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Rare-earth elements like neodymium, terbium and dysprosium are crucial to the
performance of permanent magnets used in various green-energy technologies
like hybrid or electric cars. To address the supply risk of those elements,
we applied machine-learning techniques to design magnetic materials with
reduced neodymium content and without terbium and dysprosium. However, the
performance of the magnet intended to be used in electric motors should be
preserved. We developed machine-learning methods that assist materials design
by integrating physical models to bridge the gap between length scales, from
atomistic to the micrometer-sized granular microstructure of neodymium-iron-
boron permanent magnets. Through data assimilation, we combined data from
experiments and simulations to build machine-learning models which we used
to optimize the chemical composition and the microstructure of the magnet. We
applied techniques that help to understand and interpret the results of machine
learning predictions. The variables importance shows how the main design
variables influence the magnetic properties. High-throughput measurements on
compositionally graded sputtered films are a systematic way to generate data
for machine data analysis. Using the machine learning models we show how
high-performance, Nd-lean magnets can be realized.

KEYWORDS

machine learning–ML, materials design, NdFeB permanent magnet, combinatorial
sputtering, rare-earth element (REE), optimization, ab-initio simulation, micromagnetic
simulation
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1 Introduction

Two key properties of permanent magnets (PM) designed to be
used in the tractionmotors of electric cars are the usablemagnetic field
created by the magnet and its ability to withstand opposing magnetic
fields. The usable magnetic field is related to a high spontaneous
magnetization (Ms) which usually requires the addition of iron (Fe)
and/or cobalt (Co) to the chemical composition of the material. A
measure of the ability to withstand strong opposing magnetic fields
is the coercive field (Hc). High coercive fields require high magneto-
crystalline anisotropy. Modern permanent magnets achieve this by
adding rare-earth elements (REE) like samarium (Sm) or neodymium
(Nd) to the chemical composition (Sagawa et al., 1984). The material
can solidify in a hexahedral or tetrahedral crystal lattice, a prerequisite
for high magneto-crystalline anisotropy. In applications such as
electric vehicles, the operating temperature for permanent magnets
can be around 150°C.Themagneto-crystalline anisotropy and thus the
coercive field as well as the saturation magnetization decrease rapidly
with increasing temperature. Heavy-rare-earth elements (HREE) like
dysprosium (Dy) and terbium (Tb) can be added to improve coercivity
(Strnat et al., 1967; Sagawa et al., 1984) and are therefore essential if no
other means of temperature stability can be found.

To achieve the climate policy goals a rapid electrification of
the powertrain is necessary. PM synchronous motors are more
efficient than induction motors and are the most power-dense
type of traction motor commercially available in both kW/kg and
kW/cm3 according to a factsheet of the European commision
(European Commission et al., 2020a, p. 550). A 55-kW motor uses
0.65 kg of Nd-Dy-Co-Fe-B alloy of which 200 g is Nd and 30 g is
Dy (Binnemans et al., 2018). Assuming that in the near future most
electric cars will use Nd-Fe-B type PMs (European Commission et al.,
2020b, p. 34), the need for critical materials will increase. Another
report of the European Commission identified borates and REE
as materials with high to very high supply risk and cobalt with
medium supply risk (European Commission et al., 2020b, p.17). The
average annual neodymiumdemand for energy technologies, cars, and
appliances is expected to increase eightfold between 2015 and 2050
(Deetman et al., 2018). To mitigate the supply risk, magnets must be
developed that require significantly less or even no rare earth content,
while at the same time exhibiting sufficiently good hard magnetic
properties, even at elevated temperatures. Possible routes to reduce
the Dy content while maintaining a high coercive field are grain size
refinement (Une and Sagawa, 2012) and grain boundary diffusion
(Nakamura, 2018). By diffusion of Dy along the grain boundary, a
Dy-rich shell forms around the Nd2Fe14B grains. Grain boundary
diffusion of the heavy rare-earth improves coercivity to the same
extent as conventional alloying (Hirota et al., 2006; Nakamura, 2018).

