is reduced by roughly a factor |G|.

The construction of linear operators Ared and pAred is completely analogous to Section 2.3.
To incorporate the incompressibility, we introduce

X red
div

def
“ Π

#

W P X sym :
3
ÿ

m“1

Dmω
pmq “ 0

+

.
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Theorem 4.23. Let η ą 1. Assume there exist non-negative constants Y red
0 , Zred

0 , Zred
1 and Zred

2

such that

}AredF redpϕ̄q}X red ď Y red
0 (4.28)

}I ´Ared
pAred}BpX red,X redq ď Zred

0 (4.29)

}Ared

´

DF redpϕ̄q ´ pAred

¯

}BpX red,X redq ď Zred
1 (4.30)

}AredpDF redpϕq ´DF redpϕ̄qq}BpX red,X redq ď Zred
2 }ϕ´ ϕ̄}X red , for all ϕ P X red. (4.31)

Assume also that

• the forcing term f is time independent, G-invariant, and has average zero,

• ϕ̄ “ pΩ̄, φ̄q is in P X red
div ,

• rγ˚ϕ̄ “ ϕ̄ and φ̂ (used to define the phase condition (4.25)) is such that rγ˚φ̂ “ φ̂.

If

Zred
0 ` Zred

1 ă 1 and 2Y red
0 Zred

2 ă

´

1´ pZred
0 ` Zred

1 q

¯2
, (4.32)

then, for all r P rrmin, rmaxq there exists a unique ϕ̃ “ pΩ̃, φ̃q P BX redpϕ̄, rq such that F redpϕ̃q “ 0,
where BX redpϕ̄, rq is the closed ball in X red, centered at ϕ̄ and of radius r, and

rmin
def
“

1´ pZred
0 ` Zred

1 q ´

b

`

1´ pZred
0 ` Zred

1 q
˘2
´ 2Y red

0 Zred
2

Zred
2

, (4.33)

rmax
def
“

1´ pZred
0 ` Zred

1 q

Zred
2

. (4.34)

Besides, this unique ϕ̃ also lies in P X red
div . Finally, defining u “ MΣφ̃, there exists a pressure

function p such that pu, pq is a 2π
Ω̃

-periodic, real valued, analytic and G-invariant solution of
Navier-Stokes equations (1.1).

Proof. The structure of the proof is the same as the one of Theorem 2.15. Therefore, we only
outline the main steps. First, we consider the operator

Tred
def
“ I ´DF redpϕ̄qF red,

and use (4.32) to infer that it is a contraction on BX redpϕ̄, rq for all r P rrmin, rmaxq, yielding
the existence of a unique zero ϕ̃ of F red in BX redpϕ̄, rq. Next, we use that ϕ̄ P X red

div and that
Tred

`

X red
div

˘

Ă X red
div , which follows from arguments entirely analogous to the ones in the proof of

Theorem 2.15, to infer that ϕ̃ also belongs to X red
div . Then, we use Lemmas 4.21 and 4.22, once

again as in the proof of Theorem 2.15, to conclude that rγ˚ϕ̃ “ ϕ̃.
Defining W̃ “ pΩ̃, ω̃q “ Σϕ̃, we then have FpW̃ q “ 0 (with ω̂ “ Σφ̂ in (2.13)), ω̃ P Xdiv

and γ˚W̃ “ W̃ . By Lemma 2.5, there exists p such that pu, pq is a 2π{Ω̃-periodic, real valued,
analytic solution of Navier-Stokes equations (1.1).

Finally, by construction ω̃ P Xsym, and by Lemma 4.8 ãgω̃ “ ω̃ for all g P G. From (4.4) we
infer that u “ Mω̃ satisfies agu “ u, and that p “ ΓΦpuq satisfies agp “ p (see Remark 4.3),
i.e., pu, pq is G-invariant.

Remark 4.24. To make sure that ϕ̄ P X red
div in practice we replace a candidate φ̄ by ΠAΠdivΣφ̄,

where Πdiv is a projection of X onto

Xdiv
def
“

#

ω P X :
3
ÿ

m“1

Dmω
pmq “ 0

+

,
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which is G-invariant and hence invariant under the averaging operator A.
Similarly, to make sure that rγ˚ϕ̄ “ ϕ̄ we make sure Ω̄ is real-valued and we replace a

candidate φ̄ by 1
2pφ̄`Πγ˚Σφ̄q, and analogously rγ˚φ̂ “ φ̂. Since X red

div is invariant under rγ˚, this
new pΩ̄, 1

2pφ̄`Πγ˚Σφ̄qq is still in X red
div if ϕ̄ is.

