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Improving the resolution of fluorescence microscopy beyond the diffraction limit can be achieved
by acquiring and processing multiple images of the sample under different illumination conditions.
One of the simplest techniques, Random Illumination Microscopy (RIM), forms the super-resolved
image from the variance of images obtained with random speckled illuminations. However, the
validity of this process has not been fully theorized. In this work, we characterize mathematically
the sample information contained in the variance of diffraction-limited speckled images as a function
of the statistical properties of the illuminations. We show that an unambiguous two-fold resolution
gain is obtained when the speckle correlation length coincides with the width of the observation
point spread function. Last, we analyze the difference between the variance-based techniques using
random speckled illuminations (as in RIM) and those obtained using random fluorophore activation
(as in Super-resolution Optical Fluctuation Imaging, SOFI).

The light intensity recorded by the camera of a flu-
orescence microscope cannot exhibit spatial frequencies
above 2/λ where λ is the wavelength of the emitted light.
This low-pass filtering, due to the loss of the evanescent
waves at the detector plane, cannot be circumvented.
Therefore the challenge of super-resolution imaging is
to recover spatial frequencies of the sample fluorescence
density beyond 2/λ from data that are frequency lim-
ited to 2/λ. A widespread solution consists in process-
ing multiple images obtained by changing the illumina-
tion, like translating focused spots [1–4] or rotating and
translating periodic light patterns [5, 6]. The data pro-
cessing of most techniques using structured illuminations
requires the knowledge of the illumination patterns, ei-
ther explicitely as in Structured Illumination Microscopy
[5, 6] or implicitely as in confocal or Image Scanning mi-
croscopy [1]. In this context, Random Illumination Mi-
croscopy [7–9] stands out as an exception as it does not
require the knowledge of the illumination patterns: the
super-resolved image is formed from the variance of mul-
tiple diffraction-limited images recorded under different
random speckled illuminations. While attractive because
of its simplicity and significant image improvement [7],
RIM variance-based processing lacks a rigorous analysis
of its resolution potential, the non-linearity of the vari-
ance being a significant obstacle to its derivation. In this
work, we study the sample information that can be ex-
tracted from the variance of speckled images as a function
of the statistical properties of the random illumination
and we derive the condition under which the variance
can provide a resolution gain.

To model the data provided by a fluorescence micro-
scope under an inhomogeneous illumination, we intro-
duce the point spread function of the microscope h and
the illumination intensity function E. Importantly, these
two functions are defined at a macroscopic scale inside
the sample, through the averaging over regions large

enough to contain thousands of atoms (typically of the
order of a thousand nm3), to wash out the microscopic
fluctuations. In this context, we define the macroscopic
fluorescence density ρ such that V ρ(r)E(r) is the energy
(detected by the camera) of the fluorescent light emitted
by a macroscopic volume V centered about r. Hereafter
we neglect the Poisson noise. The fluorescence density
depends on the fluorophore concentration and the molec-
ular brightness.
With these definitions, the microscope image can be

written as,

I(r) =

∫
ρ(r′)E(r′)h(r− r

′)dr′ (1)

where r indicates a position in the image domain that is
conjugated to a point in the object domain. This model
can be applied to two- or three-dimensional imaging con-
figurations. In the Fourier space, Eq. (1) reads,

Ĩ(ν) = h̃(ν)

∫
ρ̃(ν − ν

′)Ẽ(ν ′)dν ′ (2)

where f̃(ν) =
∫
f(r)e−i2πν·rdr stands for the Fourier

transform of f .
If E is a constant, as in a standard fluorescence micro-

scope, the recorded image depends only on the sample
spatial frequencies belonging to the support of the Op-
tical Transfer Function (OTF) h̃, noted Wh, which is at
best a disk of radius 2/λ (in the 2D case) or exhibits a
torus-like shape in the 3D case [10].
On the other hand, if E is not a constant, and noting

WE the support of Ẽ, the recorded image depends on the
sample spatial frequencies in the domain

WhE = {ν − µ |ν ∈ Wh,µ ∈ WE}, (3)

which is no more limited by 2/λ and corresponds to the
Fourier support of hE.
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Now, sensitivity to spatial frequencies of the sample
outside Wh is a necessary but not a sufficient condition
for being able to form a super-resolved image. One also
needs a technique for extracting the high spatial frequen-
cies of the sample from the diffraction-limited images In
obtained for various illumination intensities En. For ex-
ample, in an ideal confocal microscope, the nth illumina-
tion is a focal spot centered about rn and the measured
data is In(rn) =

∫
ρ(r′)En(r

′)h(rn − r
′)dr′. If one ne-

glects the Stokes shift and forms the illumination through
the same optical path as the collection, one gets (using
the reciprocity theorem [10]) En(r) = h(rn − r) and

In(rn) =

∫
ρ(r′)h2(rn − r

′)dr′ (4)

which permits to recover the fluorescence density over
WhE = Wh2 with Wh2 = {ν − ν

′ |ν ∈ Wh,ν
′ ∈ Wh}.

