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Abstract 38 

A fully mixed finite element (MFE) model is developed for nonlinear flow and transport in 39 

unsaturated fractured porous media with matrix-fracture and fracture-fracture fluid and mass 40 

exchanges. The model is based on the discrete fracture matrix (DFM) approach and assumes 41 

cross-flow equilibrium in the fractures. The MFE method is employed for the spatial 42 

discretization of both flow and transport on the 2D-matrix elements as well as on the 1D-43 

fracture elements. An upwind scheme is employed to avoid unphysical oscillations in the case 44 

of advection dominant transport. The temporal discretization is performed using high-order 45 

time integration methods and efficient automatic time-stepping schemes via the MOL.  46 

Two test problems dealing with flow and mass transport in saturated and unsaturated fractured 47 

porous media are simulated to show the validity of the new model by comparison against (i) a 48 

1D-2D Comsol finite element model and (ii) a 2D-2D Discontinuous Galerkin (DG) model 49 

where both fractures and matrix continua are discretized with small 2D mesh elements. The 50 

robustness and efficiency of the developed 1D-2D MFE model are then investigated for a 51 

challenging problem dealing with infiltration of contaminated water into an initially dry soil 52 

involving a fracture network.  53 

The new model yields stable results for advection-dominated and advection-dispersion 54 

transport configurations. Further, the results of the 1D-2D MFE model are in very good 55 

agreement with those of the 2D-2D DG model for both configurations. The simulation of 56 

infiltration of contaminated water into a dry fractured soil shows that the 1D-2D MFE model 57 

is within 15 times more efficient than the 2D-2D DG model, which confirms the high benefit 58 

of using robust and efficient DFM models for the simulation of flow and transport in fractured 59 

porous media. 60 

 61 

Key words:  62 
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Fractured porous media, discrete fracture matrix approach, unsaturated flow, advection-63 

dispersion equation, mixed finite element, upwind scheme.  64 

1. Introduction 65 

Flow and transport in fractured porous media are important in many applications such as 66 

water resource management (Wireman 2003, Kavouri et al., 2017), contaminant transport 67 

(Berkowitz, 2002; Brutz and Rajaram 2017, Klammler et al. 2016), nuclear waste 68 

management (Follin and Stigsson 2014, Mattila and Tammisto 2012) and oil and gas 69 

production (Li et al., 2015; Shen et al., 2016).  70 

The flow and transport processes in fractured porous media can be significantly affected by 71 

the characteristics of the fractures, such as location, size, orientation, and aperture. The 72 

fractures can be empty, or contain a filling material (Berre et al., 2019). In this work, the 73 

fractures are considered filled with a porous medium with different properties from the porous 74 

matrix, as in Khoobor et al. (2020). Two approaches are commonly used for modeling flow in 75 

fractured porous media (Berre et al., 2019). The first approach is based on an implicit 76 

representation of the fractures and includes both single-continuum and multi-continuum 77 

models. In single-continuum models, the fractures are taken into account by calculating an 78 

equivalent permeability of the porous medium, which depends on the properties of the 79 

fractures and the fracture network (Durlofsky, 1991; Liu et al., 2016). In multi-continuum 80 

models, the fractured porous medium is represented by two or more superimposed media with 81 

their own flow and/or transport equations. Among these, the well-known dual porosity model 82 

which considers superposition of a low permeability continuum representing the matrix with a 83 

high permeability continuum representing the fractures (Jourde et al., 2002; Kordilla et al., 84 

2012). The two continua are then linked by a linear exchange term. More sophisticated multi-85 

continuum models have been developed for aquifers with high heterogeneities, such as karst 86 
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aquifers, to include different levels of porosities and cavities (Kuhlman et al., 2015; Wu et al., 87 

2004). 88 

The second approach uses on an explicit representation of the fractures. Among this approach, 89 

the discrete fracture network (DFN) model. With DFN, the geometry and properties of 90 

discrete fractures are explicitly incorporated as a central component controlling flow and 91 

transport. Discrete fracture matrix (DFM) models consider that flow and transport processes 92 

occur through both, the porous matrix and the explicitly represented fractures. As a 93 

consequence, the DFM model is more appropriate for handling fractures in a permeable 94 

porous medium (Berre et al., 2019). Considering that the aperture of the fractures is small as 95 

compared to the matrix scale, the main idea of DFM is to use the cross-flow equilibrium 96 

concept across the fractures (Noorishad and Mehran, 1982; Baca et al., 1984; Granet et al., 97 

1998; Hoteit et al.,2008). As a consequence, the fractures can be discretized with elements of 98 

co-dimension one with respect to the dimension of the surrounding matrix (Flemish et al., 99 

2018; Martin et al., 2005), such as 1D fracture elements with 2D matrix elements. This 100 

simplification makes DFM models much more efficient than the single porosity 2D-2D 101 

model, where 2D elements are used for both matrix and fracture continua. Note that the 102 

applicability of the 2D-2D models is often hampered by their expansive computational cost 103 

since they require very fine mesh elements to correctly discretize the fractures with small 104 

apertures.  105 

Hoteit and Firoozabadi (2005; 2006) employed DFM models assuming cross-flow 106 

equilibrium between the fractures and the adjacent matrix gridcells by imposing the pressure 107 

at a fracture and at the adjacent gridcells to be equal. Although efficient, this assumption still 108 

requires small mesh elements next to the fractures (Hoteit and Firoozabadi, 2008). To avoid 109 

this constraint, Hoteit and Firoozabadi (2008) proposed solving the flow equation with the 110 

hybrid formulation of the mixed finite element (MFE) method. This formulation  has the 111 
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pressure at the gridcell interfaces as degrees of freedom (DOF), and hence, the cross-flow 112 

equilibrium can be directly assumed across the fractures (Hoteit and Firoozabadi, 2008). In 113 

this way, the matrix pressure at an element edge and the pressure at the fracture, which 114 

coincides with that edge, are assumed to be equal. As a consequence, no constraints are 115 

required for the mesh discretization near the fractures (Hoteit and Firoozabadi, 2008). This 116 

powerful feature is extended in this work by developing a fully MFE model for both 117 

unsaturated flow and transport in the porous matrix and in the fracture continuum.  118 