The resulting ϕ̄ and φ̂ may then be represented by intervals in the code, but that is no
impediment whatsoever.

In section 4.6 we explain how explicit expressions for the bounds Y red
0 , Zred

0 , Zred
1 and Zred

2

can be obtained from the bounds Y0, Z0, Z1 and Z2 of Section 3.

4.6 Bounds in the symmetric setting

As in Section 3, we assume throughout that the approximate solution ϕ̄ “ pΩ̄, φ̄q only has a
finite number of non-zero modes, i.e., φ̄n “ 0 for all n R Ssol for some finite set Ssol. Similarly,
φ̂n “ 0 for all n R Ssol.

4.6.1 bound Y red
0

There are essentially no changes compared to Section 3.2 in the computation of the bound on
the residue, except that we need to take into account the symmetry respecting norm:

Y red
0

def
“ ξs

K

ˇ

ˇrAredF redpϕ̄qsK
ˇ

ˇ`
ÿ

j“pn,mqPJred

nPSsol`Ssol

ξs
j

ˇ

ˇrAredF redpϕ̄qsj
ˇ

ˇ. (4.35)

4.6.2 bound Zred
0

The bound Zred
0 is completely analogous to the one in Section 3.3. We just need to use the

operator norm

Zred
0

def
“ }Bred}BpX red,X redq “ sup

jPJ red

1

ξs
j

}Bp.,jq}X red , (4.36)

applied to Bred “ I ´Ared
pAred, which again has finitely many nonzero components only.

4.6.3 bound Zred
1

We introduce
Cred def

“ DF redpϕ̄q ´ pAred.

The finite part of the Zred
1 estimate is analogous to section 3.4:

´

Zred
1

¯finite
“ max

jPKY rSsol
redpÑq

1

ξs
j

}AredC
red
¨,j }X red . (4.37)

For the tail part, we will take advantage of the estimates in section 3.4. We need to estimate

sup
jPJredzSsol

redpÑq

1

ξs
j

}AredC
red
¨,j }X red .

We introduce, cf. (4.24),
Ψredpφq

def
“ ΠΨpΣφq, (4.38)

where Ψ is defined in (2.11). Furthermore, we set λj
def
“ λn for j “ pn,mq, see (2.16). It follows

from the definition of F red and pAred that

Cred
j1,j “

#

0 for j, j1 P KY E:red,

pDΨredpφ̄qqj1,j for j P J redzE:red or j1 P J redzE:red.
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In particular, analogous to (3.8),

Cred
j1,j “ 0 for all j P J redz rSsol

redpÑq and j1 P KY E:red.

Therefore, the tail estimate reduces to

sup
jPJredzSsol

redpÑq

1

ξs
j

}AredC
red
¨,j }X red “ sup

jPJredz rSsol
redpÑq

1

ξs
j

ÿ

j1PJred

|λj1 ||C
red
j1,j |ξ

s
j1 . (4.39)

It follows from (4.38) and the formula (4.22) for the symmetrization Σ that

Cred
j1,j “ DΨj1pΣφ̄qΣej “

ÿ

j2PG.j

rαpj, j2qDΨj1pΣφ̄qej2 , for j, j1 P J red. (4.40)

For any j P J redz rSsol
redpÑq we then use the triangle inequality to estimate

1

ξs
j

ÿ

j1PJred

|λj1 ||C
red
j1,j |ξ

s
j1 ď

1

ξs
j

ÿ

j1PJred

|λj1 |ξ
s
j1

ÿ

j2PG.j

|DΨj1pΣφ̄qej2 |.

Writing Cj,j1 def
“ DΨjpΣφ̄qej1 for convenience, we use Remark 4.10, Equation (4.27) and Lemma 4.25

below to obtain

1

ξs
j

ÿ

j1PJred

|λj1 |ξ
s
j1

ÿ

j2PG.j

|Cj1,j2 | “
1

ξs
j

ÿ

j1PJred

|λj1 |ξ
s
j1

1

|Gj |

ÿ

gPG

|Cj1,g.j |

“
1

ξs
j |Gj |

ÿ

j1PJred

|λj1 |ξ
s
j1

ÿ

gPG

|Cg.j1,j |

“
1

ξj |G|

ÿ

j1PJred

|λj1 |ξ
s
j1 |Gj1 |

ÿ

j2PG.j1

|Cg.j1,j |

“
1

ξj

ÿ

j1PJ

|λj1 ||Cj1,j |ξj1 . (4.41)

The right-hand side of (4.41) is exactly the one estimated in Section 3.4 with ω̄ “ Σφ̄. Hence (4.39)
is bounded by

´

Zred
1

¯tail
def
“ max

m“1,2,3

´

Ztail
1

¯pmq

where the elements in the righthand side are given in (3.4) with ω̄ “ Σφ̄.

