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Abstract: In this paper we derive the asymptotic properties of the generalized least squares
estimator (GLSE) of autoregressive models endowed with fractional Gaussian noise (the so-
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1. Introduction

The error term in the classical autoregressive models is usually assumed to be a strong white noise
(namely an independent and identically distributed (iid for short) sequence of random variables
with mean 0 and common variance), a martingale difference or a stationary process with a bounded
spectral density (see Anderson and Taylor [1976], Anderson and Taylor [1979], Lai and Robbins
[1977], Lai et al. [1978], Lai et al. [1979] and Solo [1981]). In the late 1990s, Francq, C. and
Zakoïan, J.-M. have released the assumption of the independence on the noise and have considered
the problem of estimating ARMA models with uncorrelated but non-independent error term, the
so-called weak ARMA models (see Francq and Zakoïan [1998]). This extension allowed ARMA
models to be less restrictive and to cover a large class of general nonlinear models. Nevertheless,
the uncorrelatedness of the noise assumed in these classes of models considerably restricts their
application to short-memory stochastic processes.

Yet, in many scientific disciplines and applied fields such as hydrology, climatology, economics,
finance, to name a few, time series exhibit long-range dependence (see for instance Granger and
Joyeux [1980], Fox and Taqqu [1986], Dahlhaus [1989], Hosking [1981], Beran et al. [2013], Palma
[2007], among others), that is dependence between distant observations is so strong that classical
or weak ARMA models are unable to identify and then to take into consideration.

The fractional Gaussian noise (see Mandelbrot and Van Ness [1968]) and the fractional autore-
gressive integrated moving average (FARIMA, for short) models (see Granger and Joyeux [1980]
and Hosking [1981]) are widely used to model the long memory phenomenon. We shall consider in
this work the problem of generalized least squares estimation of autoregressive models endowed with
fractional Gaussian noise. More explicitly, we shall study the asymptotic properties of the general-
ized least squares estimator of the parameters of the centered stationary fractional autoregressive
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process of order 1 (FrAR(1)) (Xt)t∈Z defined, for all t ∈ Z, by

Xt = a0Xt−1 + εHt , (1)

where (εHt )t∈Z is a fractional Gaussian noise and where the autoregressive parameter a0 and the
Hurst index or Hurst parameter H associated with the fractional Gaussian noise (εHt )t∈Z are assumed
to satisfy the following standard assumption:

(A0): a0 ∈ (−1, 1) and H ∈ (0, 1).

The condition a0 ∈ (−1, 1) ensures the causality and then the second-order stationarity of the
process (Xt)t∈Z. In fact, for AR(p) models a causal weak-sense stationary solution is obtained once
the roots of the corresponding autoregressive polynomial lie outside the closed unit disk.

The process (εHt )t∈Z is the increment process of the fractional Brownian motion (BH(t))t∈R of
Hurst index H, namely, for any t ∈ Z, it holds

εHt = BH(t + 1)− BH(t).

Based on the definition and the properties of the fractional Brownian motion (BH(t))t∈R, the
process (εHt )t∈Z is the unique continuous stationary Gaussian centered process with autocovariance
function defined for k ∈ Z by

γεH(k) =
1

2

(
|k − 1|2H − 2|k |2H + |k + 1|2H

)
. (2)

A Taylor expansion of the function ` : x 7→ (1 − x)2H − 2 + (1 + x)2H around 0 implies that for
large k ,

γεH(k) =
1

2
k2H`(1/k) = H(2H− 1)k2H−2 + o(k2H−2).

The last result implies that γεH(k)→ 0 as k →∞. So the process (εHt )t∈Z is mixing (see Ito [1944]).
Mixing is a stronger property than ergodicity, this result is known as the Khinchin’s theorem (see
Khinchin [1949]). Hence limk→∞ γεH(k) = 0 implies that the process (εHt )t∈Z is ergodic.

When 1/2 < H < 1, the series of the autocovariances of (εHt )t∈Z is absolutely divergent and the
process (εHt )t∈Z exhibits long-range dependence.

In the literature, many approaches have been proposed to estimate the parameters of strongly
dependent Gaussian processes. We cite for example the R/S method, periodogram estimation and
maximum likelihood estimation. Mandelbrot [1975] and Mandelbrot and Taqqu [1979] have es-
tablished the theoretical properties of the R/S estimates. Mohr [1981], Graf [1980], Geweke and
Porter-Hudak [1983], Fox and Taqqu [1986] and Dahlhaus [1989] have considered the problem
of periodogram estimation. McLeod and Hipel [1978] have discussed computational considera-
tions involved in the application of maximum likelihood estimation. Sweeting [1980] has proposed
assumptions to obtain the consistency and the asymptotic normality of maximum likelihood esti-
mator. Dahlhaus [1989] has established the asymptotic properties of the exact maximum likelihood
estimation of the parameters of strongly dependent Gaussian processes.

In the particular case of autoregressive models endowed with a strongly dependent noise, Brouste
et al. [2014] have proposed a new approach based on a transformation of the initial model to es-
tablish the asymptotic properties of the maximum likelihood estimator. See also Yajima [1988] for
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the case of a regression problem with nonstochastic regressors.

We study in this paper the asymptotic properties of the generalized least squares estimator of
autoregressive models endowed with fractional Gaussian noise. We propose a simple and natural
transformation of the initial model and we establish the convergence and asymptotic normality of
the generalized least squares estimator based on this transformation. These properties are obtained
using only the standard hypothesis (A0). We propose simple proofs of the asymptotic properties of
the generalized least squares estimator of the autoregressive parameters. We use the closed form of
the estimator to provide very intuitive proofs. We also extend the support of the memory parameter
by considering that 0 < H < 1. Contrary therefore to Dahlhaus [1989] and Brouste et al. [2014],
we take into consideration not only long memory dynamics but also short memory fluctuations. We
also show numerically that our estimator is preferable (in terms of quadratic risk) to the Whittle
estimator proposed by Dahlhaus [1989] when the sample size is relatively moderate.

The paper is organized as follows. In Section 2, we introduce our model and we study the asymp-
totic properties of our estimator. In Section 3, we show that our results obtained in the framework
of fractional autoregressive models of order 1 can easily be extended to the case of autoregres-
sive models of order p ≥ 1 induced by fractional Gaussian noise. We present in Section 4 some
simulation studies to illustrate our theoretical results. We also offer comparisons in terms of the
quadratic risk of our estimator with that of Whittle (see for example Dahlhaus [1989]). Proofs of
our two main results are set out to Section 5. All figures are collected in the last section of the paper.

In all this work, xT designates the transpose of the vector x . We shall also use the matrix norm
defined by ‖A‖ = sup‖x‖Rk2≤1

‖Ax‖Rk1 = ρ1/2(ATA), when A is a Rk1×k2 matrix, ‖x‖2Rk2
= xTx is

the Euclidean norm of the vector x ∈ Rk2 , and ρ(·) denotes the spectral radius.

2. Generalized least squares estimation of FrAR models of order 1

In this section we present the parametrization that is used in the sequel and we state the asymptotic
properties of the GLSE of FrAR(1) when the Hurst exponent H is known. An application of these
asymptotic properties can be found in Ben Hariz et al. [2021] where a two steps procedure is
performed when H is unknown.

2.1. Statement of the problem and notations

First, note that the ordinary least squares estimator of the parameter a0 in (1) is biased. To see
that, let â

(OLS)
n be the standard least squares estimator of a0. It is well known that

â
(OLS)
n =

∑n
t=1 XtXt−1∑n
t=1 X 2

t−1
.

Thanks to (1), one has

â
(OLS)
n − a0 =

∑n
t=1 ε

H
t Xt−1∑n

t=1 X 2
t−1

.

The ergodicity of (εHt )t∈Z and the stationarity of (Xt)t∈Z imply that

â
(OLS)
n − a0

a.s.−−−→
n→∞

E
[
εH2 X1

]
Var (X1)

.
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From (2) and (16), one can easily obtain that

E
[
εH2 X1

]
=

a0 − 2

2
+

(a0 − 1)2

2

∑
j≥2

aj−20 j2H.

Since the function H ∈ (0, 1) −→
∑

j≥2 aj−20 j2H is bijective, we deduce that E[εH2 X1] = 0 if and
only if H = 1/2. This leads to the standard case of an autoregressive model where the noise is an
iid sequence with standard normal distribution.

Due to the bias problem of the ordinary least squares estimator (problem caused by the cor-
relation of the noise), we consider here the generalized least squares estimation procedure. This
technique consists in transforming Model (1) to another autoregressive model, with the same un-
known autoregressive parameter a0, endowed with a standard white noise and consider then the
ordinary least squares estimation on the new model.

From (1), one can write  X2
...

Xn+1

 = a0

X1
...

Xn

+

 εH2
...

εHn+1

 . (3)

The vector (εH2 , . . . , ε
H
n+1)

T is a centered normal random vector with covariance matrix Ωn,H :=
[γεH(j − i)]1≤i ,j≤n = [Cov(εHi , ε

H
j )]1≤i ,j≤n.