The factsheet of the European Commission also mentioned
a significant imbalance in the rare-earth elements market in
2019 (European Commission et al., 2020a, pp. 548–549). While
neodymium and praseodymium made up 75% of the value of the
REE market, they accounted for only 20% of the volume. On the
other hand lanthanum (La) and cerium (Ce) accounted for around
70% of the volume but only 8% of the value. Hence the substitution
of Nd with Ce and/or La might reduce the price of the magnet
and also free up REE resources for other green technologies where
a substitution is not possible. Designing the boundary (shell) and
the core of magnetic grains with different material compositions
unlocks additional degrees of freedom to optimize the magnets

performance. Using (La,Ce)2Fe14B for the grain’s core, the properties
can then be tailored through the La:Ce ratio (Matsumoto et al., 2019).
When the composition of the core is optimized, the magnets show
a high coercive field at elevated temperature. Multi-phase structured
magnets (Jin et al., 2016; Li et al., 2019; Liu et al., 2019), if successfully
commercialized, will reduce the global Nd demand.

Although magnetic materials are of paramount importance for
a sustainable future, magnet development traditionally follows a
path in which the chemical composition and microstructure of
the materials are selected, new material candidates are explored
by simulation, promising candidates are synthesized, and feedback
is given for further design cycles. Recently, parts of the design
process have been complemented by elements of classical machine
learning.Wang and coworkers combinedmachine learning, numerical
optimization and experimental validation for the accelerated design
of nanocrystalline soft magnetic materials (Wang et al., 2020). To
relate magnetization, coercivity, and magnetostriction to the chemical
composition and processing parameters, they carefully selected the
features and the regression model. The underlying data were collected
from relevant literature. In a second step, they applied an evolutionary
algorithm to predict optimized material compositions and heat
treatment conditions. Möller and coworkers used high-throughput
density functional calculations to create a database of magnetic
compounds in the ThMn12 structure (Möller et al., 2018). More than
3,000 data sets were used for building a kernel-based machine
learning model for fast prediction of the spontaneous magnetization
and magneto-crystalline anisotropy from chemical compositions. To
effectively search for the best possible elemental composition of
the material under specific requirements, they applied a numerical
optimization algorithm. During optimization, the machine learning
process serves as a surrogate for the evaluation of the material
properties. The authors also published an interactive web tool
that allows the user to study the magnetic material properties
for different compositions1. Lambard and coworkers implemented
an active learning pipeline using machine learning and Bayesian
optimization to optimize process parameters for the fabrication
of Nd-Fe-B magnets by hot extrusion with optimal coercivity
and remanence (Lambard et al., 2022). Their approach successfully
identified a non-linear relation between process parameters and
magnetic properties and allowed them to significantly improve the
coercivity, remanence, squareness and energy product BHmax of the
studied sample. Exl and coworkers used machine learning techniques
to analyze the granular microstructure of Nd-Fe-B magnets and
to identify geometric features responsible for low nucleation fields
(Exl et al., 2018). Gusenbauer and coworkers used machine learning
methods to extract local nucleation fields from electron backscatter
diffraction images for MnAl-C magnets (Gusenbauer et al., 2020).
Dengina and coworkers used neural networks to predict the
amount of defects and other microsturctural parameters for a given
demagnetization curve for FePt granular films as used for heat-assisted
magnetic recording media (Dengina et al., 2022). Micromagnetic
simulations were used to create the training data. Miyake and
Harashima presented a data-assimilation method used to predict
finite-temperature magnetization Ms and Curie temperature Tc for
(Nd,Pr,La,Ce)2(Fe,Co,Ni)14B compositions merging computational
and experimental data (Miyake et al., 2021; Harashima et al., 2021).

1 http://153.97.176.35/magnetpredictor, accessed 24-10-2022.
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FIGURE 1
Schematics of the lengthscales covered and machine-learning steps used for the design of permanent magnets presented in this paper.

