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A fully mixed finite element (MFE) model is developed for nonlinear flow and transport in unsaturated fractured porous media with matrix-fracture and fracture-fracture fluid and mass exchanges. The model is based on the discrete fracture matrix (DFM) approach and assumes cross-flow equilibrium in the fractures. The MFE method is employed for the spatial discretization of both flow and transport on the 2D-matrix elements as well as on the 1Dfracture elements. An upwind scheme is employed to avoid unphysical oscillations in the case of advection dominant transport. The temporal discretization is performed using high-order time integration methods and efficient automatic time-stepping schemes via the MOL. Two test problems dealing with flow and mass transport in saturated and unsaturated fractured porous media are simulated to show the validity of the new model by comparison against (i) a 1D-2D Comsol finite element model and (ii) a 2D-2D Discontinuous Galerkin (DG) model where both fractures and matrix continua are discretized with small 2D mesh elements. The robustness and efficiency of the developed 1D-2D MFE model are then investigated for a challenging problem dealing with infiltration of contaminated water into an initially dry soil involving a fracture network. The new model yields stable results for advection-dominated and advection-dispersion transport configurations. Further, the results of the 1D-2D MFE model are in very good agreement with those of the 2D-2D DG model for both configurations. The simulation of infiltration of contaminated water into a dry fractured soil shows that the 1D-2D MFE model is within 15 times more efficient than the 2D-2D DG model, which confirms the high benefit of using robust and efficient DFM models for the simulation of flow and transport in fractured porous media.

Introduction

Flow and transport in fractured porous media are important in many applications such as water resource management [START_REF] Wireman | EPA update: Characterization and management of ground water resources in fractured-rock hydrogeologic settings[END_REF][START_REF] Kavouri | A coupled groundwater-flow-modelling and vulnerability-mapping methodology for karstic terrain management[END_REF], contaminant transport [START_REF] Berkowitz | Characterizing flow and transport in fractured geological media: a review[END_REF][START_REF] Brutz | Coarse-scale particle tracking approaches for contaminant transport in fractured rock[END_REF]Rajaram 2017, Klammler et al. 2016), nuclear waste management [START_REF] Follin | A transmissivity model for deformation zones in fracture crystalline rock and its possible correlation to in situ stress at the proposed high-level nuclear waste repository site at Forsmark, Sweden[END_REF]Stigsson 2014, Mattila and[START_REF] Mattila | Stress-controlled fluid flow in fractures at the site of a potential nuclear waste repository[END_REF] and oil and gas production [START_REF] Li | A multi-continuum multiple flow mechanism simulator for unconventional oil and gas recovery[END_REF][START_REF] Shen | Numerical simulation of gas and water flow mechanism in hydraulically fractured shale gas reservoirs[END_REF].

The flow and transport processes in fractured porous media can be significantly affected by the characteristics of the fractures, such as location, size, orientation, and aperture. The fractures can be empty, or contain a filling material [START_REF] Berre | Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches[END_REF]. In this work, the fractures are considered filled with a porous medium with different properties from the porous matrix, as in Khoobor et al. (2020). Two approaches are commonly used for modeling flow in fractured porous media [START_REF] Berre | Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches[END_REF]. The first approach is based on an implicit representation of the fractures and includes both single-continuum and multi-continuum models. In single-continuum models, the fractures are taken into account by calculating an equivalent permeability of the porous medium, which depends on the properties of the fractures and the fracture network [START_REF] Durlofsky | Numerical calculation of equivalent grid block permeability tensors for heterogenous porous media[END_REF][START_REF] Liu | Review:Mathematical expressions for estimating equivalent permeability of rock fracture networks[END_REF]. In multi-continuum models, the fractured porous medium is represented by two or more superimposed media with their own flow and/or transport equations. Among these, the well-known dual porosity model which considers superposition of a low permeability continuum representing the matrix with a high permeability continuum representing the fractures [START_REF] Jourde | Flow behavior in a dual fracture network[END_REF][START_REF] Kordilla | Simulation of saturated and unsaturated flow in karst systems at catchment scale using a double continuum approach[END_REF]. The two continua are then linked by a linear exchange term. More sophisticated multicontinuum models have been developed for aquifers with high heterogeneities, such as karst aquifers, to include different levels of porosities and cavities [START_REF] Kuhlman | Multiporosity flow in fractured low-permeability rocks[END_REF][START_REF] Wu | A triple-continuum approach for modeling flow and transport processes in fractured rock[END_REF].

