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Abstract 
 

In the era of open-modification search engines, more post-translational modifications than 
ever can be detected by LC-MS/MS-based proteomics. This development can switch 
proteomics research into a higher gear, as PTMs are key in many cellular pathways important 
in cell proliferation, migration, metastasis and ageing. However, despite these advances in 
modification identification, statistical methods for PTM-level quantification and differential 
analysis have yet to catch up. This absence can partly be explained by statistical challenges 
inherent to the data, such as the confounding of PTM intensities with its parent protein 
abundance.  
Therefore, we have developed msqrob2PTM, a new workflow in the msqrob2 universe 
capable of differential abundance analysis at the PTM, and at the peptidoform level. The latter 
is important for validating PTMs found as significantly differential. Indeed, as our method can 
deal with multiple PTMs per peptidoform, there is a possibility that significant PTMs stem from 
one significant peptidoform carrying another PTM, hinting that it might be the other PTM 
driving the perceived differential abundance. 
Our workflows can flag both Differential Peptidoform (PTM) Abundance (DPA) and Differential 
Peptidoform (PTM) Usage (DPU). This enables a distinction between direct assessment of 
differential abundance of peptidoforms (DPA) and differences in the relative usage of 
peptidoforms corrected for corresponding protein abundances (DPU). For DPA, we directly 
model the log2-transformed peptidoform (PTM) intensities, while for DPU, we correct for 
parent protein abundance by an intermediate normalisation step which calculates the log2-
ratio of the peptidoform (PTM) intensities to their summarized parent protein intensities. 
We demonstrated the utility and performance of msqrob2PTM by applying it to datasets with 
known ground truth, as well as to biological PTM-rich datasets. Our results show that 
msqrob2PTM is on par with, or surpassing the performance of, the current state-of-the-art 
methods. Moreover, msqrob2PTM is currently unique in providing output at the peptidoform 
level. 
 

Introduction 
 
Mass-spectrometry-based proteomics allows the identification and quantification of a myriad 
of posttranslational modifications (PTMs) which reveal additional complexity and diversity of 
the proteome. Indeed, PTMs greatly extend the number of different forms of a protein, i.e., 
proteoforms, that can be found. More importantly, these PTMs can impact protein 
functions(1–4) and are linked to a variety of diseases and developmental disorders(5–8). 
Aberrant PTM status can cause a number of detrimental effects ranging from the alteration of 
protein folding to the dysregulation of cell signalling. It is thus of great importance to study 
these PTMs in detail, not only through their correct identification but also by their correct 
quantification and subsequent statistical analysis. 
 
In recent years, there has been a significant improvement in the identification of PTMs with 
the advent of open-modification search engines such as MsFragger(9), Open-pFind(10) and 
ionbot(11). Yet, bespoke statistical methodologies for differential PTM analysis are lacking. To 
our knowledge, the only dedicated tool released at the time of writing is MSstatsPTM(12). This 
can be partly attributed to the complexity of PTM-rich data. Peptides can contain multiple 
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PTM sites, sites are not always modified and modified peptides are usually harder to detect 
than their non-modified counterparts(4). This means that enrichment methods are most often 
needed for sufficient detection, which increases technical variability and experimental 
complexity, time and cost, which in turn leads to less available replicates(13, 14). As a result, 
PTM-rich data are characterised by a high amount of missingness and variability, complicating 
statistical analysis. 
 
Moreover, the parent proteins on which the PTMs occur can also change in abundance 
regardless of the PTM. Any changes in abundance of a PTM are then confounded with changes 
in protein abundance(15). It is therefore crucial that any proposed statistical methodology for  
PTMs can take this into account(15, 16). In the field of phosphoproteomics, peptidoforms have 
been normalised to correct for protein abundance in different ways and the field has referred 
to this concept as phosphorylation (or more broadly, ptm) stoichiometry. Generally, the term 
‘phosphorylation stoichiometry’ at a particular site is defined as the ratio of the total amount 
of protein phosphorylated on the site to the total amount of protein(17, 18). Therefore, this 
ratio gives a general idea of how heavily sites are phosphorylated at a given time, but does 
not yet give insight into any (significant) changes across different conditions. 
 
Here, we introduce the concept of differential PTM abundance (DPA) and differential PTM 
usage (DPU) to enable a clear distinction between directly assessing differential abundance of 
PTMs (DPA) on the one hand, and differences in relative PTM abundance upon correction for 
the overall protein abundance (DPU), on the other hand. These terms are adapted from the 
field of genomics and transcriptomics, where differential transcript or exon usage and 
abundance is defined(19–22).  
 
Until recently, differential PTM analysis has often been limited to the adoption of statistical 
methods not specifically suited for this task, such as t-tests or ANOVA. However, large data 
sets that contain many missing values and/or few experimental replicates (as is often the case 
here) benefit greatly from more specialised statistical methods such as moderated t-tests, 
while imputation methods should be handled with care (23, 24). Moreover, often, the 
differential analysis would be limited to the peptidoform level. PTMs that occur on 
peptidoforms that carry more than one PTM can in those cases not be separated, therefore 
not reaching single PTM level (13, 25). Examples of existing packages include isobarPTM and 
PhosR. IsobarPTM (26) can perform differential abundance analysis at the peptidoform level, 
and only for labelled data. PhosR (27) focusses mainly on a diverse range of processing 
functions and downstream functional analysis of phosphorylations, such as imputation, 
pathway analysis and clustering functionalities. In terms of statistical analysis, it has a built-in 
ANOVA function. 
 
In the current state-of-the-art, MSstatsPTM, DPU is achieved through an adjustment based on 
the model estimates of a separate PTM model as well as a protein model. We argue that this 
approach is suboptimal as it fails to leverage the inherent correlation between the parent 
protein and PTMs or peptidoforms, i.e., a specific peptide with its corresponding 
modifications. Additionally, the separate modelling and adjustment process in MSstatsPTM 
can artificially amplify small differences, as is observed in the ubiquitination study later in this 
manuscript. Hence, in msqrob2PTM we employ a different normalisation strategy that directly 
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accounts for this correlation between peptidoform and protein, as has also been the case in 
phosphorylation stoichiometry studies. 
 

Additionally, we will not limit ourselves to the analysis of the PTMs or peptidoforms. Indeed, 
our method can manage the analysis of both. In many studies, each distinct PTM will likely not 
be characterized by a myriad of peptidoforms. It is therefore possible that a significant PTM 
effect can be attributed to only one or two strongly significant associated peptidoforms, which 
may be significant for another reason, i.e. a different PTM occurring on that (those) 
peptidoform(s). We think it is crucial that potential users thus do not restrict their analysis to 
the PTM alone, but also assess the individual peptidoforms that carry the specific PTM. 
 
We here present a statistical, R-based workflow, based on the msqrob2 R package(24), to carry 
out differential abundance as well as differential usage analysis at the peptidoform and PTM 
level. We apply this workflow to simulated datasets, a spike-in study, and to biological 
datasets, and use these to compare our method to MSstatsPTM. We show that our approach 
does not suffer from the artifacts that are introduced by uncoupling the within-sample 
correlation between PTM and parent protein, while maintaining good sensitivity and FDR 
control. The approach is freely available and can be consulted on 
https://github.com/statOmics/msqrob2PTMpaper 

Experimental procedures 
 

In this section, we first introduce the msqrob2 workflow for differential peptidoform/PTM 
abundance and usage analysis. Next, we introduce the datasets that were used to test and 
validate the workflow and benchmark it to MSstatsPTM.  
 