The MFE (Raviart and Thomas, 1977; Chavent and Jaffré, 1986) is a robust numerical method 119 

for solving diffusion problems, which has recently received attention in geosciences. Indeed, 120 

with MFEs, the flux and the pressure unknowns are approximated simultaneously. The MFE 121 

method ensures local mass balance and can easily handle general unstructured meshes 122 

(Younes et al., 2010). Further, it yields an accurate velocity field in highly heterogeneous and 123 

anisotropic media (Durlofsky, 1994). The hybridization procedure of the MFE method allows 124 

improving its efficiency by reducing the total number of unknowns and producing a final 125 

system with a positive symmetric definite matrix (Chavent and Jaffré, 1986). The unknowns, 126 

in this case, are the traces of the variable at the edges. 127 

A lumped formulation of the MFE method has been developed by Younes et al. (2006) to 128 

improve the monotonicity of the solution and reduce the unphysical oscillations observed with 129 

transient problems. Belfort et al. (2009) showed that the lumped formulation is more efficient 130 

and more robust than the standard one for the simulation of water infiltration into initially dry 131 

soils. Further, contrarily to the standard MFE method, the lumped formulation maintains the 132 

time derivative continuous and thus, allows employment of high-order time integration 133 

methods via the method of lines (MOL), which can be very efficient for solving nonlinear 134 

problems (Fahs et al., 2009 and Younes et al., 2009).  135 
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Although the MFE method is well adapted for diffusion type equations, when applied for the 136 

advection-dispersion transport equation, the solution can exhibit strong unphysical 137 

oscillations because of the hyperbolic nature of the advection operator. Therefore, the main 138 

objective of this work is to develop a stable MFE model for unsaturated flow and mass 139 

transport through both the 2D-matrix and the 1D-fracture elements. Both fluid and 140 

contaminant matrix-fracture and fracture-fracture exchanges are implicitly taken into account, 141 

without using any transfer functions, even for the case of several intersecting fractures. To 142 

avoid instabilities caused by the hyperbolic advection term, we use a robust monotonic 143 

upwind MFE scheme where the traces of concentration at edges are upwinded depending on 144 

the direction of the local velocity. An implicit scheme is used for the time discretization of the 145 

flow and transport equations. This alleviates restriction on the size of the time step from the 146 

CFL condition of explicit schemes. For the sake of brevity, the lumped hybrid MFE method 147 

employed in this work will also be denoted MFE. 148 

Modeling flow and transport in unsaturated fractured porous media is likely to be highly CPU 149 

consuming due to (i) the strongly nonlinear Richards flow equation (RE), (ii) the high contrast 150 

of permeability between the conductive fractures and the low permeable matrix and (iii) the 151 

presence of sharp wetting and/or contaminant fronts. These difficulties make the commonly 152 

used, first-order backward Euler scheme combined with the heuristic time step management, 153 

inappropriate to obtain accurate solutions in a reasonable CPU time. To overcome these 154 

difficulties, time integration is performed using high-order time integration methods via the 155 

Method of Lines (MOL). The MOL allows versatile time step length and order of the 156 

temporal discretization to reduce the computational time while maintaining accuracy. The 157 

MOL was shown to be effective for the solution of the RE in the unsaturated zone (Fahs et al, 158 

2009; Khoobor et al., 2020) and is used hereafter for the first time for coupled flow and 159 

transport through unsaturated fractured porous media.  160 
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This article is structured as follows. In section 2, we recall the nonlinear mathematical models 161 

governing flow and advection-dispersion transport processes in unsaturated porous media. In 162 

section 3, we develop a robust fully MFE formulation for the solution of flow and transport 163 

both in the porous matrix and in the fracture continuum. In section 4, numerical experiments 164 

are performed for flow and transport in saturated and unsaturated fractured porous media to 165 

investigate the validity and robustness of the new 1D-2D MFE model. Some conclusions are 166 

given in the last section of the article. 167 

2. Governing Equations 168 

The porous matrix is assumed permeable, and the fractures are infilled by a porous medium 169 

whose physical characteristics are different from those of the porous matrix. Flow in variably 170 

saturated porous media, both in the matrix and through the fractures, is assumed to be ruled 171 

by the mass conservation of the fluid: 172 

   0S

S

H
c h S

t t

 



  
     

  
q  (1) 173 

and the Darcy-Buckingham law: 174 

 
rk H  q K  (2) 175 

where  c h h    is the specific moisture capacity [L−1], 
SS  is the specific mass storativity 176 

related to head changes [L-1],   is the current water content [L3L−3], 
S  is the saturated water 177 

content [L3L−3], H h y   is the freshwater head [L], h  is the pressure head [L], y is the 178 

upward vertical coordinate [L], t is the time [T], q  is the Darcy velocity [LT-1], 
rk  is the 179 

relative conductivity [-], 
g


K k  is the hydraulic conductivity tensor [LT-1],   is the fluid 180 
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density [ML-3], g  is the gravity acceleration [LT-2],   is the fluid dynamic viscosity [ML-1T-181 

1] and k  is the permeability of the rock matrix as a tensor, or that of the fracture, as a scalar 182 

[L2]. 183 

The transport of contaminants in the unsaturated porous matrix and through the unsaturated 184 

fractures is ruled by the advection-dispersion equation:  185 

 
 

    0
C

. C . C
t

 


   q D  (3) 186 

where C  [-] is the relative concentration [-] and D  is the dispersion tensor given by: 187 

  D I q q q q Im L T TD /        (4) 188 

In which 
L  and 

T  are the longitudinal and transverse dispersivities [L], 
mD  is the pore 189 

water diffusion coefficient [L2T-1] and I  is the unit tensor.  190 

The standard van Genuchten (van Genuchten, 1980) model is used for the relationship 191 

between water content and pressure head: 192 

 
   

1
      0

1

1                         0

m
nr

e

s r

h
h

hS

h

 


 


 

  
 