The functional properties of a device such as an electric motor
depend on the interplay between the geometric layout and the
properties of the involved soft magnetic and hard magnetic materials.
In turn, magnetic material properties depend on the multi-phase
granular microstructure and the local chemical composition. A
machine-learning-based interactive design must be able to make
predictions about the materials and the device properties. Such a
property evaluator must consider all length scales from chemical
composition to the macro-scale. Fast property prediction requires
a pipeline of machine learning models that pass information from
one length scale to the next. The combined use of machine-
learning predictors and genetic optimization will make it possible
to employ inverse design where a set of target properties given by
simulations on the macro-scale define the chemical composition and
the microstructural features of the magnet. Figure 1 schematically
shows this toolchain. Experimentalmeasurements of various prepared
(Nd,Ce,La,Pr)13.55-(Fe,Co,Ni)80.54-B5.91 (at%) alloys combined with
ab-initio simulations provide the training set for partial-least-squares
(PLS) regressors which predict the intrinsic magnetic properties.
These properties are input for micromagnetic simulations calculating
the switching fields for a multi-phase grain comprised of a core
and shell phase enclosed within a defect layer mimicking the effect
of a grain boundary phase. The switching fields are computed as
a function of geometric features as well as intrinsic properties of
the various chemical compositions. They are used as training data
for physics-informed models predicting the local switching fields
in micrometer-sized granular structures comprised of hundreds of
grains. A reduced-ordermodel computes the hysteresis properties and
gives characteristic figures ofmerit such as the remanence and coercive
field. Inverse design then makes it possible to identify candidate
chemical compositions that might provide the required magnetic
properties for a set of target properties on the macroscale.

The vision of the approach presented is to provide a toolchain
which either guides towards the design of a superior Nd-Fe-B magnet
needing less HREEs or which guides towards chemical compositions
giving a magnet with adequate magnetic properties for the application
but at prices independent of price fluctuations of the REE market.
This requires the selection of chemical compositions, the tuning of
structural properties and the choice of proper material combinations

at the macroscale. Estimated In order to achieve such a bold vision,
we have to break up the processes into smaller tasks which are
following the length scales scope of view from Angstroms to microns.
We try to answer the following questions from the perspective of
micromagnetism enhanced by machine learning approaches: i) How
are magnetically relevant material properties affected by changes in
concentrations of elements in a magnet while focusing on the 2-14-1
phases? ii) What does a single grain inside a large ensemble of grains
contribute to coercivity and remanence? iii) How do large ensembles
of grains with various grainsizes and secondary phases shape the
demagnetization curve? We try to answer these questions from
the perspective of micromagnetism enhanced by machine learning
approaches.

The paper is organized as follows. In Section 2 the data that
were used are described, how it was generated, and how it was
incorporated into the models. We further briefly introduce the
theoretical background of the applied simulation techniques ranging
fromfirst principles simulations to reduced ordermicromagnetics.We
then introduce the machine learning methods applied for building
regression models, most importantly partial-least-squares (PLS)
regression. We also show how forward machine learning predictors
can be combined with genetic algorithms for optimization and
inverse design of magnets. Furthermore, we discuss the experimental
techniques used for magnetic sample preparation, combinatorial
sputtering to produce compostionally graded films, and structural and
magnetic characterization. In Section 3 we report the performance
of a regression model for the prediction of the spontaneous
magnetization and the magneto-crystalline anisotropy constants
from the chemical composition of (Nd,Fe,Co,La,Pr)2(Fe,Co,Ni)14B
magnets. We give examples for inverse design of magnetic materials
searching for chemical composition required to reach given target
values for magnetization and anisotropy. We present the optimal
chemical compositions of multi-phase magnets with a core/shell
structure with minimum price and maximum coercivity. We also
show how machine learning can be used to generate synthetic
microstructures that resemble those of sintered magnets and compare
the computed demagnetization factors with experimental data. We
also analyze the magnetic properties of compositionally graded
sputtered films. In Section 4 we discuss the use of machine learning
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for magnet design. We address open problems and how they might be
solved.

2 Materials and methods

2.1 Intrinsic magnetic property prediction

2.1.1 Experimental data foundation
The following described experimental data points are later

used to train a machine learning model described in Section 2.1.3
predicting the intrinsic material properties saturation magnetization
and magneto-crystalline anisotropy constant. 119 variations of
(Nd,Ce,La,Pr)13.55-(Fe,Co,Ni)80.54-B5.91 (at%) alloys were prepared by
arc melting. These alloys were annealed at 1373 K for 24 h in Ar
atmosphere. After a homogenizing heat treatment, alloy ingots were
pulverized and sorted into particles with diameters of <20 μm in an
inert atmosphere to make each particle single crystal.

The powder density was determined using a pycnometer
(Ulrtapyc1200e, Quantachrome Instruments, United States). The
powder compositions were measured by ICP-AES (ICPS8100,
Shimazu, Japan) and the main phase (2-14-1 phase) ratio was
calculated from the obtained composition. The magnetic properties
were measured by using a vibrating sample magnetometer (PPMS
EverCool II, QuantumDesign, United States) at a maximum applied
field of 9 T.