Workflow 
 

The general workflow for the differential abundance analysis on PTM and peptidoform level 
was developed in R(28) (version 4.2) and is mainly based on two R packages: msqrob2 
(https://www.bioconductor.org/packages/release/bioc/html/msqrob2.html, version 1.6.0) 
and QFeatures(29) 
(https://www.bioconductor.org/packages/release/bioc/html/QFeatures.html, version 1.8.0).  
QFeatures provides an infrastructure to store and manage mass spectrometry data across 
different levels (e.g. peptidoform and protein level) whilst keeping links between the levels 
where possible. For each preprocessing step a novel, linked assay is constructed. In this way, 
the original data is not overwritten, and preprocessed data can be traced back to its origin. 
msqrob2 is a package with updated and modernised versions of the MSqRob(24) and 
MSqRobSum(30) tools and builds upon the QFeatures class infrastructure. It provides a robust 
statistical framework for differential analysis of label-free LC-MS proteomics data to infer on 
differential abundance on the peptide (peptidoform) and/or protein level. Here, we add 
workflows that provide inference on differential abundance and usage at the PTM and 
peptidoform level. 
 
We make a distinction between differential abundance and differential usage. This is the 
difference between directly assessing differential abundance (DA) on the one hand, and 
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differences in relative abundance upon correction for the overall protein abundance (DU), on 
the other hand. Essentially, this relates to a difference in normalisation (see point 3 below). 
 
We first provide an overview of the workflow before going over each step in detail. 

1. Conversion of input data and construction of the QFeatures object 
2. Pre-processing 
3. Normalisation 
4. Peptidoform level analysis  
5. Summarisation of peptidoforms to PTM level 
6. PTM level analysis 

7. Results exploration plus visualisation 
 

1. Conversion of input data and construction of the QFeatures object 
As input data, we require the output of a quantification algorithm (in txt or csv format) that 
contains all peptidoform identifications, parent protein(s) and per sample intensities. This 
should be in wide format: each unique peptidoform should be on one line that contains (at 
least) the information on its parent protein, modification (plus location), and intensities for 
each sample. As quantitative proteomics data can be readily transformed into this format, we 
have no restrictions on search engines or quantification algorithms users want to adopt. 
Once the data are in the right format they are imported as a QFeatures object. Next, 
information on the experimental design can be added in the colData instance of the object.  
 

2. Pre-processing 
First, the peptidoform data can be filtered. Each peptidoform should have measured intensity 
values in at least two samples, or else are filtered out. Intensities are log-transformed if not 
already the case. Of course, decoys and contaminants should be removed. 
The pre-processing steps are not limited to those above, as, depending on the nature of the 
dataset and user knowledge, more filtering steps can be added. 
 

3. Normalisation 
Distinct normalisation steps should be adopted for inferring on differential abundance and 
differential usage. For DA, only median centring or mean centring can be used, e.g. via the 
normalise function from the QFeatures package. DU requires an additional normalisation to 
correct for changes occurring in the parent protein. Indeed, changes in the overall protein 
abundance between conditions can trigger the associated PTM(s) to be detected as 
differentially abundant. To infer on PTM(s) for which the effect of the treatment differs from 
that of the overall protein, we first summarise the protein intensity value per sample for each 
unique protein, e.g., via robust regression using the robustSummary function in the 
MsCoreUtils(31) R package, and we subsequently subtract it from the intensity values 
corresponding to all peptidoforms derived from that protein, i.e. 
 

𝑦𝑖,𝑝,𝑃
∗ = 𝑦𝑖,𝑝,𝑃 − 𝜇𝑖,𝑃                                                                  (1) 

 

With 𝑦𝑖,𝑝,𝑃
∗  the normalised log2-transformed intensity for peptidoform p in sample i with 

parent protein P, 𝑦𝑖,𝑝,𝑃 the log2-transformed intensity for peptidoform p in sample i with 

parent protein P before normalisation and 𝜇𝑖,𝑃 the summarised intensity for protein P in 

sample i. 
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It is possible to calculate the summarised protein intensity value directly from the PTM dataset 
itself. However, when the experiment includes both an enriched and non-enriched (global 
profiling) dataset we recommend using the non-enriched dataset to calculate the summarised 
protein values. Of note, steps one and two should also be applied to the non-enriched data. 
 

4. Peptidoform level analysis  
Before transitioning to the PTM level, it is possible to directly assess differential usage or 
expression on peptidoform level. The steps to take are exactly the same as step 6 below, but 
instead of using the PTM assay obtained in step 5, we use the normalised peptidoform assay 
obtained in step 3 as input to the msqrob function. 
This allows the user to assess associated peptidoforms underlying significant PTMs of interest. 
 

5. Summarisation of peptidoforms to PTM level 
For each unique PTM (i.e. unique protein – modification – location combination), we need a 
summarised intensity value per sample. This is done by taking a subset of the dataset with all 
peptidoforms containing a specific PTM and summarising all corresponding intensity values 
into one value per sample. When peptidoforms contain multiple PTMs, these are used 
multiple times. Here we apply robust regression using the robustSummary function in the 
MsCoreUtils(31) R package by default to summarise the peptidoform level data at the PTM-
level. In this way, we obtain an intensity assay on the PTM level. This assay can then be added 
to the existing QFeatures object. 
 

6. PTM level analysis 

We use the functionalities of the msqrob2 package for this step. Msqrob2 (24, 30, 32, 33) 
provides a robust linear (mixed) model framework for assessing differential abundance in 
proteomics experiments. To assess differential abundance on the protein level, the workflows 
can start from raw peptide intensities or summarised protein abundance values. The model 
parameter estimates can be stabilised by ridge regression, empirical Bayes variance 
estimation and robust M-estimation. Here we assess differential abundance on the PTM level 
by first summarising peptidoform expression values (step 5). 
When one predictor (e.g. condition) is present in the dataset, we perform an msqrob analysis 
on PTM intensities with the following model: 
 

𝑦𝑐𝑠 = 𝛽0 + 𝛽𝑐
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛+𝜀𝑐𝑠 

 
With 𝑦𝑐𝑠 the summarised log2-transformed PTM intensity in sample s of condition c, 𝛽0 the 

intercept, and 𝛽𝑐
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛, the effect of a condition c. The error term 𝜀𝑐𝑠 is assumed to be 

normally distributed with mean 0 and variance σ2.  
When multiple predictors are present, the model can be expanded as needed, with the 
additional possibility of using mixed models. The user needs to specify the model formula 
themselves using lm or lme4(34) R syntax.  
The contrast matrix for contrasts of interest can be specified via the makeContrast function 
present in msqrob2, which are subsequently assessed using the hypothesisTest function. By 
default, the results of the latter function are corrected for multiple testing using the 
Benjamini-Hochberg false discovery rate (FDR) method.  
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The model results are stored in the existing QFeatures object together with the raw data and 
the pre-processed data. 
 

7. Results exploration plus visualisation 
The abovementioned model results contain a significance table with (adjusted) p-values, log 
fold changes, standard errors, degrees of freedom and test statistics.  
Different visualisations can easily be made based on this table and the links to the underlying 
intensity data in the QFeatures object, such as volcano plots, heatmaps and line plots at the 
peptidoform, PTM and/or protein level. 
 

Data  
 
Our novel msqrob2 workflow is tested and benchmarked to MSstatsPTM using two computer 
simulations developed by the MSstatsPTM team, the spike-in dataset from the MSstatsPTM 
paper, and data from two real experiments. 
 