Remark 1. The covariance matrix Ωn,H depends only on the Hurst parameter H. As a symmetric
real matrix, Ωn,H can be diagonalized by an orthogonal matrix. More explicitly, there exists a
real orthogonal matrix Pn,H such that Dn,H = PT

n,HΩn,HPn,H is a diagonal matrix. Since Ωn,H

is positive definite (see Proposition 1 hereafter), we have Ω
1/2
n,H := Pn,HD

1/2
n,HPT

n,H where D
1/2
n,H =

diag((λ
(n)
1,H)

1/2, . . . , (λ
(n)
n,H)

1/2) and the λ(n)i ,H are the eigenvalues of Ωn,H. The matrix Ω
1/2
n,H is the

square root of Ωn,H since it satisfies Ω
1/2
n,HΩ

1/2
n,H = Ωn,H.

In view of this last remark, Ω
−1/2
n,H (εH2 , . . . , ε

H
n+1)

T is a standard normal random vector. Thus, a
rather natural and simple transformation that can be proposed is the following:

Yn,H = a0Zn,H + Un,H, (4)

where

Yn,H = Ω
−1/2
n,H

 X2
...

Xn+1

 , Zn,H = Ω
−1/2
n,H

X1
...

Xn

 and Un,H = Ω
−1/2
n,H

 εH2
...

εHn+1

 . (5)

The random variable ân is called generalized least squares estimator if it satisfies, almost surely,

ân = argmin
a∈(−1,1)

1

n
‖Un,H(a)‖2Rn , (6)

where
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Un,H(a) = Ω
−1/2
n,H

 eH2 (a)
...

eHn+1(a)

 (7)

and

eHt (a) = Xt − aXt−1 (8)

with eHt (a) = Xt = 0 if t ≤ 0. Note that Un,H(a0) = Un,H.

The resolution of the optimization problem presented in (6) leads to an explicit expression of
ân. One can easily prove that

ân =
ZT
n,HYn,H

‖Zn,H‖2Rn

. (9)

Moreover, in view of this last equality and Equation (4), one can deduce that

ân − a0 =
ZT
n,HUn,H(a0)

‖Zn,H‖2Rn

. (10)

2.2. Asymptotic properties

The asymptotic properties of the generalized least squares estimator of the fractional autoregressive
model of order 1 are stated in the following two theorems.

Theorem 1. (Consistency). We assume that (Xt)t∈Z satisfies (1). Under (A0), we have

ân
P−−−→

n→∞
a0,

where (ân)n≥1 is a sequence of generalized least squares estimators as defined in (9).

The proof of this theorem is given in Subsection 5.2.

Theorem 2. (Asymptotic normality). We assume that (Xt)t∈Z satisfies (1). Under (A0), the
sequence (

√
n(ân − a0))n≥1 has a limiting centered normal distribution with variance 1− a20.

The proof of this theorem is set out to Subsection 5.3.

3. Generalized least squares estimation of FrAR models of order p

The results obtained in the previous section can be extended to fractional autoregressive mod-
els of order p. To be more precise, suppose that the process (Xt)t∈Z admits an autoregressive
representation of the form

Xt = a01Xt−1 + · · ·+ a0pXt−p + εHt , (11)

where (εHt )t∈Z is a fractional Gaussian noise with 0 < H < 1. To ensure the stability of the process
(Xt)t∈Z in this case, we suppose that its reverse characteristic polynomial has no root in and on
the complex unit circle, i.e. we assume that

1− a01z − · · · − a0pzp 6= 0 for |z | ≤ 1. (12)
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In view of (11), it can readily be shown that X2
...

Xn+1

 =

X1 · · · X2−p
...

...
Xn · · · Xn+1−p


a01

...
a0p

+

 εH2
...

εHn+1

 . (13)

We readopt the same transformation as the one used in the previous section to obtain a vector
representation similar to the one introduced in (4). Multiplying all the terms of Equation (13) by
the appropriate matrix Ω

−1/2
n,H , one has

Yn,H = Zn,HA0 + Un,H(A0),

where Yn,H and Un,H(·) are defined in (5) and (7) and where

Zn,H = Ω
−1/2
n,H

X1 · · · X2−p
...

...
Xn · · · Xn+1−p

 and A0 =

a01
...

a0p

 .

Similarly as before, we again show that the generalized least squares estimator Ân of A0 takes a
closed form and it is explicitly given by:

Ân = argmin
A

1

n
‖Un,H(A)‖2Rn

=
(
ZT
n,HZn,H

)−1 (
ZT
n,HYn,H

)
= A0 +

(
ZT
n,HZn,H

)−1 (
ZT
n,HUn,H(A0)

)
,

where the minimum is taken over all vectors A = (a1, · · · , ap)
T of Rp−1 × R∗ such that (12) is

satisfied.

The following theorem gives the asymptotic properties of the generalized least squares estimator
of autoregressive models of order p induced by fractional Gaussian noise. The proof of this theorem
is similar to the one of Theorems 1 and 2 detailed in Section 5.

Theorem 3. We assume that (Xt)t∈Z satisfies (11). Suppose that 0 < H < 1 and that A0 =
(a01, · · · , a0p)

T is such that Condition (12) is verified. Then, the sequence (
√

n(Ân − A0))n≥1
has a limiting centered normal distribution with variance Γ−1(A0), where Γ (A0) is the limit in
probability of ZT

n,HZn,H/n.

4. Numerical illustrations

In this section, we investigate the finite sample properties of the asymptotic results that we in-
troduced in this work. For that, we use Monte Carlo experiments. The numerical illustrations of
this section are made with the open source statistical software R (see R Development Core Team,
2017) or (see http://cran.r-project.org/).
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4.1. Simulation studies

We first study numerically the behavior of the generalized least squares estimator for fractional
autoregressive models of the form

Xt = aXt−1 + εHt , (14)

where the unknown autoregressive parameter is taken as a = 0.3, and where (εHt )t∈Z is a fractional
Gaussian noise with Hurst index H = 0.7.

We simulate N = 2, 000 independent trajectories of sizes n = 30, n = 500 and n = 2, 000 of
Model (14).

Figures 1, 2 and 3 illustrate the distribution of the generalized least squares estimator ân of
the autoregressive parameter a. We can notice that these numerical results are consistent with the
convergence established in Theorem 2.

In Figures 4, 5 and 6, we corroborate the convergence of the estimator 1− â2n of the asymptotic
variance of the generalized least squares estimator ân given in Theorem 2. We can remark that even
for a small sample size the estimator is very close to the true value of the parameter. This suggests
that our estimator is not greedy in terms of sample size. This phenomenon is confirmed by Figures
8-12. For different values of n and for this same set of parameters (i.e. a = 0.3 and H = 0.7),
we compare in Figure 7 the quadratic risk of the generalized least squares estimator ân (in black)
with that of the Whittle estimator considered for example by Dahlhaus [1989] (in green) based on
N = 2, 000 independent replications for each value of n. It is clear in this case that when the sample
size is relatively small our estimator makes less error than the Whittle estimator. It is also worth
noting that this closed form of our estimator makes it preferable even when the sample size is large.

To have a more global view on the behavior of our estimator when the sample size is relatively
small, we consider the cases where a = −0.9,−0.5, 0, 0.5, 0.9 in Model (14). For each value of a,
we vary H over the interval [0.01, 0.99] with a step of 0.01. For each value of the autoregressive
parameter a and the memory parameter H, we simulate N = 1, 000 independent trajectories of (14).
We compare in Figures 8-12, the logarithm of the quadratic risk of the generalized least squares
estimator ân (in black) with that of the Whittle estimator (in green) of N = 1, 000 replications
of Model (14) with different values of a and H. In each figure, four sample sizes were considered.
From left to right and top to bottom, the size takes the values n = 50, 100, 150, 200. Clearly,
for the different values of a and n, our estimator shows a certain stability unlike that of Whittle
where the quadratic risk is characterized by a certain instability especially when H is close to 0
and 1. This observation highlights the fact that the generalized least squares estimator ân gives
very satisfactory results in the different memory scenarios presented by the process. Note that for
all the illustrations given in Figures 8-12, H sweeps the entire memory interval (0, 1). The Whittle
estimator seems to be less precise for several values of a when the process is short memory (i.e.
when H ∈ (0, 1/2]).

5. Proofs

In all our proofs, K is a positive constant that may vary from line to line.
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5.1. Preliminary results

In this subsection, we state some results that will be useful for the proofs of the asymptotic
properties of the generalized least squares estimator introduced in Section 2. We use (A0) to write
Zn,H as a function of Un,H(a0). This expression will provide very intuitive proofs of the asymptotic
properties of the GLSE.
We also give the asymptotic behavior of the components of the inverse variance matrix of the
fractional Gaussian noise (εHt )t∈Z based on the behavior in a neighbourhood of zero of the spectral
density of this process.

5.1.1. The expression of Zn,H as a function of Un,H(a0)

We recall that, when |a| < 1, the polynomial a(z) = 1− az is invertible and we have

a−1(z) =
∑
j≥0

ajz j . (15)

This implies that under (A0) one may write the process (Xt)t∈Z as a linear combination of the
infinite past (εHt−j)j≥0. More explicitly, we have

Xt = (1− a0L)−1εHt =
∑
j≥0

aj0ε
H
t−j , (16)

where L stands for the back-shift operator.
In view of the definition of the process (eHt (a))t∈Z introduced in (8) and (15), one can express

Xt when 1 ≤ t ≤ n + 1 as a function of the finite past (eHt−j(a0))0≤j≤t−1. Indeed, Equation (8)
and Assumption (A0) imply that

Xt = (1− a0L)−1eHt (a0) =
t−1∑
j=0

aj0eHt−j(a0), ∀t ∈ {1, . . . , n + 1} . (17)

From (17), we deduce that the vector (X1, . . . ,Xn)
T can be rewritten in the form

X1

X2
...