Sample powder was mixed with an epoxy resin in a Cu container
and solidified in a magnetic field of 1 T for vibrating sample
magnetometer (VSM) measurements. M(H) curves of magnetically
easy and hard directionsweremeasured in the temperature range from
300 K to 453 K. The magnetic anisotropy field (HA) was estimated
by singular point detection (SPD) method (Cabassi, 2020) from the
M(H) curve of hard axis. When anisotropy field is less than 9 T
(maximum applied magnetic field of our VSM) HA can be detected
by SPD, otherwise the M(H) curves for both easy and hard axis
were extrapolated to higher magnetic field to estimate intersection
between them as HA. On the other hand, saturation magnetization
(μ0Ms) was estimated by the law of approach to saturation (LAS)
(Akulov, 1931; Hadjipanayis et al., 1981; Kronmüller et al., 2003) from
theM(H) curve of easy axis.When μ0HA was lower than themaximum
applied field, Eq. 1 was used.

μ0M = μ0Ms(1−
b
H2 ) (1)

When μ0HA was higher than 9 T, Eqs 2, 3 were used.

μ0M = μ0Ms(1−
b
H2 )+ χ0H (2)

μ0
dM
dH
= μ0Ms(

2b
H3 )+ χ0 (3)

Ms is the saturation magnetization and b and χ0 are constants. The
χ0H term is often referred to as the so-called paramagnetic term
(Zhang et al., 2010). Eqs 2, 3 dealing with χ0 term is more accurate for
measuring saturation magnetization, but there is a condition that the
applied magnetic field is sufficiently larger than the anisotropy field.
The saturationmagnetization estimated by the LAS was divided by the
main phase ratio of the powder to obtain the saturation magnetization
of the 2-14-1 phase in these compositions. For themeasurement of the
intrinsic properties as described above, grain boundary phases other
than the main phase were treated as paramagnetic phases.

2.1.2 First-principles data foundation
The following material database is later used to improve the

machine learning model described in Section 2.1.3 predicting
the intrinsic material properties saturation magnetization
and magneto-crystalline anisotropy constant by appending
predicted exchange integral information, Curie temperature and
magnetization at 0 K. In this work no attempt to compute the
anisotropy constant with first-principles is presented. The material
database for the magnetization and Curie temperature (TC) of
(Nd1−α−β−γPrαLaβCeγ)2-(Fe1−δ−ζCoδNiζ)14-B is constructed using
the AkaiKKR program package2 (Akai, 1989), where the Korringa-
Kohn-Rostoker (KKR) Green’s function method (Korringa, 1947;
Kohn and Rostoker, 1954) is implemented within the local density
approximation (LDA) of the density functional theory (Hohenberg
and Kohn, 1964; Kohn and Sham, 1965). Here, α, β, γ, δ and ζ
satisfy the conditions that 0 ≤ α,β,γ, δ,ζ ≤ 1, 0 ≤ α+ β+ γ ≤ 1 and
0 ≤ δ+ ζ ≤ 1. The atomic configurational disorder is treated by the
coherent potential approximation (CPA) (Soven, 1970; Shiba, 1971).
In the CPA approach, the multiple scattering effects due to random
potentials are treated with the single-site approximation. The CPA
enables us to calculate the electronic structure andmagnetic properties
of disordered systems without constructing a large supercell, and
hence, is an efficient framework to explore large materials space.

The relativistic effects are included through the scalar relativistic
approximation and with spin orbit coupling retaining only the
diagonal terms (i.e., lzsz terms). LDA, as parametrized by Moruzzi,
Janak, and Williams (Moruzzi et al., 2013), is adopted for the
exchange-correlation energy functional. The LDA is rather poor
for handling strongly localized f states. Therefore, the open core
approximation is applied to the f states of the rare earth elements, i.e.,
Nd, Ce, and Pr, so that the resonances originating from the f states are
removed. We assume the electron configurations of Nd3+, Ce4+, and
Pr3+ in the present calculations.