The second approach uses on an explicit representation of the fractures. Among this approach, the discrete fracture network (DFN) model. With DFN, the geometry and properties of discrete fractures are explicitly incorporated as a central component controlling flow and transport. Discrete fracture matrix (DFM) models consider that flow and transport processes occur through both, the porous matrix and the explicitly represented fractures. As a consequence, the DFM model is more appropriate for handling fractures in a permeable porous medium [START_REF] Berre | Flow in Fractured Porous Media: A Review of Conceptual Models and Discretization Approaches[END_REF]. Considering that the aperture of the fractures is small as compared to the matrix scale, the main idea of DFM is to use the cross-flow equilibrium concept across the fractures [START_REF] Noorishad | An upstream finite element method for solution of transient transport equation in fractured porous media[END_REF][START_REF] Baca | Modeling fluid flow in frac tured porous rock masses by finite element techniques[END_REF][START_REF] Granet | A single phase flow simulation of fractured reservoir using a discrete representation of fractures[END_REF][START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF]. As a consequence, the fractures can be discretized with elements of co-dimension one with respect to the dimension of the surrounding matrix (Flemish et al., 2018;[START_REF] Martin | Modeling fractures and barriers as interfaces for flow in porous media[END_REF], such as 1D fracture elements with 2D matrix elements. This simplification makes DFM models much more efficient than the single porosity 2D-2D model, where 2D elements are used for both matrix and fracture continua. Note that the applicability of the 2D-2D models is often hampered by their expansive computational cost since they require very fine mesh elements to correctly discretize the fractures with small apertures. [START_REF] Hoteit | Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media[END_REF]2006) employed DFM models assuming cross-flow equilibrium between the fractures and the adjacent matrix gridcells by imposing the pressure at a fracture and at the adjacent gridcells to be equal. Although efficient, this assumption still requires small mesh elements next to the fractures [START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF]. To avoid this constraint, [START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF] proposed solving the flow equation with the hybrid formulation of the mixed finite element (MFE) method. This formulation has the pressure at the gridcell interfaces as degrees of freedom (DOF), and hence, the cross-flow equilibrium can be directly assumed across the fractures [START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF]. In this way, the matrix pressure at an element edge and the pressure at the fracture, which coincides with that edge, are assumed to be equal. As a consequence, no constraints are required for the mesh discretization near the fractures [START_REF] Hoteit | An efficient numerical model for incompressible two-phase flow in fractured media[END_REF]. This powerful feature is extended in this work by developing a fully MFE model for both unsaturated flow and transport in the porous matrix and in the fracture continuum.

The MFE [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF][START_REF] Chavent | Mathematical models and finite elements for reservoir simulation[END_REF] is a robust numerical method for solving diffusion problems, which has recently received attention in geosciences. Indeed, with MFEs, the flux and the pressure unknowns are approximated simultaneously. The MFE method ensures local mass balance and can easily handle general unstructured meshes [START_REF] Younes | Mixed finite element for solving 2D diffusion-type equations[END_REF]. Further, it yields an accurate velocity field in highly heterogeneous and anisotropic media [START_REF] Durlofsky | Accuracy of mixed and control volume finite element approximations to darcy velocity and related quantities[END_REF]. The hybridization procedure of the MFE method allows improving its efficiency by reducing the total number of unknowns and producing a final system with a positive symmetric definite matrix [START_REF] Chavent | Mathematical models and finite elements for reservoir simulation[END_REF]. The unknowns, in this case, are the traces of the variable at the edges.

A lumped formulation of the MFE method has been developed by [START_REF] Younes | A new mass lumping scheme for the mixed hybrid finite element method[END_REF] to improve the monotonicity of the solution and reduce the unphysical oscillations observed with transient problems. [START_REF] Belfort | An efficient Lumped Mixed Hybrid Finite Element Formulation for variably saturated groundwater flow[END_REF] showed that the lumped formulation is more efficient and more robust than the standard one for the simulation of water infiltration into initially dry soils. Further, contrarily to the standard MFE method, the lumped formulation maintains the time derivative continuous and thus, allows employment of high-order time integration methods via the method of lines (MOL), which can be very efficient for solving nonlinear problems (Fahs et al., 2009 and[START_REF] Younes | Solving density driven flow problems with efficient spatial discretizations and higher-order time integration methods[END_REF].

