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SUMMARY
Early administration of azithromycin after allogeneic hematopoietic stem cell transplantation was shown to
increase the relapse of hematological malignancies. To determine the impact of azithromycin on the post-
transplant gut ecosystem and its influence on relapse, we characterized overtime gut bacteriome, virome,
and metabolome of 55 patients treated with azithromycin or a placebo. We describe four enterotypes and
the network of associated bacteriophage species and metabolic pathways. One enterotype associates
with sustained remission. One taxon from Bacteroides specifically associates with relapse, while two from
Bacteroides and Prevotella correlate with complete remission. These taxa are associated with lipid, pentose,
and branched-chain amino acid metabolic pathways and several bacteriophage species. Enterotypes and
taxa associate with exhausted T cells and the functional status of circulating immune cells. These results
illustrate how an antibiotic influences a complex network of gut bacteria, viruses, and metabolites and
may promote cancer relapse through modifications of immune cells.
INTRODUCTION

Allogeneic hematopoietic stem cell transplantation (allo-HSCT)

is a curative treatment of hematological malignancies.1 Despite

improvements in prophylactic and pre-emptive treatments,

relapse remains the main cause of death following allo-HSCT.2

The curative graft-versus-tumor (GVT) effect relies on the allor-

eactivity of donor immune cells against tumor cells.3 GVT is

mainly mediated by donor T cells, as illustrated by the higher

risk of relapse associated with T cell-depleted grafts4 and

the preventive effects of donor lymphocyte infusions (DLIs).5

However, allo-HSCT benefits are counterbalanced by graft-

versus-host disease (GVHD), in which T cells target host healthy

tissues.4,6,7 Understanding the specificities of tumor- and

healthy-tissue-directed alloreactivity is crucial to develop strate-

gies that enhance GVT without increasing GVHD.
1386 Cell Host & Microbe 31, 1386–1403, August 9, 2023 ª 2023 Els
Lung chronic GVHD (cGVHD), clinically recognized as bron-

chiolitis obliterans syndrome (BOS), occurs in 10% of patients

mainly in the first 2 years after HSCT8 and shares physiopatho-

logical mechanisms with BOS9 that occur after lung transplanta-

tion. After lung transplantation, azithromycin, a second-genera-

tion macrolide, can prevent BOS.10 These observations led us to

evaluate azithromycin as a lung cGVHD prophylaxis in a random-

ized, multi-center, placebo-controlled, double-blind, superiority

study (ALLOZITHRO trial, NCT01959100). Unexpectedly, azi-

thromycin was associated with a higher risk of relapse (hazard

ratio [HR] = 1.7) and increased death rate, while it did not prevent

acute GVHD or cGVHD.11 This led to both the Food and Drug

Administration and the European Medicines Agency warning

about azithromycin use early after allo-HSCT.12

Gut microbiota are disturbed after allo-HSCT.13 This dysbiosis

is characterized by lower alpha diversity and Enterococcus
evier Inc.
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domination.14,15 Antibiotics used during and before the proced-

ure influence the abundance of bacterial species and bacterial

domination.16–18 Parenteral nutrition also influences gut micro-

biota composition.19 Lower microbial diversity has been associ-

ated with a higher risk of non-relapse mortality.15,20 Few studies

report the link between gut microbiota and allo-HSCT relapse.

Low frequency of Blautia genus has been associated with a

higher risk of relapse19 and a cluster of phylotypes (operational

taxonomic units [OTUs]), mainly comprising Eubacterium limo-

sum, was associated with a lower risk of relapse.21 However,

mechanisms underlying the role of gut microbiota in antitumor

responses after allo-HSCT are still unknown; however, they

might be related to gut-microbiome-derived metabolites.22,23

Additionally, we previously reported that the gut eukaryotic vi-

rome is associated with enteric GVHD after allo-HSCT.24

Although gut microbiota and metabolites are influenced by bac-

teriophages,25,26 their reciprocal impact and associations

following allo-HSCT is ill-defined.27

We recently highlighted an off-target effect of azithromycin,

which impairs the antitumor immune response by directly

affecting the metabolism of T cell energy and T cell receptor

(TCR) signaling.28 Considering the expected on-target effects

of azithromycin on gut microbiota and its role in allo-HSCT

outcome, we hypothesized that azithromycin may promote

relapse after allo-HSCT through its impact on the gut ecosystem.

To decipher how gut bacteriome, virome, and metabolomic

profiles interact over time during the allo-HSCT procedure, we

applied a multi-omic approach on fecal samples from patients

included in the ALLOZITHRO trial. We first characterized gut mi-

crobiome and described four bacterial enterotypes and their

connections with metabolites and viral species. Enterotypes

and their associated viruses and metabolic pathways were inde-

pendently associated with azithromycin or a placebo intake and

with relapse or remission. Then, focusing on azithromycin- and

relapse-associated microbial taxa, we highlighted a network of

bacteria, bacteriophages, and metabolic pathways associated

with post-transplant relapses and azithromycin intake. Ulti-

mately, we uncovered peripheral blood T cell exhaustion profiles

associated with enterotypes and with relapse-associated bacte-

rial taxa.

RESULTS

Cohort
Fecal samples from patients included in the ALLOZITHRO trial

were collected over time, including 27 patients from the azithro-

mycin arm (n = 73 samples) and 28 patients from the placebo

arm (n = 75 samples). The first and last samples were collected

from the week before allo-HSCT and 6 weeks after allo-HSCT,

respectively (Figure 1A). Most samples were assessed for all

omics (n = 92), including 43 and 49 in the placebo and azithro-

mycin cohorts, respectively (Figure 1B). Characteristics of pa-

tients included in the placebo and azithromycin cohorts were

similar (Table S1). Higher risk of relapse in patients included

in the azithromycin arm was consistent with ALLOZITHRO trial

(HR = 1.65, 95% confidence interval [95% CI]: 0.68–4.00,

Figures S1A and S1B). Nutrition support and concomitant anti-

biotics used were also similar in both arms and detailed in

Table S2.
Post-transplant gut microbiota stratified samples into
four enterotypes
As previously described,15,17 bacterial alpha diversity decreased

during the procedure, mainly during the first 2 weeks after

transplantation (Figure S1C). We uncovered four clusters of

samples (Figure 2A), i.e., enterotypes. These clusters were asso-

ciated with alpha diversity: cluster 2 exhibited the highest diver-

sity, followed by cluster 1, 3, and 4 (Figure 2B). Enterotype 1 was

characterized by Clostridium XIVa and Parabacteroides genera.

Enterotype 2 was characterized by Bacteroides, Fusobacterium,

and Faecalibacterium. Higher relative abundances of Bacter-

oides were found in enterotype 3, while enterotype 4 was driven

by Enterococcus and Enterobacter genera (Figure 2C). Both

enterotypes 2 and 3 were enriched in Bacteroides genus. How-

ever, microbial richness and diversity were both significantly

lower in enterotype 3 (Figure 2B). Compared with enterotype 2,

enterotype 3 was predominantly enriched in Bacteroides vulga-

tus and Bacteroides fragilis, while enterotype 2 was enriched

in Bacteroides uniformis, Bacteroides sp. Smarlab BioMol-

2301151, Bacteroides ovatus, and Bacteroides massiliensis

(Figures S2A–S2C).

Enterotypes are associated with azithromycin
treatment and subsequent relapse
We first evaluated whether enterotypes were associated with

azithromycin or a placebo intake and relapse or complete remis-

sion at 12 months.

The treatment (azithromycin or a placebo) was significantly

associated with enterotypes (p = 0.037). Enterotypes 3 and 4

were equally distributed in azithromycin and placebo samples,

enterotype 1 (driven by Clostridium XIVa and Parabacteroides)

was associated with 70% of samples from the azithromycin

group (n = 23), while 68%of samples from the placebo group be-

longed to enterotype 2 (driven by Bacteroides, Fusobacterium,

and Faecalibacterium; n = 17, p = 0.02) (Figure 3A).