Xn

 =


∑1−1

j=0 aj0eH1−j(a0)∑2−1
j=0 aj0eH2−j(a0)

...∑n−1
j=0 aj0eHn−j(a0)

 =


eH1 (a0)

eH2 (a0) + a0eH1 (a0)
...

eHn (a0) + · · ·+ an−10 eH1 (a0)



=


eH1 (a0)
eH2 (a0)

...
eHn (a0)

+ a0


eH0 (a0)
eH1 (a0)

...
eHn−1(a0)

+ · · ·+ an−10


eH2−n(a0)
eH3−n(a0)

...
eH1 (a0)



=
n−1∑
j=0

aj0


eH1−j(a0)

eH2−j(a0)
...

eHn−j(a0)

 =
n−1∑
j=0

aj0

Lj+1


eH2 (a0)
eH3 (a0)

...
eHn+1(a0)


 , (18)
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where the shift operator Lj+1 acts on all the components of the vector (eH2 (a0), . . . , eHn+1(a0))
T,

i.e.

Lj+1

 eH2 (a0)
...

eHn+1(a0)

 =

eH1−j(a0)
...

eHn−j(a0)

 .

In view of (18), it follows that the vector Zn,H defined in (7) can be expressed as a function of
Un,H(a0):

Zn,H = Ω
−1/2
n,H


X1

X2
...

Xn

 =
n−1∑
j=0

aj0

Lj+1Ω
−1/2
n,H


eH2 (a0)
eH3 (a0)

...
eHn+1(a0)


 =

n∑
j=1

aj−10

(
LjUn,H(a0)

)
. (19)

5.1.2. Asymptotic properties of the components of the inverse covariance matrix of (εHt )1≤t≤n

By Fox and Taqqu [1986], Sinai [1976], the spectral density fεH(·) of the fractional Gaussian noise
(εHt )t∈Z is defined for all ω ∈ [−π,π] by:

fεH(ω) =
1

2π

∑
h∈Z

γεH(h)e
−iωh

= CH(1− cos(ω))
∑
j∈Z

1

|ω + 2jπ|1+2H

= CH(1− cos(ω)) |ω|−1−2H + CH(1− cos(ω))
∑
j∈Z
j 6=0

1

|ω + 2jπ|1+2H
,

where CH = 2Γ (2H + 1) sin(πH) and Γ (·) denotes the Gamma function.
As ω → 0, we have

fεH(ω) ∼
CH

2
|ω|1−2H . (20)

Proposition 1. Under Assumption (A0), the following three assertions hold true.

1. The covariance matrix Ωn,H of the centered Gaussian random vector (εH1 , . . . , ε
H
n )

T is a
symmetric Toeplitz positive definite matrix.

2. For large k , the behavior of the autocovariance γεH(k) is given by:

(Ωn,H)1,k = γεH(k) = H(2H− 1)k2H−2 + o(k2H−2). (21)

3. The inverse autocovariances of (εHt )1≤t≤n satisfy(
Ω−1n,H

)
j ,k
∼
(

1

k − j

)2H Γ (2H)eiπH

CHπ2
when |k − j | → ∞. (22)

Proof. For the first point, observe that Ωn,H can be considered as a self-adjoint endomorphism of
the vector space Cn. Note now that for any C ∈ Cn \ {0Cn}, the spectral representation of Ωn,H

implies that

CTΩn,HC =
n∑

j ,k=1

Ck (Ωn,H)k,j Cj =
n∑

j ,k=1

Ck

(∫ π

−π
fεH(ω)e

i(j−k)ωdω

)
Cj =

∫ π

−π

∣∣∣∣∣∣
n∑

j=1

Cje
i jω

∣∣∣∣∣∣
2

fεH(ω)dω.
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The function ω 7→
∑n

j=1 Cje
i jω is an analytic function on the disc and is not identically zero. Since

fεH(ω) > 0 for ω 6= 0 the last integral is positive. Thus, we conclude that the symmetric Toeplitz
matrix Ωn,H is positive definite.

In view of (2), a Taylor expansion of the function ` : x 7→ (1− x)2H − 2 + (1 + x)2H around 0
implies that for large k ,

(Ωn,H)1,k = γεH(k) =
1

2
k2H`(1/k) = H(2H− 1)k2H−2 + o(k2H−2).

This gives the second point of the proposition.
The components of the inverse matrix of Ωn,H can also be expressed as a function of the spectral

density of (εHt )t∈Z (see Fox and Taqqu [1986]). More precisely, we have for all j , k = 1, . . . , n,(
Ω−1n,H

)
j ,k

=
1

(2π)2

∫ π

−π

1

fεH(ω)
ei(k−j)ωdω. (23)

Using the parity of the function fεH(·), observe that when j = k we have(
Ω−1n,H

)
j ,j

=
1

(2π)2

∫ π

−π

1

fεH(ω)
dω =

1

2π2

∫ π

0

1

fεH(ω)
dω. (24)

From equivalence in (20), one has, when ω → 0,

1

fεH(ω)
=

2

CH
|ω|2H−1 + o

(
2

CH
|ω|2H−1

)
.

This implies that for κ > 0 there exists δκ > 0 such that for any ω ∈]− δκ, δκ[ we have

(1− κ) 2

CH
|ω|2H−1 ≤ 1

fεH(ω)
≤ (1 + κ)

2

CH
|ω|2H−1 . (25)

Thanks to (24), (25) and the boundedness of the function ω → 1/fεH(ω) on ]δκ,π], one can show
that there exists a positive constant K such that for any j = 1, . . . , n,∣∣∣∣(Ω−1n,H

)
j ,j

∣∣∣∣ ≤ 1 + κ

CHπ2

∫ δκ

0
ω2H−1dω +

1

2π2

∫ π

δκ

1

fεH(ω)
dω

≤ δ2Hκ (1 + κ)

2HCHπ2
+
π − δκ
2π2

sup
ω∈]δκ,π]

1

fεH(ω)

≤ K . (26)

When j 6= k (suppose without loss of generality that k > j), one can use Lemma 6.3.2 (page
442) of Ablowitz and Fokas [2003] which is an analog version of Watson’s Lemma (see for instance
Watson [1918] for the original proof or Miller [2006] for a more recent development) to obtain the
asymptotic equivalent of the (j , k)-th component of Ω−1n,H when |k − j | → ∞ stated in the third
point of the proposition.

Remark 2. From (21), for any ρ > 0 there exists Nρ ∈ N such that for any k ≥ Nρ we have

H {(2H− 1)− ρ |2H− 1|} k2H−2 ≤ (Ωn,H)1,k ≤ H {ρ |2H− 1|+ (2H− 1)} k2H−2.
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Since −1 < 2H− 1 < 1 we obtain that∣∣(Ωn,H)1,k
∣∣ ≤ H {ρ |2H− 1|+ 1} k2H−2. (27)

Observe that for k = 1, . . . ,Nρ, we have in view of (2) that the autocovariances (Ωn,H)1,k are
bounded, i.e. there exists KH,ρ > 0 such that∣∣(Ωn,H)1,k

∣∣ ≤ KH,ρ.

Since k2H−2 ≤ 1 for k = 1, . . . ,Nρ, it follows that∣∣(Ωn,H)1,k
∣∣ ≤ KH,ρk2H−2, k = 1, . . . ,Nρ. (28)

Consequently, we obtain from (27) and (28) that for any k ≥ 1,∣∣(Ωn,H)1,k
∣∣ ≤ K k2H−2, (29)

where K = max(H {ρ |2H− 1|+ 1} ,KH,ρ).
A similar calculation can be done to show that there exists a positive constant K such that for

any j , k = 1, 2, . . . , we have ∣∣∣∣(Ω−1n,H

)
j ,k

∣∣∣∣ ≤ K

(
1

k − j

)2H

. (30)

5.2. Proof of Theorem 1

The proof of convergence in probability of (ân)n≥1 to a0 will be done in two steps. We first show
that (‖Zn,H‖2Rn /n)n≥1 converges in mean square to 1/(1− a20) and we prove in a second time that
(ZT

n,HUn,H(a0)/n)n≥1 converges in mean square to 0.

5.2.1. Proof of the convergence in mean square of (‖Zn,H‖2Rn /n)n≥1 to 1/(1− a20)

To establish the mean square convergence of (‖Zn,H‖2Rn /n)n≥1 to 1/(1 − a20), we consider the
following lemmas and remark.

Lemma 1. Under Assumption (A0), we have

E
[
1

n
‖Zn,H‖2Rn

]
−−−→
n→∞

1

1− a20
.

Proof. In view of (19), one has

E
[
1

n
‖Zn,H‖2Rn

]
=

1

n

n∑
j1=1

n∑
j2=1

aj1+j2−2
0 E

[{
Lj1UT

n,H(a0)
}{

Lj2Un,H(a0)
}]

=
1

n

n∑
j1=1

n∑
j2=1

aj1+j2−2
0

n∑
k=1

E
[{

Lj1(Un,H(a0))k
}{

Lj2(Un,H(a0))k
}]

=
1

n

n∑
j1=1

n∑
j2=1

aj1+j2−2
0

n∑
k=1

n∑
r1=1

n∑
r2=1

(
Ω
−1/2
n,H

)
k,r1

(
Ω
−1/2
n,H

)
k,r2

E
[
eHr1+1−j1(a0)e

H
r2+1−j2(a0)

]
=

1

n

n∑
j1=1

n∑
j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=j2

(
Ω−1n,H

)
r1,r2

(Ωn,H)r1+1−j1,r2+1−j2 .