The TC is estimated by combining the mean field approximation
and the KKR-CPA calculations of magnetic exchange interaction
(Jij) between sites i and j. Here, the Liechtenstein formula
(Liechtenstein et al., 1987) is employed to obtain Jij. According to this
formulation, twomagnetic atoms are embedded into the CPA effective
medium generated by KKR-CPA calculations, and then we evaluate
the Jij values on the basis of the magnetic force theorem, mapping
the changes in the band energy due to the infinitesimal rotations
of the two magnetic moments to those of the classical Heisenberg
Hamiltonian. Experimental lattice parameters are used for R2T14B (R
= Nd, Pr, La, Ce; T = Fe, Co, Ni) when available in literature (Herbst,
1991). Otherwise, the lattice parameters are estimated by integrating
first-principles calculation data and available experimental data, as
described in Appendix D in (Harashima et al., 2021). The lattice
parameters for non-stoichiometric systems are determined from those
for stoichiometric systems according to Vegard’s law.

2.1.3 Chemical composition to anisotropy and
magnetization with partial least squares

We constructed a model which uses the chemical
composition as the only feature to predict the spontaneous
magnetization μ0Ms and the magneto-crystalline anisotropy K1 of
(Nd,La,Ce,Pr)2(Fe,Co,Ni)14B magnets combining ab-initio data and

2 http://kkr.issp.u-tokyo.ac.jp, accessed: 17-10-2022.
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experimental measurements with partial least-squares regression
(PLS). In this section we cover training data preprocessing, analysis
and briefly how partial least-squares regression works.

Partial least-squares regression consists of two major parts, i)
the decomposition of a matrix into products of smaller matrices
similar to principal components analysis (PCA) and ii) the relation
between features X and labels Y . In PLS a matrix X is decomposed
into a matrix-matrix product of scores T and loadings P such that
X = TPT +E. E here is the residuum. The labels matrix or vector Y is
decomposed in the same fashion such thatY = UQT + F*.The number
of columns in the matrix T is much smaller than the total number
of features (the number of columns of the matrix X). Similarly, the
matrix U may have much less columns than the number of labels. In
other words, both the features and the labels are projected into a latent
space. Similar to PCA, the PLS method reduces the dimensionality.
Therefore PLS regression iswell suited for problems inwhich either the
number of features or the number of labels is large as compared to the
number of samples. The scores T are used to predict the Y-scores U .
This in turn gives a linear relation between the features and the labels:
Y = XBPLS +B0.ThePLS coefficientsBPLS hold the information of how
much each feature contributes to the labels. The latent variables are
found through an iterative approach which maximizes the covariance
between T and U . In other words the decomposition is built such
that i) T best explains the variance in the features, ii) U best explains
the variance in the labels, and iii) there is the strongest possible
relationship between features and labels (Tobias et al., 1995). There is
a lot of well written literature and therefore we may refer to (Geladi
and Kowalski, 1986) or (Eriksson et al., 2014) for further reading.

Due to the low amount of training points for heavy rare earth
element composites such as with dysprosium (Dy), gadolinium (Gd)
and terbium (Tb) it ismore difficult to train reliablemodels andwill be
covered in future works. These heavy rare earths have been excluded
from the training data base as well as entries with holmium (Ho) and
manganese (Mn) replacing iron (Fe) and entries where carbon (C)
partially replaces boron (B).

Input data for building the machine learning model presented are
two data sets: i) Data from ab-initio simulations relating chemical
composition to the computed properties such as the spontaneous
magnetization, local magnetic moments, the lattice constants, Curie
temperature, and the exchange integrals (see Section 2.1.2). ii)
Experimental measurements provide the spontaneous magnetization
and the anisotropy field for different chemical compositions and
temperatures (see Section 2.1.1).

The ab-initio data set and the experimental data do not cover
the same combinations of chemical compositions and it is hard
to visualize or compute the overlap between two multidimensional
sets of partially dependent and independent chemical concentrations
of 2-14-1 systems. Our approach is to apply a manifold method
exclusively to the ab-initio dataset which transforms each entry to a
2-dimensional projection plane. Each data point receives a repulsive
and attractive force between all others, where points close in chemical
concentrations attract each other whereas others are pushed away.
After relaxation groups of composites will have formed and can be
visualized in a 2-dimensional embedding space. In machine learning
this is often used to categorize data points in a certain amount of
classes, but in our case we use it to gain insight into the overlap
of two datasets. After the ab-initio data has been used to calibrate
this transformation function, the experimental points are transformed
with the same function to verify if those newly added points are far

from the ab-initio entries. The result of such a Uniform Manifold
Approximation & Projection (UMAP) (McInnes et al., 2018) is shown
in Figure 2. One can see that an overlap exists within this projection
space which is small but sufficiently encapsulates the ab-initio points.
The first principals calculations database consists of many simulations
where Co or Ni atoms replace Fe.