Although the MFE method is well adapted for diffusion type equations, when applied for the advection-dispersion transport equation, the solution can exhibit strong unphysical oscillations because of the hyperbolic nature of the advection operator. Therefore, the main objective of this work is to develop a stable MFE model for unsaturated flow and mass transport through both the 2D-matrix and the 1D-fracture elements. Both fluid and contaminant matrix-fracture and fracture-fracture exchanges are implicitly taken into account, without using any transfer functions, even for the case of several intersecting fractures. To avoid instabilities caused by the hyperbolic advection term, we use a robust monotonic upwind MFE scheme where the traces of concentration at edges are upwinded depending on the direction of the local velocity. An implicit scheme is used for the time discretization of the flow and transport equations. This alleviates restriction on the size of the time step from the CFL condition of explicit schemes. For the sake of brevity, the lumped hybrid MFE method employed in this work will also be denoted MFE.

Modeling flow and transport in unsaturated fractured porous media is likely to be highly CPU consuming due to (i) the strongly nonlinear Richards flow equation (RE), (ii) the high contrast of permeability between the conductive fractures and the low permeable matrix and (iii) the presence of sharp wetting and/or contaminant fronts. These difficulties make the commonly used, first-order backward Euler scheme combined with the heuristic time step management, inappropriate to obtain accurate solutions in a reasonable CPU time. To overcome these difficulties, time integration is performed using high-order time integration methods via the Method of Lines (MOL). The MOL allows versatile time step length and order of the temporal discretization to reduce the computational time while maintaining accuracy. The MOL was shown to be effective for the solution of the RE in the unsaturated zone (Fahs et al, 2009;Khoobor et al., 2020) and is used hereafter for the first time for coupled flow and transport through unsaturated fractured porous media. This article is structured as follows. In section 2, we recall the nonlinear mathematical models governing flow and advection-dispersion transport processes in unsaturated porous media. In section 3, we develop a robust fully MFE formulation for the solution of flow and transport both in the porous matrix and in the fracture continuum. In section 4, numerical experiments are performed for flow and transport in saturated and unsaturated fractured porous media to investigate the validity and robustness of the new 1D-2D MFE model. Some conclusions are given in the last section of the article.

Governing Equations

The porous matrix is assumed permeable, and the fractures are infilled by a porous medium whose physical characteristics are different from those of the porous matrix. Flow in variably saturated porous media, both in the matrix and through the fractures, is assumed to be ruled by the mass conservation of the fluid:

  0 S S H c h S tt              q (1)
and the Darcy-Buckingham law:

r kH    qK (2)
where  

c h h     is the specific moisture capacity [L -1 ], S S is the specific mass storativity related to head changes [L -1 ],  is the current water content [L 3 L -3 ], S  is the saturated water content [L 3 L -3 ], H h y  is the freshwater head [L], h is the pressure head [L], y is the upward vertical coordinate [L], t is the time [T], q is the Darcy velocity [LT -1 ], r k is the relative conductivity [-], g   
Kk is the hydraulic conductivity tensor [LT -1 ],  is the fluid density [ML -3 ], g is the gravity acceleration [LT -2 ],  is the fluid dynamic viscosity [ML -1 T - 1 ] and k is the permeability of the rock matrix as a tensor, or that of the fracture, as a scalar [L 2 ].

The transport of contaminants in the unsaturated porous matrix and through the unsaturated fractures is ruled by the advection-dispersion equation:

      0 C . C . C t         qD (3)
where C [-] is the relative concentration [-] and D is the dispersion tensor given by:  

D I q q q q I m L T T D/         (4) 
In which The standard van Genuchten [START_REF] Van Genuchten | A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils[END_REF] model is used for the relationship between water content and pressure head:

    1 0 1 1 0 m n r e sr h h h S h                 (5)
where  [L -1 ] and n [-] are the van Genuchten parameters, 11 mn  , The conductivity-saturation relationship is analytically expressed from the Mualem [START_REF] Mualem | A new model for predicting the hydraulic conductivity of unsaturated porous media[END_REF] 

The nonlinear system (1)-( 6) is solved numerically on (i) unstructured triangular 2D elements for the porous matrix and (ii) linear 1D elements for fracture branches. All hydraulic and transport parameters in the system ( 1)-( 6) are defined elementwise, and therefore, they can be different for each matrix or fracture element.

The fully MFE numerical model

In this session, we recall the main stages for developing a robust MFE formulation for the solution of the flow and transport equations both in the porous matrix and in the fractures.