The stationarity of (εHt )t∈Z implies that
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• for j2 < j1:
(Ωn,H)r1+1−j1,r2+1−j2 = (Ωn,H)r2,r1+j2−j1 ,

• for j2 ≥ j1:
(Ωn,H)r1+1−j1,r2+1−j2 = (Ωn,H)r1,r2+j1−j2 .

Thus, we obtain

E
[
1

n
‖Zn,H‖2Rn

]
=

1

n

n∑
j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=j2

(
Ω−1n,H

)
r1,r2

(Ωn,H)r2,r1+j2−j1

+
1

n

n∑
j1=1

n∑
j2=j1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=j2

(
Ω−1n,H

)
r1,r2

(Ωn,H)r1,r2+j1−j2 .

This implies that

E
[
1

n
‖Zn,H‖2Rn

]
=

1

n

n∑
j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

(In)r1,r1+j2−j1

− 1

n

n∑
j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn,H)r2,r1+j2−j1

+
1

n

n∑
j1=1

n∑
j2=j1

aj1+j2−2
0

n∑
r2=j2

(In)r2,r2+j1−j2

− 1

n

n∑
j1=1

n∑
j2=j1

aj1+j2−2
0

j1−1∑
r1=1

n∑
r2=j2

(
Ω−1n,H

)
r1,r2

(Ωn,H)r1,r2+j1−j2 .

We have
1

n

n∑
j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

(In)r1,r1+j2−j1 = 0

and
1

n

n∑
j1=1

n∑
j2=j1

aj1+j2−2
0

n∑
r2=j2

(In)r2,r2+j1−j2 =
1

n

n∑
j=1

a2j−20 (n − j + 1),

thus we may write

E
[
1

n
‖Zn,H‖2Rn

]
=

1

n

n∑
j=1

a2j−20 (n − j + 1)−Wn,H, (31)

where

Wn,H =
1

n

n∑
j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn,H)r2,r1+j2−j1

+
1

n

n∑
j1=1

n∑
j2=j1

aj1+j2−2
0

j1−1∑
r1=1

n∑
r2=j2

(
Ω−1n,H

)
r1,r2

(Ωn,H)r1,r2+j1−j2 . (32)
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We shall prove that Wn,H −−−→
n→∞

0. Consider the first term on the right side of Equation (32)

(the second term can be treated in a similar way) and note that r2 − r1 ≤ j1 − r1 − 1 and
r2 − r1 + j1 − j2 ≤ j1 − r1 − 1. By the properties of the components of the matrix Ωn,H and its
inverse given in (29) and (30), there exists a positive constant K such that∣∣∣∣∣∣1n

n∑
j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn,H)r2,r1+j2−j1

∣∣∣∣∣∣
≤ K

n

n∑
j1=1

j1−1∑
j2=1

|a0|j1+j2−2
n∑

r1=j1

j2−1∑
r2=1

1

(r2 − r1)2H
1

(r2 − r1 + j1 − j2)2−2H

≤ K

n

n∑
j1=1

j1−1∑
j2=1

|a0|j1+j2−2
n∑

r1=j1

j2−1∑
r2=1

1

(j1 − r1 − 1)2H
1

(j1 − r1 − 1)2−2H

=
K

n

n∑
j1=1

n∑
r1=j1

|a0|j1−1

(j1 − r1 − 1)2

j1−1∑
j2=1

(j2 − 1) |a0|j2−1 .

Since

j1−1∑
j2=1

(j2 − 1) |a0|j2−1 =
1− |a0|j1−1 {(j1 − 1)(1− |a0|) + 1}

(1− |a0|)2
≤ 1

(1− |a0|)2
,

we deduce that∣∣∣∣∣∣1n
n∑

j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn,H)r2,r1+j2−j1

∣∣∣∣∣∣ ≤ K

n(1− |a0|)2
n∑

j1=1

n∑
r1=j1

|a0|j1−1

(j1 − r1 − 1)2
.

Now we consider the change of indices r1 = j1 + k − 1 to obtain that∣∣∣∣∣∣1n
n∑

j1=1

j1−1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn,H)r2,r1+j2−j1

∣∣∣∣∣∣ ≤ K

n(1− |a0|)2
n∑

j1=1

|a0|j1−1
∑
k≥1

1

k2
−−−→
n→∞

0.

The second term on the right side of Equation (32) can be treated in the same way. The proof of
the convergence of the sequence (Wn,H)n≥1 towards 0 is then completed.
Finally, from (31) we conclude that

E
[
1

n
‖Zn,H‖2Rn

]
=

(
n + 1

n

)(
1− a2n0
1− a20

)
− 1

n

(
1− a2n0
1− a20

)
− 1

n

(
1− a2n−20

{
n(1− a20) + a20

}
(1− a20)

2

)
−Wn,H

−−−→
n→∞

1

1− a20
,

and the lemma is proved.
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Remark 3. Denote by Σn,X ,H the variance matrix of the random vector (X1, . . . ,Xn)
T, i.e. for

any 1 ≤ i , j ≤ n, (Σn,X ,H)i ,j = Cov(Xi ,Xj), and let Z
(1)
n,H be the random vector defined by

Z
(1)
n,H = Σ

−1/2
n,X ,H(X1, . . . ,Xn)

T. From (7), one has

1

n
‖Zn,H‖2Rn =

1

n
ZT
n,HZn,H =

1

n

X1
...

Xn


T

Ω−1n,H

X1
...

Xn

 =
1

n
(Z

(1)
n,H)

TΣ
1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,HZ

(1)
n,H.

The covariance matrix Σ
1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,H is a symmetric real matrix. So there exists an orthogonal

matrix Qn,H such that Λn,H = QT
n,HΣ

1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,HQn,H is a diagonal matrix. Hence, the random

variable ‖Zn,H‖2Rn /n can be rewritten as

1

n
‖Zn,H‖2Rn =

1

n
(QT

n,HZ
(1)
n,H)

TΛn,H

(
QT

n,HZ
(1)
n,H

)
=

1

n

n∑
j=1

η
(n)
j ,H

[(
QT

n,HZ
(1)
n,H

)
j

]2
, (33)

where η(n)1,H, . . . , η
(n)
n,H are the eigenvalues of the symmetric real matrix Σ

1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,H. The

expression of ‖Zn,H‖2Rn /n given in (33) has the advantage of involving the standard normal random
vector QT

n,HZ
(1)
n,H. This will considerably simplify the calculations in the following.

We show in the lemma below the boundedness of the eigenvalues η(n)1,H, . . . , η
(n)
n,H of the matrix

Σ
1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,H uniformly in n.

Lemma 2. Under Assumption (A0) and for any 1 ≤ j ≤ n, we have

1

(1 + |a0|)2
≤ η(n)j ,H ≤

1

(1− |a0|)2
.

Proof. Let fX (·) be the spectral density of (Xt)t∈Z and denote by fεH(·) the spectral density of the
stationary process (εHt )t∈Z. One can express fX (·) as a function of fεH(·). Indeed, using (16) and
the stationarity of (Xt)t∈Z and (εHt )t∈Z we have for any ω ∈ R,

fX (ω) =
1

2π

∑
h∈Z

γX (h)e
−iωh =

1

2π

∑
h∈Z

Cov(Xt ,Xt−h)e
−iωh

=
1

2π

∑
h∈Z

Cov

∑
j∈N

aj0ε
H
t−j ,

∑
k∈N

ak0ε
H
t−h−k

 e−iωh

=
1

2π

∑
h∈Z

∑
j ,k∈N

aj+k
0 γεH(h + k − j)e−iω(h+k−j)e−iω(j−k)

= fεH(ω)

∑
j∈N

aj0e
−iωj

∑
j∈N

aj0e
−iωj

 = fεH(ω)

∣∣∣∣∣∣
∑
j∈N

aj0e
−iωj

∣∣∣∣∣∣
2

,

where γX (·) denotes the autocovariance function of the process (Xt)t∈Z and z designates the
complex conjugate of the complex number z . Furthermore, Assumption (A0) implies that the



Y. Esstafa/Estimation of fractional AR models 15

modulus of the complex number a0e
−iω is strictly less than 1. Hence, we deduce that the spectral

density of the stationary process (Xt)t∈Z is related to fεH(·) as follows:

fX (ω) = fεH(ω)

∣∣∣∣ 1

1− a0e−iω

∣∣∣∣2 = fεH(ω)

1− 2a0 cos(ω) + a20
, ∀ω ∈ R. (34)

From this last equation and taking into consideration the fact that (1−|a0|)2 ≤ 1−2a0 cos(ω)+a20 ≤
(1 + |a0|)2, one obtains that for any ω ∈ R,

(1− |a0|)2fX (ω) ≤ fεH(ω) ≤ (1 + |a0|)2fX (ω). (35)

Note now that for any vector V of Rn×1, we have

V T
(
Ωn,H − (1 + |a0|)2Σn,X ,H

)
V =

n∑
k=1

n∑
j=1

Vj

(
Ωn,H − (1 + |a0|)2Σn,X ,H

)
j ,k

Vk

=
n∑

k,j=1

Vj

∫ π

−π

{
fεH(ω)− (1 + |a0|)2fX (ω)

}
eiω(k−j)dωVk

=

∫ π

−π

{
fεH(ω)− (1 + |a0|)2fX (ω)

}
V TΥn(ω)V dω, (36)

where Υn(ω) = Vn(ω)V
∗
n (ω) with Vn(ω) = (eiω, e2iω, . . . , eniω)T. The notation V ∗ designates the

conjugate transpose of the vector V .
Furthermore, the real V TΥn(ω)V is a non-negative number. In fact,

V TΥn(ω)V = V TVn(ω)V
∗
n (ω)V = (V ∗n (ω)V )∗ (V ∗n (ω)V ) = |V ∗n (ω)V |

2 .