Using the ab-initio data, we train a first model that predicts ab-
initio data from the chemical composition (see i) in Figure 3). We
use this partial least squares regressor to augment the experimental
data with predicted values for the ab-initio data (see ii) in Figure 3).
In addition, we add estimates for Ms(T) and M3

s (T) estimating
the spontaneous magnetization at temperature T with Kuz’min’s
equation (Kuz’min, 2005) from the ab-initio-calculatedmagnetization
at 0 K and the Curie temperature. By adding the ab-initio data to the
experimental data set, we increase the total number of features which
are then used to predict the temperature dependent magnetization
and anisotropy with a second partial least squares regressor (see iii)
in Figure 3).

To choose the correct number of decomposing components we
use nested cross-validation. The data sets shown in Figure 3 are split 5
times into a test set and a training set.With the training set we perform
a 5-times repeated 5-fold cross validation. For hyperparameter-
optimization we include the polynomial degree of features in the
partial least squares regression to leave it to the optimization if higher
order contributions should be included or not. The mean squared
errors averaged over the test sets are 0.31 MJ/m3 and 0.04 T forK1 and
μ0Ms, respectively. The feature vector is extended by all combinations
of products (2nd degree polynomial) and the final model had 35
components for the partial least squares regression. The forward
prediction of this trained model for various chemical compositions is
shown in the results section of this manuscript in Section 3.1.

As it is intended to explore and search for new materials,
the trained regression is applied to unseen samples of chemical
concentration combinations which have no observed or measured
output of intrinsic material properties. To gain insight into prediction
uncertainty, a rather naive empirical bagging or bootstrapping
approach is applied. In our case, not only one but one hundred
regressions are calibrated where only slight differences in training
data can be found. Each training set is drawn randomly from the
full set with the chance of skipping some. The predictions of these
hundred regressions provide an average prediction and additionally its
prediction variance, referred to as the predictor’s confidence interval
(Heskes, 1997). Currently this is our measure of predictor uncertainty
but there is potential for improvement here.

Such a trained partial least squares model capable of returning
a continuous function of intrinsic material properties along each
trained material concentration axis gives an additional opportunity.
Combining a multi-objective genetic algorithm framework (Blank
and Deb, 2020) with the intrinsic material property predictor can
optimize towards a specific target K*

1 and M*
s by tuning the chemical

concentrations. Similarly, Kim et al. (2018) searched for organic
molecules targeting specificmolecular designs. Such an inverse design
scheme is outlined in Figure 4. There are two objective functions: i)
The squared distance between the predicted and the desired K1 and
ii) the squared distance between the predicted and desired μ0Ms. One
major advantage is that we now can define restrictions or constraints
to our optimization problem as well e.g., maximum allowed Nd-
concentration, only composites of Nd, La and Ce are allowed, and/or
the confidence interval has to be below a certain limit.
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FIGURE 2
UMAP: Two-dimensional embedding space of chemical concentrations from both data sets. Distance between material entries of experimental (blue cross)
and first-principles (yellow circle) data. This image illustrates that the overlap between both data sets is small, but experimental points sufficiently
encapsulate the ab-initio points.

FIGURE 3
Sketch of the 3-step plan to add ab-initio data into the experimental
database. (i) Training a PLS regression predicting chemical composition
to exchange integral information, (ii) applying this regression model to
the experimental database and (iii) training a new PLS model to predict
with chemical composition and infused surrogate exchange integral
features the intrinsic material properties K1 and Ms.