Lemma 4.25. Let ω P Xsym. Writing DΨpωq “
`

Cj1,j
˘

j1,jPJ
, we have

ˇ

ˇCj1,j
ˇ

ˇ “
ˇ

ˇCg´1.j1,g´1.j

ˇ

ˇ for all j1, j P J and g P G.

Proof. Analogous to Lemma 4.2, we observe that Ψ is a G-equivariant, which implies that
Ψpγgωq “ γgΨpωq for all ω P X and g P G. For ω P Xsym we then obtain

γg´1DΨpωqγg “ DΨpωq for all g P G.
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Using (4.17) twice, we get for all j1, j P J ,

Cj1,j “ pDΨpωqejqj1

“
`

γg´1DΨpωqγgej
˘

j1

“ αgpg
´1.jq

`

γg´1DΨpωqeg´1.j

˘

j1

“ αgpg
´1.jq

˜

γg´1

ÿ

iPJ

Ci,g´1.jei

¸

j1

“ αgpg
´1.jq

˜

ÿ

iPJ

Ci,g´1.jαg´1pg.iqeg.i

¸

j1

“ αgpg
´1.jqαg´1pj1qCg´1.j1,g´1.j ,

which yields the assertion, since |αgpj
1q| “ 1 for all g P G and all j1 P J .

Finally, we set

Zred
1

def
“ max

"

´

Zred
1

¯finite
,
´

Zred
1

¯tail
*

. (4.42)

4.6.4 bound Zred
2

For any ϕ,ϕ1 P X red with }ϕ}X red , }ϕ1}X red ď 1 we need to estimate

}AredD
2F redpϕ̄qpϕ,ϕ1q}X red “ }AredΠD2FpW̄ qpW,W 1q}X red , (4.43)

where W̄ “ Σϕ̄, W “ Σϕ, W 1 “ Σϕ1, and by Lemma 4.21 }W }X , }W
1}X ď 1.

As in Section 3.5, we start by splitting

}AredΠD2FpW̄ qpW,W 1q}X red ď }Ared}BpX red
´1,´1,X redq

›

›ΠD2FpW̄ qpW,W 1q
›

›

X red
´1,´1

.

But since W,W 1 P X sym and F is G-equivariant, we have that D2FpW̄ qpW,W 1q is G-invariant,
i.e. belongs to X sym, and thus by Lemma 4.21

›

›ΠD2FpW̄ qpW,W 1q
›

›

X red
´1,´1

“
›

›D2FpW̄ qpW,W 1q
›

›

X´1,´1
.

Therefore, we can directly use the estimates of Section 3.5 to obtain

Zred
2

def
“ p4`

?
2qN red

A , (4.44)

where

N red
A

def
“ max

#

max
jPE:red

1

ξ̃sj
}pAredq¨,j}X red :

1

Ω̄
,

1
?
νN :

+

,

with

ξ̃sj “
ξsj
|n|8

, j “ pn,mq P E:red.

5 Application to Taylor-Green flow

In this section, we present the results obtained with our computer-assisted approach for the
Navier-Stokes equations (1.1) with forcing (1.2). In Section 5.1, we set the stage by recalling some
know analytic results in this context, complemented by numerical simulations. In Section 5.2,
we then show how the estimates of Section 4.6, combined with Theorem 4.23, can be used to
obtain rigorous existence results and error bounds about periodic solutions.
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5.1 Analytical and numerical background

We consider the forced Navier-Stokes equations for an incompressible, homogeneous fluid
$

&

%

Btu` pu ¨∇qu´ ν0∆u`
1

ρ0
∇P “ f0,

∇ ¨ u “ 0,

on a cubical domain of dimension L with periodic boundary conditions. Here ρ0 is the density
of the fluid and ν0 is its viscosity, while the forcing is chosen to be of the simple form

f0pxq “
γ0

2

¨

˚

˝

sin 2πx1
L cos 2πx2

L

´ cos 2πx1
L sin 2πx2

L

0

˛

‹

‚

,

where γ0 parametrizes its intensity. This corresponds to the planar case of a family of flows
introduced by Taylor and Green [37] to study the interaction of motions on different spatial
scales. Non-dimensionalization (without introducing new notation for the new variables) leads
to

#

Btu` pu ¨∇qu´ ν∆u`∇p “ f,

∇ ¨ u “ 0,
(5.1)

on a cube of dimension 2π, where ν “
b

32π3

γ0L3 ν0 is a dimensionless parameter and the dimen-

sionless forcing is

f “ fpxq “

¨

˝

2 sinx1 cosx2

´2 cosx1 sinx2

0

˛

‚. (5.2)

To be able to compare with the literature we use the geometric Reynolds number Re “
?