 
More details on each dataset are given below.  

 

Computer simulations  

 
We used the two computer simulations from the MSstatsPTM team that were found on 
https://github.com/devonjkohler/MSstatsPTM_simulations/tree/main/data 
(simulation1_data.rda and simulation2_data.rda). The first simulation consists of data without 
any missing values, while in the second simulation, missing data is introduced. For each 
simulation, 24 datasets were created with different experimental designs and intensity 
variance. In each dataset, 1000 PTMs were simulated.   
 
Half of the PTMs were simulated to have a fold change between conditions. However, of the 
half with differential fold changes on the PTM level, 250 could be confounded with differential 
fold changes of the parent protein. For further details on the creation of the datasets, we refer 
to the MSstatsPTM paper(12) and to their GitHub page. 
  
Both simulations contain an enriched PTM dataset as well as its non-enriched protein 
counterpart. From each of the 24 datasets, the FeatureLevelData was extracted from the PTM 
and the protein dataset. These two datasets were then used as input to the workflow and all 
seven steps were followed. The protein dataset was used for the normalisation step.  
Because it is known which PTMs are differentially abundant and/or differentially used, we can 
readily evaluate the performance of a method in terms of the false positive rate (fpr), 
sensitivity, specificity, precision and accuracy, and true positive rate (tpr) - false discovery 
proportion (fdp) plots. Note, that tpr is the fraction of the truly differentially abundant PTMs 
picked up by the method and fdp is the fraction of false positives in the total number of PTMs 
flagged as differentially abundant. On the tpr-fdp plot we also indicate the observed fdp at 5% 
FDR cut-off, which is expected to be close to 5%. 
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We compared our results with the results obtained with the MSstatsPTM method, on their 
GitHub page https://github.com/devonjkohler/MSstatsPTM_simulations/tree/main/data 
(adjusted_models_sim1.rda and adjusted_models_sim2.rda) and included these in the tpr-fdp 
plots. 

 

Spike-in dataset  

 
The MSstatsPTM team also developed a biological spike-in dataset with known ground truth 
to test their approach. Fifty human ubiquitinated peptides were spiked into four background 
mixtures consisting of human and E.coli proteins in different amounts. These four mixtures 
represent four different conditions and for each, two replicates were created. An overview of 
the experimental design can be seen in figure 1. Because the amount of spiked-in peptides is 
known, the true log-fold changes between the conditions is known and it is possible to assess 
whether the method can pick up these fold changes, and if these fold changes differ from the 
fold change of the corresponding protein in the background. Note, however, that as opposed 
to real experiments, the ubiquitinated peptides in the spike-in study are not correlated to their 
corresponding protein in the background. Further technical details can be found in the 
MSstatsPTM paper (12). The dataset can be found on MassIVE: MSV000088971.The true log 
fold changes (before and after protein adjustment) are depicted in table 1. 
 
As input to our workflow, we used the MSstatsPTM_Summarized.rda object provided on 
MassIVE. In the FeatureLevel data part of the object, the spiked-in peptides were not 
annotated and were irretrievable because the heavy peptides can also be present as their light 
counterparts. However, they were annotated in the ProteinLevel part. Hence, we could not 
use the low-level data, and had to start from the data that had already been pre-processed 
and summarised to PTM (for the PTM dataset) and Protein level (for the global profiling 
dataset) by MSstatsPTM, thus omitting step 4 and 5 from the workflow. We therefore could 
not assess our entire workflow based on these data, and moreover do not know which 
preprocessing steps were conducted. 
 
We employed various methods to analyse this dataset. Our primary approach was the 
msqrob2PTM workflow as described in the workflow section, as well as the normal 
MSstatsPTM workflow. We also assessed the differential abundance of the PTMs with the 
standard msqrob2 workflow: DPA-nonNorm, which does no normalisation and hence skips 
step 3 of the standard workflow entirely and DPA, which only applies median centring in step 
3. 
 
Because we know the ground truth of this dataset, we can again use the same metrics to 
assess the performance. Here, we also make ROC (tpr-fpr) curves. Furthermore, the log fold 
changes estimated by msqrob2PTM and MSstatsPTM were used to generate boxplots showing 
the observed and expected FCs for each mixture. For MSstatsPTM, the log fold changes were 
derived from the MSstatsPTM_Model.rda object and Spike-in_Vizualization.Rmd contained R 
code for the boxplots. Both these files were found on MassIVE RMSV000000669. 
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Ubiquitination dataset 

 

Details of the experimental set-up can be found in reference (35). The dataset itself is available 

on MassIVE(36) as MSV000078977. 

The dataset consists of four conditions: carbonyl cyanide 3-chlorophenylhydrazone (CCCP) 

treatment, USP30 overexpression (USP30-OE), a combination of both (Combo), and a control 

group. Per condition, two biological replicates with two technical replicates each were 

generated. Only a PTM-enriched dataset was available, as no global profiling dataset was 

included in the experiment. All pairwise comparisons were tested using msqrob2PTM. 

This dataset has also been used in the MSstatsPTM paper, hence, we can compare our results 

to theirs for a biological case with unknown ground truth. As input to the msqrob2PTM 

workflow, we used the usp30_input_data.rda object found in the MassIVE MSstatsPTM 

analysis container RMSV000000358, which was also used as input to the MSstatsPTM 

workflow. This ensures compatibility of the results with those in the MSstatsPTM paper. In 

this container, the analysis file MSstatsPTM_USP30_Analysis.R can also be found, which was 

used for the MSstatsPTM results. 

All steps of the workflow were followed as described above. The normalisation step made use 

of the available PTM dataset, given the lack of a non-enriched counterpart. Because each 

condition consists of two biological replicates which in turn consists of two technical 

replicates, we used the msqrob function with a mixed model as input.  

The results of both analyses were used to generate line plots with input as well as our 

normalised PTM level-data and the estimated effects for each condition. The detailed model 

results in the MSstatsPTM model object allowed us to inspect the model output for each PTM 

and protein as well as those for PTM upon correction for protein. 

Phospho dataset 

 
The human phosphorylation datasets consist of 47 samples from condition A and 43 from 

condition B. Ethical approval for the use of human tissue was obtained from the Ethics 

Commission (EC) of the University Medical Center Göttingen (2/8/18 AN) and the EC of the 

Technical University Munich (145/19 S-SR). Two aliquots were processed for each sample: one 

dedicated to total proteome analysis, and the other one to the phosphoproteome analysis. 

The main sample preparation steps were identical for proteomics and phosphoproteomics 

apart from the additional phosphopeptide enrichment step. Briefly, MeOH precipitation was 

performed on all samples and protein pellets were resuspended with 0.1% RapiGestTM 

surfactant (Waters). Either 20 µg (proteomics) or 100 µg (phosphoproteomics) of samples 

were subjected to overnight trypsin/lysC (Mass Spec Grade mix, Promega, Madison, USA) 

digestion at 37°C with an enzyme:protein ratio of 1:25. Peptide samples were then incubated 

for 45 minutes at 37°C and centrifuged to remove RapiGest.  

 

For total proteome analysis, collected supernatants were loaded on an AssayMAP Bravo 

(Agilent) for automated peptide clean-up using C18 cartridges. Desalted peptides were 
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injected on a nanoAcquity UltraPerformance LC® (UPLC®) device (Waters Corporation, 

Milford, MA) coupled to a Q-Exactive Plus mass spectrometer (Thermo Fisher Scientific, 

Waltham, MA) and analysed using Data Dependent Acquisition (DDA).  