Note however that the super resolution capacity of an
ideal confocal microscope requires the use of an infinitely
small pinhole which is impossible in practice. Generally,
when the different illumination intensities are known, the
sample frequencies in WhE can be obtained explicitely
from a linear combination of the diffraction-limited im-
ages (see [6] for exemple).
On the other hand, when the illuminations are un-

known speckles as in Random Illumination Microscopy,
there is no simple way for recovering the sample frequen-
cies from the diffraction-limited images. While a link
between the (numerically intractable) full covariance of
the images and the sample was derived in [11], there is
currently no rigorous result concerning the sample infor-
mation that can be extracted from the sole variance.
Let us consider an experiment in which multiple images

of a sample are recorded under different speckled illumi-
nations En that are considered as different realizations
of the same random process E. The variance of these
diffraction-limited images, Vρ(r) = E[I2(r)] − E[I(r)]2,
where E stands for the ensemble average over the ran-
dom illuminations, can be expressed as a function of
the speckle autocovariance C(r, r′) = E[E(r)E(r′)] −
E[E(r)]E[E(r′), as [11],

Vρ(r) =

∫
dr1dr2 (5)

h(r− r1)ρ(r1)C(r1, r2)ρ(r2)h(r− r2).

In the following, we assume that E is a second-order
stationnary random process so that C(r1, r2) = C(r1 −
r2) and the Fourier support of C is equal to the Fourier
support of E, WE [12].
Since the variance depends on the square of raw images

that are frequency limited to Wh, its Fourier support
corresponds to Wh2 .
On the other hand, each raw image is sensitive to the

spatial frequencies of the sample in WhE , so we expect
the variance to be also sensitive to the spatial frequen-
cies of the sample in WhE (we show on a specific exam-
ple in appendix B, that this is indeed the case). These

preliminary remarks bring out the main question posed
by variance-based super-resolved microscopy approaches:
what sample information in WhE can we extract from an
image that is frequency limited to Wh2?
We first consider RIM configuration in which the illu-
mination is performed through the same objective as the
observation and the Stokes shift can be neglected. In this
case, the speckle autocovariance C is equal to the point
spread function h of the microscope [7, 13] and WE is
similar to Wh. Thus, the domain of sample spatial fre-
quencies acting on RIM raw images, WhE , matches the
Fourier support of the variance,Wh2 . In the following, we
demonstrate that, indeed, if h = C, there is a bijection
between the RIM variance and the sample frequencies
within Wh2 .
We start by noting that the Fourier transform of C, C̃,

is positive as C is an autocovariance function. We define

hE such that h̃E =
√
C̃. One easily shows that

∫
hE(r1−

x)hE(r2 − x)dx = C(r1 − r2). Using this decomposition
of the speckle covariance, V RIM

ρ can be cast as,

V RIM
ρ (r) = Bρ,ρ(r) (6)

where

BU,V (r) =

∫
MU (r,x)MV (r,x)dx (7)

with

MV (r,x) =

∫
h(r− r1)V (r1)hE(r1 − x)dr1 (8)

and U and V are integrable real functions. To pursue the
demonstration, we need to point out several properties of
BU,V and MV . First, it is easily seen that BU,V is sym-
metric with respect to (U, V ), BU,V = BV,U and bilinear,
BU+U ′,V+V ′ = BU,V +BU ′,V ′ +BU,V ′ +BU ′,V . Second,
the Fourier transform of MV with respect to (r,x),

M̃V (ν,µ) = h̃(ν)Ṽ (µ+ ν)

√
C̃(µ), (9)

is bounded, so MV is an analytic function. Third, we
show in appendix A that, if h = C,

∫
BU,V (r)V (r)dr =

∫
|MV (r,x)|2 U(r)drdx. (10)