8π
ν in

the discussion of the bifurcation diagram below, cf. Figure 3.
The Navier-Stokes equations (5.1) under the forcing (5.2) admit an equilibrium solution for

which we have the analytic expression

u˚pxq “
1

2ν
fpxq p˚pxq “

1

4ν2
pcos 2x1 ` cos 2x2q . (5.3)

We will refer to this solution as the viscous equilibrium. The associated forcing for the vorticity
equation is given by

fωpxq “

¨

˝

0
0

4 sinx1 sinx2

˛

‚. (5.4)

The viscous equilibrium consists of four counter-rotating vortices. Its vertical vorticity is shown
in a plane of constant height in Figure 2. It is straightforward to verify that this solution is
invariant under the following symmetry operations:

• Translation over any distance d in the vertical direction, Td.

• Reflection in the x1-direction, Sx1 .

• Reflection in the x2-direction, Sx2 .

• Reflection in the x3-direction, Sx3 .

• Rotation about the axis x1 “ x2 “ 0 over π{2 followed by a shift over L{2 in the x1-
direction, R.
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Figure 2: Density plot the vertical vorticity of the viscous equilibrium state, ω˚ “ fω{p2νq. The
maxima (red) correspond to vortices with a counter clockwise rotation and the minima (blue)
to vortices with a clockwise rotation.

• A shift over L{2 in both the x1 and x2 directions, D.

These operations generate the group of spatial symmetries of the Navier-Stokes equation with
planar Taylor-Green forcing. In addition, the system is equivariant under translations in time.
One may reduce this continuous symmetry to a discrete subgroup by considering, for a periodic
orbit of period τ , the shift by τ

k in time, Pk, for some k P N (k “ 4 for the solutions studied
below).

The linear instability of the viscous equilibrium at high Reynolds number (that is at low
viscosity) has been investigated at length in the literature, for instance by Sipp and Jacquin [33].
In those studies, the emphasis is on the rapid formation of small-scale structures. In the current
context, we are interested in the first instabilities that occur when increasing the Reynolds
number from zero. Due to a classical result by Serrin [32] the viscous equilibrium is guaranteed
to be the unique limit state of the flow for any viscosity greater than

νs “
4

d

8

3`
?

13
« 1.049 pRes « 4.78q .

Below that value, linear instabilities occur, giving rise to branches of solutions for which some
of the symmetries are broken. Such bifurcating branches can be numerically approximated by
standard methods [30]. Using these methods, we found that the first instability is a Hopf
bifurcation that gives rise to a branch of two-dimensional periodic solutions. Subsequently,
this branch appears to turn unstable at a point where at least one family of three-dimensional
periodic solutions branches off. A partial bifurcation diagram is shown in Figure 3. In order
to differentiate between the solutions, we compute the deviation from reflection symmetry by
computing the maximum of }u´ Sx1u}E, where

}u}E
def
“

1

2

ż

u¨u dx

is the energy. We normalize this measure by the maximum it can attain, and display

max
0ďtďτ

max
0ďx1ď2π

}uptq ´ Sx1uptq}E
4}uptq}E

, (5.5)

on the vertical axis of the bifurcation diagram.
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Figure 3: Partial numerical bifurcation diagram of the planar Taylor-Green flow, where we
use the geometric Reynolds number as the bifurcation parameter. Solutions that appear to be
stable are shown with solid lines and unstable solutions with dashed lines. Shown on the vertical
axis is the deviation from symmetry under the reflection Sx1 as defined (5.5). For periodic
solutions, the maximal value over one period is shown. For increasing Reynolds number, the
first instability of the viscous equilibrium, represented by the blue line, is a Hopf bifurcation
(HB) to a branch of two-dimensional periodic orbits, shown in red. At the branch point labeled
BP, the two-dimensional periodic orbit turns unstable and a family of three-dimensional periodic
solutions branches off. The latter is stable near the branch point and turns unstable at a torus
bifurcation point (TR). The solid squares correspond to the solutions proven to exist, as laid
out in Theorems 5.1 and 5.2.

5.2 New results for 2D periodic orbits

Using a computer program in MATLAB, we computed a numerical approximation W̄ of a
periodic orbit and applied Theorem 4.23, together with the bounds of Section 4.6, to validate
this solution with explicit error bounds, see Theorems 5.1 and 5.2 below. In the appendix, we
describe how to recover errors bounds for the associated velocity u and pressure p that solve the
Navier-Stokes equations.

