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Given an infinite word with values in a finite alphabet that admit frequencies for all its factors, the smallest frequency function associates with a given positive integer the smallest frequency for factors of this length, and the recurrence function measures the gaps between successive occurrences of factors. We develop in this paper the relations between the growth orders of the smallest frequency and of the recurrence functions. As proved by M. Boshernitzan, linearly recurrent words are characterized in terms of the smallest frequency function. In this paper, we see how to extend this result beyond the case of linearly recurrent words. We first establish a general relation between the smallest frequency and the recurrence fuctions. Given a lower bound for the smallest frequency function, this relation provides an upper bound for the recurrence function which involves the primitive of this lower bound. We then see how to improve this relation in the case of Sturmian words where the product of the smallest frequency and the recurrence function is bounded for most of the lengths of factors. We also indicate how to construct Sturmian words having a prescribed behaviour for the smallest frequency function, and for the product of the smallest frequency and the recurrence function.

Introduction

There exist various combinatorial natural measures of disorder that occur simultaneously in word combinatorics, symbolic dynamics, and in the context of aperiodic order. Aperiodic order refers to the mathematical formalization of quasicrystals, i.e., solids with an aperiodic atom structure. This involves different mathematical objects, such as tilings, cut-and-project sets, Delone point sets, or infinite words over a finite alphabet, and various functions allow the quantification of order. For words, these notions involve factors, and for tilings and point sets, patches or patterns. In the case of infinite words (which is the case on which we focus here), it is natural to count how many different factors exist (factor complexity), whether or not they reappear (recurrence), and how often they occur (frequencies and shift invariant measures).

More precisely, given an infinite word x with values in a finite alphabet, the factor complexity p x counts the number of factors of a given size of an infinite word. The recurrence function R x measures the gaps between successive occurrences of factors, i.e., how often they come back. It is also called repetitivity in the tiling setting, such as introduced in the seminal paper [START_REF] Lagarias | Local complexity of Delone sets and crystallinity[END_REF], see also [START_REF] Lagarias | Repetitive Delone sets and quasicrystals[END_REF]. Lastly, the frequency of a factor w in the infinite word x is defined as the limit when n tends towards infinity, if it exists, of the number of occurrences of w in u 0 u 1 • • • u n-1 divided by n. If the infinite word x admits frequencies for all factors, we then consider the smallest frequency function e x for factors of a given length.

The relevance in this context of the quantity ne x (n) has been highlighted by M. Boshernitzan. He introduced indeed in [START_REF] Boshernitzan | A condition for unique ergodicity of minimal symbolic flows[END_REF] the so-called ne n condition; see also [START_REF]Combinatorics, automata and number theory[END_REF]Chap. 7] for more details and Theorem 1 below. In a nutshell, lim sup ne x (n) > 0 implies that frequencies are uniform (in dynamical terms, one has unique ergodicity), and lim inf ne x (n) > 0 is equivalent to linear recurrence, which means that there exists a constant c > 0 such that factors of length n in x occur in any factor of length cn in x. This is an important property in the context of aperiodc order as described in the survey [START_REF] Aliste-Prieto | Linearly repetitive Delone sets[END_REF]; see also [START_REF] Haynes | A characterization of linearly repetitive cut and project sets[END_REF].

In this paper, we see how to extend the strategy developed by M. Boshernitzan for his characterization of linear recurrence, by exploring the relations between these notions. This illustrates the fact that recurrence and frequencies are closely related. We then focus on the Sturmian case which allows to produce examples of infinite words with a prescribed lower bound on e x .

Basic notions and general statements relating recurrence, frequencies and factor complexity are recalled in Section 2. Our main result relating frequencies and recurrence, namely Theorem 2, is stated in Section 3. We then focus on the case of Sturmian words in Section 4. We provide conditions on the sequence of partial quotients in order to get prescribed behaviour for the smallest frequency function (see Theorem 5 and 6). We also prove that the product e x R x takes bounded values for most integer values (see Theorem 7), even in the case where the partial quotients in the continued fraction expansion of the angle of the Sturmian word takes non-bounded values.