 

For phosphoproteomics, collected supernatants were loaded on an AssayMAP Bravo (Agilent) 

for automated Fe(III)-NTA phosphopeptides enrichment. Enriched samples were then 

analysed on a nanoAcquity UPLC devise (Waters) coupled to a Q-Exactive HF-X mass 

spectrometer (Thermo Scientific, Bremen, Germany) using DDA.  

 
Generated raw data files were searched against a database containing all human entries 
extracted from UniProtKB-SwissProt (25/08/2021, 20 339 entries) using MaxQuant (v.1.6.17). 
The minimal peptide length required was seven amino acids and a maximum of one missed 
cleavage was allowed. The mass tolerance for the precursor ions was set to 20 ppm for the 
first search and 4.5 ppm for the main search. The mass tolerance for the fragment ions was 
set to 20 ppm. For proteomics data, methionine oxidation and acetylation of proteins’ N-
termini were set as variable modifications and cysteine carbamidomethylation as a fixed 
modification. For phosphoproteomics data, serine, threonine and tyrosine phosphorylations 
were added as variable modifications. For protein quantification, the “match between runs” 
option was enabled. The maximum false discovery rate was set to 1% at peptide and protein 
levels with the use of a decoy strategy. Intensities were extracted from the Evidence.txt file to 
perform the following statistical analysis. All seven steps of the workflow were performed. 
The dataset can be found on PRIDE (PXD043476). Further result files listing identified 
(phospho)peptides and proteins can be found as supplementary tables: 
supplemental_data_proteinGroups_phospho.xlsx, supplemental_data_proteinGroups_non-
enriched.xlsx, Supplemental_phosphopeptides.xlsx, 
Supplemental_peptides_nonenriched.csv. Further technical details can be found in the 
supplementary information. 
 

Mock analyses 

 
For the phospho dataset a mock analysis was included, that is an analysis where we only take 

one treatment arm of the data, so none of the PTMs (peptidoforms) are expected to be 

differential. We then assign the samples at random to a mock treatment with two levels and 

assess differential usage between the two conditions (mock vs control). In this way, correct 

control of the type I error by the statistical method can be assessed. A type I error occurs when 

the null hypothesis is incorrectly rejected. Indeed, every PTM that is called as differentially 

abundant is a false positive in this case. Hence, we expect the method to return uniform p-

values.  

From the phospho dataset, only the samples from factor 1 condition B, and factor 2 condition 

y were withheld, i.e. 26 samples. Upon step 4, 13 out of the 26 samples were randomly 

assigned to condition “mock”, the other 13 were assigned as condition “control”. Step 5 was 

then carried out by testing for a condition effect and the calculated p-values were retained. 

The randomisation to the mock treatment and step 5 in the analysis was repeated 5 times and 

a histogram was made for the p-values for each mock simulation. 
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This mock analysis was done for different workflows: we assessed the effect of using robust 

regression in the modelling step, the use a non-enriched counterpart for normalisation and 

normalisation based on the enriched dataset, itself. Moreover, we conducted the analysis 

both on peptidoform as well as PTM-level. 

Results 
 

The performance of our novel PTM and peptidoform msqrob2 based workflows will be 

compared to MSstatsPTM based on computer simulations, the spike-in dataset, the 

ubiquitination and phospho datasets.  

Computer simulations 
 

PTM-level 

We first evaluated our method using the two computer simulations mentioned above. The 

first simulation consisted of 24 “perfect” datasets with no missing data and ten distinct 

peptidoforms carrying a specific PTM. Half of the datasets were simulated with a standard 

deviation of the difference in log-intensities between modified and unmodified peptidoforms 

of 0.2, the other half had a standard deviation of 0.3. The datasets differ in the number of 

replicates as well as in the number of conditions.  

Figure 2 shows the true positive rate (tpr, the fraction of the truly differentially abundant PTMs 

picked up by the method) - false discovery proportion (fdp, the fraction of false positives in 

the total number of PTMs flagged as differentially abundant) curve for simulation 1 for all 24 

datasets. As expected, both msqrob2PTM and MSstatsPTM perform better in datasets with 

lower variability and/or a higher number of replicates. Indeed, the true positive rate or 

sensitivity is higher for the same level of the false discovery proportion when the number of 

repeats increases while keeping the sd fixed (or when reducing the sd while keeping the 

number of repeats fixed). msqrob2PTM (solid line) clearly outperforms MSstatsPTM in all 

datasets (dotted line). Furthermore, MSstatsPTM in particular seems to have issues when the 

number of replicates is low. Indeed, in four out of six datasets with two replicates, the dotted 

line immediately veers right instead of up, indicating that non-DU PTMs are returned among 

the most significant features. This particularly affects datasets with higher variation (sd 0.3). 

msqrob2PTM, however, does not suffer from a poor ranking of the PTMs for these four 

datasets and is still able to report (a few) true positive results at the 5% FDR level. Moreover, 

the fdp at the 5% FDR level for msqrob2PTM is close to 5% for most datasets, indicating a good 

control of false positives. 

Figure 3 shows the tpr - fdp curves for simulation 2 for all 24 datasets. As expected, the higher 

number of missing values induces a slight drop in performance overall. However, for the larger 

sample sizes the performance remains very good for msqrob2PTM. Again, msqrob2PTM 

uniformly outperforms MSstatsPTM and the fdp is close to 5% when adopting a 5% FDR 

threshold. For two datasets, we see that the far end of the tpr-fdp curve for msqrob2PTM 

veers straight up (two conditions, two replicates sd 0.2 and sd 0.3), which reflects msqrob2’s 

inability to fit the models for a number of PTMs. This happens because these PTMs have too 
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few observations to fit the models due to the missingness introduced in this simulation 

scenario. 

For further comparison, ROC curves (true positive rate vs false positive rate) are shown in 

Supplementary figure 1 and 2. These plots give less weight to a few top-ranked false positives. 

Again, these ROC curves demonstrate superior msqrob2PTM performance. 

In supplementary table 1 and 2, the performance metrics (false positive rate, sensitivity, 

specificity, precision and accuracy) that were reported in the MSstatsPTM paper are also given 

for all datasets for comparison.  

Peptidoform level 
 
Our msqrob2PTM workflow can also infer on differential usage at the peptidoform level, 
which we consider to be very important. Indeed, not all peptidoforms that carry the same PTM 
will necessarily follow the same abundance pattern. Therefore, it can occur that a significant 
effect at the PTM-level stems only from one or a few associated peptidoforms while the other 
associated peptidoforms remain unchanged between conditions. This might indicate that the 
underlying biology is not only affected by a single PTM, but rather by a combination of PTMs 
and/or sequence variation. We thus recommend adding a peptidoform analysis by default to 
the overall workflow.  
 
Peptidoform level information was available in both simulations, hence the performance of 
our method can be evaluated at this level as well. The peptidoform level tpr-fdp plots are given 
in figures 4 and 5, and the underlying data in supplementary table 3 and 4. These show that 
msqrob2PTM also performs well on the peptidoform level and maintains good control of false 
positives. However, on peptidoform level, the method performance seems to be more 
affected by a lower number of replicates, increased variability, and missingness. This can be 
expected as there is inherently less information, but more variation, present at the 
peptidoform level. This variability is reduced by averaging over peptidoforms when 
summarising the data to the PTM level. However, because PTMs are not directly quantified, 
but averaged out over peptidoforms, they can lead to more ambiguous results.  
 