This validation was done for two separate orbits, represented by p1 and p2 in the bifurcation
diagram of Figure 3. These two orbits are trivially invariant under Td and Sx3 . In addition,
they are invariant under a symmetry group G of order 16, generated by the following three
symmetries:

g1 “ Sx1Sx2 , g2 “ DSx1 , g3 “ P4Sx1R. (5.6)
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The associated actions agi (see (4.1)) can be represented by the following matrices and vectors:

Cg1 “

¨

˝

´1 0 0
0 ´1 0
0 0 1

˛

‚, C̃g1 “

¨

˝

0
0
0

˛

‚, Dg1 “ 0,

Cg2 “

¨

˝

´1 0 0
0 1 0
0 0 1

˛

‚, C̃g2 “
1

2

¨

˝

1
1
0

˛

‚, Dg2 “ 0,

Cg3 “

¨

˝

0 1 0
1 0 0
0 0 1

˛

‚, C̃g3 “
1

2

¨

˝

1
0
0

˛

‚, Dg3 “
1

4
.

These group actions can then be represented at the level of the Fourier coefficients of the vorticity,
via αg and βg (see (4.7)-(4.8) and Remark 4.6) given by

αg1pn,mq “

#

´ 1 m “ 1, 2

1 m “ 3
and βg1pn,mq “ pp´n1,´n2, n3, n4q,mq,

αg2pn,mq “

#

p´1qn1`n2 m “ 1

´ p´1qn1`n2 m “ 2, 3
and βg2pn,mq “ pp´n1, n2, n3, n4q,mq,

αg3pn,mq “ ´p´1qn2in4 and βg3pn,mq “

$

’

&

’

%

ppn2, n1, n3, n4q, 2q m “ 1

ppn2, n1, n3, n4q, 1q m “ 2

ppn2, n1, n3, n4q, 3q m “ 3.

The symmetries are used to define the subspace Xred (as in Section 4.4), which is then
used in Theorem 4.23. In practice, these symmetries are of course first found by inspecting
the numerical solution. However, once a true solution is shown to exist via Theorem 4.23, we
automatically also get a proof that this solution satisfies these symmetries.

The value of the other parameters (η, N :, Ñ , etc) that are needed to defined Ared or used
to compute the estimates of Section 4.6, are listed in Table 1. We choose a rectangular box of
Fourier coefficients to compute the numerical approximate solutions:

Ssol “ tn P Z4
˚ : |n1| ď Nx1 , |n2| ď Nx2 , |n3| ď Nx3 , |n4| ď Ntu. (5.7)

See Remark 5.5 below for a brief discussion about how the parameter values were chosen.

Theorem 5.1. Let ν “ 0.286 and let fω be given by (5.4). Let G be the symmetry group
generated by g1, g2, and g3 given in (5.6). Let ω̄ and Ω̄ be the Fourier data time frequency
provided in the file dataorbit1.mat (which can be downloaded at [41]). Let rωsol “ 2.6314 ¨ 10´5.
Then there exists a unique pair pΩ̃, ω̃q satisfying the error estimate

|Ω̃´ Ω̄| `
3
ÿ

m“1

}ω̃pmq ´ ω̄pmq}`11 ď rωsol , (5.8)

such that ω̃ is an analytic, divergence free, G-invariant, 2π{Ω̃-periodic solution of the vorticity
equation (2.7).

Proof. Let φ̄ “ Πω̄ and ϕ̄ “ pΩ̄, φ̄q. Let φ̂ “ 1
2pφ̄`Πγ˚Σφ̄q be used to define F red

K .
We start by using Remark 4.24 to replace φ̄ by a divergence free variant φ̄0 P X

red
div such that

rγ˚φ̄0 “ φ̄0. This new φ̄0 still has a finite number of nonzero modes: pφ̄0qn “ 0 for n R Ssol. We
take η “ 1 and perform an interval arithmetic computation to determine bounds

3
ÿ

m“1

}ω̄pmq ´ pΣφ̄0q
pmq}`11

ď rω0 .
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This bounds absorbs rounding errors introduced in various symmetrization steps.
Let F red and X red (with η “ 1) be as defined in Section 4.5. We now use ϕ̄0 “ pΩ̄, φ̄0q

instead of ϕ̄ as the numerical approximate solution and apply the 2D estimates to obtain the
bounds Y red

0 , Zred
0 , Zred

1 and Zred
2 defined in Section 4.6. Using the script runprooforbit1,

available at [41], with η “ 1 and the other parameters chosen as in Table 1, we checked that the
inequalities (4.32) are satisfied. In order to make this verification rigorous, all the bounds are
evaluated using the interval arithmetic package INTLAB [28].