 (5) 193 

where   [L-1] and n  [-] are the van Genuchten parameters, 1 1m n  , 
eS  is the effective 194 

saturation [-], and 
r  is the residual water content [L3L−3].  195 

The conductivity-saturation relationship is analytically expressed from the Mualem (Mualem, 196 

1976) model,  197 
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  
2

1/2 1/1 1
m

m

r e ek S S   
  

 (6) 198 

The nonlinear system (1)-(6) is solved numerically on (i) unstructured triangular 2D elements 199 

for the porous matrix and (ii) linear 1D elements for fracture branches. All hydraulic and 200 

transport parameters in the system (1)-(6) are defined elementwise, and therefore, they can be 201 

different for each matrix or fracture element.  202 

3. The fully MFE numerical model 203 

In this session, we recall the main stages for developing a robust MFE formulation for the 204 

solution of the flow and transport equations both in the porous matrix and in the fractures.  205 

3.1 Discretization of the flow equation in the porous matrix 206 

With the MFE method, the velocity q  inside each triangular element E  is approximated 207 

using the linear Raviart-Thomas basis functions (see Figure 1): 208 

 
3

1

E E

j j

j

Q


q w  (7) 209 

where E

jQ  is the flux across the edge jE  of E  and 
1

2

E

j
E

j
E

j

x x

E y y

 
 
  

w  is the Raviart-210 

Thomas basis functions (Raviart and Thomas, 1977) with  E E

j jx , y  the coordinates of the 211 

node j  faced to the edge jE  of E  and E  the area of E . 212 
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 213 

Figure 1: RT0 vectorial basis functions and orientation of fluxes for a 2D triangular element. 214 

Using E

iw  as a test function, the variational formulation of the Darcy law Eq. (2) writes  215 

  1 1

j

r j

jE E E E

k . H. H . H . 



        
E E E E E

i i i iK q w w w w η  (8) 216 

where 
E

jη  is the outward unit normal vector to the edge jE . 217 

Defining 
E

B  the elemental matrix of terms  1 1E ,E ,E

i , j r j

E

B k .  
E E

iK w w , we obtain (see 218 

Younes et al., 2004 for details) 219 

 

3 3 3 3

1
3 3 3 3

48

3 3 3 3

ij ik jk ij ik jk ij ik jk

E

ij ik jk ij ik jk ij ik jk

ij ik jk ij ik jk ij ik jk

E

       
 
        
 
        

B  (9) 220 

with  
1

1 1T ,E ,E

ij ij r ijk


  r rK  and ijr  is the edge vector from the node i  to the node j . 221 

Using Eq. (7) and properties of E

iw , the Darcy Eq. (8) becomes 222 
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1 1

i

E E

i , j j

j iE E

E

E i

B Q H H
E E

H TH



 


 

  
 (10) 223 

where 
EH  is the mean head at the element E  and E

iTH  is the mean head at the edge 
iE . 224 

Inverting Eq. (10) provides the water flux E

iQ  across the edge 
iE  as  225 

 1E E ,E E

i i E i , j j

j

Q H B TH    (11) 226 

where 1E ,E

i i , j

j

B  . 227 

The lumped formulation of MFE is then used in the following steps  228 

 In a first step, integration of the mass conservation Eq. (1) over the element E , 229 

assuming a steady-state flow  0t    and substituting Eq. (11), yields  230 

 
E

Ei
E iE

i

H TH



  (12) 231 

where E E

i

i

   232 

Hence, the steady-state flux 
E

i
Q  across the edge 

iE  writes  233 

 1

E E

E i j ,E E

i , j jEi
j

Q B TH
 




 

   
 

  (13) 234 

 In a second step, a lumped region 
iR  is constructed around each edge 

iE  by joining 235 

the two nodes of 
iE  to the element centers 

Ex  and 
E'x  of the elements E  and E  236 

sharing the edge i  (Figure 2). 237 
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 238 

Figure 2: The lumping region 
iR  associated to the edge i  sharing the elements E  and E  239 

and formed by the two simplex regions E

iS  and E

iS

. 240 

The domain is now partitioned into lumping regions 
iR  (hatched area in Figure 2) 241 

assigned to the edge i formed by the two simplex regions E

iS  and E

iS

 for an inner 242 

edge i and by the sole simplex region E

iS  for a boundary edge. The simplex region E

iS  243 

is defined by joining the centre of E with the nodes j and k forming the edge i. The 244 

area of E

iS  is 
3

E
. 245 

 In a third step, the integration of the transient mass conservation Eq. (1) over the 246 

lumped region 
iR  yields (see Figure 2 for notations): 247 

 0
3 3

E E
E E E' E'i l

E E' ij ik lj lk

E E'dTH dTH
r r Q Q Q Q

dt dt
       (14) 248 
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where    E E S E Sr c h S h    is the accumulation coefficient in Richards’ 249 

equation and E

ijQ  the interior flux, evaluated using the RT0 approximation of the 250 

velocity inside the element E  given by Eq. (7), which yields  251 

  
1

3

E E E

ij j iQ Q Q   (15) 252 

Substituting Eq. (13) and Eq. (15) into Eq. (14), allows to write the mass 253 

conservation Eq. (14) over the lumping regions 
iR  assigned to the edge i as a 254 

continuity of fluxes between two adjacent elements E  and 'E  sharing the edge i  as 255 

follows 256 

 
1

0

3

E E'

i i

E E E
i jE ,E E i

i i , j j EE
j

Q Q

E dTH
Q B TH r

dt

 





  


 
     

 


 (16) 257 

The flow system is formed by Eq. (16) for all the mesh edges which do not coincide with a 258 

fracture and solved for the mean head at edges 
iTH  by imposing continuity of the head at the 259 

interface of the elements  E E

i i iTH TH TH


  . The obtained system is highly nonlinear since 260 

the local matrix B , and the accumulation term r  depend on the pressure head. In the case of 261 

a Dirichlet condition with a prescribed head impH  at the boundary edge i, Eq. (16) is replaced 262 

by i impTH H . If the boundary edge i has a prescribed flux impQ  (Neumann boundary 263 

condition), Eq. (16) becomes 0E

i impQ Q  .  264 

Note that, contrarily to the standard MFE method, the time derivative remains continuous in 265 