Post-transplantation relapse of the underlying malignant dis-

ease at 12 months was also associated with enterotypes distri-

bution (p = 0.026). Enterotype 2 was mainly associated with

complete remission (95.5%), while enterotypes 1, 3, and 4

were associated with 10 (32%, p = 0.017); 12 (38%, p = 0.008);

and 10 (42%, p = 0.005) samples from relapsing patients,

respectively (Figure 3B).

We did not observe any association or pattern between entero-

types and time (Figures S3A–S3E). We also integrated time-to-

sample collection in association with azithromycin or placebo

and relapse or complete responses, as illustrated in Figure S3F.

This figure highlights the frequency of outcome within each enter-

otype at a given time point. It shows that enterotype 2 is strongly

associated with placebo intake and complete response, indepen-

dently from the time elapsed post transplantation. In addition,

compared with those with stable enterotypes, patients who

changed enterotypes during the transplantation procedure were

associated with less relapse (complete remission at 12 months,

77%versus38%,p=0.020).Shift inenterotypewasnot influenced

by clinical variables or by the type of antibiotics used (Table S3).

Hematological status (complete response or relapse) and

treatment arm (placebo or azithromycin) were still associated

with enterotypes in multivariate multinomial regression models

that also included confounding variables associated with
Cell Host & Microbe 31, 1386–1403, August 9, 2023 1387
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Figure 1. Overview of the studied samples

(A) Distribution of the samples according to the time elapsed from allogeneic hematopoietic stem cell transplantation (HSCT) and azithromycin or placebo

cohorts. One dot represents one sample from one patient (either from one or three omics). A non-parametric, bilateral Wilcoxon test was performed to compare

the time elapsed from HSCT.

(B) Venn diagrams depicting the distribution of omics data available from all samples studied, those from the placebo cohort and the azithromycin cohort.

See also Figure S1 and Tables S1 and S2.
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enterotypes (disease risk index, type of donor, source of stem

cells, and GVHD prophylaxis) (Table 1; Figure S4A).

Considering co-medication with other anti-infectious treat-

ments, enterotypes were associated with amoxicillin (p =

0.002), piperacillin-tazobactam (p < 0.001), imipenem/cilastatin

(p = 0.002), ganciclovir (p = 0.036), and caspofungin (p = 0.020)

(Table 1). Because antibiotic combinations may be used during
1388 Cell Host & Microbe 31, 1386–1403, August 9, 2023
the procedure, we studied the distribution of antimicrobial intake

in a multivariate analysis using correspondence analysis. This re-

vealed that compared with other enterotypes, (1) enterotype 4

was mainly associated with metronidazole and cefotaxime treat-

ments; (2) enterotype 1 was associated with imipenem/cilastatin,

ganciclovir, azithromycin, posaconazole, and ceftriaxone; (3) en-

terotype 3 with levofloxacin and ceftriaxone; and (4) enterotype 2
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Figure 2. Post-transplant gut microbiota enterotypes

(A) Dot plot depicting co-ordinates of each sample on the first and second axes of principal co-ordinate analysis (PCoA) performed from a Bray-Curtis matrix

distance. Samples were clustered with hierarchical k-means. Each cluster defines an enterotype. Dotted gray line links samples from a same patient.

(B) Violin plots of alpha-diversity indexes according to diverse enterotypes. p values were computed with non-parametric bilateral Wilcoxon test.

(C) Bar plots exhibiting top genera permutational multivariate analysis of variance (PERMANOVA) co-efficient in each enterotype.

See also Figure S2 and Table S3.
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Figure 3. Specific gut microbiota associated with azithromycin intake and relapse after transplantation

(A and B) Bar plot showing the frequencies of samples in the group of randomization and complete remission at 12 months according to enterotypes. P values

were computed with the non-parametric bilateral Wilcoxon test.

(C and D) Dot plot depicting principal co-ordinate analysis (PCoA) computed from Bray-Curtis distance matrix. Squares show barycenter of each group.

(E and F) Bar plots represent top 15 phylotypes that drive the differences between the groups (PERMANOVA coefficients). (C) Comparing patients from the

azithromycin arm with those from the placebo arm. (F) Comparing patients in relapse at 12 months and those in complete remission.

(G) Dot plot showing PERMANOVA coefficients of phylotype found in the top 15 coefficients in both relapse/complete remission and azithromycin/placebo

enterotypes.

(H) Forest plot showing hazard ratio and 95% confidence intervals of relapse according to Fine and Gray competing risk model of relapse, with death not related

to relapse as a competing risk. The analysis was performed with phylotypes shown in (C) after computing mean OTU abundances for each patient. For visu-

alization purposes, only significant phylotypes are shown.

(legend continued on next page)
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was not associated with a specific antimicrobial compared with

the others (Figure S4B).

Together, these results highlight that among antimicrobials,

azithromycin was associated with higher frequency of entero-

type 1 driven by Clostridium XIVa and Parabacteroides genera,

while placebo intake and complete remission were associated

with higher frequency of enterotype 2 driven by Bacteroides, Fu-

sobacterium, and Faecalibacterium.

Azithromycin treatment and hematological malignancy
relapse share gut microbiota taxa
To unravel the microbial specificity associated with azithromycin

or a placebo intake and with relapse or complete remission, we

directly compared the samples using permutational multivariate

analysis of variance (PERMANOVA). Azithromycin-associated

microbiota were significantly different from placebo-associated

microbiota (p = 0.011) (Figure 3C). Relapse and complete remis-

sion were also statistically different (p = 0.003) (Figure 3D).

To gain insights on potential differences in bacterial species,

we studied phylotypes that drove these differences. Among

the top driving phylotypes, those related to Clostridium sp,

B. fragilis, B. uniformis, and Bacteroides sp. Smarlab Biomol-

2301151 were associated with azithromycin, while E. faecalis,

B. vulgatus, E. aerogenes, F. prausnitzii, Bacteroides sp.

DJF_B097, and Prevotella sp. DJF_RP53 were associated with

a placebo (Figure 3E). Likewise, complete remission and re-

lapses were associated with specific microbiota (PERMANOVA

p = 0.003). Relapse-associated microbiota were mainly charac-

terized by phylotypes related to B. fragilis, E. coli, and

E. aerogenes, whereas remission was associated with relatives

of B. uniformis, Bacteroides sp. DJF_B097, B. vulgatus,

B. massiliensis, and E. faecalis (Figure 3F).

Consistent with the higher risk of relapse in the azithromycin

group in theALLOZITHRO trial, among the commondriving phylo-

types, 10/13 (77%) were associated with relapse and

azithromycin or with placebo and complete remission (Figure 3G).

Among these 10 phylotypes, those relatives of B. fragilis, Bacter-

oides sp. Smarlab BioMol-2301151, andB. eggerthiiwere associ-

ated with relapse and azithromycin, whereas B. vulgatus, Bacter-

oides sp. DJF_B097, E. faecalis, Prevotella sp. DJF_RP53,

B. caccae,P. oralis, andBacteroides sp. CCUG39913were asso-

ciated with placebo and complete remission (Figure 3G). Time

integration to the analysis allowed the identification of a dynamic

microbial signature associated with relapse (p = 0.0003). Phylo-

types related to B. caccae, B. uniformis, F. prausnitzii,

E. faecalis,B. sp. CCUG 39913, andB. fragilis drove the signature

toward relapse, while Prevotella sp DJF_RP53, E. aerogenes,

B. vulgatus, Bacteroides sp. DJF_B097, B. eggerthii, and Bacter-

oides sp. Smarlab BioMol-2301151 were associated with com-

plete response (Figures S4C and S4D).

To determine which phylotypes were associated with relapse,

after considering the time-dependent nature of this outcome and

death as a competing risk, a Fine andGraymodel was computed
(I) Dot plot and regression line with 95% confidence interval showing frequencies

hematopoietic stem cell transplantation (HSCT).

CR, complete remission; OTUs, operational taxonomic units; AZM, azithromycin

See also Figures S3–S5.
using mean OTU abundances for each patient. Results revealed

that B. fragilis taxon was associated with higher risk of relapse

(HR = 1.02, 95%CI: 1.02–1.03, p < 0.001). Two other phylotypes

were associated with lower risk of relapse: Prevotella sp.