Recalling from (4.6) that ξj “ η|n|1 , one has that the symmetric weights ξs
j “ ξs

jpηq given
in (4.27) are continuous in the parameter η. Moreover, ξs

jpηq is increasing in η. Hence, the

bounds Y red
0 , Zred

0 , Zred
1 and Zred

2 (given respectively in (4.35), (4.36), (4.42) and (4.44)) are
also continuous functions of η. By continuity of the bounds in η, since the strict inequalities in
(4.32) are satisfied for η “ 1, they still hold for all η P r1, η̃s for some η̃ ą 1. In particular, we
can use Theorem 4.23 for any η P p1, η̃s, which yields the existence of a unique zero ϕ̃ “ pΩ̃, φ̃q
of F red, so that, by monotonicity of ξs

jpηq,

|Ω̃´ Ω̄| `
ÿ

jPJred

ξs
jp1q|φ̃j ´ pφ̄0qj | ď |Ω̃´ Ω̄| `

ÿ

jPJred

ξs
jpηq |φ̃j ´ pφ̄0qj | ď r,

for each r P rrminpηq, rmaxpηqq, with rminpηq and rmaxpηq given in (4.33) and (4.34), respectively.
By continuity we find

|Ω̃´ Ω̄| `
ÿ

jPJred

|G.j| |φ̃j ´ pφ̄0qj | ď rmin,

where rmin “ rminp1q, and have that the solution ϕ̃ is unique in the ball of radius r around ϕ̄0

(with η “ 1) for any r ă rmax “ rmaxp1q.
To translate this existence and uniqueness result to the vorticity, let ω̃ “ Σφ̃ P p`1η̃q

3. The
asserted properties of ω̃ follow from the arguments given towards the end of the proof of The-
orem 4.23, and by applying the triangle inequality after checking that rmin ` rω0 ă rωsol ă

rmax ´ r
ω
0 .

The solution in Theorem 5.1 represents the point p1 in Figure 3. Four snap shots of the
third component (the nontrivial one for a 2D solution) of the vorticity field ω̄ from Theorem 5.1
are shown in Figure 4. In exactly the same way, but with the script runprooforbit2 we prove

Theorem 5.2. Let ν “ 0.265 and rωsol “ 2.2491 ¨ 10´6. Let ω̄ and Ω̄ be the Fourier data time
frequency provided in the file dataorbit2.mat. Then there exists a unique pair pΩ̃, ω̃q satisfying
the error estimate (5.8), such that ω̃ is an analytic, divergence free, G-invariant, 2π{Ω̃-periodic
solution of the vorticity equation (2.7).

Remark 5.3. As a direct corollary of Theorem 5.2, we get a validated velocity u and pressure p
that solves the Navier-Stokes equations via Lemma 2.5, with explicit error bounds presented in
the appendix (Lemma 6.2). In particular, Theorem 1.1 holds.

The solution from Theorem 5.2, corresponding to the point p2 in Figure 3, is depicted
in Figure 1. The script mimicproofsfloats may be used to perform faster but non-rigorous
versions of the computations using floating point calculations rather than interval arithmetic.
The computational cost for Theorem 5.2 is considerably higher than for Theorem 5.1, as more
Fourier modes need to be considered to make the proof work.

Remark 5.4. Since the size of the estimates deteriorates for larger values of η, we choose η “ 1.
By continuity of the bounds in η, as explained in the proof of Theorem 5.1, this is enough to prove
that we obtain an analytic solution, although we do not get an explicit decay rate of the Fourier
coefficients. If obtaining such decay rate was needed, for instance to obtain error estimates on
derivatives of the solution, or to obtain an explicit domain of analyticity, this could be achieved
by using some explicit η ą 1 to compute the bounds Y red

0 , Zred
0 , Zred

1 and Zred
2 .
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Figure 4: Physical space portrait of a two-dimensional periodic orbit at ν “ 0.286 (Re « 17.5),
corresponding to the solution labeled p1 in the bifurcation diagram in Figure 3. Shown is the
value of ωp3q at four time instances a quarter of the period apart, normalized by the amplitude
of the viscous equilibrium at the same viscosity.