Discretization of the flow equation in the porous matrix

With the MFE method, the velocity q inside each triangular element E is approximated using the linear Raviart-Thomas basis functions (see Figure 1):

3 1 EE jj j Q    qw (7)
where E j Q is the flux across the edge j E
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E j E j E j xx E yy        w is the Raviart-
Thomas basis functions [START_REF] Raviart | A mixed finite element method for second order elliptic problems[END_REF] with   EE jj

x , y the coordinates of the node j faced to the edge Using E i w as a test function, the variational formulation of the Darcy law Eq. ( 2) writes  
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where E j η is the outward unit normal vector to the edge j E .

Defining

E B the elemental matrix of terms   11 E ,E ,E i , j r j E B k .    EE i
K w w , we obtain (see [START_REF] Younes | From mixed finite elements to finite volumes for elliptic PDE in 2 and 3 dimensions[END_REF] for details)

3 3 3 3 1 3 3 3 3 48 3 3 3 3 ij ik jk ij ik jk ij ik jk E ij ik jk ij ik jk ij ik jk ij ik jk ij ik jk ij ik jk E                             B (9) with   1 11 T ,E ,E ij ij r ij k    rr K and ij r
is the edge vector from the node i to the node j .

Using Eq. ( 7) and properties of E i w , the Darcy Eq. ( 8) becomes

11 i EE i , j j j i EE E Ei B Q H H EE H TH       (10)
where E H is the mean head at the element E and

E i
TH is the mean head at the edge i E  .

Inverting Eq. ( 10) provides the water flux

E i Q across the edge i E  as 1 E E ,E E i i E i , j j j Q H B TH     (11)
where

1 E ,E i i , j j B     .
The lumped formulation of MFE is then used in the following steps  In a first step, integration of the mass conservation Eq. ( 1) over the element E , assuming a steady-state flow   0 t     and substituting Eq. (11), yields

E E i Ei E i H TH     (12)
where

EE i i    Hence, the steady-state flux E i Q across the edge i E  writes 1 EE E ij ,E E i , j j E i j Q B TH          (13)  In a second step, a lumped region i R is constructed around each edge i E  by joining the two nodes of i E  to the element centers E x and E'
x of the elements E and E sharing the edge i (Figure 2).  In a third step, the integration of the transient mass conservation Eq. ( 1) over the lumped region i R yields (see Figure 2 for notations):

E ij Q j k k E  E k Q i k E  E ik Q j E  E j Q E i Q l ' E lj Q ' E lk Q
0 33 EE E E E' E' il E E' ij ik lj lk E E' dTH dTH r r Q Q Q Q dt dt       (14) 
where

    E E S E S r c h S h   is the accumulation coefficient in Richards'
equation and E ij Q the interior flux, evaluated using the RT0 approximation of the velocity inside the element E given by Eq. ( 7), which yields

  1 3 E E E ij j i Q Q Q  (15)
Substituting Eq. ( 13) and Eq. ( 15) into Eq. ( 14), allows to write the mass conservation Eq. ( 14) over the lumping regions i R assigned to the edge i as a continuity of fluxes between two adjacent elements E and ' E sharing the edge i as

follows 1 0 3 E E' ii EE E ij E ,E E i i i , j j E E j QQ E dTH Q B TH r dt                  (16)
The flow system is formed by Eq. ( 16) for all the mesh edges which do not coincide with a fracture and solved for the mean head at edges i TH by imposing continuity of the head at the interface of the elements  

EE i i i TH TH TH  
. The obtained system is highly nonlinear since the local matrix B , and the accumulation term r depend on the pressure head. In the case of a Dirichlet condition with a prescribed head imp H at the boundary edge i, Eq. ( 16) is replaced 16) becomes 0

E i imp QQ  .
Note that, contrarily to the standard MFE method, the time derivative remains continuous in Eq. ( 16), which facilitates employment of high-order methods for the time discretization.

Spatial discretization of the flow in the presence of a fracture

Let's consider a fracture k of length k and aperture k e . The fracture k coincides with the edge i shared by the adjacent matrix-elements E and E (see Figure 3). The flow through the fracture occurs between it's two nodes of pressures The one-dimensional flow through the fracture k is discretized with the MFE method, which assumes a linear variation of the velocity k q inside k , The variational formulation of the Darcy law Eq. ( 2) on the fracture k writes

1 1 2 2 k k k k k q q w q w  ( 
k k k E E k k k i i dTH e r q q Q Q dt       ( 
  00 K kk k k k k k k j i j r f i j q w w k H w      (19) 
Integration by part leads to

  0 K k kk rf k k k k k j i j i j k k q w w TH NH e    (20)
where k i NH corresponds to the head at the node i located at the extremity of the fracture k .