DJF_RP53 (HR = 0.90, 95%CI: 0.85–0.94, p < 0.001) andBacter-

oides sp. DJF_B097 (HR = 0.69, 95% CI: 0.57–0.82, p < 0.001)

(Figure 3H).

The frequency of the profiles over time of the three latter phylo-

types were comparable between complete remission and

placebo or between azithromycin and relapsing patients. The

phylotype related to Bacteroides sp. DJF_B097 was lower in azi-

thromycin and the relapsing patient. Prevotella sp. DJF_RP53’s

profiles of the relapsed/azithromycin groups inversely correlated

with the profile of the complete remission/placebo groups. By

contrast, B. fragilis’ profiles were consistent with higher fre-

quencies in azithromycin and relapsing patients (Figure 3I).

None of these phylotypes correlated together, suggesting that

their trajectories were independent (Figure S4E).

Altogether, these results show that azithromycin intake

impacted Bacteroides sp. DJF_B097, Prevotella sp. DJF_RP53,

and B. fragilis, which were also associated with subsequent he-

matological response.

Deciphering multi-omics modules associated with
enterotypes
Gut virome was not specifically associated with azithromycin

treatment and relapse (Figure S5). Among the 925 studied

metabolites, N-acetyl-cadaverine, pyridoxal, pyridoxamine, and

5-(2-hydroxyethyl)-4-methylthiazole levels were higher in pla-

cebo-treated patients than in the azithromycin-treated patients,

and none were significantly associated with relapse (Figure S5).

These results suggest that gut bacteriome was the main contrib-

utor to identify relapse in patients.

To understand how enterotypesmay be linkedwith host meta-

bolism, we next explored the gut metabolome. Ninety-nine me-

tabolites were significantly associated with the distribution of

the four enterotypes (Figure 4A). The enrichment analysis re-

vealed that enterotypes were associated with specific metabolic

pathways (Figure 4B). All enterotypes, except number 4, were

associated with secondary bile acid metabolism. Enterotype 4

exhibited enrichment of primary bile acid and lysophospholipids

metabolism. Enterotype 1 was enriched in lysophospholipids

and secondary bile acid metabolism. Enterotypes 2 and 3 were

close together and characterized by the enrichment of metabo-

lites involved in secondary bile acid metabolism and pyrimidine

metabolism (Figure 4B).

To investigate whether gut virome could be associated with

gut microbiota composition after allo-HSCT, we studied viral

species in fecal samples. Individual viruses were not associated

with bacterial enterotypes (Data S1, S2, S3, and S4). Similarly,

clusters of viral samples were not associated with enterotypes

(Figures 4C, 4D, and S6). Comparison of viral composition and

metabolite levels of samples from enterotype 2 with those from
of phylotypes associated with relapse during the first months after allogeneic

; PLA, placebo; PERMANOVA, permutational multivariate analysis of variance.

Cell Host & Microbe 31, 1386–1403, August 9, 2023 1391



Table 1. Enterotypes clinical characteristics

Enterotypes

p value1 2 3 4

Number of samples 33 25 36 24 N/A

Gender, female 8 (24%) 6 (24%) 10 (28%) 10 (42%) 0.5

Age (years) 59 (43–62) 57 (49–64) 56 (48–65) 55 (27–62) 0.2

Group

Placebo 10 (30%) 17 (68%) 18 (50%) 13 (54%) 0.037

Azithromycin 23 (70%) 8 (32%) 18 (50%) 11 (46%) N/A

Diagnosis

Acute lymphoid leukemia 9 (27%) 2 (8.0%) 3 (8.3%) 6 (25%) N/A

Acute myeloid leukemia 6 (18%) 3 (12%) 7 (19%) 7 (29%) N/A

Chronic lymphoid leukemia 1 (3.0%) 2 (8.0%) 2 (5.6%) 4 (17%) N/A

Chronic myeloid leukemia 1 (3.0%) 0 (0%) 0 (0%) 0 (0%) N/A

Hodgkin lymphoma 0 (0%) 0 (0%) 1 (2.8%) 1 (4.2%) N/A

Myelodysplastic neoplasm 7 (21%) 8 (32%) 7 (19%) 2 (8.3%) N/A

Non-Hodgkin lymphoma 4 (12%) 7 (28%) 4 (11%) 4 (17%) N/A

Other malignancies 5 (15%) 3 (12%) 12 (33%) 0 (0%) N/A

Disease risk index

Low 0 (0%) 2 (8.0%) 0 (%) 4 (17%) 0.06

Intermediate 9 (27%) 10 (40%) 14 (39%) 8 (33%) N/A

High 24 (73%) 13 (52%) 22 (61%) 12 (50%) N/A

Disease status at transplant

>CR1 12 (36%) 4 (16%) 5 (14%) 7 (29%) 0.4

CR1 9 (27%) 10 (40%) 13 (36%) 7 (29%) N/A

Other 12 (36%) 11 (44%) 18 (50%) 10 (42%) N/A

Type of donor

Related 8 (24%) 8 (32%) 20 (56%) 8 (33%) 0.046

Unrelated 25 (76%) 17 (68%) 16 (44%) 16 (67%) N/A

Cytomegalovirus (CMV) serology (donor/recipient)

�/� 9 (27%) 7 (28%) 8 (22%) 11 (46%) 0.17

�/+ 11 (33%) 8 (32%) 5 (14%) 2 (8.3%) N/A

+/� 5 (15%) 2 (8.0%) 8 (22%) 3 (12%) N/A

+/+ 8 (24%) 8 (32%) 15 (42%) 8 (33%) N/A

Source of stem cells

Peripheral blood 26 (79%) 24 (96%) 35 (97%) 20 (83%) 0.044

Bone marrow 2 (6.1%) 1 (4.0%) 0 (0%) 3 (12%) N/A

Cord blood 5 (15%) 0 (0%) 1 (2.8%) 1 (4.2%) N/A

Conditioning regimen

Myeloablative 8 (24%) 3 (12%) 9 (25%) 10 (42%) 0.12

Non myeloablative 25 (76%) 22 (88%) 27 (75%) 14 (58%) N/A

GVHD prophylaxis

Cyclosporine-MTX 12 (36%) 1 (4.0%) 8 (22%) 7 (29%) 0.038

Cyclosporine-MMF 20 (61%) 21 (84%) 26 (72%) 17 (71%) N/A

Other 1 (3.0%) 3 (12%) 2 (5.6%) 0 (0%) N/A

Acute GVHD

aGVHD 26 (79%) 15 (60%) 19 (53%) 12 (50%) 0.14

Death before aGVHD 5 (15%) 5 (20%) 7 (19%) 8 (33%) N/A

No event at the last follow-up 2 (6.1%) 5 (20%) 10 (28%) 4 (17%) N/A

(Continued on next page)
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Table 1. Continued