Eq. (16), which facilitates employment of high-order methods for the time discretization. 266 

3.2 Spatial discretization of the flow in the presence of a fracture 267 
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Let’s consider a fracture k  of length k  and aperture 
ke . The fracture k  coincides with the 268 

edge i shared by the adjacent matrix-elements E  and E  (see Figure 3). The flow through the 269 

fracture occurs between it’s two nodes of pressures 1

kNH  and 2

kNH . The flux E

iQ  270 

(respectively 'E

iQ ) represents the matrix-fracture fluid exchange between E  (respectively E ) 271 

and the fracture k . 272 

 273 

Figure 3: Schematic representation of the one-dimensional fracture k , which coincides with 274 

the edge i shared by the matrix elements E  and E . The flux E

iQ  (respectively 'E

iQ ) 275 

represents the matrix-fracture fluid exchange between E  (respectively E ) and k . 276 

The one-dimensional flow through the fracture k  is discretized with the MFE method, which 277 

assumes a linear variation of the velocity kq  inside k ,  278 

 1 1 2 2

k k k k kq q w q w   (17) 279 

with 
1 2

k

j ,q 
 the flux leaving the node 1 2j ,  of the fracture k , 1

k k

k k

x
w

e


  and 2

k

k k

x
w

e
  280 

are the one-dimensional velocity interpolation functions using the local coordinate  0, kx . 281 
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The mass conservation Eq. (1) integrated over the fracture k  of length k  and aperture 
ke  282 

yields  283 

 1 2 0
k

k k E E

k k k i i

dTH
e r q q Q Q

dt


      (18) 284 

with kTH  the mean head in the fracture k and   k k
k k S

S

r c h S



   the accumulation coefficient 285 

related to k, E

iQ  and E

iQ

 are the water fluxes from the element E and E’ representing matrix-286 

fracture exchange.  287 

The variational formulation of the Darcy law Eq. (2) on the fracture k  writes  288 

  
0 0

K
k k

k k k k k k

j i j r f i

j

q w w k H w      (19) 289 

Integration by part leads to  290 

  
0

Kk k k

r fk k k k k

j i j i

j k

k
q w w TH NH

e
    (20) 291 

where k

iNH  corresponds to the head at the node i located at the extremity of the fracture k . 292 

Using numerical integration, based on the trapezoidal rule, for the calculation of the left term 293 

(see Koohbor et al., 2020) yields 294 

  
2 k

fk k k k

i k r i

k

K
q e k TH NH   (21) 295 
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The cross-flow equilibrium assumption is then employed by prescribing equality of the matrix 296 

edge head and the fracture head  E E k

i iTH TH TH


  . Thus, substituting Eq. (21) and Eq. 297 

(16) into Eq. (18) yields  298 

 

 
' '

1, 1, ' '

, , 1 2'

2
2

0
3 3

E E E E k

i j i j fE E E E k E k k

i j j i j j k r iE E
j j k

E

i
E E k k k

K
B TH B TH e k TH NH NH

E E dTH
r r e r

dt

   

 

 



   
           

   

 
    
 

 
 (22) 299 

To close the system of Eq. (22), the mass conservation is written at each intersection of 300 

fracture branches. At the node i shared by k fracture branches, we impose  301 

 0k

i

k

q   (23) 302 

Using Eq. (21), we obtain  303 

  
2

0

k

fk k k

k r i

k k

K
e k TH NH   (24) 304 

Finally, the global flow system is formed by Eq. (16) for all the edges which do not coincide 305 

with a fracture and by Eq. (22) else. This system is supplemented by Eq. (24) for all the nodes 306 

of the fracture branches and assuming the continuity of the head  k

i iNH NH  at the node i, 307 

intersection of k fracture branches. Therefore, the final flow system has the heads at the edges 308 

of the mesh plus the heads at the nodes of the fracture branches as unknowns. 309 

3.3 Discretization of the advection-dispersion transport equation in the porous matrix 310 

The transport of contaminants in the unsaturated porous matrix described by Eq. (3) writes:  311 
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   0
C

C . C . C
t t

 


 

 
      

 
q + q D  (25) 312 

Using the fluid mass conservation Eq. (1), the transport equation can be written in the 313 

following form:  314 

 
0

C
C .

t

C






   


   

q q

q D

 (26) 315 

The MFE method is now used for the spatial discretization of the transport equation. To this 316 

aim, the dispersion vector q  is approximated inside each triangular element E  with the 317 

Raviart Thomas vectorial basis functions as:  318 

 
E E

j j

j

Qq w  (27) 319 

where 

j

E E

j d j

E

Q .


  q η  is the dispersive flux across the edge jE  of the element E . 320 

The variational formulation of Eq. (26) is written as  321 

  1

E

E E

. C.E E

i iD q w w
      (28) 322 

which can take  the following form  323 

 
E E E

i , j j E i

j

B Q C TC   (29) 324 

where 
EC  is the mean concentration at the element E  and E

iTC  is the trace of concentration 325 

at the edge 
iE  of the element E  and B  is the elemental matrix of terms 326 

 1E

i , j E j

E

B . 
E E

iD w w  327 
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Inverting Eq. (29) yields the dispersive flux across 
iE  as 328 

  1E ,E E

i i , j E j

j

Q C TC B  (30) 329 

An upwind lumped MFE scheme is used to avoid unphysical oscillations caused by the 330 

hyperbolic advection part of the transport equation. The main steps of this scheme are as 331 

follows: 332 

 In a first step, both advective and transient terms are removed from the first equation 333 

in the system of Eq. (26), yielding a steady-state dispersive flux E

iQ  expressed by 334 

(similarly to Eq. (12)): 335 

 
1

E E

i jE E ,E E

i j i , j jE
j j

Q TC B TC
 



    (31) 336 

with 
1,

,

E E

i i j

j

B   and E E

i

i

  . 337 

 In a second step, the integration of the advection-dispersion equation (26) over the 338 

lumped region 
iR  writes (see Figure 2): 339 

     0
3

E
E E E E E E E Ei

E ij ij ik ik ij ik i i

E TC
Q TC Q TC Q Q TC Q

t


         
 