Basic notions

Let A be an alphabet and let A * stand for the set of all (finite) words over A. Let x be an infinite word in A N . Let L x (n) stand for the set of factors of length n of x, and L x for the set of all its factors. The word x is said to be uniformly recurrent if every factor appears infinitely often and with bounded gaps (or, equivalently, if for every integer n, there exists an integer m such that every factor of x of length m contains every factor of length n). The recurrence functions R x is then defined as

R x (n) := min{m : ∀w ∈ L x (m), L x (n) is
included in the set of factors of w} and the infinite word x is then said to be linearly recurrent if there exists a positive integer c > 0 such that for every positive integer n, one has

R x (n) ≤ cn.
We then define µ x (w) as the frequency of the word w ∈ L x in x, if it exists:

µ x (w) = lim n→∞ |x 0 x 1 • • • x n | w n + 1 .
If every factor of x has a frequency, we will say that x has frequencies. If x has frequencies, then x is said to have uniform frequencies if for every w, and for every k, |x k x k+1 

µ x (w).
Note that every linearly recurrent word has (uniform) frequencies, by [START_REF] Durand | Substitutions, Bratteli diagrams and dimension groups[END_REF]. However there exist uniformly recurrent words that do not admit frequencies (see e.g. [START_REF] Keane | Non-ergodic interval exchange transformations[END_REF] for examples of codings of interval exchanges on four letters).

The following proposition is usually stated in terms of shift-invariant measures; see e.g. [START_REF]Combinatorics, automata and number theory[END_REF]Chapter 7]. Proposition 1. Let x be an infinite word that has frequencies. Let E ⊆ L x be a set of words such that no element of E is prefix of another element of E. We then have w∈E µ x (w) ≤ 1.

Proof. Suppose that E has at least two elements (otherwise the proof comes easily). Suppose that w∈E µ x (w) > 1. Then there exists a positive integer n such that w∈E

|x0•••xn|w n+1 > 1, i.e., w∈E |x 0 • • • x n | w > n + 1 .
Then the pigeonhole principle gives us the existence of a positive integer i, and of v, v in E, such that v and v appear at position i in x. That would mean that v is a prefix of v , or the other way around, contradicting the hypothesis.

The followng result relates in a natural way recurrence and factor complexity. Proposition 2. [START_REF] Morse | Symbolic dynamics[END_REF] Let x be an infinite word. One has

R x (n) ≥ p x (n) + n -1 for all n.
We now state a first bridge between recurrence and frequencies, by splitting words into smaller words in which we are sure to find some fixed factor. Proposition 3. Let x be an infinite word with frequencies. One has

e x (n) ≥ 1 R x (n) for all n. (1) 
Proof. Let us show that for every factor w of x of size m, µ x (w) ≥ 1 Rx(|w|) . Let n be given. We split the prefix x 0 • • • x n of x into smaller factors of size R x (|w|), in which we must have at least one occurrence of w, by definition; hence

|x 0 • • • x n | w ≥ (n + 1)/R x (|w|) , which gives us µ x (w) = lim n→∞ |x 0 • • • x n | w n + 1 ≥ lim n→∞ (n + 1)/R x (|w|) n + 1 = 1 R x (|w|)
.

Another easy-to-build bridge is the one giving a lower bound on the complexity function knowing the smallest frequency function e x . It comes almost directly from Proposition 1. Proposition 4. Let x be an infinite word with frequencies, and n a positive integer such that e x (n) > 0. We then have

p x (n) ≤ 1 e x (n) . Proof. By Proposition 1, one gets 1 ≥ v∈Lx(n) µ x (v) ≥ v∈Lx(n) e x (n) ≥ p x (n) • e x (n).
Remark 1. Morse-Hedlund's theorem states that for any infinite word x, if there exists n such that p x (n) ≤ n, then, the word x is ultimately periodic. Hence, for any aperiodic infinite word x and for any integer n, one has p x (n) > n.

