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Abstract:
A novel cascaded observer design exploiting source points’ bearing measurements is proposed
for the monocular visual SLAM problem. A distinguishing feature of the present work with
respect to most existing visual SLAM algorithms is the decoupling of the camera’s pose
estimation (i.e., localization) from source points’ position estimation (i.e., map building), leading
to a straightforward architecture that can handle a vast number of source points efficiently.
Furthermore, the persistence of excitation of the camera’s translational motion together with
the source points’ configuration (specified in our prior works) is the key to achieving (local)
exponential stability of the camera’s pose estimation and, subsequently, overcoming the well-
known depth ambiguity associated with the use of a monocular camera. This ingredient has
paved the way for the proposed cascaded observer architecture, in which the main contributions
concern the design and stability analysis of the three proposed observers for source points’
position estimation. Convincing comparative simulation and experimental results are reported
to support the proposed approach.
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1. INTRODUCTION

SLAM (Simultaneous Localization And Mapping) is one of
the most fundamental capabilities of autonomous robots to
navigate and perform tasks. SLAM algorithms allow for a
robotic system to estimate its pose (i.e. position and orien-
tation) and to build its surrounding map at the same time
using onboard exteroceptive sensors that sometimes can be
fused with inertial sensors such as IMU, Doppler velocity
sensors, etc. Visual SLAM (or vSLAM) refers to SLAM for
which cameras or other image sensors are used (Cadena
et al. (2016)). In particular, monocular vSLAM involving
a single camera is of substantial interest and remains a
challenging research topic principally due to the unknown
depth. It has been extensively studied by the robotics
community with classical Extended Kalman Filter (EKF)
techniques (Davison et al. (2007); Durrant-Whyte and Bai-
ley (2006)) and modern graph-based optimization methods
(Lu and Milios (1997); Grisetti et al. (2010)) encompassing
academic and industry-standard solutions. However, both
these approaches suffer from significant limitations. For
instance, EKF algorithms experience consistency issues
along with computational complexity for covariance up-
date (Bailey et al. (2006)) whereas modern graph-based
methods require even higher computational cost. More
recently, SLAM and vSLAM have started to attract atten-
tion from the control systems community (Guerreiro et al.
(2013); Barrau and Bonnabel (2017)). The bi-dependence
of the map-pose estimation processes makes the SLAM
problem highly nonlinear and challenging (Cadena et al.
(2016)). The SLAM state space’s nonlinearity is commonly

resulted from the rigid body’s orientation evolving in
the compact Lie group SO(3) (van Goor et al. (2019)).
Bonnabel et al. have introduced the Invariant Extended
Kalman Filter (IEKF) that turned out to be competitive
for the SLAM problem (Barrau and Bonnabel (2015)). Van
Goor et al. have developed a nonlinear equivariant filter
(van Goor et al. (2020)) exploiting the structure of the
SLAM state-space manifold presented in van Goor et al.
(2019). In most SLAM and vSLAM works, the pose and
the map are estimated at the same time via the design of a
single estimator. By contrast, Johansen and Brekke (2016)
have separated the camera’s orientation estimate from the
map-position estimation problem. From there, several cas-
caded observers depending on the nature of measurements
(e.g. range and/or bearing) have been proposed (Bjørne
et al. (2017)).

The present paper adopts a new cascaded structure in
order to perform monocular vSLAM. First, the pose es-
timation is carried out independently using the relative
pose observer developed in our prior works (Hua et al.
(2020); Gintrand et al. (2022)). The mapping is achieved
afterwards using one of the three proposed observers for
landmarks position estimation. The proposed architecture
presents apparent advantages: the pose estimation does
not depend on the mapping (i.e. landmarks’ position es-
timation) and each source point is located independently.
This structure brings simplicity and robustness; the com-
putational load is more manageable; a larger number of
source points can be processed compared to standard



SLAM algorithms; and abnormalities can be detected more
easily.