 (32) 340 

where  
1

3

E E E

ij j iQ Q Q   is the interior flux between edges i and j (see Eq. (15)).   341 

The interior concentration 
E

ijTC  is calculated using the upstream edge concentration 342 

as: 343 
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  1E E E E E

ij ij i ij jTC TC TC     (33) 344 

with 1E

ij   for an outward flux  0E

ijQ  , else 0E

ij  . 345 

Thus, if we note 
E

i
Qt  the total (advection + dispersion) flux leaving the element E 346 

from the edge i, Eq. (32) can be rewritten as the continuity of the total flux between 347 

two adjacent elements E  and 'E  sharing the edge i  as  348 

     1

0

1 1
3

E E'

i i

E E E
E i j ,E E E E E E E E E E i

i , j j ij ij i j ik ik i k Ei E
j

Qt Qt

E TC
Qt B TC Q TC TC Q TC TC

t

 
  





  


  
              


349 

  (34) 350 

3.4 Spatial discretization of the advection-dispersion transport equation through a fracture  351 

Let’s consider a fracture k  of length k  and aperture 
ke  and x  the local coordinate along k  352 

with 0x   at the first node of k  and 
kx   at the second node of k .  353 

The diffusion coefficient 
kD  through the fracture k is approximated by  354 

 k k

k L k mD q D   (35) 355 

where k

L  is the longitudinal dispersivity through the fracture k, k

mD  is the molecular diffusion 356 

through k, and 
 2 1

2

k k

k

k

q q
q

e


  is the mean velocity in the fracture k. 357 

The dispersive flux D C  q  through the fracture is approximated using the MFE method. 358 

Similarly to Eq. (21), the dispersive flux k

iq  at the extremity 1,2i   of the fracture k writes 359 
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  
2k kk k

i i

k

e D
q TC NC   (36) 360 

where iNC  is the concentration at the node i. 361 

 362 

 363 

 364 

 365 

 366 

 367 

Figure 4: Intersection of multiple fracture branches. 368 

Imposing the continuity of the dispersive fluxes arriving from all fracture branches sharing the 369 

node i (see Figure 4) writes  370 

  
2

0ll l
j

l l

e D
TC NC   (37) 371 

Which yields 372 

 

ll
l

l l
i

l
l

l l

e
D TC

NC
e

D






 (38) 373 

Substituting Eq. (38) into the flux Eq. (36) yields  374 

k lTC TC  iNC  

3lTC   

1lTC   
2lTC   
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2

ll
l

lk kk k l
i

lk
l

l l

e
D TC

e D
q TC

e
D

 
 
  
 
 
 




 (39) 375 

The integration of the mass conservation equation over the fracture k which coincides with the 376 

edge i shared by the two matrix elements E and E’, writes  377 

  
0 0 0 0

0
k k k k

E E

k k k k k i i

C
e e . C e C . e . Qt Qt

t








           q q q     (40) 378 

The calculation of the different integrals yields  379 

  1 1 2 2 1 2 1 2

k
E E

k k ,* k k ,* k k k k k

k k k i i

TC
e q C q C q q TC q q Qt Qt

t



       


 (41) 380 

where k ,*

iC  is the concentration at the node i of the fracture k given by 381 

  1k ,* k k k
i ,outi i i ,in iC NC NC     (42) 382 

in which k k

i ,inNC TC  is the interior concentration and the parameter k

i  is used to select the 383 

upstream concentration, it depends on the sign of k

iq  as 384 

 
1 0

0 0

k

k i

i k

i

if q

if q


 
 


 (43) 385 

Hence, in the case of an outflow at the node i of k, the nodal concentration is k ,* k

iC TC , 386 

whereas, in the case of an inflow at the node i of the fracture k, the nodal concentration is 387 

i ,outNC .  388 
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To calculate i ,outNC , we use the contaminant conservation at the node i, shared by l  fractures, 389 

which writes  390 

 
1

0
l

k k ,*

i i

k

q C


  (44) 391 

Using Eq. (42) and Eq. (43), we obtain 392 

 

 

1

1

1

l
k k k

i i

k
i ,out l

k k

i i

k

q TC

NC

q
















 (45) 393 

Note that the number of unknowns for the transport system to be solved does not depend on 394 

the number of fractures in the domain. Indeed, the final transport system has the concentration 395 

at edges as unknowns and is constructed as follows 396 

 For all edges i sharing two matrix elements E and E’ such that i does not coincide with 397 

a fracture k, Eq. (34) is solved for the unknown edge concentration 
iTC  assuming 398 

continuity of edge concentration  E E'

i i iTC TC TC  .  399 

 For all edges i sharing two matrix elements E and E’ such that i coincides with a 400 

fracture k, Eq. (41), in which we substitute Eq. (34), Eq. (39), Eq. (42), Eq. (43) and 401 

Eq. (45), is solved for the unknown edge concentration 
iTC  assuming that the 402 

concentration at the edge matrix and at the fracture are equal 403 

 E E' k

i i iTC TC TC TC   .  404 

3.5 The temporal discretization of the nonlinear flow-transport system 405 

The final nonlinear flow-transport system, formed by Eq. (16), Eq. (22), and Eq. (24) for the 406 
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flow and by Eq. (34) and Eq. (41) for the transport, is written in a single implicit system of 407 

ordinary differential equations (ODEs) of the general form  408 

   0F t, ,  y y  (46) 409 

Where      
1 1 1i i ii ,..,nb _edges i ,..,nb _ nodefractures i ,..,nb _edges

TH , NH , TC
  

 
 

y  is the vector of unknowns 410 

formed by (i) the head traces at all the edges of the mesh (except boundary edges with 411 

prescribed head), (ii) the head at all the nodes corresponding to the extremity of fracture 412 

branches, and (iii) the concentration traces at all edges of the mesh (except boundary edges 413 

with prescribed concentration). Thus, the number of unknowns for the flow-transport system 414 

is approximately twice the number of edges plus the number of fractures. 415 

For the time discretization, we use high-order methods, which are known to be more efficient 416 

and require less effort in the nonlinear solver compared to the lowest order methods (Farthing 417 

et al., 2002). An efficient automatic time-stepping scheme is employed to improve the 418 

computational efficiency while maintaining accuracy (Tocci et al., 1997; Kavetski et al., 419 