Using numerical integration, based on the trapezoidal rule, for the calculation of the left term (see [START_REF] Koohbor | An Advanced Discrete Fracture Model for Variably Saturated Flow in Fractured Porous Media[END_REF] yields

  2 k f k k k k i k r i k K q e k TH NH  (21) 
The cross-flow equilibrium assumption is then employed by prescribing equality of the matrix edge head and the fracture head  

E E k ii TH TH TH  .
Thus, substituting Eq. ( 21) and Eq.

(16) into Eq. ( 18) yields
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To close the system of Eq. ( 22), the mass conservation is written at each intersection of fracture branches. At the node i shared by k fracture branches, we impose

0 k i k q   (23)
Using Eq. ( 21), we obtain

  2 0 k f k k k k r i k k K e k TH NH   (24)
Finally, the global flow system is formed by Eq. ( 16) for all the edges which do not coincide with a fracture and by Eq. ( 22) else. This system is supplemented by Eq. ( 24) for all the nodes of the fracture branches and assuming the continuity of the head  

k ii NH NH 
at the node i, intersection of k fracture branches. Therefore, the final flow system has the heads at the edges of the mesh plus the heads at the nodes of the fracture branches as unknowns.

Discretization of the advection-dispersion transport equation in the porous matrix

The transport of contaminants in the unsaturated porous matrix described by Eq. (3) writes:

  0 C C . C . C tt                q + q D (25)
Using the fluid mass conservation Eq. ( 1), the transport equation can be written in the following form:

0 C C. t C                 qq qD (26)
The MFE method is now used for the spatial discretization of the transport equation. To this aim, the dispersion vector q is approximated inside each triangular element E with the Raviart Thomas vectorial basis functions as:

EE jj j Q qw   (27) where j EE j d j E Q.    q η is the dispersive flux across the edge j E  of the element E .
The variational formulation of Eq. ( 26) is written as

  1 E EE . C. EE ii D q w w      (28) 
which can take the following form

E E E i , j j E i j B Q C TC   (29)
where E C is the mean concentration at the element E and

E i
TC is the trace of concentration at the edge i E  of the element E and B is the elemental matrix of terms

  1 E i , j E j E B.    EE i
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Inverting Eq. ( 29) yields the dispersive flux across

i E  as   1 E ,E E i i , j E j j Q C TC    B (30)
An upwind lumped MFE scheme is used to avoid unphysical oscillations caused by the hyperbolic advection part of the transport equation. The main steps of this scheme are as follows:

 In a first step, both advective and transient terms are removed from the first equation in the system of Eq. ( 26), yielding a steady-state dispersive flux E i Q expressed by (similarly to Eq. ( 12)):

1

EE ij E E ,E E i j i , j j E jj Q TC B TC      (31) with 1, , EE i i j j B     and EE i i    .
 In a second step, the integration of the advection-dispersion equation (26) over the lumped region i R writes (see Figure 2):

    0 3 E E E E E E E E E i E ij ij ik ik ij ik i i E TC Q TC Q TC Q Q TC Q t               (32) 
where

  1 3 E E E ij j i Q Q Q 
is the interior flux between edges i and j (see Eq. ( 15)).

The interior concentration

E ij
TC is calculated using the upstream edge concentration as:

 

1

E E E E E ij ij i ij j TC TC TC     (33) with 1 E ij   for an outward flux   0 E ij Q  , else 0 E ij   .
Thus, if we note

E i
Qt the total (advection + dispersion) flux leaving the element E from the edge i, Eq. ( 32) can be rewritten as the continuity of the total flux between two adjacent elements E and ' E sharing the edge i as The dispersive flux DC    q through the fracture is approximated using the MFE method.

      1 0 11 3 E E' ii EE E E ij ,E E E E E E E E E E i i , j j ij ij i j ik ik i k E i E j Qt Qt E TC Qt B TC Q TC TC Q TC TC t                               (34)

Spatial discretization of the advection-dispersion transport equation through a fracture

Similarly to Eq. ( 21), the dispersive flux k i q at the extremity The integration of the mass conservation equation over the fracture k which coincides with the edge i shared by the two matrix elements E and E', writes

  0 0 0 0 0 k k k k EE k k k k k ii C e e . C e C . e . Qt Qt t                  q q q (40)
The calculation of the different integrals yields

  1 1 2 2 1 2 1 2 k EE k k , * k k , * k k k k k k k k ii TC e q C q C q q TC q q Qt Qt t             (41)
where k , * i C is the concentration at the node i of the fracture k given by  

1 k , * k k k i ,out i i i ,in i C NC NC     (42) in which kk i ,in NC TC 
is the interior concentration and the parameter k i  is used to select the upstream concentration, it depends on the sign of k i q as 10 00

k k i i k i if q if q        (43)
Hence, in the case of an outflow at the node i of k, the nodal concentration is

k , * k i C TC  ,
whereas, in the case of an inflow at the node i of the fracture k, the nodal concentration is i ,out NC .