Then, from (35) and (36), one has

V T(Ωn,H − (1 + |a0|)2Σn,X ,H)V ≤ 0. (37)

Now, let ζ be an element of the spectrum of Ω
−1/2
n,H Σn,X ,HΩ

−1/2
n,H . Then, there exists C1 ∈ Rn×1 \

{0Rn×1} such that Ω
−1/2
n,H Σn,X ,HΩ

−1/2
n,H C1 = ζC1. Hence, it follows that

CT
1 Ω
−1/2
n,H Σn,X ,HΩ

−1/2
n,H C1 = ζ ‖C1‖2Rn .

Taking C2 = Ω
−1/2
n,H C1, we obtain from this last equation that

CT
2 Σn,X ,HC2 = ζ

∥∥∥Ω
1/2
n,HC2

∥∥∥2
Rn

.

Using (37), we deduce that

CT
2 Ωn,HC2 ≤ (1 + |a0|)2ζ

∥∥∥Ω
1/2
n,HC2

∥∥∥2
Rn

.

Since C1 = Ω
1/2
n,HC2 6= 0Rn×1 as an eigenvector, we conclude that

ζ ≥ CT
2 Ωn,HC2∥∥∥Ω
1/2
n,HC2

∥∥∥2
Rn

1

(1 + |a0|)2
=

1

(1 + |a0|)2
. (38)
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A similar calculation can be done to prove that, for any vector V of Rn×1,

V T(Ωn,H − (1− |a0|)2Σn,X ,H)V ≥ 0.

Arguing as before, one obtains that

ζ ≤ CT
2 Ωn,HC2∥∥∥Ω
1/2
n,HC2

∥∥∥2
Rn

1

(1− |a0|)2
=

1

(1− |a0|)2
.

Since for any α ∈ R,

det
(

Σ
1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,H − αIn

)
= det

(
Σ

1/2
n,X ,H

{
Ω−1n,HΣn,X ,H − αIn

}
Σ
−1/2
n,X ,H

)
= det

(
Ω−1n,HΣn,X ,H − αIn

)
= det

(
Ω
−1/2
n,H

{
Ω
−1/2
n,H Σn,X ,HΩ

−1/2
n,H − αIn

}
Ω

1/2
n,H

)
= det

(
Ω
−1/2
n,H Σn,X ,HΩ

−1/2
n,H − αIn

)
,

the spectrum of the matrix Σ
1/2
n,X ,HΩ−1n,HΣ

1/2
n,X ,H is equal to the set of the eigenvalues of Ω

−1/2
n,H Σn,X ,HΩ

−1/2
n,H ,

the lemma is then proved.

Lemma 3. Under Assumption (A0), we have

1

n
‖Zn,H‖2Rn

L2

−−−→
n→∞

1

1− a20
.

Proof. In view of Lemma 2, Remark 3 and (33), we have

Var

(
1

n
‖Zn,H‖2Rn

)
=

1

n2

n∑
j=1

(
η
(n)
j ,H

)2
Var

([(
QT

n,HZ
(1)
n,H

)
j

]2)
=

2

n2

n∑
j=1

(
η
(n)
j ,H

)2
≤ 2

n(1− |a0|)4
−−−→
n→∞

0.

Now, observe that

E

[∣∣∣∣1n ‖Zn,H‖2Rn −
1

1− a20

∣∣∣∣2
]
= Var

(
1

n
‖Zn,H‖2Rn

)
+

(
E
[
1

n
‖Zn,H‖2Rn

]
− 1

1− a20

)2

.

Thanks to Lemma 1 and the convergence stated just before, the expected result is obtained.

5.2.2. Proof of the convergence in mean square of (ZT
n,HUn,H(a0)/n)n≥1 to 0

Lemma 4. Under Assumption (A0), we have

1

n

[
ZT
n,HUn,H(a0)

]
L2

−−−→
n→∞

0.
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Proof. Due to the fact that eHt (a0) is centered for any t, we notice that for fixed (i , j , k) the joint
cumulant of eH0 (a0), eHi (a0), eHj (a0) and eHk (a0) is given by:

cum(eH0 (a0), eHi (a0), eHj (a0), eHk (a0)) = E
[
eH0 (a0)e

H
i (a0)e

H
j (a0)e

H
k (a0)

]
− E

[
eH0 (a0)e

H
i (a0)

]
E
[
eHj (a0)e

H
k (a0)

]
− E

[
eH0 (a0)e

H
j (a0)

]
E
[
eHi (a0)e

H
k (a0)

]
− E

[
eH0 (a0)e

H
k (a0)

]
E
[
eHi (a0)e

H
j (a0)

]
.

From (7) and (19), the positive definiteness of Ωn,H and the fact that the process (eHt (a0))t∈Z
defined in (8) is centered, we obtain that

E

[(
1

n

{
ZT
n,HUn,H(a0)

})2
]
=

1

n2

n∑
j1=1

n∑
j2=1

aj1+j2−2
0 E

[(
Lj1Un,H(a0)

)T
Un,H(a0)

(
Lj2Un,H(a0)

)T
Un,H(a0)

]
=

1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
k1,k2=1

n∑
r1,...,r4=1

(
Ω
−1/2
n,H

)
k1,r1

(
Ω
−1/2
n,H

)
k1,r2

(
Ω
−1/2
n,H

)
k2,r3

(
Ω
−1/2
n,H

)
k2,r4

× E
[
eHr1+1−j1(a0)e

H
r2+1(a0)e

H
r3+1−j2(a0)e

H
r4+1(a0)

]
= ∆1,n,H + ∆2,n,H + ∆3,n,H + ∆4,n,H, (39)

where

∆1,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

× cum
(

eHr1+1−j1(a0), eHr2+1(a0), eHr3+1−j2(a0), eHr4+1(a0)
)
,

∆2,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

× E
[
eHr1+1−j1(a0)e

H
r2+1(a0)

]
E
[
eHr3+1−j2(a0)e

H
r4+1(a0)

]
,

∆3,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

× E
[
eHr1+1−j1(a0)e

H
r3+1−j2(a0)

]
E
[
eHr2+1(a0)e

H
r4+1(a0)

]
and

∆4,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

× E
[
eHr1+1−j1(a0)e

H
r4+1(a0)

]
E
[
eHr2+1(a0)e

H
r3+1−j2(a0)

]
.

Since the vector (εH1 , . . . , ε
H
n+1)

T is Gaussian random vector, any joint cumulant involving three
(or more) elements of (εH1 , . . . , ε

H
n+1)

T is zero. The random variables eHr1+1−j1(a0), eHr2+1(a0),
eHr3+1−j2(a0) and eHr4+1(a0) in (39) are elements of the Gaussian vector (εH1 , . . . , ε

H
n+1)

T so

cum
(

eHr1+1−j1(a0), eHr2+1(a0), eHr3+1−j2(a0), eHr4+1(a0)
)
= 0.
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Thus, we have
∆1,n,H = 0.

Let Ωn+1,H be the covariance matrix of the random vector (εH1 , . . . , ε
H
n+1)

T. Thanks to the station-
arity of the process (εHt )t∈Z one has (Ωn+1,H)r3+1−j2,r4+1 = (Ωn,H)r3−j2,r4 when j2, r4 = 1, . . . , n
and j2 + 1 ≤ r3 ≤ n. Thus ∆2,n,H can be rewritten as:

∆2,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

(Ωn+1,H)r1+1−j1,r2+1 (Ωn+1,H)r3+1−j2,r4+1

=
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2+1

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

(Ωn+1,H)r1+1−j1,r2+1 (Ωn,H)r3−j2,r4

+
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
j2,r4

(Ωn+1,H)r1+1−j1,r2+1 (Ωn+1,H)1,r4+1 .

This implies that

∆2,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2+1

(
Ω−1n,H

)
r1,r2

(Ωn+1,H)r1+1−j1,r2+1 (In)r3,r3−j2

+
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1+1

n∑
r2=1

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
j2,r4

(Ωn,H)r1−j1,r2 (Ωn+1,H)1,r4+1

+
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r2=1

n∑
r4=1

(
Ω−1n,H

)
j1,r2

(
Ω−1n,H

)
j2,r4

(Ωn+1,H)1,r2+1 (Ωn+1,H)1,r4+1

=
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2+1

(
Ω−1n,H

)
r1,r2

(Ωn+1,H)r1+1−j1,r2+1 (In)r3,r3−j2

+
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1+1

n∑
r4=1

(
Ω−1n,H

)
j2,r4

(Ωn+1,H)1,r4+1 (In)r1,r1−j1

+
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r2=1

n∑
r4=1

(
Ω−1n,H

)
j1,r2

(
Ω−1n,H

)
j2,r4

(Ωn+1,H)1,r2+1 (Ωn+1,H)1,r4+1 .