The paper is organized as follows. Mathematical notions
used throughout the paper, uniform observability defini-
tion and recalls on the Riccati observer framework (Hamel
and Samson (2017)) are provided in Section 2. Section 3
defines the system kinematics and introduces the pose
SLAM problem. Section 4 recalls the relative pose observer
presented in Hua et al. (2020) along with complements on
the observability conditions presented by Gintrand et al.
(2022), and it presents three different observers for the
source point position estimation along with convergence
and stability analysis. Section 5 provides a comparative
study of the proposed observers in terms of performance
and computational efficiency throughout a numerical sim-
ulation. Section 6 describes practical implementation to
ensure continuity of the pose estimation when visible
source points are not the same over time, followed by
experimental validation using the Urban Complex Dataset
(Jeong et al. (2019)) that provides IMU data, images,
and wheel odometry data. Finally, concluding remarks are
drawn in Section 7.

2. PRELIMINARY MATERIAL

2.1 Mathematical notations

The following notations will be used throughout the paper:

• The identity matrix and the null matrix of Rn×n are
respectively denoted by In and 0n.

• The closed ball in Rn of radius r is denoted as Bn
r .

• SO(n) denotes the special orthogonal group of order
n.

• x× is the skew-symmetric matrix associated with x,
i.e. ∀x, y ∈ R3 x×y = x× y.

• πx := I3−xx⊤ = −x2
×, with x ∈ S2, is the orthogonal

projection operator in R3 onto the two-dimensional
vector subspace orthogonal to x.

2.2 Uniform observability

Consider the following linear time-varying system{
ẋ = Ā(t)x+ B̄(t)u
y = C̄(t)x

with x ∈ Rn, u ∈ Rl, y ∈ Rm.

Definition 1. The pair (Ā(t), C̄(t)) is called uniformly ob-
servable if there exist δ, µ > 0 such that for all t ≥ 0:

W (t, δ) :=
1

δ

∫ t+δ

t

Φ⊤(s, t)C̄⊤(s)C̄(s)Φ(s, t)ds ≥ µIn (1)

with Φ(s, t) the transition matrix associated with Ā, i.e.
such that d

dsΦ(s, t) = Ā(s)Φ(s, t), with Φ(t, t) = In.

The matrix W (t, δ) is the so-called observability Gramian
associated with the pair (Ā(t), C̄(t)).

2.3 Riccati observer

The observers proposed thereafter are designed using
the Riccati observer framework developed by Hamel and
Samson (2017). Here is a short recall.

Consider the following class of nonlinear systems with
state x := [x⊤

1 , x
⊤
2 ]

⊤ ∈ Bn1
r × Rn2 , input u := [u⊤

1 , u
⊤
2 ]

⊤ ∈
Rn1+n2 , and output y ∈ Rm:

 ẋ=A(t)x+

[
u1

u2

]
+O(|x1|2)+O(|x1||u1|)

y=C1(x, t)x1+C2(x, t)x2+O(|x1|2)+O(|x1||x2|)
(2)

with A(t) a continuous matrix-valued function uniformly
bounded with respect to (w.r.t.) t of the form

A(t) =

[
A11(t) 0n1×n2

A21(t) A22(t)

]
and C := [C1, C2] ∈ Rm×(n1+n2) continuous matrix-
valued function uniformly bounded w.r.t. t and uniformly
continuous w.r.t. x.

Apply the input u = −Ky, with K = [K⊤
1 ,K⊤

2 ]⊤ :=
PC⊤Q(t) and P ∈ R(n1+n2)×(n1+n2) a symmetric positive
definite matrix, the solution to the Continuous Riccati
Equation (CRE)

Ṗ = AP + PA⊤ − PC⊤Q(t)CP + V (t)

where P (0) is positive definite, and Q and V are bounded
continuous positive semi-definite. Then the Corollary 3.2
by Hamel and Samson (2017) shows that the equilibrium
x = 0 is locally uniformly exponentially stable when
Q(t) and V (t) are both larger than some positive matrix
and the pair (A⋆(t), C⋆(t)) := (A(t), C(0, t)) is uniformly
observable.