Proposition 4 then implies that e x (n) < 1 n for all n. Let x be an infinite word that admits frequencies. The condition lim sup ne x (n) > 0 implies that the frequencies are uniform, as shown by M. Boshernitzan [START_REF] Boshernitzan | A condition for unique ergodicity of minimal symbolic flows[END_REF]. Following the approach developed by M. Boshernitzan, we investigate in the next section the condition lim inf ne x (n) > 0 and see how it allows one to relate recurrence and frequencies.

Relating recurrence and frequencies

The following result, due to M. Boshernitzan, provides a characterization of linear recurrece in terms of frequencies.

Theorem 1. [8, Ex. 174] An infinite word x is linearly recurrent if and only if lim inf ne x (n) > 0.

We now see how to extend Boshernitzan's result, namely Theorem 1, as a generalisation of [START_REF]Combinatorics, automata and number theory[END_REF]Ex. 174].

Theorem 2. Let f : R * + → R * + be a continuous non-increasing function and F one of its primitives. Let x be a uniformly recurrent infinite word that has frequencies. We assume that for n large enough, we have

e x (n) ≥ f (n).
We then have, for n large enough,

F (n) + 1 ≥ F (R x (n)).
Proof. The statement is true if x is constant. We now assume that x is a nonconstant word. Let u be a factor of x. Let r x (u) := min{n : ∀w ∈ L x (n), u is a factor of w}.

Let n be an integer, and u = u 1 u 2 • • • u n a factor of x of size n such that r x (u) = R x (n) (such u word exists because we work on a finite alphabet). The uniform recurrence of x gives us the existence of a factor

v = v 1 v 2 • • • v m of x of maximal length such that u appears only once in vu. Let us show that |v| + |u| = m + n = r x (u) = R x (n).
Indeed, by definition of r x (u), and because r x (u) > 1 (x is not constant), there exists a factor w = w 1 • • • w rx(u)-1 of x such that u does not occur in w, but u occurs in wa, with a being a letter of A, i.e., u appears only once in wa. Then, we can write wa as w u,

with w = w 1 • • • w rx(u)-n . Hence, since v is of maximal length, |v| = m ≥ r x (u) -n, i.e., m + n ≥ r x (u).
Moreover, we suppose by contradiction that m + n > r x (u). Taking away the last letter of vu gives us the factor vu 1 • • • u n-1 , of size m + n -1 ≥ r x (u), which thus contains u. However, it cannot contain u, since u occured only once in vu, hence the desired contradiction. Now, suppose that we have i > j ≥ 0, such that

v i • • • v m u is a prefix of w := v j • • • v m u. This gives v j • • • v m u = w 1 • • • w n+(m-j) = v i • • • v m uw n+(m-i)+1 • • • w n+(m-j) .
This shows that u appears twice in w = v j • • • v m u, i.e., u appears twice in vu, contradicting the hypothesis: there do not exist i = j such that

v i • • • v m u is a prefix of v j • • • v m u. Proposition 1 then gives us 1 ≥ µ x (u)+ m i=1 µ x (v i • • • v m u) ≥ m i=0 e x (m -i + n) ≥ m i=0 f (m-i+n) = m+n i=n f (i),
and hence, since f is non-increasing and positive,

1 ≥ m+n+1 n f (t) dt;
consequently, since f is positive and thus F increasing, one gets

F (n) + 1 ≥ F (R x (n) + 1) ≥ F (R x (n)).
(

) 2 
The essence of the proof lies in the sequence of factors of increasing length ranging from n to R x (n), on which we can use Proposition 1. This creates the inequality in which appear f (n) and f (R x (n)), which then, when integrated, relates F (n) and F (R x (n).

As a first application we recover Theorem 1, with a function F growing slowly towards infinity, i.e., f (n) := c n and F = f = c • log. We now consider other lower bounds on e x (n) with Corollary 1.

Corollary 1. Let x be a uniformly recurrent infinite word that has frequencies.