Enterotypes

p value1 2 3 4

Chronic GVHD

Mild 16 (67%) 11 (85%) 7 (47%) 6 (46%) 0.20

Moderate 7 (29%) 1 (7.7%) 6 (40%) 6 (46%) N/A

Severe 1 (4.2%) 1 (7.7%) 2 (13%) 1 (7.7%) N/A

No event at the last follow-up 9 12 21 11 N/A

Bronchiolitis obliterans syndrome

Yes 0 0 1 1 N/A

Relapse at 12 months

No event at 12 months 21 (68%) 21 (95%) 20 (62%) 14 (58%) 0.026

Relapse 10 (32%) 1 (4.5%) 12 (38%) 10 (42%) N/A

Death before 12 months 2 3 4 0 N/A

Nutrition

Enteral 5 (15%) 3 (12%) 5 (14%) 6 (29%) 0.092

Oral 22 (67%) 18 (72%) 22 (61%) 6 (29%) N/A

Intravenous 6 (18%) 4 (16%) 9 (25%) 9 (43%) N/A

Unknown 0 0 0 3 N/A

Beta-lactamin

Amoxicillin 33 (100%) 25 (100%) 35 (97%) 19 (79%) 0.002

Piperacillin-tazobactam 26 (79%) 18 (72%) 15 (42%) 21 (88%) <0.001

Glycopeptide

Vancomycin 12 (36%) 12 (48%) 8 (22%) 11 (46%) 0.14

Cephalosporin

Ceftriaxone 1 (3.0%) 1 (4.0%) 1 (2.8%) 0 (0%) >0.9

Cephazolin 8 (24%) 6 (24%) 5 (14%) 10 (42%) 0.11

Ceftazidime 10 (30%) 8 (32%) 5 (14%) 5 (21%) 0.3

Cefoxatime 0 (0%) 0 (0%) 0 (0%) 1 (4.2%) 0.2

Quinolone

Ofloxacin 33 (100%) 25 (100%) 34 (94%) 23 (96%) 0.4

Levofloxacin 0 (0%) 2 (8.0%) 1 (2.8%) 0 (0%) 0.3

Carbapenem

Imipenem-cilastatin 11 (33%) 2 (8.0%) 1 (2.8%) 2 (8.3%) 0.002

Sulfonamides

Sulfamethoxazole-trimethoprim 33 (100%) 25 (100%) 36 (100%) 24 (100%) N/A

Nitroimidazole

Metronidazole 0 (0%) 0 (0%) 0 (0%) 1 (4.2%) 0.2

Aminoglycoside

Amikacin 28 (85%) 22 (88%) 32 (89%) 22 (92%) >0.9

Anti-viral

Valaciclovir 33 (100%) 25 (100%) 35 (97%) 23 (96%) 0.7

Ganciclovir 5 (15%) 6 (24%) 1 (2.8%) 1 (4.2%) 0.036

Anti-fungal

Micafungin 0 (0%) 0 (0%) 0 (0%) 0 (0%) N/A

Posaconazole 5 (15%) 2 (8.0%) 1 (2.8%) 0 (0%) 0.11

Viroconazole 5 (15%) 6 (24%) 2 (5.6%) 7 (29%) 0.065

Fluconazole 10 (30%) 5 (20%) 11 (31%) 8 (33%) 0.7

Caspofungin 13 (39%) 5 (20%) 3 (8.3%) 5 (21%) 0.020

Continuous variables are described with median and interquartile range and compared with bilateral Wilcoxon test. Fisher’s test was used to compare

frequencies, except for CMV serology frequencies. GVHD, graft-versus-host disease; CR, complete remission; MTX, methotrexate; MMF, mycophe-

nolate mofetil; N/A: not available.
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other enterotypes, notably enterotype 3, did not reveal a specific

pattern (Figures S2D–S2F).

To highlight which bacterial phylotypes or taxa drovemetabolic

profiles among enterotypes and whether their individual abun-

dance may be associated with gut virome composition, we stud-

ied their specific correlations. This led to the identification of 270

statistically significant correlations (Data S5). Louvain clustering

was applied to a correlation network to highlight multi-omic mod-

ulesof highlycorrelatedphylotypes,metabolites, andviral species

(Data S6). Summarizing the metabolites associated with bacterial

taxa in terms of enriched metabolic pathways revealed that sec-

ondary bile acid enrichment was shared by B. uniformis (mod-

ule 11), E. aerogenes, and Prevotella sp. DJF_RP53 (module 1).

Sterol pathway enrichment was shared by Clostridium sp. (mod-

ule 10) and F. prausnitzii (module 5). Other enriched pathways

were specific to modules (Figures 5A and S7A).

Among the 13 modules, module 2 (driven by Fusobacterium

necrophorum) was associated with 18 viral species, including

14 (78%) bacteriophages. When studying bacteriophages ac-

cording to their genus, only Pepyhexaviruses were commonly

associated with phylotypes related to Prevotella sp. DJF_RP53

and E. aerogenes. Correlations with unclassified Siphoviridae

were shared by phylotypes related to Bacteroides sp. DJF-

B097, E. faecalis and F. necrophorum (Figure S7B). Among the

eukaryotic host viruses, a species of picobirnaviruses, Otarine

picobirnavirus, was associated with a phylotype related to

F. prausnitzii (module 5).

Considering treatment arm and hematological response status,

modules that included the three phylotypes associated with

relapseandazithromycinwerecharacterizedbystatistically signif-

icant metabolic pathway enrichments and viral species that were

exclusive to these taxa (Figure5B).Bacteroidessp.DJF_B097, the

phylotype that decreased with azithromycin, was associated with

lysophospholipid and phospholipid metabolism. This might be

related to azithromycin interactionswith cell membrane phospho-

lipids.29–31Prevotella sp.DJF_RP53was associated with pentose

metabolismandB. fragiliswithbranched-chainaminoacid (BCAA)

metabolism pathways (Figure 5C). Regarding viruses, among the

six significant species correlated with bacterial phylotypes, five

(83%) were bacteriophages. Each genus was specifically corre-

lated with one phylotype (Figure 5D).

Enterotypes and relapse-associated bacterial taxa are
correlated to plasma metabolite levels and peripheral
blood T cell subsets
Gut microbiota were shown to influence systemic T cell effector

function through metabolite biosynthesis.32–34 To explore how

gut microbiota may influence circulating T cells and antitumor
Figure 4. Correlations between enterotypes andmetabolite levels and v

tation

(A) Heatmap showing the metabolites that are significantly associated with en

enrichment. On the right, tile colors depict metabolite superpathways of all metabo

Kruskal-Wallis test was performed and p value adjusted for multiple comparisons

in human metabolome database (https://hmdb.ca) are depicted.

(B) Dot plot summarizing enrichment factors (EFs) and p values of enriched subpa

computed using the over-representation method and p value using the hypergeo

(C and D) Stacked bar plots depicting the frequencies of samples from one enter

exact test.

See also Figure S6 and Data S1, S2, S3, and S4.
immune response, we relied on a multi-omics approach using

plasma metabolite and mass cytometry data from our previous

work (Figure S8A).28 We identified 144 plasmametabolites asso-

ciated with enterotypes. Metabolites associated with entero-

types 2 and 3 were mainly xenobiotic, while those associated

with enterotypes 1 and 4 were lipids and amino acids metabo-

lites. In addition, enterotypes 2 and 3 were associated with

more microbiota-derived metabolites (n = 15) than enterotypes

1 and 4 (n = 3) (Figure 6A). Subpathway enrichment profiles

were comparable for enterotypes 2 and 3, while enterotypes 1

and 4 exhibited specific enriched subpathways (Figure 6B).

Enterotypes were also associated with the frequency of pe-

ripheral blood T cell subsets. Enterotypes 2 and 3 were associ-

ated with clusters expressing molecules associated with T cell

activation or cytotoxic activity, including 2B4, KLRG1, and Gran-

zyme B. Mucosal associated invariant T cells (MAITs) subsets

were also associated with enterotype 2. Enterotype 4 was asso-

ciated with TIGIT+ T cells and Eomes+T-bet+ subsets, while en-

terotype 1 was associated with co-inhibitory molecules expres-

sion, including ICOS, TIGIT, PD-1, and CTLA-4 and also with

TOX expression in CD4+ Th1 cells (Figure 6C). This suggested

that both relapse-related enterotypes 1 and 4 were associated

with exhausted T cells in peripheral blood. At the level of bacte-

rial phylotypes, inter-omic correlations can be explored in the

Data S7.

Finally, we unveiled a significant association between

B. fragilis, the taxon associated with a higher risk of relapse,

and exhausted T cells co-expressing TIGIT, PD-1, and TOX in

centralmemoryCD4+Th1 and Th2 cells andCD8+cells. Instead,

thephylotype associatedwith a lower risk of relapse,Bacteroides

sp. DJF_B097, was associated with KLRG1+2B4+-activated

effector memory CD4+ Th0 cells and TIGIT+ central memory

CD4+ Th1 cells (Figure 6D).