To calculate i ,out NC , we use the contaminant conservation at the node i, shared by l fractures, which writes

1 0 l k k , * ii k qC    (44)
Using Eq. ( 42) and Eq. ( 43), we obtain

  1 1 1 l k k k ii k i ,out l kk ii k q TC NC q         (45)
Note that the number of unknowns for the transport system to be solved does not depend on the number of fractures in the domain. Indeed, the final transport system has the concentration at edges as unknowns and is constructed as follows  For all edges i sharing two matrix elements E and E' such that i does not coincide with a fracture k, Eq. ( 34) is solved for the unknown edge concentration  For all edges i sharing two matrix elements E and E' such that i coincides with a fracture k, Eq. ( 41), in which we substitute Eq. ( 34), Eq. ( 39), Eq. ( 42), Eq. ( 43) and

Eq. ( 45), is solved for the unknown edge concentration i TC assuming that the concentration at the edge matrix and at the fracture are equal

  E E' k i i i TC TC TC TC    .

The temporal discretization of the nonlinear flow-transport system

The final nonlinear flow-transport system, formed by Eq. ( 16), Eq. ( 22), and Eq. ( 24) for the flow and by Eq. ( 34) and Eq. ( 41) for the transport, is written in a single implicit system of ordinary differential equations (ODEs) of the general form

  0 F t, ,   yy ( 46 
)
Where

      1 1 1 i i i i ,..,nb _ edges i ,..,nb _ nodefractures i ,..,nb _ edges TH , NH , TC       y
is the vector of unknowns formed by (i) the head traces at all the edges of the mesh (except boundary edges with prescribed head), (ii) the head at all the nodes corresponding to the extremity of fracture branches, and (iii) the concentration traces at all edges of the mesh (except boundary edges with prescribed concentration). Thus, the number of unknowns for the flow-transport system is approximately twice the number of edges plus the number of fractures.

For the time discretization, we use high-order methods, which are known to be more efficient and require less effort in the nonlinear solver compared to the lowest order methods [START_REF] Farthing | Mixed finite element methods and higherorder temporal approximations[END_REF]. An efficient automatic time-stepping scheme is employed to improve the computational efficiency while maintaining accuracy [START_REF] Tocci | Accurate and economical solution of the pressure-head form of Richards' equation by the method of lines[END_REF][START_REF] Kavetski | Adaptative backward Euler time stepping with truncation error control for numerical modelling of unsaturated fluid flow[END_REF]. The time integration is performed with the DASPK time solver, which uses the preconditioned Krylov iterative method to solve the linear systems arising at each time step.

DASPK is based on the Fixed Leading Coefficient Backward Difference Formulas (FLCBDF), which has good stability properties and is well adapted for time integration of stiff problems [START_REF] Kees | Higher order time integration methods for two-phase flow[END_REF]. The nonlinear problem is linearized using the Newton method with a numerical approximation of the Jacobian matrix. To improve efficiency, the Jacobian is reused for several time steps and is calculated by the solver only when necessary.

Furthermore, the column grouping technique [START_REF] Hindmarsh | Large ordinary differential equation systems and software[END_REF] is employed to reduce the computational time for the evaluation of the Jacobian matrix by perturbing variables by group, knowing the structure and sparsity of the Jacobian.

Fractured saturated quarter-five-spot problem

We consider a quadratic 2D domain (quarter-five-spot configuration) of size     0 1m 0 1m ,,  with impermeable walls except at the lower-left and the upper-right corners. The source at the lower-left corner is represented by a boundary flux

3 10 m / s inj q   at         0 0 03m 0 0 0 0 03m x . y x y .         
. The sink at the right-upper corner is represented by a Dirichlet boundary condition with a zero head at

        0 97m 1m 1 1 0 97m 1m . x y x . y         
. The porous medium is formed by a homogeneous material with a diagonal fracture of 1mm aperture, located between   0 2m,0.2m .

and   0 8m,0.8m .