3. PROBLEM STATEMENT

Let A be the moving camera-fixed frame, and Å be
the reference configuration of this frame. The relative
orientation of A w.r.t. Å is denoted as R ∈ SO(3) and the

relative position of A w.r.t. Å, expressed in A (resp. in Å)
is denoted as ξ ∈ R3 (resp. ξ◦ = Rξ). The vector Ω ∈ R3

denotes the angular velocity of A w.r.t. Å expressed in A
and the vector v ∈ R3 represents the linear velocity of the
camera origin expressed in A. Both velocities Ω and v are
assumed to be measured using gyrometers and a Doppler
sensor, respectively.

The dynamics of the camera pose (R, ξ) are given by{
Ṙ = RΩ×
ξ̇ = −Ω×ξ + v

(3)

The problem under consideration focuses on the pose
SLAM from a monocular camera observing N fixed un-
known source points using bearing measures. Let pi :=
Pi

|Pi| =
pp
i

|pp
i
| ∈ S2 (resp. p◦i :=

P◦
i

|P◦
i
| =

p◦
i
p

|p◦
i
p| ∈ S2) denote the

bearing that one can get from the perspective outputs ppi
(resp. p◦i

p) commonly used in computer vision literature.

Using the relation Pi = R⊤P ◦
i − ξ, one deduces for each

source points i the following epipolar constraint

p◦i
⊤Rξ×pi = 0 (4)

4. OBSERVER DESIGN FOR THE POSE SLAM

This section presents novel cascaded observers for the pose
SLAM problem. A Riccati observer is first designed for the
relative pose problem, followed by N parallel observers to
estimate the position of the source points.

4.1 Pose Observer design

Let (R̂, ξ̂) denote an estimate of the pose (R, ξ). The
proposed observer has the following form



Fig. 1. Intuitive representation of inertial coordinates
P ◦
i , planar projective coordinates ppi and spherical

projective coordinates pi of the ith source point.{
˙̂
R = R̂Ω× − R̂σR×
˙̂
ξ = −Ω×ξ̂ + v − σξ

(5)

with initial conditions R̂(0) ∈ SO(3) and ξ̂(0) ∈ R3, and
with σR, σξ ∈ R3 innovation terms to be designed.

Define the attitude error R̃ := R̂⊤R and the position error

ξ̃ := ξ − ξ̂. From (3) and (5), one deduces

˙̃R = −Ω×R̃+ R̃Ω× + σR×R̃

From the Rodrigues’ formula, the first-order approxima-
tion of R̃ is given by

R̃ = I3 + λ̃× +O(|λ̃|2)
with λ̃ ∈ B3

2 equal to twice the vector part of the

quaternion associated with R̃. One deduces from the two
previous relations that[

˙̃
λ
˙̃
ξ

]
=

[
−Ω× 03
03 −Ω×

][
λ̃

ξ̃

]
+

[
σR+O(|λ̃||σR|)+O(|λ̃|2)

σξ

]
(6)

By considering the epipolar constraint (4) and using the

fact that R = R̂R̃ and ξ = ξ̂ + ξ̃, one gets

0=p◦i
⊤R̂R̃(ξ̂ + ξ̃)×pi

=p◦i
⊤R̂ξ̂×pi+p◦i

⊤R̂λ̃×ξ̂×pi+p◦i
⊤R̂ξ̃×pi+O(|λ̃||ξ̃|)+O(|λ̃|2)

By setting yi = p◦i
⊤R̂ξ̂×pi, one deduces

yi = p◦i
⊤R̂(ξ̂×pi)×λ̃+p◦i

⊤R̂pi×ξ̃+O(|λ̃||ξ̃|)+O(|λ̃|2) (7)

From (5)-(7), one obtains the compact form of the Riccati
observer (2) with

[
x1

x2

]
:=

[
λ̃

ξ̃

]
,

[
u1

u2

]
:=

[
σR

σξ

]
,

A :=

[
−Ω× 03
03 −Ω×

]
, y :=

 p◦1
⊤R̂ξ̂×p1

...

p◦N
⊤R̂ξ̂×pN

 ,

C1 :=

 p◦1
⊤R̂(ξ̂ × p1)×

...

p◦N
⊤R̂(ξ̂ × pN )×

 , C2 :=

 p◦1
⊤R̂p1×
...

p◦N
⊤R̂pN×


(8)

The innovation terms involved in (5) can then be deduced:

σR = −K1y, σξ = −K2y (9)

with K1 and K2 computed according to Subsection 2.3.