Overall, these results uncover specific associations between

enterotypes, bacterial taxa (or phylotypes), and systemic metab-

olomic profiles thatmay influence antitumor T cell responses and

relapse risk after allo-HSCT.

DISCUSSION

Early administration of azithromycin after allo-HSCT unexpect-

edly increased the risk of hematological malignancy relapses in

a prospective randomized phase III clinical trial.11 By using unsu-

pervised and targeted approaches, we revealed the impact of

azithromycin treatment on gut microbiota that contributed to

relapse. In the context of post-transplantation relapses, we un-

covered specific correlations between bacteria, bacteriophages

species, metabolic pathways, and circulating immune cells.
iruses’ frequency after allogeneic hematopoietic stem cell transplan-

terotypes. Metabolite levels are scaled, and 0.6 on the scale level defines

lites and those belonging to statistically significant enriched subpathways. The

with false discovery rate method. Metabolites identified as microbiota-derived

thways from differentially detectedmetabolites levels. Enrichment factors were

metric test.

otype that belong to a cluster of viruses. p values were computed with Fisher’s
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Figure 5. Gut microbiota multi-omics networks associated with azithromycin intake and relapse

(A) Summarized correlation network illustrating subpathways and viral species associated with top enterotype-driving taxa. For visualization purposes, phylo-

types are described with the corresponding species names. The network with individual metabolites is available in Data S1.

(legend continued on next page)

ll
Clinical and Translational Report

1396 Cell Host & Microbe 31, 1386–1403, August 9, 2023



ll
Clinical and Translational Report
We described four enterotypes mainly characterized by Clos-

tridium sp., B. vulgatus, E. faecalis, E. aerogenes, B. fragilis,

F. prausnitzii, and B. caccae. This approach has never been re-

ported in this context because previous reports describe gut mi-

crobiota in terms of genus15,17,18,35,36 or a specific species of a

genus37 or clusters of related OTUs.21 Unlike healthy donors, en-

terotypes were not persistent across time in this population of

heavily treated patients.38 While the trajectories of enterotypes

were heterogeneous, a change of enterotype during the proced-

ure was associated with a lower relapse rate. Diseases and treat-

ments received by patients may explain the differences between

reported enterotypes in healthy humans and those from our

cohort.39 Consistent with the results of the MetaCardis cohort,

two enterotypes were driven by Bacteroides. The enterotype en-

riched in B. fragilis was associated with lower bacterial richness,

suggesting dysbiosis.40

Consistent with previous reports on allo-HSCT gut microbiota,

samples were collected during the allo-HSCT procedure and

alpha diversity decreased with time.15,16,20 The lowest diversity

was observed in enterotype 4 (E. faecalis and E. aerogenes)

and the highest with enterotype 2 (F. prausnitzii, B. vulgatus,

and F. necrophorum). This is consistent with previous studies

that reported lower diversity with Enterococcus dominations41

and higher diversity with F. prausnitzii.42

Enterotypes were associated with 99 metabolites. Entero-

type 4, associated with the lowest diversity, was associated

with lower secondary bile acids. Biosynthesis of secondary bile

acids from primary bile acids requires bile salt hydroxylases

(BSHs).34 BSHs are expressed by Bacteroides, especially

B. vulgatus,34,43 which was lower in enterotype 4 compared

with other enterotypes. Enterotype 1 was associated with a

higher frequency of samples from azithromycin-treated patients.

This enterotype was enriched with metabolites from the lyso-

phospholipid pathway. This may be related to the azithromycin

impact on membrane phospholipids.31 Viral species or clusters

of viral species were not associated with enterotypes. Other

groups have already studied the impact of azithromycin intake

on gut microbiota composition and identified consistent impact

on bacterial species. More generally, discrepancies on the

impact on gutmicrobiota inmice suggest thatmicrobiota studies

based on animal model need to be translated to human.44–51

By studying metabolite levels and viruses’ frequencies with

the top driving bacterial taxa of enterotypes, we identified 13

modules of correlated variables. Strikingly, specific correlations

between metabolic pathways, bacteriophages species, and

phylotypes were identified. Picobirnaviridae were previously

reported to be associated with acute gut GVHD.24 Here, Otarine

picobirnavirus was positively correlated with F. prausnitzii and

was classified as a virus of eukaryotic cells. However, as recently

described, Picobirnaviruses may now be reconsidered as

bacteriophages.52
(B) Correlation network of phylotype frequencies with viral species frequencies a

gorithm. Contribution was computed with principal-component analysis, using v

(C) Dot plot showing enriched metabolite pathways according to phylotypes. Enr

the hypergeometric test.

(D) Tile plot depicting the number of bacteriophage species from a same viral ge

Staph, Staphylococcus; Lact, Lactococcus; Mycobact, Mycobacterium.

See also Figure S7 and Data S5 and S6.
Enterotypes were associated with antimicrobial intake. Enter-

otype 4, enriched in Enterococcus, was associated with metro-

nidazole intake, consistent with a previous description of associ-

ation between antibiotics and Enterococcus.17 The azithromycin

group of treatment, type of donor, hematopoietic stem cell (HSC)

source and GVHD prophylaxis were associated with entero-

types. Enterotypes were also associated with hematological

malignancy outcome, but not with acute GVHD or cGVHD.

Belonging to enterotype 2 (F. prausnitzii, B. vulgatus, and

F. necrophorum) was associated with complete remission.

Some strains of F. prausnitzii were reported to promote local

regulatory cells in inflammatory bowel diseases.42,53 However,

in the context of cancers, it is also associated with immune

checkpoint inhibitor responses54 and the inhibition of colorectal

cancer cells growth.55

Subsequently, we aimed to characterize specific differ-

ences of gut microbiota from patients treated with azithromy-

cin or a placebo and from those who relapsed or remained in

complete remission. Among the overlapping phylotypes asso-

ciated with azithromycin, placebo, relapse, and complete

remission samples, Bacteroides sp. DJF_B097 and Prevotella

sp. DJF_RP53 were higher in placebo samples and were

associated with complete remission. B. fragilis was higher in

azithromycin samples and was significantly associated with

a higher risk of relapse. This higher risk of relapse with

B. fragilis was found in both unsupervised multivariate ana-

lyses and in supervised methods. A longitudinal study of the

three phylotypes’ relative abundance revealed that their fre-

quency curves from azithromycin intake overlay relapse pa-

tients’ curves, while the frequency curves of the placebo

group overlay patients in complete remission. B. fragilis may

dampen antitumor responses by promoting regulatory path-

ways, as observed in inflammatory bowel diseases in germ-

free mice.56 To date, little is known about the impact of the

latter two bacterial taxa on cancer survival and immune re-

sponses to tumor cells.

Metabolic pathways enriched with phylotypes associated with

relapse or remissionwere (1) phospholipids and lysophospholipid

metabolites in patients with lower Bacteroides sp. DJF_B097,

which may be explained by the impact of azithromycin on

these metabolites,31 (2) pentose metabolism for Prevotella sp.

DJF_RP53, and (3) lower BCAA in patients with higher B. fragilis,

which may be explained by their importance for galactosylcera-

mide biosynthesis.57

We revealed specific associations between bacterial taxa

and bacteriophages species and genus. Among the taxa asso-

ciated with relapse, (1) one Siphoviridae was associated with

Bacteroides sp. DJF_B097, (2) one Sandinevirus and one Pepy-

hexavirus were associated with Prevotella sp. DJF_RP53, and

(3) one Larmunavirus and two Ceduovirus were associated

with B. fragilis. Bacteriophages are known to impact gut
nd metabolites levels. Modules were identified with the Louvain clustering al-

ariable contribution for the first component.

ichment was calculated with the over-representation method and p value with

nus correlated with phylotypes.
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Figure 6. Gut microbiota are associated with plasma metabolites and T cell states

(A) Heatmap showing plasmametabolites significantly associated with enterotypes. Metabolites levels are scaled, and 0.6 on the scale level defines enrichment.