Since j1, j2 = 1, . . . , n, (In)r1,r1−j1 = (In)r3,r3−j2 = 0, we obtain that

∆2,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r2=1

n∑
r4=1

(
Ω−1n,H

)
j1,r2

(
Ω−1n,H

)
j2,r4

(Ωn+1,H)1,r2+1 (Ωn+1,H)1,r4+1

=

1

n

n∑
j=1

aj−10

n∑
r=1

(
Ω−1n,H

)
j ,r

(Ωn+1,H)1,r+1

2

. (40)

Using a similar approach as that given in the proof of Lemma 1, one can confirm that the term in
the right side of Equation (40) is equal to the square of the expected value of the random variable
ZT
n,HUn,H(a0)/n. Similar calculations to those of the proof of Lemma 1 imply that

E
[
1

n

{
ZT
n,HUn,H(a0)

}]
−−−→
n→∞

0.
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Let us be more precise. From (19), we have

E
[
1

n

{
ZT
n,HUn,H(a0)

}]
=

1

n

n∑
j=1

aj−10

n∑
k=1

E
[{

Lj (Un,H(a0))k
}
(Un,H(a0))k

]
=

1

n

n∑
j=1

aj−10

n∑
k=1

n∑
r1,r2=1

(
Ω
−1/2
n,H

)
k,r1

(
Ω
−1/2
n,H

)
k,r2

E
[
eHr1+1−j(a0)e

H
r2+1(a0)

]
(41)

=
1

n

n∑
j=1

aj−10

n∑
r1=j

n∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn+1,H)r1+1−j ,r2+1 . (42)

As before, we proceed by cases to deduce that

E
[
1

n

{
ZT
n,HUn,H(a0)

}]
=

1

n

n∑
j=1

aj−10

n∑
r1=j+1

n∑
r2=1

(
Ω−1n,H

)
r1,r2

(Ωn,H)r1−j ,r2

+
1

n

n∑
j=1

aj−10

n∑
r2=1

(
Ω−1n,H

)
j ,r2

(Ωn+1,H)1,r2+1

=
1

n

n∑
j=1

aj−10

n∑
r1=j+1

(In)r1,r1−j +
1

n

n∑
j=1

aj−10

n∑
r2=1

(
Ω−1n,H

)
j ,r2

(Ωn+1,H)1,r2+1

=
1

n

n∑
j=1

aj−10

n∑
r2=1

(
Ω−1n,H

)
j ,r2

(Ωn+1,H)1,r2+1

=
1

n

n∑
j=1

aj−10

(
Ω−1n,H

)
j ,j
(Ωn+1,H)1,j+1 +

1

n

n∑
j=1

aj−10

∑
1≤r2≤n
r2 6=j

(
Ω−1n,H

)
j ,r2

(Ωn+1,H)1,r2+1 .

Finally, in view of (29) and (30) we conclude that

∣∣∣∣E [1n {ZT
n,HUn,H(a0)

}]∣∣∣∣ ≤ K

1

n

n∑
j=1

|a0|j−1 +
1

n

n∑
j=1

|a0|j−1
∑
1≤r≤n
r 6=j

1

(r − j)2H
1

r2−2H

 . (43)

Using the fact that the autoregressive parameter a0 is assumed to belong to (−1, 1), Cesàro’s
Lemma implies that the first term in the right hand side of (43) tends to 0.

Proceeding by a simple calculation and using Cesàro’s Lemma, one can also prove that the
second term in the right hand side of (43) converges to 0. More explicitly,

1

n

n∑
j=1

|a0|j−1
∑
1≤r≤n
r 6=j

1

(r − j)2H
1

r2−2H

=
1

n

n∑
r=1

1

r2−2H

∑
1≤j≤n
j 6=r

|a0|j−1
1

(r − j)2H
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=
1

n

n∑
r=1

1

r2−2H
|a0|r−1

∑
1−r≤j≤n−r

j 6=0

|a0|j
1

j2H

=
1

n

n∑
r=2

1

r2−2H
|a0|r−1

−1∑
j=1−r

|a0|j
1

j2H
+

1

n

n∑
r=1

1

r2−2H
|a0|r−1

n−r∑
j=1

|a0|j
1

j2H

≤ 1

n

n∑
r=1

1

r1−2H
|a0|r−1max

(
1

|a0|
,

1

|a0|r r2H

)
+

1

n

n∑
r=1

1

r2−2H
|a0|r

(
1− |a0|n−r

1− |a0|

)
−−−→
n→∞

0.

Therefore, we deduce that
∆2,n,H −−−→

n→∞
0.

It is obvious that by exchanging the roles of j1 and j2 and of r2 and r4 in the expression of
∆4,n,H, we obtain that ∆4,n,H = ∆2,n,H. Then, the sequence (∆4,n,H)n≥1 also converges to 0.

It remains to show that (∆3,n,H)n≥1 converges to 0 to obtain the convergence in mean square of
(ZT

n,HUn,H(a0)/n)n≥1 to 0 and thus the convergence in probability of the generalized least squares
estimator ân defined in (9) to the true parameter a0.

We use the stationarity of the process (eHt (a0))t∈Z and we follow the same calculation procedures
developed to obtain the explicit expression of ∆2,n,H given in (40). This leads to

∆3,n,H =
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

(Ωn,H)r1+1−j1,r3+1−j2 (Ωn+1,H)r2+1,r4+1

=
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

(Ωn,H)r1+1−j1,r3+1−j2 (Ωn,H)r2,r4

=
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=j2

n∑
r4=1

(
Ω−1n,H

)
r3,r4

(Ωn,H)r1+1−j1,r3+1−j2 (In)r1,r4

=
1

n2

n∑
j1,j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+1−j1,r3+1−j2

=
1

n2

n∑
j1=1

j1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+1−j1,r3+1−j2

+
1

n2

n∑
j1=1

n∑
j2=j1+1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+1−j1,r3+1−j2 .

The stationarity of (εHt )t∈Z implies that

• for j2 ≤ j1:
(Ωn,H)r1+1−j1,r3+1−j2 = (Ωn,H)r1+j2−j1,r3 ,

• for j2 > j1:
(Ωn,H)r1+1−j1,r3+1−j2 = (Ωn,H)r1,r3+j1−j2 .
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It follows that

∆3,n,H =
1

n2

n∑
j1=1

j1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+j2−j1,r3

+
1

n2

n∑
j1=1

n∑
j2=j1+1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1,r3+j1−j2

=
1

n2

n∑
j1=1

j1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

n∑
r3=1

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+j2−j1,r3

− 1

n2

n∑
j1=1

j1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r3=1

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+j2−j1,r3

+
1

n2

n∑
j1=1

n∑
j2=j1+1

aj1+j2−2
0

n∑
r1=1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1,r3+j1−j2

− 1

n2

n∑
j1=1

n∑
j2=j1+1

aj1+j2−2
0

j1−1∑
r1=1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1,r3+j1−j2 .

(44)

Thus we have

∆3,n,H =
1

n2

n∑
j1=1

(n − j1 + 1)a2j1−20 − 1

n2

n∑
j1=1

j1∑
j2=1

aj1+j2−2
0

n∑
r1=j1

j2−1∑
r3=1

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1+j2−j1,r3

− 1

n2

n∑
j1=1

n∑
j2=j1+1

aj1+j2−2
0

j1−1∑
r1=1

n∑
r3=j2

(
Ω−1n,H

)
r3,r1

(Ωn,H)r1,r3+j1−j2

=
1

n
E
[
1

n
‖Zn,H‖2Rn

]
. (45)

Now, using Lemma 1 we deduce that

∆3,n,H −−−→
n→∞

0.

The lemma is then proved.

The convergences established in Lemmas 3 and 4 imply that the joint vector (ZT
n,HUn,H(a0), ‖Zn,H‖2Rn)/n

converges in probability to (0, 1/(1−a20)). Let now g be the continuous function defined on R×R∗
by g(x , y) = xy−1, it is obvious that the vector (0, 1/(1 − a20)) belongs to the set of continuity
points of the function g . The continuous mapping theorem yields

ân − a0 = g
(

ZT
n,HUn,H(a0)/n, ‖Zn,H‖2Rn /n

)
P−−−→

n→∞
g
(
0, 1/(1− a20)

)
= 0.

The proof of Theorem 1 is then complete.

Remark 4. The following equivalent formulation of Equality (41)

E
[

1√
n

{
ZT
n,HUn,H(a0)

}]
=

1√
n

n∑
j=1

aj−10

n∑
r1=j

n∑
r2=1

(
Ω−1n,H

)
r1,r2

E
[
eHr1+1−j(a0)e

H
r2+1(a0)

]
(46)

will be helpful in the proof of Theorem 2.
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5.3. Proof of Theorem 2

We establish in this section the proof of the asymptotic normality of the generalized least squares
estimator ân given in (9) under the causality of (Xt)t∈Z (i.e. when the true parameter a0 is assumed
to belong to (−1, 1)) and in the case where H is known.