Comprehensive observability analysis of the above pose
observer has been carried out in (Gintrand et al. (2022)).
It is mainly based on the persistence of excitation (PE) of
the translation motion. By defining the matrix

Πi(t, δ) :=
1

δ

∫ t+δ

t

ξ◦(s)ξ◦⊤(s)

|P ◦
i − ξ◦(s)|2

ds

and λi
1(t, δ), λ

i
2(t, δ), λ

i
3(t, δ) denoting the eigenvalues of

Πi(t, δ) in increasing order (i.e. λi
1(t, δ) ≤ λi

2(t, δ) ≤
λi
3(t, δ)), one defines the PE as follows:

Definition 2. (Strong and weak persistent excitation). The
camera translational motion is called strongly persistently
exciting if there exist δ, β > 0 such that for all t ≥ 0:
λi
1(t, δ) ≥ β. It is called weakly persistently exciting, if

rank(Πi(t, δ)) = 2 and λi
2(t, δ) ≥ β.

Proposition 3. (see Gintrand et al. (2022)). Define 4 de-
generated source points configurations as follow:

(1) The number of observed source points n ≤ 2.
(2) The observed source points are aligned (n ≥ 3).
(3) There are three non-aligned source points (n = 3)

and the origin of the reference frame Å belongs to the
danger cylinder 1 generated by the 3 source points.

(4) There are at least four non-aligned source points
(n ≥ 4) located on a horopter curve 2 whose origin

coincides with the origin of Å.

One verifies the 3 following statements:

(1) If one of the above conditions is fulfilled, then
(A∗, C∗) cannot be uniformly observable.

(2) If the camera motion is strongly PE and if none
of the above conditions is satisfied, then (A∗, C∗) is
uniformly observable.

(3) If the camera motion is only weakly PE, then (A∗, C∗)
is uniformly observable if none of the above conditions
is granted and if there are at least 3 bearings not
orthogonal to ker(Πi(t, δ)).

When the uniform observability is granted, one ensures
that the equilibrium (I3, 0) of relative pose error (R̃, ξ̃) is
locally exponentially stable.

4.2 Landmark position observers

We consider now the second fundamental task of the pose
SLAM problem which consists in estimating the source
points’ location in the reference frame P ◦

i , i = {1, . . . , N}.
Definition 4. The bearing p̄i := Rpi is called PE if there
exist ε, δ > 0 such that for all t > 0

1

δ

∫ t+δ

t

πp̄i(s)ds ≥ εI3 (10)

Using the fact that Ṗ ◦
i = 0 and the output measure which

is either explicitly given by yi = πp̄i
ξ◦ or implicitly by

πp̄i
(ξ◦ −P ◦

i ) = 0, one verifies that the left-hand side term
of (10) is nothing more than the Gramian.

Lemma 5. If the camera motion is either strongly PE or
weakly PE such that p̄i is uniformly non-collinear with ξ◦

1 The danger cylinder is a circular cylinder generated by the circle
passing through three source points whose axis is orthogonal to the
plane containing the source points.
2 A horopter curve is the intersection of a circular cylinder and an
elliptic cone.



(i.e. there exists ϵ > 0 such that |πp̄i
ξ◦| ≥ ϵ), then p̄i is

PE.
Proof. The critical situation consists in having a weakly
PE linear camera motion. That is a linear motion that
does not contain the origin of frame Å and for which it is
straightforward to verify that p̄i is PE (according to Def.
4) if the source point P ◦

i is not in the direction of motion.