If there exist β ∈ (0, 1] and c > 0 such that for n large enough

e x (n) ≥ c n(log n) β , then there exists c > 1 such that R x (n) = O(n c ) and p x (n) = O(n(log n) β ).
Proof. We first consider the case of β = 1. Suppose that there exists c > 0 such that, for n large enough, we have n log

(n)e x (n) ≥ c. Then, with f (n) := c• 1/n log(n) , and thus F (n) := c • log(log(n)), Theorem 2 gives us log(log(n)) + 1 c ≥ log(log(R x (n))), which yields n exp( 1 c ) ≥ R x (n),
and finally

R x (n) = O(n exp( 1 c ) ).
The result for the complexity comes from Proposition 4. We now consider the case of β ∈ (0, 1). Suppose that there exists c > 0 such that for n large enough, we have n(log n

) β e x (n) ≥ c. Theorem 2 with F (n) := c 1-β • (log n) 1-β gives us c 1 -β • (log(n)) 1-β + 1 ≥ c 1 -β • log(R x (n)) 1-β ,
which yields, for n large enough and for some > 0,

(1 + )(log(n)) 1-β ≥ (log(n)) 1-β + 1 -β c ≥ log(R x (n)) 1-β ,
and finally

R x (n) ≤ n (1+ ) 1 1-β ,
or, with c := (1 + )

1 1-β > 1, R x (n) = O(n c ).
Remark 2. We may want a priori to consider other values for β in the second statement of Corollay 1. Proposition 4 yields that for n large enough, ne x (n) ≤ 1 implies p x (n) ≤ n, which thus implies that x is ultimaltey periodic, by Morse-Hedlund's theorem. Hence, if β < 0, then for n large enough, e x (n) ≥ c n(log n) β ≥ 1 n , which would thus imply x to be ultimately periodic. On the other hand, if β > 1, then F is a negative function that converges towards 0, making us unable to reach any conclusion using [START_REF] Berthé | Fréquences des facteurs des suites sturmiennes[END_REF]. This is also why we do not consider functions of the form 1 n β for β > 1.

Frequencies and reucrence for Sturmian words

We now focus on the family of Sturmian words where the bounds provided by Theorem 1 can be improved, by investigating in more details the case where lim inf ne x (n) = 0.

First properties

Sturmian words are defined as the (one-sided) words having exactly n + 1 factors of length n, for every positive integer n. They are equivalently defined as symbolic codings (with respect to two-interval partitions) of the irrational translations R α of the unit circle (that is, the one-dimensional torus T = R/Z), where R α : R/Z → R/Z, x → x + α mod 1. More precisely, the infinite word

x = (x n ) n∈N ∈ {0, 1} N is a Sturmian word if there exist α ∈ (0, 1), α ∈ Q (called its angle), s ∈ R such that ∀n ∈ N, x n = i ⇐⇒ R n α (s) = nα + s ∈ I i (mod 1), with either I 0 = [0, 1 -α), I 1 = [1 -α, 1), or I 0 = (0, 1 -α], I 1 = (1 -α, 1].
For more on Sturmian words, see the corresponding chapters in [START_REF] Lothaire | Encyclopedia of Mathematics and Its Applications[END_REF][START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF] and the references therein. Let x be a Sturmian word with angle α ∈ (0, 1) \ Q. Note that Sturmian words have frequencies. The continued fraction expansion of the angle α allows the expression of the smallest frequency function e x (see Theorem 4) and of the recurrence function R x (see Section 4.3). Before stating them, let us introduce some notation. Consider the continued fraction expansion of α, with

α = 1 a 1 + 1 a 2 + 1 a 3 + • • •
The positive integer digits a n are called partial quotients. The rational numbers p n /q n , with p n , q n being coprime positive integers being defined as

p n q n = 1 a 1 + 1 a 2 + . . . + 1 a n , are called convergents. Let θ n = (-1) n (q n α -p n ) = |q n α -p n |
for all nonnegative n. One has q -1 = 0, p -1 = 1, q 0 = 1, p 0 = 0, and for all n q n+1 = a n+1 q n + q n-1 , p n+1 = a n+1 p n + p n-1 , and

θ n-1 = a n+1 θ n + θ n+1 . (3)

On the frequencies of Sturmian words

In this section, we indicate how to obtain Sturmian words with a prescribed behaviour for the smallest frequency function (see in particular Remark 4).