We now consider two fluorescence densities, ρ1(r) ≥
0 and ρ2(r) ≥ 0 which have the same RIM vari-
ance, Bρ1,ρ1

(r) = Bρ2,ρ2
(r). Using the bilinearity and

symetry of BU,V , we can show that Bρ1,ρ1
− Bρ2,ρ2

=
Bρ1+ρ2,ρ1−ρ2

= 0. Thus, one obtains
∫

Bρ1+ρ2,ρ1−ρ2
(r)[ρ1(r)− ρ2(r)]dr = 0 (11)

which, using Eq. (10), implies,
∫

|Mρ1−ρ2
(r,x)|2 [ρ1(r) + ρ2(r)]drdx = 0. (12)
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We now assume that ρ1 + ρ2 stays strictly positive in a
non-empty open set Ω. In this case, Eq. (12) is satisfied
if and only if Mρ1−ρ2

(r,x) = 0 for r ∈ Ω and for all
x. Since Mρ1−ρ2

is analytic, Mρ1−ρ2
(r,x) = 0 for all

x and for r ∈ Ω implies that Mρ1−ρ2
(r,x) = 0 for all

x and all r, thus M̃ρ1−ρ2
(ν,µ) = 0 for all ν and µ.

From Eq. (9), the nullity of M̃ρ1−ρ2
is obtained only if

ρ̃1(η) − ρ̃2(η) = 0 for η ∈ Wh2 . Hence, if ρ1 and ρ2
have the same RIM variance, they have the same spatial
frequencies in Wh2 . Conversely, if two samples ρ1 and ρ2
have the same frequency content in Wh2 , they generate
the same variance image. We have thus demonstrated
that there is a one-to-one correspondence between the
spatial frequencies of the variance of diffraction-limited
speckled images and the spatial frequencies of the sample
fluorescence density in the super-resolved Fourier domain
Wh2 provided the speckle autocovariance function C be

similar to the observation point spread function h.
Now, what happens if the speckle autocovariance is

different from the point spread function? If the speckle
correlation length is larger than the width of the point
spread function, i.e. WE ⊂ Wh, it is always possible to
filter the recorded images so that h = C. In this case,
the variance of the modified images gives access to the
sample spatial frequencies in WE2 at least.
On the other hand, if the speckle correlation length

is smaller than the width of the point spread function,
Wh ⊂ WE , we show in appendix B, that, while the vari-
ance is sensitive to the sample frequencies in WhE , it
does not necessarily allow their recovery, even on the re-
stricted domain Wh2 . This remark applies in particu-
lar to configurations where the observation point spread
function and the fluorescence density vary slowly over the
speckle grain size. This is the case in fluctuation imaging
techniques using near-field speckles and far-field detec-
tion [14] or optical speckles and acoustic detection [15].
In these techniques, hereafter called speckle-SOFI, the
expression of the variance simplifies to,

Vspeckle−SOFI(r) ≈ C0

∫
h2(r− r

′)ρ2(r′)dr′. (13)

where C0 =
∫
C(r)dr. We observe that the variance

is now linearly linked to the square of the sought pa-
rameter (optical absorption or fluorescence density) that
is filtered over Wh2 . Now, knowing the Fourier trans-
form of ρ2 in Wh2 does not mean that ρ̃ can be retrieved
over Wh2 . Actually, when the speckled illumination is
assumed to be spatially uncorrelated, it is possible to
find samples with different fluorescence density spectra in
Wh2 that have the same variance image, see appendix B.
At this point, it is interesting to differentiate fluctua-

tion imaging using quasi-uncorrelated speckled illumina-
tions from Super-resolution Optical Fluctuation Imaging
(SOFI). In SOFI, the intensity fluctuations observed in
the recorded images come from the random activation of
the fluorophores and not from the illumination (which is
kept homogeneous and equal to E0 during the whole ex-
periment). To account for this phenomenon, one needs

to explicit further the characteristics of the fluorescence
density ρ which is related to the fluorophore concentra-
tion and the molecular brightness. We define the fluo-
rophore concentration g at the macroscopic scale such
that, V g(r) is the number of fluorophores contained in
a macroscopic volume V centered about r. Next, we
introduce the mean molecular brightness b which ac-
counts for the fluorophores’ quantum yield and for the
environment-dependent ability of the incident/emitted
photons to reach the fluorophore/detector. If all the flu-
orophores are activated in V , the mean brightness b is
defined such that V g(r)b(r)E0 is the energy measured
by the camera of the photons emitted from V . In other
terms, if all the fluorophores are activated, the fluores-
cence density is the product of the fluorophore concen-
tration times the mean brightness, ρ = g × b.
In SOFI, only a few fluorophores of V are activated

during the image recording and they change at each novel
image. Let us assume that they follow a Poisson point
process of intensity proportional to the total number of
fluorophores in V . Then, the number of activated flu-
orophores in V observed when recording one image be-
comes a Poisson variable of parameter V g(r)p(r) where
p is the mean percentage of activation. Under this as-
sumption, we show in appendix D that the variance of
SOFI images reads,