Note that, as MSstatsPTM does not offer a peptidoform level analysis, no comparison could 
be included for this workflow.  
 

Biological spike-in dataset 
 
The design of the spike-in dataset (see also figure 1) is suboptimal to assess the performance 
of methods inferring differential PTM usage. This is because the spiked-in peptides and their 
corresponding protein abundance in the background proteome are not correlated as they 
would be in real experiments. Indeed, the latter does not contain the actual parent proteins 
of the spike-in peptides. Moreover, the E.coli proteins in mixes 3 and 4 induce loading 
differences present across the samples (see also supplementary figure 3), which brings 
additional normalisation issues. We illustrate these issues using ROC curves that compare the 
performance of different approaches: differential PTM abundance by adopting a conventional 
msqrob2 workflow directly on the summarized PTM-level intensities without normalisation 
(DPA-NonNorm), the same workflow upon normalisation with the median peptidoform log-
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intensity (DPA), the default workflow for msqrob2PTM (default msqrob2PTM workflow 
assessing DPU), and MSstatsPTM (default MSstatsPTM workflow) (figure 6). Every pairwise 
comparison between mixes is shown. Because all methods report many false positives for this 
dataset, the tpr-fdp plots quickly became unreadable (see supplementary figure 4). 
 
When comparing mix 4 to mix 1 (mixmix4), the log2FC after adjustment should be 0, hence, 
no method should report any differential PTMs. Indeed, this comparison is an internal control, 
and the ROC curves are expected to lie along the diagonal. Here, DPA-NonNorm and 
MSstatsPTM show the largest deviations from the diagonal.  
 
In the other comparisons, DPA always outperforms the other methods. Note that DPA 
assesses differential PTM abundance rather than differential usage as it does not normalise 
for parent protein intensity. This superior performance of the DPA method as compared to 
the DPA-NonNorm method indicates that it is very important to correct for technical variability 
resulting from the experimental design, i.e. the loading differences. In the mix 2 vs mix 1 
(mixmix2) and mix 4 vs mix 3 comparison, DPA-NonNorm also performs very well, because in 
these comparisons, the adjusted and unadjusted fold changes are the same. However, the 
loading differences for the other comparisons cause a breakdown of DPA-NonNorm. 
MSstatsPTM and msqrob2PTM always have a lower performance than DPA, but never break 
down. For the mix 2 vs mix 1 and the mix 4 vs mix 3 comparisons, MSstatsPTM performs 
slightly better than the default msqrob2PTM workflow, while the latter performs better in the 
remaining three comparisons. The decrease in performance by msqrob2PTM as compared to 
DPA can be explained by the increase in variability that is introduced in the workflow by 
subtracting the unrelated “parent protein intensities” from the spiked-in peptidoform 
intensities. In other words, the design is not suited to benchmark the performance of methods 
developed to quantify differential peptidoform usage. However, the design is useful for 
assessing the performance of methods that quantify differential PTM abundance. This can 
easily be obtained with standard msqrob2 workflows, but is not returned by default by 
MSstatsPTM. However, because the msqrob2 suite builds upon the QFeatures architecture, 
the results of a DPA and DPU workflow can both be stored in the same object, thus providing 
more transparency and reproducibility across the workflows.  
 
For completeness, we also plotted the log2 fold changes for all PTMs in supplementary figures 
5 and 6, which illustrate that both msqrob2PTM as well as MSstatsPTM provide good 
estimates for these. 
 

Ubiquitination dataset 

 
msqrob2(PTM) is capable of handling more complex designs that require mixed model 
analysis, as well as datasets that lack a non-enriched version of the dataset. These two aspects 
apply to the ubiquitination dataset. Note that this is an experimental, biological dataset, and 
therefore does not come with a known ground truth.  
Despite the two abovementioned complexities, the standard msqrob2PTM workflow could 
find differentially abundant ubiquitin sites in most comparisons, except for the USP30_OE vs 
control comparison. However, table 2 shows that msqrob2PTM generally reports many fewer 
significant PTMs than MSstatsPTM. 
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Upon closer inspection of the PTMs reported as significant by MSstatsPTM, it was discovered 
that this large discrepancy can be explained by several reasons. 
 
First, both methods have a different way of dealing with missing data. Upon inspecting 
multiple line plots, we observed PTMs that were flagged as significant by MSstatsPTM despite 
having only one bio-repeat, or even only a single data point available in one of the conditions. 
In figure 7, for instance, line plots are shown for two PTMs that are significant in MSstatsPTM 
when comparing the combination condition (Combo) versus the control condition (Ctrl), but 
not in msqrob2PTM. Notably, PTM O00154_K205 only presents PTM information for the first 
biological replicate, while PTM O00159_K0578 contains just one data point within the entire 
control condition. For these features, msqrob2 therefore did not return a model fit.  
 
When examining the results more closely, we noticed that MSstatsPTM uses three different 
models to fit the data (see figure 8 for an overview) and that the model choice is based on the 
available data points for each PTM (see UbiquitinationBioData exploration of results file on 
https://github.com/statOmics/msqrob2PTMpaper for detailed examples), i.e. a full mixed 
model was employed when no data was missing, using a fixed effect for group and random 
effects for subject (1 | SUBJECT) and subject x group (1 | GROUP:SUBJECT), as soon as a single 
data point is missing, the (1 | GROUP:SUBJECT) term is dropped, and when data is missing for 
one of the bio repeats in all conditions, a linear model is employed with only a fixed group 
effect. This adaptability to missing data comes with a price, however. Notably, the second 
model, without the (1 | GROUP:SUBJECT) term, ignores the between bio repeat variability. 
Indeed, bio repeat 1 in the control group is not the same as bio repeat 1 in the combination 
group. However, they are treated as such, resulting in underestimated standard errors.  
 

Across comparisons, 15-27% of PTMs deemed significant were modelled with an incorrect 
mixed model (% differs according to comparison). Moreover, 44-75% of significant PTMs were 
modelled using a linear model, which represents features for which msqrob2 does not fit any 
model at all because biological repeats are lacking. Moreover, when examining the significant 
PTMs together with their parent proteins, it became apparent that for most features the PTM 
and protein intensities were modelled with a different model. This can lead to artifacts such 
as shown in figure 7 (top panels), where the protein data contains information about only one 
of the two bio repeats, but is still used to make the adjustment for the other bio repeat! To 
avoid these ambiguities, we conducted an MSstatsPTM-like analysis while enforcing the use 
of the full mixed model. Only PTMs with associated parent proteins were included in the 
analysis. Subsequently, the full mixed model was applied to both the PTM and protein-level 
data. The adjustment for protein abundance followed the standard MSstatsPTM procedure, 
and the resulting p-values were adjusted using the Benjamini-Hochberg method. Using the 
native MSstatsPTM implementation the “CCCP” vs “Ctrl” comparison identified 359 significant 
PTMs. However, when solely employing the full mixed model, only 55 PTMs remained 
significant, which is in line with our msqrob2 results. 
 