Theorem 3.

[2] Let x be a Sturmian word of angle α, with α ∈ (0, 1), α irrational. Let m ≥ 1.

Assume that kq n +q n-1 < m < (k+1)q n +q n-1 , with n ≥ 1 and 1 ≤ k ≤ a n+1 . The frequencies of factors of length m belong to the set

{θ n , θ n-1 -kθ n , θ n-1 -(k-1)θ n } = {θ n , θ n+1 +(a n+1 -k)θ n , θ n+1 +(a n+1 -k+1)θ n }.
Assume m = kq n + q n-1 , with n ≥ 1 and 1 ≤ k ≤ a n+1 . The frequencies of factors of length m belong to the set

{θ n , θ n-1 -kθ n } = {θ n , θ n+1 + (a n+1 -k)θ n }.
We thus deduce the following, with the notation e α standing for the smallest frequency function for the Sturmian words of angle α. Theorem 4. Let α be an irrational number, m > 0, and n be the unique integer such that q n < m ≤ q n+1 . Then, e α (m

) = θ n = |q n α -p n |.
The following estimates hold for the quantity θ n = |q n α -p n |. Proposition 5. For every integer n, we have

1 2q n+1 ≤ 1 q n + q n+1 ≤ θ n ≤ 1 q n+1 and n k=1 a k ≤ q n ≤ n k=1 (a k + 1).
Proof. The first statement is a classical property of continued fractions (see e.g. [START_REF] Hardy | An Introduction to the Theory of Numbers[END_REF]) based on the fact that, for all n, there exists α n ∈ (0, 1) such that one has

α - p n q n = p n + α n p n-1 q n + α n q n-1 - p n q n .
The second statement comes from the recurrence relation q n+1 = a n+1 q n + q n-1 (see [START_REF] Berthé | Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences[END_REF] together with the fact that the sequence (q n ) n is increasing.

Theorem 5. Let x be a Sturmian word of angle α, with α being an irrational number in (0, 1). Let f : R * + → R * + be a non-increasing function. If

a n+1 = O 1 q n f (q n ) ,
then there exists c > 0 such that, for all n e α (n

) ≥ c • f (n).
Proof. The assumptions on f imply that there exists c > 0 such that, for n large enough, one has

a n+1 + 2 ≤ c q n f (q n ) .
Let m be large enough, and let n be the unique integer such that q n < m ≤ q n+1 . We have that qn-1 qn ≤ 1, hence

a n+1 + 1 + q n-1 q n ≤ c q n f (q n )
, i.e., q n+1 + q n ≤ c f (q n ) .

By Theorem 4, e α (m) = θ n , and by Proposition 5,

e α (m) = θ n ≥ 1 q n+1 + q n ≥ f (q n ) c .
Finally, since f is non-increasing,

e α (m) ≥ f (q n ) c ≥ f (m) c .
Remark 3. Theorem 5 (see also Theorem 6 below) relies on assumptions invoving relations between both sequences (a n ) n∈N and (q n ) n∈N . However, the following inequality allows the statement of hypothesis to involve only the sequence (a n ) n∈N . Indeed, let f : R + → R + be a non-increasing function. By Proposition 5, one has, for all n,

1 ( n k=1 a k )f ( n k=1 a k ) ≤ 1 q n f (q n ) .
The next statement is the counterpart of Theorem 5 in terms of the existence of an upper bound for infinitely many integers for e x .

Theorem 6. Let x be a Sturmian word of angle α, with α being an irrational number in (0, 1). Let f : R *

+ → R * + . If a n+1 ≥ 1 qnf (qn+1)
for infinitely many n, then e α (n) ≤ f (n), for infinitely many n.