On the right, tile colors depict metabolite superpathways of all metabolites and those belonging to a statistically significant enriched subpathway. Metabolites

identified asmicrobiota-derived in the humanmetabolome database (https://hmdb.ca) are depicted. The Kruskal-Wallis test was performed and p value adjusted

for multiple comparisons with false discovery rate method.

(B) Dot plot summarizing the enrichment factors (EFs) and p values of enriched subpathways from differentially detected metabolite levels. Enrichment factors

were computed using the over-representation method and p value using the hypergeometric test.

(legend continued on next page)
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microbiome composition.25 They may also impact host meta-

bolism through their interactions with bacterial bile acid meta-

bolism pathways.58

Interactions between bacteriophages and bacteria observed

in this study might be specific to allo-HSCT because diseases

drive bacteriophage and bacteria interactions.59 Bacteriophages

were demonstrated to modify gut microbiome composition and

change the course of inflammatory diseases60–62; however, the

impact of bacteriophages on gut microbiota following allo-

HSCT remains to be explored. Conversely, enterotypes were

not associated with viral species, but this may be consistent

with the specificity of one viral species to bacteria that entero-

types may not encompass.

We recently described that allo-HSCT patients treated

with azithromycin exhibited a higher frequency of Th2 and ex-

hausted T cells in samples collected at a median time of

84 days after transplantation.28 In mice, early-life exposure to

azithromycin-perturbed gut microbiota was associated with

higher Th2 subsets following allergen exposure.47 Because thy-

mopoiesis occurs within the 6 months following allo-HSCT,63

early changes in the microbiota of patients treated with azithro-

mycin may have skewed T cells toward Th2 subsets in naive

T cells that encountered allo-antigen. Although we showed a

direct effect of azithromycin on T cells in vitro, gut microbiota

changes may have accentuated the inhibition of antitumor

response. T cells expressing co-inhibitory molecules are asso-

ciated with post-transplant relapse.64–66 Here, we identified

specific correlations between enterotypes, bacterial taxa, and

T cell functions. Notably, B. fragilis was associated with higher

frequency of exhausted T cell profiles, characterized by TIGIT,

PD-1, and TOX expression.

Gut microbiota were reported to be associated with 58% of

plasma metabolites variance in healthy subjects.67 Our study

reinforces this finding by showing that highly diverse entero-

types 2 and 3 were associated with higher xenobiotic and

known microbiota-derived metabolites, while the less-diverse

enterotypes 1 and 4 were associated with lipids and amino

acid metabolites. Overall, our findings broaden the evidence

of gut microbiota’s impact on systemic immunity through

metabolite processing.32–34

The present study aimed to identify biological variables asso-

ciated with azithromycin or placebo intake and to evaluate their

contribution to relapse. Confusion bias cannot be ruled out

because of the influence of numerous clinical characteristics

on patient outcomes. Nevertheless, included patients and sam-

ples were comparable in terms of potential confounding factors,

and multivariate analysis revealed that enterotype 2 was inde-

pendently associated with relapse.
(C) Heatmap describing T cell-state subsets associated with enterotypes. Here

Kruskal-Wallis test was performed and p value adjusted for multiple comparisons

were kept.

(D) Dot plot indicating statistically significant association between relapse-assoc

Only state clusters that comprised at least 1%of the phenotypical T cell subsets w

of the equation. Only significant adjusted p values for false discovery rate beta co

associated with T cell states.

PB, peripheral blood; Tregs, T regulatory cells; EM, effector memory; EMRA, effe

conv, non-conventional; MAITs, mucosal associated invariant T cells.

See also Data S7.
To conclude, studying human fecal samples following allo-

HSCT enabled us to identify the complex interplay between

gut bacteriome, virome, and metabolic pathways associated

with azithromycin intake, which participated in subsequent

relapse. Several studies report interactions between gut micro-

biota and gut virome, notably, bacteriophages’ influence on

gut microbiota.25,68,69 Targeted phage therapy against bacterial

species involved in inflammatory bowel disease was shown to

suppress gut inflammation.70 Results of our study may provide

background to study targeted phage therapy against bacterial

species associated with hematological malignancy relapse.
STAR+METHODS

Detailed methods are provided in the online version of this paper

and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY
, p

with

iate

ere

effic

cto
B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT

DETAILS

B Cohort

d METHOD DETAILS

B Bacteriome

B Virome

B Fecal metabolomics

B Plasma metabolites and T cell subsets

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Data and statistical analyses
SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

chom.2023.06.009.
ACKNOWLEDGMENTS

This work was supported by Leucémie Espoir, SOS Oxygène, La Laurène, and

EGMOS association. N.V. received financial support from Cancerologie du

Centre (CANCEN) and from ITMO Cancer of Aviesan on funds administered

by Inserm (allocation number ASC20047HSA). We are grateful to the Genotoul

sequencing facility (Get-PlaGe) for amplicons sequencing and the INRAE MI-

GALE Bioinformatics Facility (MIGALE, INRAE, 2020. Migale Bioinformatics

Facility, https://doi.org/10.15454/1.5572390655343293E12), for providing

computing and storage resources.
ercentage of state cluster among phenotypical subsets are studied. The

false discovery rate method. Only amean frequency of cluster above 0.5%

d taxa and T cell subsets. Here, linear regression models were evaluated.

kept for the analyses. T cell subsets were defined as the dependent variable

ients are shown. Prevotella sp. DJF_RP53 is not shown because it was not

r memory CD45RA+; CM, central memory; SCM, stem cell memory; Non-

Cell Host & Microbe 31, 1386–1403, August 9, 2023 1399

https://doi.org/10.1016/j.chom.2023.06.009
https://doi.org/10.1016/j.chom.2023.06.009
https://doi.org/10.15454/1.5572390655343293E12


ll
Clinical and Translational Report
AUTHOR CONTRIBUTIONS

Conceptualization, A.B. and D.M.; methodology, D.M., P.L., J.L.G., and N.V.;

formal analysis, N.V.; generation of figures, N.V. and D.M.; investigation, N.V.,

M.S., J.M.-V., L.B., S.M.-D., S.C., and B.I.; resources, N.V., M.S., S.T.,

R.P.d.L., A.B., J.L.G., P.L., and D.M.; data curation, N.V., D.M., and L.B.,

writing – original draft, N.V. and D.M.; writing – review & editing, G.S., A.B.,

M.S., J.L.G., P.L., and D.M.; visualization, N.V. and D.M.; supervision, D.M.

and P.L.; project administration, A.B. and D.M.; funding acquisition, G.S.,

A.B., and D.M.

DECLARATION OF INTERESTS

G.S. and R.P.d.L. received a research grant from Alexion Pharmaceuticals.

R.P.d.L. received a research grant from Novartis and Pfizer. G.S. received

fees from Pharmacyclics LLC, Novartis, Incyte, Alexion, Amgen, and Pfizer.

D.M. received fees from Novartis, Incyte, Jazz Pharmaceuticals, and CSL

Behring. N.V., J.L.G., P.L., and D.M. have a related patent registered under

the reference EP22306850.3.

Received: May 15, 2023

Revised: May 23, 2023

Accepted: June 19, 2023

Published: July 17, 2023

REFERENCES

1. Copelan, E.A. (2006). Hematopoietic stem-cell transplantation. N. Engl. J.

Med. 354, 1813–1826. https://doi.org/10.1056/NEJMra052638.