2001). The time integration is performed with the DASPK time solver, which uses the 420 

preconditioned Krylov iterative method to solve the linear systems arising at each time step. 421 

DASPK is based on the Fixed Leading Coefficient Backward Difference Formulas 422 

(FLCBDF), which has good stability properties and is well adapted for time integration of 423 

stiff problems (Kees and Miller, 2002). The nonlinear problem is linearized using the Newton 424 

method with a numerical approximation of the Jacobian matrix. To improve efficiency, the 425 

Jacobian is reused for several time steps and is calculated by the solver only when necessary. 426 

Furthermore, the column grouping technique (Hindmarsh, 1982) is employed to reduce the 427 

computational time for the evaluation of the Jacobian matrix by perturbing variables by 428 

group, knowing the structure and sparsity of the Jacobian.  429 
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During calculation, the order (up to fifth order) of the time discretization and the time step 430 

size are adapted to improve efficiency while the relative and absolute convergence criteria are 431 

maintained under a fixed tolerance ( 610  in this work). 432 

4. Numerical experiments 433 

In this section, three test problems dealing with flow and mass transport in saturated and 434 

unsaturated fractured porous media are simulated to investigate the robustness of the new 435 

MFE code. The first test case deals with flow and transport in a saturated porous medium 436 

involving a single fracture. This test case is used to validate the developed 1D-2D MFE code 437 

against the solution obtained with Comsol multiphysics 1D-2D model. Comosl uses the 438 

standard finite element (FE) method and an adaptive time stepping scheme. The test problem 439 

is also simulated with a 2D-2D model where 2D triangular elements are employed for the 440 

spatial discretization of both the matrix and the fractures continua using a very fine mesh in 441 

order to correctly discretize the fracture branches with a small aperture. We use the advanced 442 

2D-2D DG model developed by Younes et al. (2021), based on the discontinuous Galerkin 443 

(DG) finite element and the multipoint flux approximation methods and high-order time 444 

integration techniques via the method of lines (MOL). 445 

The second test case deals with flow and transport in a fractured unsaturated-saturated porous 446 

medium. The porous medium has initially wet conditions and involves a single fracture. This 447 

test case is used to validate the developed 1D-2D MFE model against the solution obtained 448 

with the 2D-2D DG model in the case of unsaturated flow.  449 

The last test case is a challenging problem dealing with flow and transport into an initially dry 450 

soil containing a fracture network. This last problem is simulated to highlight the efficiency 451 

and robustness of the developed 1D-2D MFE model compared to the 2D-2D DG model. 452 

 453 

 454 
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4.1 Fractured saturated quarter-five-spot problem 455 

We consider a quadratic 2D domain (quarter-five-spot configuration) of size    0 1m 0 1m, ,  456 

with impermeable walls except at the lower-left and the upper-right corners. The source at the 457 

lower-left corner is represented by a boundary flux 310 m/ sinjq   at 458 

       0 0 03m 0 0 0 0 03mx . y x y .         . The sink at the right-upper corner is 459 

represented by a Dirichlet boundary condition with a zero head at 460 

       0 97m 1m 1 1 0 97m 1m. x y x . y         . The porous medium is formed by a 461 

homogeneous material with a diagonal fracture of 1mm aperture, located between 462 

 0 2m,0.2m.  and  0 8m,0.8m. . The hydraulic and transport properties of the porous matrix 463 

and the fracture continuum are depicted in Table 1. The initial conditions correspond to a 464 

domain free from pollutants. The simulation is performed for a time of 3456s. 465 

 466 

 sK  (m/s) sS (1/ )m  s  L (m) T (m) mD  (m2/s) 

Matrix 10-6 10-10 0.4 0.0 0.0 10-6 

Fracture 10-3 10-10 0.4 0.0 0.0 10-6 

 467 

Table 1: Hydraulic and transport parameters for the fractured saturated quarter-five-spot 468 

problem. 469 
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 470 

Figure 5: Concentration distribution for the fractured saturated quarter-five-spot problem. 471 

Results of the new 1D-2D MFE model (dashed lines), the 1D-2D Comsol FE model (purple 472 

lines), and 2D-2D DG model (color map). 473 

The problem is simulated with the new 1D-2D MFE model as well as with the 1D-2D Comsol 474 

FE model and the 2D-2D DG model of Younes et al. (2021). In the latter, the hydraulic and 475 

transport parameters used for the fractures in the 1D-2D approach are attributed to the 2D 476 

triangular elements located inside the fractures. The 2D-2D DG model is used with a fine 477 

mesh with local mesh refinement around fractures. The three models were used with the MOL 478 

and a variable high-order (up to 5) time integration BDF method. Figure 5 shows that the 479 

three models yield almost similar concentration distributions, which demonstrates the validity 480 

of the developed 1D-2D MFE model for simulating flow and transport in fractured saturated 481 

porous media. 482 

 483 

4.2 Infiltration of contaminated water in a fractured unsaturated-saturated porous medium. 484 

This test case, inspired by the laboratory experiments of Vauclin et al., (1979), was proposed 485 

by Koohbor et al. (2020) to investigate unsaturated flow in fractured porous media. The 486 

problem is extended hereafter to tackle both flow and transport in the case of a homogeneous 487 

porous medium, including a single inclined fracture. The domain has a rectangular shape of 488 
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300cm200 cm with a water table located at 65cm from the bottom. Initial conditions 489 

correspond to a hydrostatic pressure distribution and a zero concentration in the domain. 490 

Boundary conditions are as follows: contaminated water is infiltrated under a constant flux of 491 