VSOFI(r) = E2
0

∫
h2(r− r

′)b2(r′)g(r′)p(r′)dr′. (14)

While RIM is able to recover the fluorescence density
ρ = g × b over Wh2 , SOFI has a similar super-resolution
capacity, but the latter applies to a distinct density g ×
b2 × p = ρ× b× p.
It is worth noting that, if the mean brightness b is

homogeneous, RIM and SOFI are able to restore the flu-
orophore concentration g over Wh2 , (provided the mean
activation percentage p in SOFI is also homogeneous).
On the contrary, even if b is homogeneous, fluctuation
imaging using quasi-uncorrelated speckled illuminations
(speckle-SOFI) can only restore the square of the fluo-
rophore concentration, g2, over Wh2 . Thus, SOFI and
speckle-SOFI yield a priori different results and their
umbrella denomination as ’fluctuation imaging’ can be
misleading.
In conclusion, we have shown that the variance of im-

ages obtained under random speckled illuminations gives
the same fluorescence density as an ideal confocal micro-
scope, provided the speckle correlation length matches the

width of the observation point spread function (which is
the case for RIM). Our demonstration provides a solid
theoretical ground to the two-fold resolution gain, the
optical sectioning and the linearity to fluorescence ob-
served in RIM [7]. Also, we have pointed out the differ-
ence between the variance of SOFI-images obtained using
the random activation of fluorophores and the variance
of images obtained with quasi-uncorrelated speckled illu-
minations (speckle-SOFI). If the fluorophores brightness
is homogeneous, SOFI variance is linearly linked to the
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fluorophore concentration while speckle-SOFI variance is
quadratically linked to the fluorophore concentration.

Appendix A: Proof of Identity

Introducing Eqs. (7,8) in the left-hand term of Eq. (10)
yields,

A =

∫
BU,V (r)V (r)dr

where

BU,V (r) =

∫
dr1dr2dx

h(r− r1)U(r1)hE(r1 − x)h(r− r2)V (r2)hE(r2 − x).

Integrating over x and using

∫
hE(r1 − x)hE(r2 − x)dx = h(r1 − r2)

(where we have assumed that C = h) yields,

BU,V (r) =∫
dr1dr2h(r− r1)U(r1)h(r1 − r2)h(r− r2)V (r2).

Then, decomposing h(r−r2) =
∫
hE(r−x)hE(r2−x)dx,

one obtains

BU,V (r) =

∫
dr1dr2dx

h(r− r1)hE(r− x)h(r1 − r2)V (r2)hE(r2 − x)U(r1).

Finally, using the expression of MV in Eq. (8) and the
symmetry of h and hE , we get

A =

∫
|MV (r1,x)|2 U(r1)dxdr1.

Appendix B: What happens when Wh ⊂ WE ?

We have shown that provided h = C (which can be
obtained with an appropriate filtering of the raw images
as soon as WE ⊂ Wh), there is a one to one correspon-
dance between the spatial frequencies of the variance of
the speckled diffraction-limited images and that of the
sample in Wh2 . We now study a case where h 6= C
and Wh ⊂ WE . To simplify the discussion, we assume
that (Wh,WE) are centered plain disks with frequency
cut-offs νh and νE respectively, with νh < νE . We fur-
ther assume that the point spread function h is symmet-

ric so that h̃ is a real positive symmetric function, like
C̃. We consider a sample whose Fourier spectrum is re-
stricted to the null frequency and a high frequency ±k,
ρ(r) = A+B cos(2πk·r+ϕ) with (A,B) real positive such

that ρ is real positive. The variance of the raw images,
given by Eq. (5), obtained with such sample reads,

V RIM
ρ (r) =A2α+B2β(k) + 2ABγ(k) cos(2πk · r+ ϕ)

+B2η(k) cos(4πk · r+ 2ϕ), (B1)

with

α =

∫
|h̃|2(ν)C̃(ν)dν,

β(k) =

∫
|h̃|2(ν + k)C̃(ν)dν,

γ(k) =

∫
h̃(k− ν)h̃(ν)C̃(ν)dν,

η(k) =

∫
h̃(ν)h̃(2k− ν)C̃(k− ν)dν.