Theorem 6. Consider the system dynamics (3) and the
relative pose observer (5) along with the innovation terms
given by (9). Consider also the following source point
observer:

˙̂
P ◦
i = kπR̂pi

(ξ̂◦ − P̂ ◦
i ), with i = 1, . . . , N (11)

with k > 0, P̂ ◦(0) ∈ R3 and ξ̂◦ := R̂ξ̂. Assume that all

source points P ◦
i ∈ Å are static, and none of Proposition

3’s conditions is fulfilled. Assume also that the condition
of Lemma 5 holds. Then, one ensures that

(1) R̂pi is PE;

(2) the equilibrium (R̃, ξ̃, P̃ ◦
i , · · · , P̃ ◦

N ) = (I3, 0, 0, · · · , 0)
of the corresponding cascaded error system, with
P̃ ◦
i := P ◦

i − P̂ ◦
i , is locally exponentially stable.

Proof. Using the fact that (R̃, ξ̃) = (I3, 0) is uniformly

locally exponentially stable, one ensures that (R̄, ξ̃◦) :=

(R̂R̃⊤R̂⊤, R̂ξ − ξ◦) = (I3, 0) is also uniformly locally
exponentially stable.

Now, since p̄i is PE and using the fact that πR̂pi
= πR̄p̄i

along with the fact that R̄ = I3−λ̄×+O(|λ̄|2) with λ̄ = R̂λ̃
one verifies

1

δ

∫ t+δ

t

πR̂pi(s)
ds=

1

δ

∫ t+δ

t

(πp̄i(s)−[λ̄×(s), πp̄i(s)]+O(|λ̄|2)ds (12)

with [λ̄×, πp̄i
] = λ̄×πp̄i

− πp̄i
λ̄×. Since λ̄ is uniformly

converging to zero exponentially, by choosing t sufficiently
large one ensures that ∃ϵ > 0 such that |λ̄| < ϵ

4 and

hence 1
δ

∫ t+δ

t
πR̂pi(s)

ds ≥ ϵ
2I3 which implies that R̂pi is

also PE. Then by direct application of (Le Bras et al., 2017,

Lemma 5) one concludes that P̂ ◦
i is bounded. Combining

(11) with the fact that πR̂pi
= πR̄p̄i

= R̄πp̄iR̄
⊤ along with

πp̄i
(ξ◦ − P ◦

i ) = 0 and Ṗ ◦
i = 0, one verifies

˙̃P ◦
i = −kR̄πp̄i

R̄⊤(ξ̂◦ − P̂ ◦
i )

= −k(I3 − λ̄×)πp̄i
(I3 + λ̄×)(ξ̂

◦ − P̂ ◦
i ) +O(|λ̄|2)

= −kπp̄i
(ξ̂◦ − P̂ ◦

i ) + k[λ̄×, πp̄i
](ξ̂◦ − P̂ ◦

i ) +O(|λ̄|2)
= kπp̄i

P̃ ◦
i − kπp̄i

ξ̃◦ + k[λ̄×, πp̄i
](ξ̂◦ − P̂ ◦

i ) +O(|λ̄|2)
Now, using the fact that (λ̄, ξ̃◦) = (0, 0) is exponentially

stable while ξ̂◦ and P̂ ◦
i are uniformly bounded, direct

application of (Le Bras et al., 2017, Proposition 1) shows

that P̃ ◦
i := P ◦

i − P̂ ◦
i converges exponentially to zero. This

allows one to conclude the proof.

The interest of this result lies in the extreme simplicity of
the observer design. However, it is not the best option in
terms of performance since the PE property of p̄i is only
exploited in the proof. We hence propose two alternative
options that may significantly improve the source point
estimation performance as shown by simulation results.