335cm/day over the first 50cm of the soil surface. The lower 65cm of the right side of the 492 

domain has a Dirichlet boundary condition with a fixed head of 65cm. A no-flow boundary is 493 

prescribed for the rest of the boundaries. The homogeneous porous medium includes an 494 

inclined fracture of 1cm aperture and 2m length, located near the infiltration zone. The 495 

hydraulic and transport parameters are depicted in Table 2. 496 

 497 

 
sK  

(m/s) 

sS  

(1/m) 

s  r    

(1/m) 

n   L  

(m) 

T  

(m) 

mD  

(m2/s) 

Matrix 5 10-5 10-10 0.4 0.1 3.31 2.1 0 0 10-7 

Fracture 10-2 10-10 0.4 0.01 3.31 2.1 0 0 10-7 

Table 2: Hydraulic and transport parameters for the problem of infiltration of contaminated 498 

water into a fractured unsaturated-saturated porous medium. 499 

The simulation of this problem cannot be performed with the 1D-2D Comsol FE model since 500 

Comsol cannot treat unsaturated flow in the fractures. The problem is simulated with the 1D-501 

2D MFE model as well as with the 2D-2D DG model and the 2D-2D FE model of Comsol. 502 

Figure 6 depicts the water content and the concentration distributions at t = 1000s obtained 503 

with the three models. A good agreement is observed between the results of the three models 504 

for the volumetric water content as well as for the concentration contours (Figure 6).  505 
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 506 

 507 

Figure 6: Water content (a) and concentration (b) distributions for the problem of infiltration 508 

of contaminated water in a fractured unsaturated-saturated porous medium. Results of the new 509 

1D-2D MFE model (dashed lines), 2D-2D DG model (purple lines), and 2D-2D FE Comsol 510 

model (color map). 511 

 512 

A more in-depth comparison is then performed between the new 1D-2D MFE model and the 513 

2D-2D DG model. To this aim, the fluid and contaminant mass fluxes at the outlet are 514 

calculated with both models over the simulation time of 55 hours. The results of the Figure 7 515 

show that the outlet fluid flux is almost constant after around 15 hours which indicates that an 516 

almost steady state water content distribution is reached at this time. A first contaminant front, 517 

caused by the fast mobility of the contaminated water through the fractures, is observed in the 518 

Figure 7 after around 10 hours. A second slower and more dispersed contaminant front was 519 

occurred, which was caused by the transport of the contaminant through the rock matrix. The 520 
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results of Fgure 7 show a very good agreement between the 1D-2D MFE and the 2D-2D DG 521 

models for both fluid and contaminant outlet mass fluxes. These results demonstrate the 522 

validity of the new 1D-2D MFE model for the simulation of flow and transport in fractured 523 

unsaturated porous media. 524 
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 525 

Figure 7: Outlet fluid and contaminant mass fluxes obtained with the 1D-2D MFE and the 526 

2D-2D DG models for the problem of infiltration of contaminated water in a fractured 527 

unsaturated-saturated porous medium. 528 

  529 

4.3 Infiltration of contaminated water in a fractured dry soil. 530 

Simulation of the infiltration of contaminated water into initially dry soils is known to be 531 

challenging because of the presence of sharp wetting fronts (Zha et al., 2017). Sharp fronts 532 

are often the origin of unphysical oscillations, which can cause several convergence issues. To 533 

investigate the efficiency of the developed model for such situations, we simulate an 534 

infiltration problem, adapted from Koohbor et al. (2020). The fractured porous medium has a 535 

rectangular shape of 350cm in length and 200cm in height (Figure 8a). Left and right vertical 536 

boundaries are impermeable. A pressure head of -1000 cm is imposed at the bottom of the 537 
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domain. Water is injected at the right part of the surface ( 300 350cm x cm  ) with a constant 538 

flow rate of 44 10  cm/s. The simulation is performed for a period of 52 10 s. Clean water is 539 

injected for the first half period  50 10C if t s  , and contaminated water is injected for 540 

the second half period  51 10C if t s  . Initial conditions correspond to a highly dry soil 541 

with a head of -1000cm in both matrix and fracture continua. All fractures have an aperture of 542 

1cm.  543 

  544 

 545 

 546 
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Figure 8: The problem of infiltration of contaminated water in a fractured initially dry soil: 547 

(a) domain and boundary conditions, (b) final water content distribution obtained with the 1D-548 

2D MFE model and with the 2D-2D DG model (c). 549 

 550 

The hydraulic parameters of the two continua are depicted in Table 3. 551 

 
sK  

(cm/s) 

sS  

(1/cm) 

s  r    

(1/cm) 

n  

Matrix 5.25 10-6 10-8 0.34 0.01 0.0139 1.6 

Fracture 1.16 10-2 10-8 0.8 0.001 0.0139 1.6 

Table 3: Hydraulic parameters for the problem of infiltration of contaminated water in a 552 

fracture initially dry soil. 553 

The simulation of this last test case with the 2D-2D FE Comsol model encountered several 554 

convergence issues because of the initial high dry conditions. Indeed, the initial dry conditions 555 

are responsible of the appearance of several unphysical oscillations leading to the non-556 

convergence of the nonlinear flow-transport model. These difficulties are avoided with the 557 

2D-2D DG model thanks to the incorporated advanced numerical methods (see Younes et al. 558 

(2021) for more details). As a consequence, the results of the new 1D-2D MFE model are 559 

only compared to those of the 2D-2D DG model. The final water content distribution obtained 560 

with the two models is depicted in Figure 8. Similar distributions are obtained with the two 561 

models. As expected, the infiltrated water invades the fracture network, and high water 562 

saturation is observed in almost all fracture branches (Figure 8) because of their high 563 

saturated hydraulic conductivity, which is around 2200 times higher than that of the matrix 564 

continuum. Two configurations are investigated. The first configuration corresponds to a 565 
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highly advective transport problem. In this case, all dispersivities of the matrix and the 566 

fractures are zero  0m m f

L T L     , and a small molecular diffusion occurs in both 567 

continua  6 210m f

m mD D cm s  . In the second configuration, a more significant dispersion 568 

is considered for both continua with longitudinal and transverse dispersivities in the matrix, 569 

respectively 5m

L m  , and 2m

T m  . The longitudinal dispersivity in the fractures is 570 

5f

L m  . The molecular diffusion in both continua is 5 210 cm s . For the 1D-2D model, the 571 

domain is discretized using 15400 triangles for the matrix continuum and 853 lines for the 572 

fracture branches without any constraint on the size of mesh elements next to the fractures 573 