We observe that, as long as k < νh + νE , β(k) 6= 0 and
the variance depends on the high spatial frequency of
the sample, B. This result confirms the sensitivity of the
variance to sample spatial frequencies in WhE . However,
if 2νh < k ≤ νh+νE , γ(k) = η(k) = 0 so that V RIM

ρ (r) =

αA2+β(k)B2. In this case, the variance is sensitive to the
amplitudes of the null and high frequencies of the sample,
(A,B), but it has lost the information about the phase
of the high frequency, ϕ. Worse, this exemple shows that
a uniform sample defined by ρ1(r) = (A2 + β(k)B2)

1

2 /α
will have the same variance as the inhomogeneous sample
defined by ρ(r) = A+B cos(2πk·r+ϕ). Thus, when νh <
νE , the identifiability of the sample spatial frequencies
from the variance is lost, even for frequencies belonging
to Wh2 . This assertion is particularly counter-intuitive
as it shows that decreasing the size of the speckle grains
below the width of the observation point spread function
is a priori detrimental to the sample reconstruction.

Appendix C: Imaging with spatially

quasi-uncorrelated speckles, speckle-SOFI

When the point spread function and fluorescence den-
sity are slowly varying over the width of the speckle
autocovariance function, the variance of the diffraction-
limited images is linearly linked to the square of ρ filtered
over Wh2 . In this section, we provide an example of two
positive functions with different Fourier contents in the
super-resolved domain Wh2 which, when squared, have
exactly the same Fourier content in Wh2 .
We consider g the sum of a constant and a one-

dimensional cosine along the x-axis with a frequency k
laying in Wh2 but not in Wh, and f the sum of a constant
and two cosines with period k and 2k. Note that 2k lays
outside Wh2 . We adapt the constant and the cosine am-
plitudes so that f and g are positive and f2 and g2 are
equal in Wh2 . A possible solution is,

f(x) = 6 +
√
2 cos(2πkx) + cos(4πkx)

g(x) =

√
101 + 7

2
√
2

+

√
101− 7

2
cos(2πkx) (C1)
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Noting F the low pass filter operator that removes all
the frequencies outside Wh2 , we find,

F [f2](x) = F [g2](x) = 75 + 13
√
2 cos(2πkx).

Appendix D: Modeling SOFI at the macroscopic

scale

Generally, SOFI data are modeled with a discrete sum
that depends on the fluorophore positions [8]. However,
it is clearly impossible to recover the fluorophores posi-
tions from SOFI (second-order) image, except if a con-
straint of sparsity is assumed. It may thus be interesting
to relate SOFI images to sample characteristics that are
defined at a macroscopic scale, such as the fluorophore
concentration.
In structured illumination microscopy, one assumes

that all the fluorophores are activated. The fluorescence
density ρ is written as the product of the fluorophore
concentration g with a mean brightness b. The intensity
recorded by the camera is modeled as,

I(r) =

∫
h(r− r

′)E(r′)g(r′)b(r′)dr, (D1)

where E is the inhomogeneous illumination intensity and
h the microscope point spread function.

In SOFI, the illumination E0 is homogeneous but the
fluorophores oscillate between an activated and non-
activated state. Thus, only a subset of the fluorophores
present in the sample contributes to the image inten-
sity at a given time t. The activated fluorophores in the
(macroscopic) volume V centered about r can be seen
as points popping up at random and independently of
one another. This process is conveniently modeled with
a Poisson point process of intensity proportional to the
number of fluorophores in V . Under this assumption, the
number of activated fluorophores in V at time t, written
as V q(r, t), where q is the activated fluorophore concen-
tration, is a Poisson variable of parameter V g(r)p(r) with
p the mean percentage of activation. With this definition,
the intensity of the image recorded at t can be written
as,

I(r, t) = E0

∫
h(r− r

′)q(r′, t)b(r′)dr′. (D2)

It is thus a filtered Poisson variable whose time variance
reads [16, Chap. 5],

VSOFI(r) = E2
0

∫
h2(r− r

′)b2(r′)g(r′)p(r′)dr′.
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