Proposition 7. Consider the statement of Theorem 6 along
with the following observer instead of (11):

˙̂
P ◦
i = KiπR̂pi

(ξ̂◦ − P̂ ◦
i ), with i = 1, . . . , N (13)

with P̂ ◦
i (0) ∈ R3, Ki := MiπR̂pi

Q, and Mi solution to the

Riccati equation Ṁi = −MiπR̂pi
QπR̂pi

Mi + V , Mi(0), Q
and V positive definite matrices. Then, one ensures that

(1) Mi(t) is a positive definite matrix, with bounded
condition numbers;

(2) the equilibrium (R̃, ξ̃, P̃ ◦
i , · · · , P̃ ◦

N ) = (I3, 0, 0, · · · , 0)
of the corresponding cascaded error system, with
P̃ ◦
i := P ◦

i − P̂ ◦
i , is locally exponentially stable.

Proof. The proof of Property 1) is a direct application of
(Hamel and Samson, 2016, Lemma 2.1) using the fact that

R̂pi is also PE. Now, analogously to the proof of Theorem
6, one has:

˙̃P ◦
i =−Kiπp̄i

P̃ ◦
i +Kiπp̄i

ξ̃◦−Ki[λ̄×, πp̄i
](ξ̂◦ − P̂ ◦

i )+O(|λ̄|2)

Consider the following storage function Li =
1
2 P̃

◦
i

⊤
M−1

i P̃ ◦
i .

One verifies that

L̇i = −1

2
P̃ ◦
i

⊤
(πp̄iQπp̄i +M−1

i VM−1
i )P̃ ◦

i + P̃ ◦
i

⊤
ε(λ̄, ξ̃◦)

where ε(λ̄, ξ̃◦) is a bounded exponentially vanishing term.

From there, one concludes that P̃ ◦
i locally exponentially

converges to zero. This allows one to conclude the proof.

The second suggestion here proposed directly exploits
the measured source point Gramian (12) in the observer
design.

Proposition 8. Consider the statement of Theorem 6 along
with the following observer instead of (11):

˙̂
P ◦
i (t) = −kP̂ ◦

i (t) +
k

T
Wi(t)

−1

∫ t

t−T

πR̂pi(s)
ξ̂◦(s)ds

with i ∈ {1, . . . , N}, k > 0, P̂ ◦(0) ∈ R3, and Wi(t) :=
1
T

∫ t

t−T
πR̂pi(s)

ds the measured Gramian. Then, the equi-

librium (R̃, ξ̃, P̃ ◦
i , · · · , P̃ ◦

N ) = (I3, 0, 0, · · · , 0) of the corre-

sponding cascaded error system, with P̃ ◦
i := P ◦

i − P̂ ◦
i , is

locally exponentially stable.
Proof. Direct application of Theorem 6 shows that the
measured Gramian is a well-defined positive definite ma-
trix, with bounded condition numbers. From there, and
using the fact that πR̂p̄i

R̄(ξ◦ − R̄P ◦
i ) = 0, one shows that:

˙̃P ◦
i = kP̂ ◦

i (t)−
k

T
Wi(t)

−1

∫ t

t−T

πR̂pi(s)
ξ̂◦(s)ds

=
k

T
W−1

i

∫ t

t−T

πR̂pi(s)
(P̂ ◦

i − ξ̂◦(s) + R̄(ξ◦(s)− P ◦
i ))ds

= − k

T
W−1

i

∫ t

t−T

πR̂pi(s)
(P̃ ◦

i (t))ds+
k

T
W−1

i ε(λ̄, ξ̃◦, t)

= −kP̃ ◦
i (t) +

k

T
W−1

i ε(λ̄, ξ̃◦, t)

One verifies that ε(λ̄, ξ̃◦, t) =
∫ t

t−T
πR̂pi(s)

(ξ̃◦(s) − (λ̄× −
O(|λ̄|2))(ξ◦(s) − P ◦

i ))ds is a bounded exponentially van-

ishing term and, consequently, P̃ ◦
i converges exponentially

to zero. This allows one to conclude the proof.

Note that above Gramian-based point source observer is
computationally more efficient compared to the Riccati-
based point source observer proposed in Proposition 7. It



is also more reliable to detect observable and unobservable
source points from the direct computation of the measured
Gramian.