Second, the two methods employ distinct conceptual approaches. In msqrob2PTM, within-
sample normalisation according to protein level abundance is performed first, followed by 
statistical analysis. MSstatsPTM, however, uses the modelled PTM and protein results for 
normalisation, ignoring the inherent biological correlation between PTMs and their parent 
proteins within a sample. Analysing these separately can sometimes generate ambiguities. 
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Figure 9 illustrates this issue, demonstrating a PTM that was flagged as significant for the 
“Combo” vs "Ctrl” comparison by MSstatsPTM, but not by msqrob2PTM. Specifically, the 
peptidoform carrying PTM O60260_K369 closely mirrors the intensity pattern of its parent 
protein, resulting in minimal differences, and therefore no significant regulation, in PTM 
intensities after normalisation for protein abundance in our msqrob2PTM workflow. However, 
as MSstastPTM first fits models to the PTM and protein level data separately, and only 
afterwards uses these model estimates to correct for the difference in protein abundance, 
differences in PTM usage are artificially enlarged, leading to a significant PTM according to 
MSstatsPTM in this comparison.  
 

 

Phospho dataset 
 
Two different workflows were employed for this dataset. The first workflow uses the non-
enriched counterpart dataset to normalise for differences in protein abundance, while the 
second workflow only used the enriched dataset, also for the normalisation step. It is 
important to note that two distinct instrument platforms were used to analyse the total 
proteome and phosphoproteome samples. The chromatographic conditions were identical as 
well as the MS instrument geometry but two consecutive generations of Q-Orbitraps were 
used (Q-Exactive Plus versus Q-Exactive HF-X). This partly explains the observed heterogeneity 
between enriched and non-enriched datasets. Indeed, we observed a substantial proportion 
(approximately 25%) of proteins present in the enriched dataset that were absent in the non-
enriched one. This led to some PTMs that could not be normalised, which we opted to exclude 
from subsequent analysis in workflow 1. 
 
Both workflows involved testing multiple contrasts based on two factors: condition (A or B), 
and subset (x or y). In the first workflow (utilising both datasets), 31 unique differential PTMs 
were found, of which 25 were phosphorylations. Most of these PTMs exhibited significant 
downregulation in condition A compared to B within subset y.  
In the second workflow (using only the enriched dataset), fourteen unique significant PTMs 
were identified, of which eight were phosphorylations. The majority of phosphorylations 
showed significant differential usage between condition A and B within subset y and/or 
exhibited significant differential usage between condition A and B averaged over subsets x 
and y. Supplementary tables S5 and S6 provide detailed results. 
Interestingly, the results differ between the two workflows. Of the 31 PTMs identified in 
workflow 1, ten were also found in workflow 2.  
 
Instead of solely focusing on significant PTMs, our method is capable of detecting differentially 
used peptidoforms as well. For this dataset, the first workflow detected twelve peptidoforms 
as differentially abundant, predominantly showing downregulation in condition A for subset 
y. 
In the second workflow, which lacked a global profiling dataset, seven significant 
peptidoforms were detected across the different comparisons. LPIVNFDYS[Phospho 
(STY)]M[Oxidation (M)]EEK was picked up as DU by both workflows and is particularly 
interesting, because both PTMs present on this peptidoform are also returned as significant 
in the differential PTM usage analysis. Hence, one of the PTMs might have been detected as 
differential because the other PTM is also present on the same peptidoform, potentially 
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influencing its significance upon averaging with the remaining peptidoforms carrying this PTM. 
To assess the contribution of different peptidoforms to a single PTM, line plots can be used to 
visualise both the PTM intensities across the samples as well as the intensities of its 
contributing peptidoforms. Figure 10 illustrates this issue. Indeed, the top panel shows a 
phosphorylation that occurs in two peptidoforms, the bottom panel shows an oxidation that 
also occurs on one of these peptidoforms. The peptidoform with both modifications was 
significant, while the second peptidoform that did not carry the oxidation was not significantly 
DU. The intensity for the phosho-PTM is obtained upon summarisation over both 
peptidoforms, and was reported significant when assessing the data at the PTM-level. 
However, the significance of the phospho-PTM might be an artifact triggered by the presence 
of additional oxidation in one of its underlying peptidoforms.  
 
Some PTMs are also significant because they enable aggregating evidence over multiple non-
significant peptidoforms that all have a similar expression pattern. An example of this can be 
seen in figure 11 for sp|P10451|OSTP_HUMAN (Phospho (STY)) 280. 
 
 
 

Mock analyses 
 
As the phospho datasets are biological experiments, the ground truth is unknown. Therefore, 
we cannot assess the performance of each method. We also do not know if the method 
provides reliable false positive control. To assess if our workflows provide good type I error 
control for the case study, we therefore perform a mock analysis. In particular, we introduce 
a factor for a non-existing effect, implying that all features that are returned significant upon 
testing for this factor are false positives. Here, we focus on subset y from condition B, so that 
ample samples remain. When the method provides good false positive control, the p-values 
upon assessing the mock effect will be uniform. 
 
The p-value distribution for the workflow that only uses the enriched dataset is given in Figure 
12. The top panels show the results for the PTM-level analysis and the bottom panels for 
peptidoform analysis. Both workflows with and without robust regression provide fairly 
uniform p-values. Supplementary figures 7-10 show similar plots for four other random mock 
datasets, showing consistency of performance.  
 

We did a similar mock analysis for the workflow that uses the non-enriched dataset for usage 
calculation (Figure 13). The workflow on peptidoform level using robust regression showed a 
slight increase in low p-values, which is also observed in some other random mock datasets 
(Supplementary Figures 11-14). The remaining workflows generated fairly uniform p-values 
for all random mock datasets (Figure 13 and Supplementary Figures 11-14). We therefore did 
not adopt robust regression for the peptidoform analysis. 
 
 

Discussion 
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We here introduced msqrob2PTM, a novel workflow in the msqrob2 universe, designed for 
performing differential abundance as well as usage analysis on PTM and peptidoform level. 
These two analyses are distinguished by their normalisation strategies. In abundance analysis, 
only a normalisation to reduce technical variation is included, while the novel usage workflow 
incorporates normalisation against parent protein intensities. The latter normalisation 
strategy has proven its efficacy in phosphorylation stoichiometry studies (15–18). Both DPA 
and DPU approaches have their relevance in PTM research. DPU enables the discovery of 
differential PTMs that respond differently than their parent protein. However, in certain 
scenarios, DPA might be of interest instead. Indeed, when an increase in total protein 
concentration leads to a corresponding increase in PTM concentration, there may be 
biological implications associated with this elevation in PTMs, regardless of whether it is 
driven by changes in parent protein levels or not. Therefore, the choice between DPA and DPU 
depends on the specific research question at hand, or they can both be performed to 
complement each other. 
Differential abundance analysis at the single PTM level has, until recently, not been supported 
by dedicated statistical packages. In the past, researchers resorted to statistical methods not 
adapted to PTM rich proteomics datasets, such as t-tests or ANOVA; or performed differential 
analysis only at the peptidoform level. In the latter case, especially peptidoforms with multiple 
PTMs prove difficult to handle (13, 25). MSstatsPTM has recently implemented differential 
analysis on single PTM level, providing DPU by their own normalisation strategy. 
 
Through analysis of simulated and biological datasets, we have demonstrated that our 
workflows improve upon the state-of-the-art MSstatsPTM. We showed the advantage of first 
normalising the peptidoform intensities by the parent protein abundance before conducting 
the differential analysis, as has been the standard method in phosphorylation stoichiometry 
studies as. In this way, we can immediately model the usages as opposed to MSstatsPTM that 
estimates the fold changes for the PTM and protein values separately before differencing 
these to estimate DPU. Indeed, the peptidoform and protein values from the same sample are 
correlated, which is explicitly accounted for in our DPU workflow but is ignored by 
MSstatsPTM. We showed for the latter method that this can lead to artifacts in the estimated 
fold change for some PTMs upon correction for the fold change in the parent protein. 
Moreover, MSstatsPTM also ignores the correlation when calculating the variance on the 
difference in fold change leading to incorrect inference.  
 