Proof. Let n be such that a n+1 ≥ 1 qnf (qn+1) . One has

1 q n f (q n + 1) ≤ a n+1 ≤ a n+1 + q n-1 q n .
Multiplying by q n together with (3) yields

1 f (q n + 1) ≤ q n+1 .
We take m = q n + 1. By Theorem 4, e α (m) = θ n , and by Proposition 5, one has

e α (q n + 1) = θ n ≤ 1 q n+1
≤ f (q n + 1).

Remark 4. Let us illustrate Theorem 5 and 6 with the function f : x → 1

x log x from Corollary 1. Let x be a Sturmian word of angle α, with α being an irrational number. Theorems 5 and 6 give the following. If a n+1 ≤ log q n for n large enough, then there exists c > 0 such that e α (n) ≥ c n log n , for all n. If a n+1 ≥ qn+1 qn log(q n + 1) for infinitely many n, then e α (n) ≤ 1 n log n , for infinitely many n.

On the recurrence of Sturmian words

Let x be a Sturmian word with angle α (α ∈ Q, α ∈ (0, 1)). Let (q k ) k∈IN denote the sequence of denominators of the convergents of the continued fraction expansion of α. One has, by [START_REF] Morse | Symbolic Dynamics II. Sturmian trajectories[END_REF], the following:

R x (m) = m -1 + q n + q n+1 , for q n ≤ m < q n+1 . (4) 
In particular, a Sturmian word is linearly recurrent if and only if its angle has bounded partial quotients a k . For more on the recurrence function of Sturmian words, see e.g. [START_REF] Cassaigne | Limit values of the recurrence quotient of Sturmian sequences. Theoret[END_REF][START_REF] Berthé | Recurrence function on Sturmian words: a probabilistic study[END_REF][START_REF] Rotondo | The recurrence function of a random Sturmian word[END_REF].

Next theorem shows that, beyond the case of linear recurrence (that is, even when lim inf ne x (n) = 0), the smallest frequency and the recurrence functions are still related in the Sturmian case: the functions e x and 1/R x have the same growth order for most of the integers. The statement about almost every α in the next theorem refers to a set of full Lebesgue measure. We also revisit the condition from Theorems 5 and 6 for the functions e x R x , R x , and e x . Theorem 7. Let x be a Sturmian word of angle α, with α ∈ (0, 1), α irrational. Let (a n ) n∈N be the sequence of partial quotients and let (q n ) n∈N be the sequence of denominators of the convergents in the continued fraction expansion of α. One has, for all positive integers m that are not in the sequence (q n ) n∈N ,

1 ≤ e x (m)R x (m) ≤ 3.
Moreover, for almost all α ∈ (0, 1), lim sup n e x (q n )R x (q n ) = +∞.

More precisely, let f : R * + → R * + be a non-increasing function.

If a n+1 = O 1 qnf (qn) , then there exist c, c > 0 such that e x (q n )R x (q n ) ≤ c q n f (q n ) , R x (n) ≤ c f (n) and e x (n) ≥ c f (n) for all n.
If a n+1 ≥ 1 qnf (qn+1) , then the following properties hold for infinitely many n:

e α (q n )R x (q n ) ≥ 1 2q n f (q n ) , R x (n) ≥ 1 f (n) and e x (n) ≤ f (n).
Proof. Let x be a Sturmian word of angle α and let m be a positive integer. The lower bound for e x (m)R x (m) comes from Proposition 3. Now let n be such that q n ≤ m < q n+1 . Let us first assume m = q n . By Theorem 4, e x (m) = θ n and moreover, R x (m) = m -1 + q n + q n+1 . Regarding the upper bound, one thus gets, by Proposition 5, that

e x (m)R x (m) = θ n (m -1 + q n+1 + q n ) ≤ 1 q n+1 (m -1 + q n+1 + q n ) ≤ 3,
since m < q n+1 . We thus have proved that 1 ≤ e x (m)R x (m) ≤ 3 for m = q n . We now assume m = q n . Then, by Proposition 5, one has e x (m) = θ n-1 and