5. SIMULATIONS

In this section, the three source point position observers
proposed in Section 4.2 are compared through numerical
simulations. The camera performs the periodic planar

motion defined by ξ̊(t) = [8 sin(πt/4), 12 sin(πt/3), 0]⊤.
The camera’s angular velocity is set to

Ω(t) = π
180 [5 cos(t), 10 cos(2t), 45 cos(2t)]

⊤
.

We consider 5 source points spread in the 3D space: P ◦
1 =

[−6,−3,−3]⊤, P ◦
2 = [0,−2.5, 0]⊤, P ◦

3 = [3,−3,−4]⊤,
P ◦
4 = [−2,−5,−2]⊤ and P ◦

5 = [−2,−4,−5]⊤ in order
to ensure the observability. The parameters of the source
point observers are described in Table 1. Simulations have
been performed using Matlab. For the two first observers,
ode45 solver has been used, whereas, for the third one,
dde23 solver has been chosen to manage the propagation of
variables with a constant delay. Figure 2 shows the estima-

Theo. 6 observer k = 1

Prop. 7 observer M(0) = 100I3, V = 0.1I3, Q = 100I5
Prop. 8 observer k = 10, T = 0.2s

Table 1. Parameters of the observers

tion error for the landmark P ◦
1 using the three observers.

It points out that the Riccati-based and Gramian-based
observers outperform the constant gain observer in terms
of convergence rate. In contrast, the Riccati-based observer
is much more demanding in computation. The comparison
was performed using sampled versions of the observers at
0.001s and by taking the average over 20 iterations. The
constant gain observer is less computationally demanding
since it requires 8.8s to compute the relative pose and the
five landmarks position of a 50s simulation. The Riccati-
based observer takes 13.2s, and the Gramian-based ob-
server 12.3s.

0 5 10 15 20 25 30 35 40 45 50

time (s)

0

2

4

6

8

Constant gain observer

Riccati-based observer

Gramian-based observer

Fig. 2. Estimation error of the landmark position P ◦
1 versus

time (s) for the three observers

6. EXPERIMENTAL RESULTS

6.1 Handling landmarks appearance and disappearance

The relative pose observer (5) along with (9) supposes that
every single bearing is available for all time t. However,
in practice, source points are typically visible only for a
short period [tk, tk+1], and hence the measure equation (8)
should be modified accordingly. Define Sk the set of source
points available from tk to tk+1, Rk := R(tk), ξk := ξ(tk),
ξkt := ξ(t)−R⊤Rkξk and pik := pi(tk). Let us express the
epipolar constraint verified by each points of the set Sk

between time tk and t ∈ [tk, tk+1]

0 = p⊤ik(R
⊤
k R)(ξkt)×pi

= p⊤ikR
⊤
k Rξ×pi − p⊤ikξk×R

⊤
k Rpi

= p⊤ikR
⊤
k R̂ξ̂×pi + p⊤ikR

⊤
k R̂ξ̃×pi + p⊤ikR

⊤
k R̂λ̃×ξ̂×pi

− p⊤ikξk×R
⊤
k R̂pi−p⊤ikξk×R

⊤
k R̂λ̃×pi+O(|λ̃|2)+O(|λ̃||ξ̃◦|)

In this process, we assume that the relative estimated
pose at time tk is sufficiently accurate to approximate

(R̂k, ξ̂k) ≈ (Rk, ξk). Then, vector y and matrix C in (8)
are adjusted as follows:

y =

 p⊤1k(R̂
⊤
k R̂ξ̂× − ξ̂k×R̂

⊤
k R̂)p1

...

p⊤Nk(R̂
⊤
k R̂ξ̂× − ξ̂k×R̂

⊤
k R̂)pN



C =

 p⊤1k(R̂
⊤
k R̂(ξ̂×p1)× − ξ̂k×R̂

⊤
k R̂p1×) p⊤1kR̂

⊤
k R̂p1×

...
...

p⊤Nk(R̂
⊤
k R̂(ξ̂×pN )× − ξ̂k×R̂

⊤
k R̂pN×) p⊤NkR̂

⊤
k R̂pN×


to account for points of the set Sk and ensure continuity
of the relative pose estimation with limited drift as long
as the uniform observability conditions are granted.