Recall that the normal distribution admits moments of all orders and is completely determined
by its moments. The expected convergence in distribution stated in Theorem 2 can be obtained
using the method of moments (see Theorem 30.2. of Billingsley [1986]).

In our case, Theorem 2 will be proved as soon as for any r ≥ 1

lim
n→∞

E
[{√

n(ân − a0)
}r ]

= E [G r
1 ] , (47)

where G1 is normally distributed with mean 0 and variance 1− a20.
In view of the explicit expression of ân− a0 (see (10)), the random variable

√
n(ân− a0) can be

rewritten in the form:
√

n(ân − a0) =

1√
n

ZT
n,HUn,H(a0)

1
n ‖Zn,H‖2Rn

. (48)

From Lemma 3, the random variable ‖Zn,H‖2Rn /n converges in mean square to 1/(1 − a20). This
implies that the sequence (‖Zn,H‖2Rn /n)n≥1 converges in probability to 1/(1− a20).

The idea of the proof is to show using the method of moments that ZT
n,HUn,H(a0)/

√
n has a

limiting centered normal distribution with variance 1/(1 − a20). The proof will be concluded by
applying Slutsky’s theorem to ‖Zn,H‖2Rn /n and ZT

n,HUn,H(a0)/
√

n.
The asymptotic distribution of the sequence (ZT

n,HUn,H(a0)/
√

n)n≥1 is given in the following
lemma.

Lemma 5. Under Assumption (A0), the sequence of random variables (ZT
n,HUn,H(a0)/

√
n)n≥1 has

a limiting centered normal distribution with variance 1/(1− a20).

Proof. Using the existence of moments of all orders of ZT
n,HUn,H(a0)/

√
n and in view of Theorem

30.2. of Billingsley [1986], the proof of Lemma 5 is obtained once

lim
n→∞

E
[{

1√
n

ZT
n,HUn,H(a0)

}r]
= E [G r

2 ] , for all r ≥ 1, (49)

where G2 is normally distributed with mean 0 and variance 1/(1− a20).
To prove (49), in a first step we consider an odd order r and in a second step r will be assumed

to be even.
Recall that for all r ≥ 1, we have

E [G r
2 ] =

{
0 if r is odd{
1/(1− a20)

}r/2
(r − 1)!! if r is even,

(50)

where r !! = r(r − 2)(r − 4) · · · 1.
We start from (19), we use the fact that the random vector (eH1 (a0), . . . , eHn+1(a0))

T is a centered
Gaussian random vector and we exploit the expression of moments in terms of cumulants to obtain
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that

E
[{

1√
n

ZT
n,HUn,H(a0)

}r]
=

1

nr/2

n∑
j1,j2,...,jr=1

a
∑r

i=1(ji−1)
0

n∑
k1=j1

n∑
k2=1

n∑
k3=j2

n∑
k4=1

· · ·
n∑

k2r−1=jr

n∑
k2r=1

{
r∏

i=1

(
Ω−1n,H

)
k2i−1,k2i

×E

[
r∏

i=1

eHk2i−1+1−ji (a0)e
H
k2i+1(a0)

]}

=
1

nr/2

n∑
j1,j2,...,jr=1

a
∑r

i=1(ji−1)
0

n∑
k1=j1

n∑
k2=1

n∑
k3=j2

n∑
k4=1

· · ·
n∑

k2r−1=jr

n∑
k2r=1

{
r∏

i=1

(
Ω−1n,H

)
k2i−1,k2i

×
∑
π

∏
B∈π

cum
(

eHi (a0) : i ∈ B
)}

, (51)

where π runs through the list of all unordered pair partitions of {k1+1− j1, k2+1, k3+1− j2, k4+
1, . . . , k2r−1 + 1 − jr , k2r + 1} and B runs through the list of all blocks of the partition π (see
Brillinger [1981]).

Remark 5. In the above expression, we only kept unordered pair partitions of {k1 + 1 − j1, k2 +
1, k3 + 1− j2, k4 + 1, . . . , k2r−1 + 1− jr , k2r + 1}. This is due to the fact that the random vector
(eH1 (a0), . . . , eHn+1(a0))

T is a centered Gaussian vector.
Any joint cumulant involving three (or more) elements of (eH1 (a0), . . . , eHn+1(a0))

T is zero. More-
over, since the joint cumulant of just one random variable is its expectation and the process
(eHt (a0))t∈Z is centered, the first cumulant of any element of (eH1 (a0), . . . , eHn+1(a0))

T vanishes.

Thanks to the above remark, we may write (51) as

E
[{

1√
n

ZT
n,HUn,H(a0)

}r]
=

1

nr/2

n∑
j1,j2,...,jr=1

a
∑r

i=1(ji−1)
0

n∑
k1=j1

n∑
k2=1

n∑
k3=j2

n∑
k4=1

· · ·
n∑

k2r−1=jr

n∑
k2r=1

{
r∏

i=1

(
Ω−1n,H

)
k2i−1,k2i

×
∑
π

∏
B∈π

E
[
eHi (a0) : i ∈ B

]}
. (52)

We strength the fact that when r = 1, (52) is (46) and for r = 2 we retrieve an analogous formula
to (39).

The following remark will help us to develop (51) more explicitly.

Remark 6. • In Equation (51), the exchange of the roles of indices with even sub-indices does
not modify the term in the right hand side. It is the same when we exchange the roles of
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indices with odd sub-indices. For example, for the indices k1 and k3 it holds that

1

nr/2

n∑
j1,j2,...,jr=1

a
∑r

i=1(ji−1)
0

n∑
k1=j1

n∑
k2=1

n∑
k3=j2

n∑
k4=1

· · ·
n∑

k2r−1=jr

n∑
k2r=1

{
r∏

i=1

(
Ω−1n,H

)
k2i−1,k2i

×
∑
π

∏
B∈π

cum
(

eHi (a0) : i ∈ B
)}

=
1

nr/2

n∑
j1,j2,...,jr=1

a
∑r

i=1(ji−1)
0

n∑
k1=j2

n∑
k2=1

n∑
k3=j1

n∑
k4=1

· · ·
n∑
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n∑
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{
r∏

i=1

(
Ω−1n,H

)
k2i−1,k2i

×
∑
π

∏
B∈π

cum
(

eHi (a0) : i ∈ B
)}

,

• Again in Equation (51) when r is odd, every pair partition π of the set of indices {k1 + 1−
j1, k2 + 1, k3 + 1− j2, k4 + 1, . . . , k2r−1 + 1− jr , k2r + 1} contains at least one block of the
type {k2i−1 + 1 − ji , ki ′ + 1}. To see that, let us consider the case when r = 3. The third
moment of ZT

n,HUn,H(a0)/
√

n is given by:

E

[{
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n
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]

=
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n∑
r4=1

n∑
r5=j3

n∑
r6=1

{(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

(
Ω−1n,H

)
r5,r6

× E
[
eHr1+1−j1(a0)e

H
r2+1(a0)e

H
r3+1−j2(a0)e

H
r4+1(a0)e

H
r5+1−j3(a0)e

H
r6+1(a0)

]}

=
1

n3/2

n∑
j1,j2,j3=1

aj1+j2+j3−3
0

n∑
r1=j1

n∑
r2=1

n∑
r3=j2

n∑
r4=1

n∑
r5=j3

n∑
r6=1

{(
Ω−1n,H

)
r1,r2

(
Ω−1n,H

)
r3,r4

(
Ω−1n,H

)
r5,r6

×

[
E
[
eHr1+1−j1(a0)e

H
r2+1(a0)

]
E
[
eHr3+1−j2(a0)e

H
r4+1(a0)

]
E
[
eHr5+1−j3(a0)e

H
r6+1(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r2+1(a0)

]
E
[
eHr3+1−j2(a0)e

H
r5+1−j3(a0)

]
E
[
eHr4+1(a0)e

H
r6+1(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r2+1(a0)

]
E
[
eHr3+1−j2(a0)e

H
r6+1(a0)

]
E
[
eHr4+1(a0)e

H
r5+1−j3(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r3+1−j2(a0)

]
E
[
eHr2+1(a0)e

H
r4+1(a0)

]
E
[
eHr5+1−j3(a0)e

H
r6+1(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r3+1−j2(a0)

]
E
[
eHr2+1(a0)e

H
r5+1−j3(a0)

]
E
[
eHr4+1(a0)e

H
r6+1(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r3+1−j2(a0)

]
E
[
eHr2+1(a0)e

H
r6+1(a0)

]
E
[
eHr4+1(a0)e

H
r5+1−j3(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r4+1(a0)

]
E
[
eHr2+1(a0)e

H
r3+1−j2(a0)

]
E
[
eHr5+1−j3(a0)e

H
r6+1(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r4+1(a0)

]
E
[
eHr2+1(a0)e

H
r5+1−j3(a0)

]
E
[
eHr3+1−j2(a0)e

H
r6+1(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r4+1(a0)

]
E
[
eHr2+1(a0)e

H
r6+1(a0)

]
E
[
eHr3+1−j2(a0)e

H
r5+1−j3(a0)

]
+ E

[
eHr1+1−j1(a0)e

H
r5+1−j3(a0)

]
E
[
eHr2+1(a0)e

H
r3+1−j2(a0)

]
E
[
eHr4+1(a0)e

H
r6+1(a0)

]
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+ E
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H
r4+1(a0)

]
E
[
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[
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[
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] ]}
.