. The hydraulic and transport properties of the porous matrix and the fracture continuum are depicted in Table 1. The initial conditions correspond to a domain free from pollutants. The simulation is performed for a time of 3456s. Table 1: Hydraulic and transport parameters for the fractured saturated quarter-five-spot problem. The problem is simulated with the new 1D-2D MFE model as well as with the 1D-2D Comsol FE model and the 2D-2D DG model of [START_REF] Younes | Modeling variable-density flow in saturated-unsaturated porous media: An advanced numerical model[END_REF]. In the latter, the hydraulic and transport parameters used for the fractures in the 1D-2D approach are attributed to the 2D triangular elements located inside the fractures. The 2D-2D DG model is used with a fine mesh with local mesh refinement around fractures. The three models were used with the MOL and a variable high-order (up to 5) time integration BDF method. Figure 5 shows that the three models yield almost similar concentration distributions, which demonstrates the validity of the developed 1D-2D MFE model for simulating flow and transport in fractured saturated porous media.

Infiltration of contaminated water in a fractured unsaturated-saturated porous medium.

This test case, inspired by the laboratory experiments of [START_REF] Vauclin | Experimental and numerical study of a transient, two-dimensional unsaturated-saturated water table recharge problem[END_REF], was proposed by [START_REF] Koohbor | An Advanced Discrete Fracture Model for Variably Saturated Flow in Fractured Porous Media[END_REF] to investigate unsaturated flow in fractured porous media. The problem is extended hereafter to tackle both flow and transport in the case of a homogeneous porous medium, including a single inclined fracture. The domain has a rectangular shape of 300cm200 cm with a water table located at 65cm from the bottom. Initial conditions correspond to a hydrostatic pressure distribution and a zero concentration in the domain.

Boundary conditions are as follows: contaminated water is infiltrated under a constant flux of 335cm/day over the first 50cm of the soil surface. The lower 65cm of the right side of the domain has a Dirichlet boundary condition with a fixed head of 65cm. A no-flow boundary is prescribed for the rest of the boundaries. The homogeneous porous medium includes an inclined fracture of 1cm aperture and 2m length, located near the infiltration zone. The hydraulic and transport parameters are depicted in Table 2. Figure 6 depicts the water content and the concentration distributions at t = 1000s obtained with the three models. A good agreement is observed between the results of the three models for the volumetric water content as well as for the concentration contours (Figure 6). 
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Infiltration of contaminated water in a fractured dry soil.

Simulation of the infiltration of contaminated water into initially dry soils is known to be challenging because of the presence of sharp wetting fronts [START_REF] Zha | A modified Picard iteration scheme for overcoming numerical difficulties of simulating infiltration into dry soil[END_REF]. Sharp fronts are often the origin of unphysical oscillations, which can cause several convergence issues. To investigate the efficiency of the developed model for such situations, we simulate an infiltration problem, adapted from [START_REF] Koohbor | An Advanced Discrete Fracture Model for Variably Saturated Flow in Fractured Porous Media[END_REF]. The fractured porous medium has a rectangular shape of 350cm in length and 200cm in height (Figure 8a). Left and right vertical boundaries are impermeable. A pressure head of -1000 cm is imposed at the bottom of the . Initial conditions correspond to a highly dry soil with a head of -1000cm in both matrix and fracture continua. All fractures have an aperture of 1cm. The hydraulic parameters of the two continua are depicted in Table 3. . For the 1D-2D model, the domain is discretized using 15400 triangles for the matrix continuum and 853 lines for the fracture branches without any constraint on the size of mesh elements next to the fractures (Figure 9a). The 2D-2D model is used on a fine mesh of 76000 elements with local mesh refinement in the fractures in order to correctly discretize the flow and transport through the fracture branches with a small aperture of 1cm (Figure 9b). Two versions of the 1D-2D MFE model are employed for the simulations: (i) the upwind scheme described above and (ii) a centered scheme where no upwinding is used for the advection operator in the matrix nor in the fractures. The results of Figure 10 show that the centered scheme provides similar results to the upwind scheme in the case of high dispersion (Figures 10d and10e). However, in the case of advection-dominated transport, the centered scheme fails to provide accurate results and generates strong unphysical concentrations both in the matrix and in the fracture continuum (Figure 10b). The results of the upwind 1D-2D MFE model are exempted from unphysical oscillations (negative concentration are completely avoided) for both advection dominated and advection-dispersion configurations which demonstrates the robustness of the developed upwind 1D-2D MFE scheme.