Remark 5.5. We briefly discuss the choices made for the other computational parameters. The
Zred

2 bound is relatively insensitive to the computational parameters (as it roughly measures the
size of the second derivative at the numerical approximation). We then consider a set Ssol of
rectangular shape (as explained in Table 1), with sufficiently many modes N sol

x1
“ N sol

x2
and N sol

t

(for the 2D solution N sol
x3
“ 0) to make the bound Y red

0 on the residual so small that 2Y red
0 Zred

2

is roughly of size 10´2. The choice of this threshold size is based on two criteria. Primarily,
we choose it small, so that at the next step (see below) Zred

1 is allowed to be very close to 1, as
decreasing Zred

1 is computationally very costly. On the other hand, the threshold should not be
too small, as that would require many modes in Ssol to decrease the residual sufficiently.

Subsequently, one may determine from a relatively cheap calculation how large Ñ needs to
be for the tail bound to satisfy 1 ´ pZred

1 qtail ą p2Y red
0 Zred

2 q1{2. We note that Zred
0 is negligible

in practice. Finally, it requires some experimentation to determine how large one needs to
choose N : in order to also satisfy 1´ pZred

1 qfinite ą p2Y red
0 Zred

2 q1{2.

6 Appendix

The estimates obtained in Section 3 and Section 4.6 are used as input for Theorem 4.23, which
allows us to validate symmetric periodic solutions ω of the vorticity equation, with explicit error
bounds, as illustrated in Section 5. In this appendix, we describe how to recover errors bounds
for the associated velocity u and pressure p that solve the Navier-Stokes equations.

We start with a variation, adapted to our framework, of the classical result stating that
a curl-free vector field can be written as a gradient, which was used already in the proof of
Lemma 2.5.

46



η Nx1 Nx2 Nx3 Nt N : rN RAM (GB) CPU days

p1 1 17 17 0 11 130 265 10 6

p2 1 21 21 0 16 210 425 110 95

Table 1: Parameters for the two rigorously computed solutions of the Navier-Stokes equations
with Taylor-Green forcing (1.2). The number Nx1 , Nx2 , Nx3 and Nt define the set Ssol in (5.7).
The solutions are indicated by labels p1 and p2 in bifurcation diagram 3 and are computed for
ν “ 0.286 and ν “ 0.265 respectively. The computations were timed on an Intel Xeon E5-1620v2
with a 3.7GHz clock speed.

Lemma 6.1. Let Φ P
`

C3
˘Z4

satisfy

#

∇ˆ Φ “ 0

Φn “ 0, for all ñ “ 0.

Then the map Γ :
`

C3
˘Z4

Ñ CZ4
constructed component-wise as

pΓΦqn “

#

´iΦ
pkq
n {nk if nk ‰ 0 for any k “ 1, 2, 3

0 if ñ “ 0,

is well defined, and p “ ΓΦ satisfies Φ “ ´∇p.

Proof. To ensure that Γ is well defined, it suffices to show that, for all n P Z4 and l,m P t1, 2, 3u

if nl, nm ‰ 0 then
Φ
plq
n

nl
“

Φ
pmq
n

nm
. (6.1)

Indeed, since ∇ˆ Φ “ 0, we have that for all n P Z4 and all l,m P t1, 2, 3u,

nlΦ
pmq
n “ nmΦplqn , (6.2)

which immediately yields (6.1). Therefore p “ ΓΦ is well defined, and we are left to check that
Φ “ ´∇p. If ñ “ 0 then we have

Φn “ ´p∇pqn ,
because we assumed Φn “ 0 for all ñ “ 0. If ñ ‰ 0, for any l P t1, 2, 3u we distinguish between
two cases. If nl ‰ 0, then

´p∇pqplqn “ ´inlpn “ ´inl
´iΦ

plq
n

nl
“ Φplqn .

If nl “ 0, then ´p∇pqplqn “ 0, but there exists an m ‰ l such that nm ‰ 0 and thus by (6.2) we

find Φ
plq
n “ 0, i.e. ´p∇pqplqn “ Φ

plq
n also holds.

The above lemma can be used in the context of Navier-Stokes equations, to recover the
pressure from the velocity (we recall that the velocity itself is recovered from the vorticity via
u “Mω). We point out that an alternative (arguably more classical) approach is to define p as
the solution of the Poisson equation

´∆p “ ∇ ¨ ppu ¨∇quq ´∇ ¨ f, (6.3)
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satisfying
ż

T3

ppx, tqdx “ 0.

Indeed, the latter approach is going to be useful in the sequel, as (6.3) allows to recover sharper
error bounds for the pressure (compared to using Lemma 6.1 only).

Our aim is to derive error estimates for the velocity and the pressure, that can be applied as
soon as we have validated a divergence-free solution W of the vorticity equation via Theorem 2.15
or Theorem 4.23.