Another key distinction between both packages is how they handle PTMs that cannot be fitted 
with the desired model. MSstatsPTM prioritises automation and aims to infer on as many 
PTMs as possible. However, this leads to reporting on PTMs for which the fit is based on 
different models and often on insufficient data to draw reliable inference on the contrast of 
interest. Moreover, for PTMs that lack a corresponding protein expression fold change, results 
are returned based on the PTM fold change alone. Hence, MSstatsPTM silently combines 
inference on differential usage with inference on differential abundance in one output list 
depending on the degree of missingness at the protein-level. In general, a standard user is not 
fully aware of these issues, and the subtleties of interpretation that these require. In contrast, 
our msqrob2PTM workflow emphasises transparency and reproducibility. While this choice 
may lead to some PTMs that cannot be estimated using the default workflow, it does ensure 
that users are fully aware of what was modelled for each PTM. Moreover, we feel that PTMs 
for which no results are returned due to missingness require the intervention of a skilled data 
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analyst to develop tailored solutions to infer on differential abundance and/or usage; 
solutions that are moreover supported by the msqrob2 universe. Indeed, we showed that 
automatic approaches can lead to biased results, and especially in experiments with more 
complex designs.  
 
These differences in normalisation approach and design concept elucidate the variations in 
performance across the different datasets that were used in our benchmark. In the simulated 
datasets, msqrob2PTM capitalises on the within-sample correlation between peptidoforms 
and proteins that is present in the data, resulting in superior performance compared to 
MSstatsPTM. However, in the spike-in dataset, where this correlation is absent due to its 
unrealistic design, the default msqrob2PTM workflow exhibits similar performance to 
MSstatsPTM. However, for this dataset we show that our workflow for assessing differential 
PTM abundance analysis uniformly outperforms both the msqrob2PTM and MSstatsPTM 
workflows assessing differential PTM usage. Indeed, the spike-in study is suited for assessing 
the performance on differential PTM abundance rather than on differential PTM usage, as the 
spiked PTMs were not correlated to their corresponding protein in the background. In the 
biological ubiquitination dataset, the high amount of missing data, and the absence of a global 
profiling dataset leads to a high number of PTMs that cannot be fitted with the required 
model. MSstatsPTM will then resort to other, simpler models that are often suboptimal or 
even mismatched, while msqrob2PTM will simply not return results for these PTMs, leading 
to a lower number of reported significant PTMs. 
 
These datasets bring to attention a broader issue in the field, specifically the scarcity of 
suitable datasets for accurately assessing Differential Peptidoform Usage (DPU). When 
designing such experiments, it is favourable to incorporate a global profiling dataset along 
with an adequate number of biological replicates. This comprehensive approach not only 
enables a more thorough evaluation of DPU but also enhances statistical power, yielding more 
reliable and robust results. Indeed, the approach benefits from multiple replicates per feature. 
As PTMs usually appear low abundantly, this is often challenging to achieve in practice (37).  
 
Although we recommend the addition of a global profiling counterpart to an enriched PTM 
dataset, this is conceptually not required as normalisation can be done using all peptidoforms 
mapping to the same protein. However, we showed that this approach has the risk of partially 
diluting the effect of the PTM as their underlying peptidoforms are now involved in the 
calculation of the PTM usage.  
 
As opposed to MSstatsPTM we do not make use of converters. Hence, msqrob2 input is not 
restricted to certain search engines or quantification algorithms, providing the user with full 
flexibility. However, this does require the user to convert their data into appropriate input 
format, which is a simple flat text file format (as exportable from a spreadsheet) or a data 
frame in R that can be used by the constructor for QFeatures objects. Furthermore, our 
workflows are modular and provide the user with the flexibility to use custom pre-processing 
steps. Default workflows are presented in our package vignettes, but these can easily be 
altered by building upon methods in the QFeatures package. Moreover, the use of the 
QFeatures infrastructure also guarantees that input data is never lost during processing, but 
remains linked to the pre-processed and normalised assays as well as to the model output, 
insuring transparency, traceability, and reproducibility. This allows the user to perform 
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differential usage (and/or abundance) analysis on both PTM and peptidoform (or even 
protein) level, while storing and linking all these different results in a structured manner in the 
same object. 
 
Another advantage of msqrob2PTM is that it can manage multiple modification sites per 
peptidoform. The peptidoform will then simply be used in the summarisation of multiple 
PTMs. This is particularly useful when using open modification search engines, which can often 
find multiple PTMs per peptide. Moreover, we also include workflows on differential 
abundance and usage analysis on the peptidoform level. Indeed, as shown in figures 10 and 
11, it can be relevant to know whether a significant PTM stems from multiple (slightly) 
significant associated peptidoforms, or whether it is driven by one or a few very strongly 
significant associated peptidoform(s). In the latter case, it could be possible that these 
significant peptidoforms carry another modification that is driving the differential usage. 
Hence, we always advise users to conduct a peptidoform level analysis as well. 
 
Overall, we have shown that our msqrob2PTM workflow is a sensitive and robust approach 
compared to the state-of-the-art, while providing good fpr control and high accuracy. Our 
modular implementation offers our users full flexibility with respect to the search engine and 
pre-processing steps, while still offering a comprehensive, transparent, and reproducible 
workflow that covers the entire differential PTM analysis. 
 

Figure captions 
 
Figure 1: Experimental design of the spike-in dataset. Fifty human heavy labelled KGG motif peptides were spiked 
into four background mixtures in different amounts. Mixes 3 and 4 consist of a mix of E. Coli and human proteins. 
Only the human proteome was utilised as the global proteome. Figure adapted from (12) 
 
Figure 2: True positive rate (tpr) - false dicovery proportion (fdp) plots for datasets simulated under first scenario 

(no missingness). msqrob2PTM (full lines) is compared to MSstatsPTM (dotted lines). Observed fdp at a 5% FDR 

cut-off is denoted by dots for msqrob2PTM and by triangles for MSstatsPTM. msqrob2PTM uniformly 

outperforms MSstatsPTM for all datasets. Indeed, MSstatsPTM is less sensitive, i.e. its tpr-fdp curve is always 

below the corresponding one of msqrob2PTM. 

Figure 3: tpr-fdp plot for datasets simulated under second scenario (with missingness). msqrob2PTM (full lines) 

is compared to MSstatsPTM (dotted lines). Observed fdp at a 5% FDR cut-off is denoted by dots for msqrob2PTM 

and by triangles for MSstatsPTM. Here again, msqrob2PTM outperforms MSstatsPTM for all datasets. 

Figure 4: tpr-fdp plot for datasets simulated under the first scenario (no missingness). Performance of 
msqrob2PTM is assessed at peptidoform level. Observed fdp at a 5% FDR cut-off is denoted by dots. 
 
Figure 5: tpr-fdp plot for datasets simulated under the second scenario (with missingness). Performance of 
msqrob2PTM is assessed at peptidoform level. Observed fdp at a 5% FDR cut-off is denoted by dots. For datasets 
with only 2 or 3 replicates, the method starts to suffer from lack of information, making it harder to report 
significant peptidoforms, especially for datasets with sd 0.3.  
 