We can use this last remark and Equations (46) and (39) to show that

E

[{
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}3
]
=
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n

n∑
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)
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E
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H
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]
×
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1

n
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r6=1

{(
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(
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)
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×

[
E
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H
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]
E
[
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H
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]
E
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H
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]
+ E

[
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H
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]
E
[
eHr4+1(a0)e

H
r5+1−j3(a0)

] ]})

= E
[

1√
n

ZT
n,HUn,H(a0)

]
E

[{
1√
n

ZT
n,HUn,H(a0)

}2
]
.

In view of (39), (42) and Remarks 5 and 6, one can rewrite the r -th moment of the random
variable ZT

n,HUn,H(a0)/
√

n when r is odd in the form:

E
[{

1√
n

ZT
n,HUn,H(a0)

}r]
= E

[
1√
n

ZT
n,HUn,H(a0)

]
E

[{
1√
n

ZT
n,HUn,H(a0)

}r−1
]
. (53)

The calculation given in the proof of Lemma 4 to show the convergence to 0 of the sequence
(E[ZT

n,HUn,H(a0)/n])n≥1 remains valid when we multiply the general term of the last sequence by√
n and when we use the fractional version of Cesàro’s Lemma1 to conclude.
In fact, from (43) we have∣∣∣∣E [ 1√

n

{
ZT
n,HUn,H(a0)

}]∣∣∣∣ ≤ K

 1√
n

n∑
j=1

|a0|j−1 +
1√
n

n∑
j=1

|a0|j−1
∑
1≤r≤n
r 6=j

1

(r − j)2H
1

r2−2H

 .

(54)
1Recall that the fractional version of Cesàro’s Lemma states that for (ht)t≥0 a sequence of positive real numbers,

κ > 0 and c ≥ 0 we have

lim
t→∞

htt
1−κ = |κ| c ⇒ lim

n→∞

1

nκ

n∑
t=0

ht = c.
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Since
√

j |a0|j−1 → 0 when j → ∞, fractional version of Cesàro’s Lemma implies that the first
term in the right hand side of (54) tends to 0 when n goes to infinity. Based on the calculation
given in the proof of Lemma 4 and using the fractional version of Cesàro’s Lemma, the second
term in the right hand side of (54) verifies

1√
n
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j=1

|a0|j−1
∑
1≤r≤n
r 6=j

1

(r − j)2H
1
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≤ 1√
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|a0|r−1max

(
1

|a0|
,

1

|a0|r r2H
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+
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n

n∑
r=1

1

r2−2H
|a0|r

(
1− |a0|n−r

1− |a0|

)
−−−→
n→∞

0.

Then the sequence (E[ZT
n,HUn,H(a0)/

√
n])n≥1 converges to 0.

Furthermore, Equation (45) and Lemma 1 imply that

lim
n→∞

E
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1√
n
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n,HUn,H(a0)

}2
]
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n→∞
E
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n
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.

Using (53) we deduce that

lim
n→∞

E

[{
1√
n

ZT
n,HUn,H(a0)

}3
]
= 0. (55)

When r = 4, the set {k1 + 1 − j1, k2 + 1, k3 + 1 − j2, k4 + 1, . . . , k2r−1 + 1 − jr , k2r + 1} can
be partitioned by pairs in two different ways. The first is to consider partitions that contain at
least one block of type {k2i−1 + 1 − ji , ki ′ + 1} and the second is to take partitions that do not
contain any such block. In the first case, we use the same remarks introduced to obtain (53) and
we factorize by the expectation of ZT

n,HUn,H(a0)/
√

n. In the second case, we use the result stated
in Lemma 1. More precisely, we have
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Therefore, in view of Lemma 1 and (55) we have
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2
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We can generalize this result by an immediate recurrence on r to obtain
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if r is odd

(r − 1)!!
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]
E
[{

1√
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if r is even.
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This implies that the r -th moment of the random variable ZT
n,HUn,H(a0)/

√
n converges to0 if r is odd

(r − 1)!!
(

1
1−a20

)r/2
if r is even,

(56)

and this is exactly the result recalled in (50). The lemma is then proved.

The convergences established in Lemmas 3 and 5 imply (by Slutsky’s theorem) that the vector
(ZT

n,HUn,H(a0)/
√

n, ‖Zn,H‖2Rn /n) converges in distribution to (G2, 1/(1 − a20)), where G2 is the
random variable defined in the proof of Lemma 5. Continuous mapping theorem allows to complete
the proof of Theorem 2.
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Fig 1. Distribution of the generalized least squares estimator of N = 2, 000 independent simulations of the fractional
autoregressive model (14) with size n = 30 and unknown parameter a = 0.3. The Hurst index is assumed to be
equal to 0.7.



Y. Esstafa/Estimation of fractional AR models 29

−3 −2 −1 0 1 2 3

−3
−2

−1
0

1
2

3

Normal Q−Q Plot of n(ân − a0) Distribution of n(ân − a0)

De
ns

ity

−3 −2 −1 0 1 2 3

0.0
0.1

0.2
0.3

0.4

−3 −2 −1 0 1 2 3

−0
.15

−0
.05

0.0
5

0.1
5
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Fig 2. Distribution of the generalized least squares estimator of N = 2, 000 independent simulations of the fractional
autoregressive model (14) with size n = 500 and unknown parameter a = 0.3. The Hurst index is assumed to be
equal to 0.7.
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Fig 3. Distribution of the generalized least squares estimator of N = 2, 000 independent simulations of the fractional
autoregressive model (14) with size n = 2, 000 and unknown parameter a = 0.3. The Hurst index is assumed to be
equal to 0.7.
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Fig 4. Box plot describing the distribution of the variance estimates of the generalized least squares estimator over
N = 2, 000 independent simulations of the fractional autoregressive model (14) with size n = 30 and unknown
parameter a = 0.3. The Hurst index is assumed to be equal to 0.7. The diamond symbol represent the mean of the
standardized errors n(ân − 0.3)2.
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Fig 5. Box plot describing the distribution of the variance estimates of the generalized least squares estimator over
N = 2, 000 independent simulations of the fractional autoregressive model (14) with size n = 500 and unknown
parameter a = 0.3. The Hurst index is assumed to be equal to 0.7. The diamond symbol represent the mean of the
standardized errors n(ân − 0.3)2.
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Fig 6. Box plot describing the distribution of the variance estimates of the generalized least squares estimator over
N = 2, 000 independent simulations of the fractional autoregressive model (14) with size n = 2, 000 and unknown
parameter a = 0.3. The Hurst index is assumed to be equal to 0.7. The diamond symbol represent the mean of the
standardized errors n(ân − 0.3)2.
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Fig 7. Comparison of quadratic risk of the generalized least squares estimator (in black) and Whittle estimator (in
green) of N = 2, 000 independent simulations of the fractional autoregressive model (14) with a = 0.3 and with
H = 0.7. The sample size n varies and takes its values from the set {30, 50, 100, 250, 500, 1000, 1500, 2000}.
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Fig 8. Comparison of the logarithm of quadratic risk of the generalized least squares estimator (in black) and
Whittle estimator (in green) of N = 1, 000 independent simulations of the fractional autoregressive model (14)
with a = −0.9 and with different values of H. The sample size n is (from left to right and from top to bottom)
n = 50, 100, 150, 200.
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Fig 9. Comparison of the logarithm of quadratic risk of the generalized least squares estimator (in black) and
Whittle estimator (in green) of N = 1, 000 independent simulations of the fractional autoregressive model (14)
with a = −0.5 and with different values of H. The sample size n is (from left to right and from top to bottom)
n = 50, 100, 150, 200.
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Fig 10. Comparison of the logarithm of quadratic risk of the generalized least squares estimator (in black) and
Whittle estimator (in green) of N = 1, 000 independent simulations of the fractional autoregressive model (14)
with a = 0 and with different values of H. The sample size n is (from left to right and from top to bottom)
n = 50, 100, 150, 200.
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Fig 11. Comparison of the logarithm of quadratic risk of the generalized least squares estimator (in black) and
Whittle estimator (in green) of N = 1, 000 independent simulations of the fractional autoregressive model (14)
with a = 0.5 and with different values of H. The sample size n is (from left to right and from top to bottom)
n = 50, 100, 150, 200.



Y. Esstafa/Estimation of fractional AR models 39

−5

−4

−3

−2

0.00 0.25 0.50 0.75 1.00
H

Lo
g 

of
 q

ua
dr

at
ic

 ri
sk

Quadratic risk comparison

−6

−5

−4

−3

−2

0.00 0.25 0.50 0.75 1.00
H

Lo
g 

of
 q

ua
dr

at
ic

 ri
sk

Quadratic risk comparison

−6

−5

−4

−3

−2

0.00 0.25 0.50 0.75 1.00
H

Lo
g 

of
 q

ua
dr

at
ic

 ri
sk

Quadratic risk comparison

−7

−6

−5

−4

−3

0.00 0.25 0.50 0.75 1.00
H

Lo
g 

of
 q

ua
dr

at
ic

 ri
sk

Quadratic risk comparison

Fig 12. Comparison of the logarithm of quadratic risk of the generalized least squares estimator (in black) and
Whittle estimator (in green) of N = 1, 000 independent simulations of the fractional autoregressive model (14)
with a = 0.9 and with different values of H. The sample size n is (from left to right and from top to bottom)
n = 50, 100, 150, 200.
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