e x (q n )R x (q n ) = θ n-1 (q n -1 + q n+1 + q n ) ≤ 1 q n (q n -1 + q n+1 + q n ), hence 1 ≤ e x (q n )R x (q n ) ≤ a n+1 + 3. (5) 
Moreover, again by by Proposition 5, one has

e x (m)R x (m) = θ n-1 (q n -1 + q n+1 + q n ) ≥ 1 q n + q n-1 (q n -1 + q n+1 + q n ). Hence e x (m)R x (m) ≥ (a n+1 + 2)q n + q n-1 -1 q n + q n-1 ≥ a n+1 2 . (6) 
We now consider f : R + → R + to be a non-increasing function. We assume a n+1 = O 1 qnf (qn) . There exists c > 0 such that, for n large enough, a n+1 +3 ≤ c qnf (qn) . Hence, by [START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF], one has

1 ≤ e x (q n )R x (q n ) ≤ c q n f (q n ) .
Moreover, let m be given and let n be such that q n ≤ m < q n+1 . Then, by (4), there exists c > 0 such that

R x (m) ≤ (2a n+1 + 3)q n ≤ 2c f (q n ) ≤ 2c f (m)
since f is non-increasing. The lower bound on e x comes from Proposition 3.

We now assume a n+1 ≥ 1 qnf (qn+1) for infinitely many n. Then, by [START_REF] Boshernitzan | A condition for unique ergodicity of minimal symbolic flows[END_REF], one gets, for infinitely many n, e x (q n )R x (q n ) ≥ 1 2qnf (qn) . Moreover, let m = q n + 1. Then, by (4), R x (q n + 1) ≥ q n+1 ≥ a n+1 q n ≥ 1 f (qn+1) . The upper bound on e x comes from the proof of Theorem 6.

It remains to prove the statement on the generic behaviour of e x (q n )R x (q n ). According to [START_REF] Borel | Les probabilités dénombrables et leurs applications arithmétiques[END_REF], one has lim sup a n = +∞, for Lebesgue almost all α ∈ (0, 1). Consequently, by [START_REF] Boshernitzan | A condition for unique ergodicity of minimal symbolic flows[END_REF], lim sup n e x (q n )R x (q n ) = +∞ for almost all α.

Remark 5. Let us continue with the example of the function f (x) = 1

x log x , such as considered in Remark 4. We assume a n+1 = O(log q n ). Then, there exists c > 0 such that e x (n) ≥ c n log n , for all n, and R x = O(n log n), which improves the bound of Corollary 1.

Concluding remarks

We have seen with Theorem 2 that the approach developed by M. Boshernitzan for his characterization of linearly recuurent words in terms of the smallest frequency function (see Theorem 1) can be extended beyond the case of linearly recurrent words. Corollary 1 shows for instance that a lower bound of order 1 n log for the smallest frequency function induces a polynomial upper bound for the recurrence function. A strategy in order to provide concrete examples of words having a prescribed behaviour for the growth of the smallest frequency function is to work with explicit S-adic expansions, such as the expansions provided by continued fractions for Sturmian words. The precise arithmetic descriptions of the smallest frequency and of the recurrence functions then allow to improve in Theorems 5 and 7 the results obtained in Theorem 2, as stressed in Remark 4 and 5, when comparing with Corollary 1.

The study of multidimensional words is natural in the context of aperiodic order. We plan to investigate the case of multidimensional Sturmian words (see [START_REF] Berthé | Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences[END_REF]) in order to see how to extend the relation from Theorem 7, i.e., the quantity e x R x . Note that the study of the frequencies for factors is related to the threelength theorem. See [START_REF] Haynes | A five distance theorem for Kronecker sequences[END_REF][START_REF] Haynes | Higher dimensional Steinhaus and Slater problems via homogeneous dynamics[END_REF] for higher-dimensional generalizations.
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