Figure 6: ROC curves of the different approaches for all pairwise comparisons of the spike-in dataset. DPA is the 
conventional msqrob2 workflow directly on the summarized PTM-level intensities with only median centering as 
normalisation, DPA-NonNorm is the msqrob2 workflow without any normalisation, msqrob2PTM is the default 
workflow assessing DPU, MSstatsPTM is the default MSstatsPTM workflow. Mix 4 vs 1 (mixmix4) serves as 
internal control, thus the curves should follow the diagonal as closely as possible, as no method should report 
any differential PTMs. DPA performs very well in all comparisons and outcompetes all other methods. DPA-
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NonNorm has good performance in the two comparisons where adjusted and unadjusted fold changes are the 
same (mix 2 vs mix 1 and mix 4 vs mix 3), but breaks down for the other comparisons, due to the loading 
differences that are not compensated without any normalisation. The performance of MSstatsPTM and 
msqrob2PTM (the default differential PTM usage workflow) is similar, with performance dependent on the 
comparison being made. 

 
Figure 7: line plots displaying estimated log2 intensity values of the PTM (dark pink) for each sample, its 
normalised intensity values (yellow), log2 intensity values of its parent protein (green), for MSstatsPTM estimated 
log2 intensity values of that parent protein (dark green), and for msqrob2PTM, log2 intensity values of the 
peptidoforms (grey) on which the PTM occurs. On the left, line plots for PTM O00154_K205 and O00159_K0578 
for msqrob2PTM, on the right for MSstatsPTM. Both PTMs were deemed significant by MSstatsPTM when 
comparing the control condition to the combination condition (combo), but not by msqrob2PTM. O00154_K205 
only contains intensity information for bio replicate B1. O00159_K0578 only has 1 associated intensity value in 
the control condition. Hence, both of these PTMs contain too few datapoints for msqrob2PTM to determine 
significance. 

 
Figure 8: Overview of the different models employed by MSstatsPTM, depending on missing data points. When 
no data is missing, the full (blue) model is used. When there is missing data, but every biorepeat still has 
information the green model is used. When one biorepeat is entirely missing, the pink model is used. 

 
Figure 9: line plot displaying PTM log2 intensity values (pink dotted line) or peptidoform log2 intensity values 
(dark grey dotted line) and log2 intensity values of its parent protein (light green dotted line) in each sample. 
MSstatsPTM first fits a model to PTM (dark pink line) and to protein intensities (dark green line) to estimate 
average intensity in each condition. Subsequently, fitted average protein abundances are subtracted from fitted 
average PTM intensities to obtain average PTM abundances in each condition corrected for protein abundance 
(yellow line). Conversely, msqrob2PTM first normalises peptidoform intensities using parent protein abundance, 
resulting in a normalised peptidoform (light grey dotted line). From normalised peptidoforms, normalised PTM 
intensities are calculated (yellow dotted line). Estimated log2 intensity values of the PTM are depicted in dark 
pink. MSstatsPTM corrected PTM abundances seem to indicate differential PTM usage. Moreover, the 
comparison between “Combo” vs “Ctrl” is returned by MSstatsPTM as statistically significant. This, however, 
appears to be an artifact of MSstatsPTM as the correction for protein abundance does not account for the link 
between protein and PTM intensities within-sample. Indeed, when comparing “Combo” and “Ctrl” sample level 
intensities, the pattern at PTM-level closely follows that of its parent protein. 

 
Figure 10: Line plots of normalised intensity values per sample for significant peptidoform (LPIVNFDYS[Phospho 
(STY)]M[Oxidation (M)]EEK) and its corresponding PTMs for the phospho dataset. At the top, the significant 
peptidoform is depicted in pink. In green is the PTM occurring on that peptidoform, in this case phosphorylation. 
In grey any other peptidoform carrying that same PTM, and in yellow, the PTM intensity value as estimated by 
the model. The PTM is represented by two peptidoforms that roughly follow the same pattern, resulting in a 
PTM that resides in the middle. At the bottom we see the other PTM occurring on that peptidoform, the 
oxidation. No other peptidoform carries that same modification, resulting in perfect overlap between the line of 
the significant peptide and that of the PTM. Here, it is possible that the oxidation is only significant because the 
phosphorylation is. Indeed, the driving force of the significance of this particular peptidoform could be coming 
from the phosphorylation (which has two associated peptidoforms). Note that, while these particular line plots 
were derived using the workflow without a non-enriched dataset, the corresponding plots from workflow 1 are 
extremely similar. 

 
Figure 11: Line plot of normalised intensity values of significant PTM sp|P10451|OSTP_HUMAN (Phospho (STY)) 
280 and its associated peptidoforms. In green the summarised and normalised intensity value of the PTM, in grey 
all peptidoforms (normalised) containing this PTM, in purple the PTM intensity values as estimated by the model. 
While none of the peptidoforms are individually significant, these all contribute to a PTM that can be picked up 
as differentially abundant (downregulated in condition A for samples from subset y). 

 
Figure 12: Distribution of p-values for mock analysis of the phospho dataset without global profiling run, for 
analysis on PTM level (top) as well as peptidoform level (bottom). Left panels are for workflows without robust 
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regression in the modelling step; Right panels correspond to workflows with robust regression in the modelling 
step. All p-values are fairly uniform, indicating acceptable type I error control. 

 
Figure 13: Distribution of p-values for mock analysis of the phospho dataset using the non-enriched dataset to 
estimate the usages. Results at PTM level (top panels) as well as at peptidoform level (bottom panels). Left panels 
are based on a workflow without robust regression; right panels on a workflow with robust regression. 

 
Table 1: True log2 fold changes of the spike-in peptides in the different comparisons between the mixtures. 

 
Table 2: The number of significant PTMs (alpha = 0.05) reported for each contrast for both methods. 

 

Code and data availability 
 

The analysis files and data are available on 
https://github.com/statOmics/msqrob2PTMpaper and PRIDE PXD043476. 

Supplementary materials 
 

This article contains supplemental data. 
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Comparison True log2 FC without 
adjustment 

True log2 FC after 
adjustment 

mix2 vs mix1 -1 -1 

mix3 vs mix1 0 1 

mix4 vs mix1 -1 0 

mix3 vs mix2 1 2 

mix4 vs mix2 0 1 

mix4 vs mix3 -1 -1 
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Contrast MSstatsPTM Msqrob2PTM 

Combo vs Ctrl 424 30 

CCCP vs Ctrl 359 12 

USP30_OE vs Ctrl 40 0 

Combo vs CCCP 31 1 

Combo vs USP30_OE 407 24 

CCCP vs USP30_OE 364 13 
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• Msqrob2PTM is a novel statistical workflow to detect differentially used PTMs and 

peptidoforms. 

• PTM abundances are corrected for its parent protein abundance by a normalisation strategy. 

• The workflow is freely available on GitHub. 

• Tested on different datasets and compared to MSstatsPTM. 

• Reproducible and transparent workflow applicable to many different experimental designs. 
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The era of open-modification search engines in LC-MS/MS-based proteomics has expanded the 

detection of post-translational modifications (PTMs). However, statistical methods for PTM-level 

quantification and differential analysis are lacking. To address this, we introduce msqrob2PTM, offering 

differential usage analysis at the PTM and peptidoform level. The workflow provides an additional 

normalisation to correct for parent protein abundance. Demonstrating efficacy on simulated datasets 

and PTM-rich biological data, msqrob2PTM outperforms existing methods and uniquely provides 

output at the peptidoform level. Accessible at https://github.com/statOmics/msqrob2PTMpaper. 
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