Furthermore, the solution of the upwind 1D-2D MFE model is in good agreement with the solution of the 2D-2D DG model both in the case of advection-dominated transport (Figure 10a vs 10c) and in the case of advection-dispersion transport (Figure 10d vs. 10f).

The advantage of using a high-order time discretization scheme is investgated by comparison against the first-order (conventional) scheme. The simulation using the upwind 1D-2D MFE model with a first-order time discretization scheme requires 20902 time steps and needs 6566s, whereas the high-order scheme requires only 3401 time steps and needs 375s. Thus, the high-order method is around four times faster than the first order method. Concerning the efficiency of the 1D-2D approach in comparison to the 2D-2D approach, the 2D- 

Conclusion

A new model has been developed for nonlinear flow and transport in unsaturated fractured porous media with implicit matrix-fracture and fracture-fracture fluid and contaminant exchanges. The model is based on the DFM approach, which describes fractures and matrix explicitly. Cross-flow equilibrium is assumed only across the fractures thanks to the MFE method which has been employed for the full spatial discretization of the flow and transport in both the matrix and the fracture continua. The MFE method avoids the constraints on the mesh size next to the fractures and allows to approximate the matrix-fracture and fracturefracture exchange without any transfer functions. An upwind scheme is employed to avoid unphysical oscillations in the case of advection dominant transport. The time integration is performed with variable high-order methods via the MOL. An efficient automatic timestepping scheme is used to improve the computational efficiency while maintaining accuracy of the nonlinear solver. 
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 1 Figure 1: RT0 vectorial basis functions and orientation of fluxes for a 2D triangular element.
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 2 Figure 2: The lumping region
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 3 Figure 3: Schematic representation of the one-dimensional fracture k , which coincides with
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  are the one-dimensional velocity interpolation functions using the local coordinate  0, k x .The mass conservation Eq. (1) integrated over the fracture k of length k and aperture

  the water fluxes from the element E and E' representing matrixfracture exchange.
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 4 Figure 4: Intersection of multiple fracture branches.
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 5 Figure 5: Concentration distribution for the fractured saturated quarter-five-spot problem.
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 2 Hydraulic and transport parameters for the problem of infiltration of contaminated water into a fractured unsaturated-saturated porous medium. The simulation of this problem cannot be performed with the 1D-2D Comsol FE model since Comsol cannot treat unsaturated flow in the fractures. The problem is simulated with the 1D-2D MFE model as well as with the 2D-2D DG model and the 2D-2D FE model of Comsol.
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 67 Figure 6: Water content (a) and concentration (b) distributions for the problem of infiltration
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 8 Figure 8: The problem of infiltration of contaminated water in a fractured initially dry soil:

Table 3 :

 3 Hydraulic parameters for the problem of infiltration of contaminated water in a fracture initially dry soil. The simulation of this last test case with the 2D-2D FE Comsol model encountered several convergence issues because of the initial high dry conditions. Indeed, the initial dry conditions are responsible of the appearance of several unphysical oscillations leading to the nonconvergence of the nonlinear flow-transport model. These difficulties are avoided with the 2D-2D DG model thanks to the incorporated advanced numerical methods (see Younes et al. (2021) for more details). As a consequence, the results of the new 1D-2D MFE model are only compared to those of the 2D-2D DG model. The final water content distribution obtainedwith the two models is depicted in Figure8. Similar distributions are obtained with the two models. As expected, the infiltrated water invades the fracture network, and high water saturation is observed in almost all fracture branches (Figure8) because of their high saturated hydraulic conductivity, which is around 2200 times higher than that of the matrix continuum. Two configurations are investigated. The first configuration corresponds to a highly advective transport problem. In this case, all dispersivities of the matrix and the fractures are zero   second configuration, a more significant dispersion is considered for both continua with longitudinal and transverse dispersivities in the matrix,
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 9 Figure 9: Spatial discretization for the 1D-2D MFE (a) model (fractures are represented by

Figure 10 :

 10 Figure 10: Infiltration of contaminated water in a fractured initially dry soil: Results of the upwind 1D-2D MFE model, the centered 1D-2D

  schemes. The results show that both schemes yield accurate results in the case of high

2D DG model, which highlights the great benefit of robust and accurate 1D-2D models to simulate flow and transport processes in unsaturated and saturated fractured porous media.

During calculation, the order (up to fifth order) of the time discretization and the time step size are adapted to improve efficiency while the relative and absolute convergence criteria are maintained under a fixed tolerance ( 610  in this work).

Numerical experiments

In