6.2 Urban Complex Dataset

The Urban Complex Dataset (Jeong et al. (2019)), which
provides the required data to test the proposed observer
design methodology, is used. It provides the linear velocity
of the vehicle through wheel encoders at a frequency of
100Hz together with the angular velocity at 200Hz. The
images are captured with a global shutter camera at 10Hz.
The ground truth of the dataset, which has been computed
using a pose-graph SLAM algorithm, is provided.

The main drawback of using this dataset is that the car
moves among objects that are not necessarily stationary
(e.g., other moving cars and pedestrians) while our ob-
server design assumes that all visible points to be fixed.To
overcome this issue, only the image’s upper part, typically
related to static objects such as trees, buildings, and traf-
fic lights, is considered. Figure 3 shows the original and
truncated images.

(a) Original image

(b) Truncated image with N = 213 features drawn in red used
by the observer

Fig. 3. Original image captured by the camera and the
truncated image

The features are detected with the well-known SURF al-
gorithm, and tracked using Kanade-Lucas-Tomasi (KLT)



algorithm. Initially, 300 features are identified in the im-
age; when less than 150 features remain after the tracking,
new ones are detected and tracked again. The constant
bias of the gyroscope is computed by averaging the gyros
measures when the IMU is at rest. The prediction loop
runs at 100Hz, whereas the estimation loop operates at
10Hz. The following parameters have been chosen for the
relative pose observer Q = 10−5IN , V = diag(I3, 0.01I3)
and P0 = 1000I6 while the Gramian-based observer has
been chosen to perform the environment mapping. This
latter ignores unobservable points, that is, all points with
an ill-conditioning measured Gramian.

Figure 4 shows the vehicle’s trajectory during the begin-
ning of the sequence #28 of the Urban Complex Dataset.
The estimated and ground truth position of the car versus
time is represented in Figure 5, and Figure 6 shows the
heading estimation error.

Figure 7 compares the proposed observer against the
Lidar-based algorithm proposed by Cho et al. (2020) and
LeGO-LOAM (Shan and Englot (2018)). The pose esti-
mation errors have been collected for multiple segments
of 5 different lengths (1100m, 2200m, 3300m, 4400m and
5500m) and statistic data are displayed through a box plot.
Although our observer deviates over time due to measure-
ment noise, it outperformed the two Lidar-based odometer
algorithms for both pose and heading estimation.

Fig. 4. Estimated and ground truth trajectory of the
vehicle and landmarks estimated positions using the
sequence #28 of the Urban Complex Dataset

7. CONCLUSIONS

In this paper, a novel observer design for the monocular
VSLAM problem has been presented. In the first step, the
pose estimation is carried out by a nonlinear observer (Hua
et al. (2020)), which does not require any prior knowledge
about the landmarks’ position. Furthermore, the condi-
tions under which the pose is not uniformly observable
have been characterized in terms of the camera’s transla-
tional motion and the number and position of the source
points. In the second step, three observers are proposed to
map the environment, and their convergence conditions
have been specified. We show that the Gramian-based
observer is particularly interesting. It is computationally
efficient and directly allows the detection of the observable
source points from the unobservable ones.
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1100 2200 3300 4400 5500
Distance traveled (m)

0

5

10

15

20

T
ra

n
s
la

ti
o
n
 e

rr
o
r 

(%
)

Cho  et al.

LeGO-LOAM

Riccati

1100 2200 3300 4400 5500
Distance traveled (m)

0

2

4

6

8

10

12

14

16

18

H
e
a
d
in

g
 e

rr
o
r 

(d
e
g
)

Cho  et al.

LeGO-LOAM

Riccati

Fig. 7. Relative estimation error of 3 odometry algo-
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