(Figure 9a). The 2D-2D model is used on a fine mesh of 76000 elements with local mesh 574 

refinement in the fractures in order to correctly discretize the flow and transport through the 575 

fracture branches with a small aperture of 1cm (Figure 9b).  576 

577 

 578 
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Figure 9: Spatial discretization for the 1D-2D MFE (a) model (fractures are represented by 579 

mesh edges) and for the 2D-2D DG (b) model (fractures are represented by small mesh 580 

elements).  581 

Two versions of the 1D-2D MFE model are employed for the simulations: (i) the upwind 582 

scheme described above and (ii) a centered scheme where no upwinding is used for the 583 

advection operator in the matrix nor in the fractures. The results of Figure 10 show that the 584 

centered scheme provides similar results to the upwind scheme in the case of high dispersion 585 

(Figures 10d and 10e). However, in the case of advection-dominated transport, the centered 586 

scheme fails to provide accurate results and generates strong unphysical concentrations both 587 

in the matrix and in the fracture continuum (Figure 10b). The results of the upwind 1D-2D 588 

MFE model are exempted from unphysical oscillations (negative concentration are 589 

completely avoided) for both advection dominated and advection-dispersion configurations 590 

which demonstrates the robustness of the developed upwind 1D-2D MFE scheme. 591 

Furthermore, the solution of the upwind 1D-2D MFE model is in good agreement with the 592 

solution of the 2D-2D DG model both in the case of advection-dominated transport (Figure 593 

10a vs 10c) and in the case of advection-dispersion transport (Figure 10d vs. 10f).  594 

The advantage of using a high-order time discretization scheme is investgated by comparison 595 

against the first-order (conventional) scheme. The simulation using the upwind 1D-2D MFE 596 

model with a first-order time discretization scheme requires 20902 time steps and needs 597 

6566s, whereas the high-order scheme requires only 3401 time steps and needs 375s. Thus,  598 

the high-order method is around four times faster than the first order method. Concerning the 599 

efficiency of the 1D-2D approach in comparison to the 2D-2D approach, the 2D-2D DG 600 

model required 5259s for the whole simulation, whereas the new 1D-2D MFE model requires 601 

only 375s. Thus, the new 1D-2D MFE model is around 15 times more efficient than the 2D-602 
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2D DG model, which highlights the great benefit of robust and accurate 1D-2D models to 603 

simulate flow and transport processes in unsaturated and saturated fractured porous media.  604 

 605 
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Figure 10: Infiltration of contaminated water in a fractured initially dry soil: Results of the upwind 1D-2D MFE model, the centered 1D-2D 607 

MFE model and the 2D-2D DG model in the case of advection dominated transport  6 20 and 10m m f m f

L T L m mD D cm s         and in the 608 

case of advection-dispersion transport  5 25 2 and 10m f m m f

L L T m mm, m, D D cm s        . 609 
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 610 

5. Conclusion  611 

A new model has been developed for nonlinear flow and transport in unsaturated fractured 612 

porous media with implicit matrix-fracture and fracture-fracture fluid and contaminant 613 

exchanges. The model is based on the DFM approach, which describes fractures and matrix 614 

explicitly. Cross-flow equilibrium is assumed only across the fractures thanks to the MFE 615 

method which has been employed for the full spatial discretization of the flow and transport in 616 

both the matrix and the fracture continua. The MFE method avoids the constraints on the 617 

mesh size next to the fractures and allows to approximate the matrix-fracture and fracture-618 

fracture exchange without any transfer functions. An upwind scheme is employed to avoid 619 

unphysical oscillations in the case of advection dominant transport. The time integration is 620 

performed with variable high-order methods via the MOL. An efficient automatic time-621 

stepping scheme is used to improve the computational efficiency while maintaining accuracy 622 

of the nonlinear solver.  623 

Three test problems dealing with flow and mass transport in saturated and unsaturated 624 

fractured porous media have been simulated to investigate the validity and robustness of the 625 

new 1D-2D MFE model. The first test case deals with the fractured quarter-five-spot problem 626 

and concerns flow and transport in a saturated porous medium involving a single fracture. The 627 

results of this test case with the 1D-2D MFE model were similar to those of the 1D-2D FE 628 

Comsol model and that of the 2D-2D DG model, which demonstrates the validity of the new 629 

model to simulate flow and transport in fractured saturated porous media. 630 

The second test case deals with flow and transport in an unsaturated-saturated porous 631 

medium, including a single inclined fracture. This test case has been simulated with the 1D-632 

2D MFE model as well as with the 2D-2D DG model and the 2D-2D FE model of Comsol 633 
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since the 1D-2D FE model of Comsol cannot treat unsaturated flow in fractures. A very good 634 

agreement is obtained between the three models for both the volumetric water content and the 635 

concentration contours, which demonstrates the validity of the new model for unsaturated 636 

fractured porous media.  637 

The last test case is a challenging problem dealing with flow and transport in an initially dry 638 

soil containing a fracture network. For this problem, the 2D-2D FE Comsol model 639 

encountered several convergence issues because of the initial high dry soil conditions. The 640 

problem has been simulated using the 1D-2D MFE model using upwind and centered 641 

schemes. The results show that both schemes yield accurate results in the case of high 642 

dispersion. However, in the case of advection-dominated transport, only the upwind scheme 643 

provides stable results. The solution of the upwind 1D-2D MFE model is in good agreement 644 

with the solution of the 2D-2D DG model both in the case of advection-dominated transport 645 

and in the case of advection-dispersion transport.  646 

The new 1D-2D MFE model is much more efficient than the 2D-2D DG model. The new 647 

model allows a speedup of around 15, which confirms the usefulness of efficient and accurate 648 

models based on the DFM approach for the simulation of flow and transport in fractured 649 

porous media. 650 

 651 

 652 

 653 

654 
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