2. Horowitz, M., Schreiber, H., Elder, A., Heidenreich, O., Vormoor, J.,
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Anti-human CD4-BV510 (clone: SK3) Biolegend (BioLegend Cat# 344634,
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Anti-human CD8-APC (clone: SK1) Biolegend (BioLegend Cat# 344722,

RRID:AB_2075388)

Anti-human Rabbit monoclonal SOCS1

(clone: EPR24290-356)

Abcam Cat# ab280886,

RRID:AB_2938872

Anti-human Rabbit IgG monoclonal

(clone: EPR25A)

Abcam (Abcam Cat# ab172730,

RRID:AB_2687931)

Anti-rabbit Goat IgG H&L-AF488 Abcam (Abcam Cat# ab150077,

RRID:AB_2630356)

Biological samples

Feces samples MICROBIOTE-T3

(IRB 00003835)

Cohort

PBMCs (patients) Cryostem biobank Mass cytometry cohort

Plasma samples (patients) Cryostem biobank Plasma metabolome cohort

Critical commercial assays

MoBio Power Fecal DNA isolation kit MoBio CAT#12830-50

TURBO DNAse Invitrogen CAT#AM2239

Baseline-ZERO DNase Ambion Not available

Benzonase� Nuclease Millipore CAT#70664-3

RNAse A Promega CAT#A7974

NucliSENS easyMAG Biomerieux CAT#280140

NEBNext � Microbiome DNA Enrichment Kit NEB CAT#E2612 S/L
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Zymo DNA Clean and Concentrator Zymo CAT#D4014

Nextera XT library preparation kit Illumina CAT#FC-131-1096

Trio RNA Kit TECAN CAT# 401141 V1

MaxPar� X8 antibody labeling 151Eu Fluidigm 201151A

MaxPar� X8 antibody labeling 174 Yb Fluidigm 201174A

MaxPar� X8 antibody labeling 145 Nd Fluidigm 201145A

MaxPar� X8 antibody labeling 168 Er Fluidigm 201168A

MaxPar� MCP9 antibody labeling 106 Cd Fluidigm 201106A

MaxPar� MCP9 antibody labeling 110 Cd Fluidigm 201110A

MaxPar� MCP9 antibody labeling 111 Cd Fluidigm 201111A

MaxPar� MCP9 antibody labeling 113 Cd Fluidigm 201113A

MaxPar� MCP9 antibody labeling 114 Cd Fluidigm 201114A

MaxPar� MCP9 antibody labeling 116 Cd Fluidigm 201116A

Deposited data

Metabolomic data This paper Metabolight: MTBLS406

Shotgun sequencing This paper SRA Bioproject: PRJNA898682

16S RNA This paper SRA Bioproject: PRJNA902819

RefSeq NCBI https://ftp.ncbi.nlm.nih.gov/

genomes/refseq/

Raw mass cytometry data Vallet et al.28 FlowRepository: FR-FCM-Z5ZB

Raw metabolomic data Vallet et al.28 Metabolights: MTBLS406

Processed Mass cytometry data Software Heritage https://archive.softwareheritage.org/

swh:1:dir:16a829f98f9d8d707343b3

b48bc13f5d641998d9

Processed Plasma metabolome data Software Heritage https://archive.softwareheritage.org/

swh:1:dir:16a829f98f9d8d707343b3

b48bc13f5d641998d9

Software and algorithms

MacOS Apple V 11.5.1

Inkscape: Open Source Scalable

Vector Graphics Editor

https://inkscape.org/ V 1.2.1

R (see version number in manuscript

and Guix, configurations)

R Core Team71 https://cran.r-project.org/

R package: coda4microbiome Calle et al.72 https://cran.r-project.org/web/

packages/coda4microbiome/

index.html

R package: ggraph Pedersen73 https://github.com/thomasp85/

ggraph

R package: FactoMineR Lê et al.74 http://factominer.free.fr/

R package: riskRegression Gerds team75 https://github.com/tagteam/

riskRegression

R package: factoextra Kassambara and Mundt76 https://CRAN.R-project.org/

package=factoextra

R package: phyloseq McMurdie and Holmes77 https://github.com/joey711/

phyloseq

R package: vegan Oksanen et al.78 https://CRAN.R-project.org/

package=vegan

R package: uclust Cybis et al.79 https://cran.r-project.org/web/

packages/uclust/index.html

Quantitative Insights Into Microbial Ecology Caporaso et al.80 http://qiime.org/

RDP classifier Wang et al.81 http://rdp.cme.msu.edu/index.jsp

TRIMMOMATIC Bolger et al.82 http://www.usadellab.org/

cms/?page=trimmomatic
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REAGENT or RESOURCE SOURCE IDENTIFIER

Dedupe Gregg and Eder83 https://github.com/dedupeio/dedupe

Kraken2 Wood et al.84 https://ccb.jhu.edu/software/kraken2/

Blastn Altschul et al.85 https://blast.ncbi.nlm.nih.gov/

Source code for analyses This paper https://gitlab.com/nivall/azimutfeces

Chemicals, peptides, and recombinant proteins

PierceTM Universal Nuclease Thermofisher 88702

Cisplatine Cell-ID Fluidigm 201064

Mass cytometry staining buffer Fluidigm 201068

Fc Receptor Blocking Solution Biolegend 422302

Paraformaldehyde Electron Microscopy Sciences- 15713

Perm Buffer eBioscience 00-8333-56

Fixation/permeabilization buffer eBioscience 00-5523-00

Intercalator-Iridium Fluidigm 201192B

MaxPar Cell Acquisition Solution Fluidigm 201241

Oligonucleotides

Primers V3-V4 Eurofins N/A
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, David Mi-

chonneau (david.michonneau@aphp.fr)

Materials availability
This study did not generate new unique reagents

Data and code availability
Raw data are available on a public repository: (i) metabolomic, Metabolights: MTBLS406; (ii) bacteriome, Bioproject: PRJNA902819;

(iii) virome, Bioproject: PRJNA898682. Source codes, data and CSV files of interim analyses are available on the following Git repos-

itories: https://gitlab.com/nivall/azimutfeces. Git repositories version at submission time are archived on Software Heritage: https://

archive.softwareheritage.org/swh:1:dir:9a24ab367cbe9519007f0dd407423fe47def5cfa. Unless otherwise specified, data analyses

were computed using R environment. Raw figures were made with the ‘‘ggplot2’’ R package. Computational environment may be

reproduced using GNU Guix with the files ‘‘manifest.scm’’ and ‘‘channels.scm’’ in ‘‘guixconfig’’ directory of the git repository.86

Manuscript figures were created from R outputs and combined with Inkscape (version 1.2.1) on macOS (version 12.5).

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cohort
This study was conducted with samples from patients included in the multicenter, randomized, double-blind, placebo-controlled

phase three superiority trial ALLOZITHRO (NCT01959100).11 This study was approved by the local ethics committee and Institutional

Review Board (CPP Île de France IV, IRB number 00003835, reference number 2013-000499-14). Fecal samples were gathered from

the cohort MICROBIOTE-T3 (IRB 00003835, CNIL 104706). Blood samples were retrieved from the CRYOSTEMConsortium (project

number CS-1801, IRB Sud-Méditerranée 1, reference AC-2011-1420) and the Commission National Informatique et Liberté for data

protection (reference nz70243374i no. 912120). All patients gave written consent for clinical research. No additional clinical proced-

ure was carried out in this non-interventional research study in accordance with the Declaration of Helsinki. Data analyses were per-

formed using a database without patients’ identifiers. Patients’ characteristics are described in Tables 1 and S1. Feces and blood

samples collection times are shown in Figure S8A.

METHOD DETAILS

Bacteriome
Sample processing and 16SrRNA sequencing

Patients’ fecal samples were frozen-aliquoted (150mg), homogenized and lysed using bothmechanical (bead beating for 10minutes)

and chemical techniques as previously described,87 and total DNA was extracted using the MoBio Power Fecal DNA isolation kit
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following the manufacturer’s recommendations. DNA quality and quantity were evaluated using a spectrophotometer (Nanodrop

1000, Thermoscientific). Sequencing was then performed at GeT-PlaGe platform of the Génopole (Toulouse Midi-Pyrénées, France)

using Illumina MiSeq technology targeting the V3-V4 region of the 16SrRNA gene with the following primers: V3fwd-TACGGRAGG

CAGCAG and V4rev- TACCAGGGTATCTAAT.