Lemma 6.2. Assume that for some W̄ “ pΩ̄, ω̄q P X div, η ą 1, we have proven the existence of
r ą 0 and of W “ pΩ, ωq P BXdivpW̄ , rq such that FpW q “ 0. Define

u “Mω, ū “Mω̄, p “ ΓΦ,

where Φ is defined in (2.12) and Γ is defined as in Lemma 6.1. We also consider the sequence
p̄ P CZ4

defined as

p̄n “

$

’

’

&

’

’

%

0 if n “ pñ, n4q P Z3 ˆ Z, ñ “ 0,

´
1

ñ2

3
ÿ

l“1

nl

ˆ

”´

ū ‹ D̃
¯

ū
ıplq

n
` if plqn

˙

if n “ pñ, n4q P Z3 ˆ Z, ñ ‰ 0.

Then, we have the following error estimates for the velocity and the pressure:

}u´ ū}X ď r and }p´ p̄}`1η ď p2 }ū}X ` rq r.

Remark 6.3. As explained in Remark 2.17, these weighted `1-norms control the C0-norms of
the errors (explicitly). Notice also that, even though we used η “ 1 to validate the vorticity in
Theorem 5.1 and Theorem 5.2, by continuity of the estimates with respect to η we get for free
a validation for some η̃ ą 1 (see the proof of Theorem 5.1), and thus Lemma 6.2 is directly
applicable.

Proof. The error estimate for the velocity simply follows from the definition of M :

}u´ ū}X “
3
ÿ

m“1

›

›

›
pMpω ´ ω̄qqpmq

›

›

›

`1η

ď

3
ÿ

m“1

›

›

›
pω ´ ω̄qpmq

›

›

›

`1η

“
›

›W ´ W̄
›

›

X
ď r.

To obtain the error estimate for the pressure, we use the fact that pu, pq are smooth solutions of
Navier-Stokes equations (see Lemma 2.5), and thus (6.3) holds. In Fourier space, this reduces
to

pn “

$

’

’

&

’

’

%

0 if n “ pñ, n4q P Z3 ˆ Z, ñ “ 0,

´
1

ñ2

3
ÿ

l“1

nl

ˆ

”´

u ‹ D̃
¯

u
ıplq

n
` if plqn

˙

if n “ pñ, n4q P Z3 ˆ Z, ñ ‰ 0.

Since both u and ū are divergence-free, by Lemma 2.2 we can write, for all ñ ‰ 0,

pn “ ´
1

ñ2

3
ÿ

l“1

3
ÿ

m“1

nlnm

”

upmq ˚ uplq
ı

n
and p̄n “ ´

1

ñ2

3
ÿ

l“1

3
ÿ

m“1

nlnm

”

ūpmq ˚ ūplq
ı

n
.
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We then estimate

}p´ p̄}`1η ď
3
ÿ

l“1

3
ÿ

m“1

ÿ

ñ‰0

|nl||nm|

ñ2

´”

|pu´ ūqpmq| ˚ |uplq|
ı

n
`

”

|ūpmq| ˚ |pu´ ūqplq|
ı

n

¯

η|n|1

ď

3
ÿ

l“1

3
ÿ

m“1

ÿ

ñ‰0

´”

|pu´ ūqpmq| ˚ |uplq|
ı

n
`

”

|ūpmq| ˚ |pu´ ūqplq|
ı

n

¯

η|n|1

ď

3
ÿ

l“1

3
ÿ

m“1

ˆ

›

›

›
pu´ ūqpmq

›

›

›

`1η

›

›

›
uplq

›

›

›

`1η
`

›

›

›
ūpmq

›

›

›

`1η

›

›

›
pu´ ūqplq

›

›

›

`1η

˙

,

where |¨| applied to a sequence must be understood component-wise, i.e. |uplq| is the sequence

whose n-th element is equal to |u
plq
n |. Finally, we obtain

}p´ p̄}`1η ď
3
ÿ

m“1

›

›

›
pu´ ūqpmq

›

›

›

`1η

˜

3
ÿ

l“1

›

›

›
uplq

›

›

›

`1η
`

3
ÿ

l“1

›

›

›
ūplq

›

›

›

`1η

¸

ď

3
ÿ

m“1

›

›

›
pu´ ūqpmq

›

›

›

`1η

˜

3
ÿ

l“1

2
›

›

›
ūplq

›

›

›

`1η
`

3
ÿ

l“1

›

›

›
pu´ ūqplq

›

›

›

`1η

¸

ď

3
ÿ

m“1

›

›

›
pu´ ūqpmq

›

›

›

`1η
p2 }ū}X ` rq

ď p2 }ū}X ` rq r.
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