Phylotype identification pipeline

The raw sequences were analyzed using the open source software package Quantitative Insights Into Microbial Ecology (QIIME).80

After trimming primers and barcodes, the sequences were filtered for quality (minimum length= 300bp, minimum quality

threshold=20, chimeras removed) and clustered into phylotypes at a threshold of 97% similarity level (operational taxonomic units;

OTUs) using UCLUST. Samples amplified but resulting in less than 500 reads were removed. The most abundant member of each

OTUwas selected as the representative sequence and assigned to different taxonomic levels using the RDP naı̈ve Bayesian classifier

and RDP Seqmatch program.88 Estimates of the richness and alpha-diversity of phylotypes were calculated using the number of

observed OTUs, Shannon and Simpson indices on the rarefied OTU table (n=3,000 reads). An average of 14,677 reads were obtained

per sample (ranging from 3,056 to 24,545).

Virome
DNA and RNA virome analysis with shotgun Next Generation Sequencing

Fecal samples (solid phase) were re-suspended and diluted (50%) in phosphate buffered saline (PBS) and then centrifuged at 2500 g

for 20 minutes. To enrich for viral particles by reduction of host background, stool supernatant was filtered through a 0.45 mm filter

(Corning Costar Spin-X centrifuge tube filters), and an aliquot of 315 ml of filtrate was pre-treated before extraction by incubation with

different nucleases: TURBO DNAse (Invitrogen, Carlsbad, CA); Baseline-ZERO DNase (Ambion, Foster City, CA); Benzonase (NEB);

RNAse A (Promega) for 30min, at 37 �C. Total nucleic acids were extracted using NucliSENS easyMAG (Biomerieux) according to the

manufacturers’ protocol. For the preparation of DNA libraries, 25 mL of extract was used. Depletion of methylated host DNA was per-

formed using NEBNext � Microbiome DNA Enrichment Kit (NEB) according to the manufacturers’ instructions. DNA was then puri-

fied using zymo DNA Clean (Zymo) and eluted in 7.5 mL of sterile water. DNA libraries were prepared using Nextera XT library prep-

aration kit (Illumina). For the preparation of RNA libraries, Trio RNA Kit (TECAN) was used according to the manufacturers’

instructions. Libraries were sequenced on an Illumina HiSeq X (16 lanes) using 150/150-bp paired-end sequencing.

Species identification pipeline

Raw reads were cleaned using TRIMMOMATIC.82 Duplicated reads were removed using Dedupe.83 Taxonomic assignment was car-

ried out using Kraken2, with Viral, Bacterial and Human Refseq databases.84 Kraken viral assigned reads were verified using Blastn

on Refseq viral database. Reads with inconsistent assignment between Kraken and Blast methods were removed. Samples with less

than 5.106 reads were excluded. Data with less than 0.5 reads permillion (RPM) were assimilated to 0. Variables were filtered accord-

ing to mean RPM in seven negative controls.89 DNA and RNA reads databases were then merged to obtain a final count database.

Fecal metabolomics
Sample processing

Samples were processed and analyzed by Ultrahigh Performance Liquid Chromatography-TandemMass Spectroscopy (UPLC-MS/

MS) by Metabolon (Durham, USA). Acquisition, quality control and metabolites identification and quantification were performed as

previously described.90

Pathway identification

To assign metabolic pathways, the list of identified metabolites was manually compared with Metabolon, HumanMetabolome Data-

base91 and PubChem92 databases.

Metabolite data preprocessing

Uncharacterized metabolites were excluded from the analyses. Quantification of metabolites was normalized to dry weight of fecal

material extracted. Missing values (metabolites below quantification threshold) were imputed with 50% of the minimum value of the

corresponding metabolite, and metabolites with more than 50% of missing values were excluded. Regarding drugs-related metab-

olites, missing values were imputed with 1% of the minimum value and none of the metabolites were excluded. Finally, 925 known

metabolites were analyzed (Figure S8B).

Plasma metabolites and T cell subsets
Plasma metabolites and T cell subsets data were reported in a previous work from our group.28 Briefly, frozen plasma aliquots were

processed by Metabolon (Durham, USA). Metabolomics data acquisition using UPLC-MS/MS, quality assurance/quality control,

compounds identification and quantification were performed byMetabolon. Considering T cell subsets identification and quantifica-

tion, thawed peripheral blood mononuclear cells (PBMC) were stained with 43 metal-conjugated antibodies and processed to mass

cytometer. FlowSOM clustering on 31 phenotypical antigens identified 55 PBMC subsets. Among these clusters, 30 T cell subsets

(CD3+ cells) were then clustered with FlowSOM in 25 state clusters according to 14 states antigens, including: granzyme B, Eomes,

Tbet, KLRG1, 2B4, Thymocyte Selection Associated High Mobility Group Box (TOX), PD-1, TIGIT, ICOS, CTLA-4, OX40, 4-1BB,

LAG-3, TIM-3. This allowed us to identify activated, resting and exhausted subsets among phenotypical subsets of T cells.
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All data were fetched from the repository associated with our previous work28: available on Gitlab, https://gitlab.com/nivall/azimut-

blood/ and preserved for the long-term on Software Heritage, https://archive.softwareheritage.org/swh:1:dir:16a829f98f9d8d7073

43b3b48bc13f5d641998d9.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data and statistical analyses
Enterotype definition

A ‘‘vegan’’ package was used to compute dissimilarity matrix with Bray-Curtis and UniFrac methods for bacterial and viral data,

respectively.78 Dimension reduction of the dissimilarity matrix was done with principal coordinate analysis (PCoA). Sample clustering

was performed with hierarchical k-means with the package ‘‘factoextra’’76. To identify leading genera and phylotypes in the clus-

tering, we used permutational multivariate analysis of variance (PERMANOVA) with 999 permutations.

Dynamic microbiome signatures

The "coda4microbiome" package was used to identify meta-variables that would recapitulate a dynamic microbiome signature.72

Correlation analysis

Using non-parametric Spearman’s method, a correlation matrix was computed with every variable from the three omics. To keep the

correlation relevant, only those with an absolute rho co-efficient above 0.3 and statistically significant (false discovery rate adjusted

p-value < 0.05) were kept. Regarding phylotypes, feces metabolites and viral species correlations, we selected the top 10 entero-

type-driving phylotypes (Figure S8C), the 99 metabolites associated with enterotypes and all viral species.

Correspondence analysis

Correspondence analysis was performed with ‘‘FactoMineR’’ package,74 with all antibiotics used during the allo-HSCT procedure.

Metabolomic analyses

Pathway enrichment was evaluated with an enrichment factor computed with over-representation analysis method. When studying

enterotype enriched pathways, significant metabolites were defined with a 0 to 1 normalized value above 0.6. Statistical testing to

enrichment was achieved with hypergeometric distribution.90

Network analysis

The networks were built from correlation matrices. Each node shows one variable and edges depict significant correlations. In meta-

bolic enriched pathway analyses, edges depict a link between the pathway and the phylotype. For visualization purposes, the

Fruchterman-Reingold algorithm was used.

Network modules analysis

Modules were defined after Louvain clustering was applied to build networks. Principal component analysis (PCA) was used to calcu-

late contribution and loadings of each variable into the module. Variables included in one module are included in a PCA. Then, load-

ings are computed with variables co-ordinates on the first PCA axis. For each sample, we computed the module variables by sum-

ming individual variables weighted with the loadings.

Survival analyses

The incidence of relapse was computed with a competing risk model using the Fine and Gray method. The starting point was the day

of infused graft (D0), death was considered as a competing risk event and relapse the event. Mean value was applied in cases of

multiple samples from one patient.

Statistical tests

A distribution of variables is non-gaussian, bilateral, non-parametric tests were used. To study the association of enterotypes with

feces and plasma metabolites, viruses and T cell subsets, a non-parametric Kruskal-Wallis test was used. Frequency comparisons

were performed with a chi-squared or Fisher’s test. False discovery rate method was used to correct p-value for multiple testing with

Benjamini-Hochberg method. Multinomial regression was used to build models to test multivariate association between enterotypes

and clinical variables. Linear regression models were built to test multivariate association betweenmodules and clinical variables. To

evaluate phylotypes associations with T cell subsets, linear regression was used: mean phylotype frequency association with T cell

subsets was evaluated.
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