2.2 Multi-phase grain coercivity prediction

2.2.1 Automated model generation and
micromagnetic simulation

Models of permanent magnets in the range of 10 nm3 to 1 μm3

can be treated with micromagnetic simulations. Micromagnetism is a

FIGURE 4
Sketch of the inverse design approach, combining the partial least
squares regressor, trained with surrogate data, recursively called by a
multi-objective optimization genetic algorithm (MOGA) framework,
searching for requested intrinsic material properties K*

1 and M*
s .

continuum theory that describes magnetization processes on length
scales large enough to replace discrete atomic spins by a continuous
function of position M(x) but also small enough to resolve the
transition of the magnetizationM(x) between magnetic domains. The
first argument allows to replace billions of spins with millions of
finite elements and hence the computation of demagnetization curves
within a reasonable time. The second argument makes it possible
to compute the influence of the microstructure on magnetization
processes in contrast to macroscopic simulations based on Maxwell’s
equations. The key assumption of micromagnetic theory is that the
spin orientation changes only by a small angle from one lattice point
to the next in a ferromagnet (Brown, 1959).The resolution of themesh
(meshsize) may have significant influence on the energy necessary to
form domain walls and the energy required to move domain walls
(Donahue and McMichael, 1997). Domain walls might get pinned
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on too coarse meshes which is an unwanted effect. When simulating
permanent magnets, we usually choose a meshsize close to the Bloch
wall parameter δ0 = √A/K1 which is a measure of the width of the
transition region between two magnetic domains. Exchange constant
A and anisotropy constant K1 of Nd2Fe14B at room temperature
are 8 pJ/M and 4.9 MJ/m3, respectively (Coey, 2010, p. 401). Hence
δ0 = 1.3 nm defines the meshsize close to microstuctural features
where the nucleation of reversed domains is likely to happen. While
some growth of the meshsize towards the center of the core phase is
wanted to speed-up computation, we limited the maximum meshsize
to 2δ0 for unsupervised simulations as it is difficult to automatically
detect errors due to artificial pinning of domain walls. This fine
discretation limits themaximummodelsize even on today’s computing
hardware.

We developed an automated simulation process comprising
geometry generation, mesh generation, mesh quality checks,
computing the hysteresis properties, and storing the results in a
database. The simulation runs completely unsupervised without
human interaction. Thus, coercivity data can be sampled in a high-
throughput like fashion. The sampler explores the design space and
selects a point in feature space. A python script was used to create the
multi-phase grain geometry (as sketched in Figure 1) using the open-
source software Salome3. MeshGems4 was used to create a tetrahedral
representation of the geometry. The grains have a brick like shape
as shown by transmission electron microscopy (Sepehri-Amin et al.,
2013). Such multi-phase grains consist of a core and a shell phase
enclosed within a ferromagnetic grain boundary phase. Characteristic
features of the core/shell geometry were the thickness of a weakly
soft magnetic grain boundary phase (2 nm–50 nm), the thickness of
the shell (2 nm–50 nm), the extensions of the grain (60 nm–100 nm
in c-direction and 100 nm–150 nm in a- and b-direction), and the
misorientation of the grain with respect to the field direction (0°–45°).
The hysteresis properties were computed by minimizing the Gibbs
free energy considering energy terms due to exchange energy, the
magneto-crystalline anisotropy energy, the magnetostatic energy and
the Zeeman energy (Exl et al., 2019).

2.2.2 Materials optimization through machine
learning

Using micromagnetic simulations we created a database which
related chemical composition, grain geometry, and hysteresis
properties. We implemented different methodologies to sample the
design space. Initially, sample points for training were generated using
a Bayesian optimizer (Häse et al., 2018) for maximizing coercivity. In
a second stage we applied an active learning scheme. The machine
learning predictor for coercivity was used to evaluate the objective
function (high coercivity and low Nd + Pr content) of a genetic
algorithm. The Pareto points were saved and put into a database for
recomputation of the hysteresis properties with the micromagnetic
solver. Figure 5 shows the active learning scheme to create additional
samples to improve the micromagnetic simulation database.

A neural network regressor is trained to predict the coercive
field of multi-phase grains. The model was based on a fully dense
neural network as implemented in scikit-learn (Géron, 2019). We

3 https://www.salome-platform.org/, accessed 19-10-2022.

4 www.meshgems.com, now https://www.spatial.com/products/3d-precise-
mesh, accessed 19-10-2022.

FIGURE 5
Sketch for a proposed active learning scheme which consists of two
loops. A fast one (I), in which a multi-objective genetic algorithm tries to
find the best solutions–for maximizing the coercivity while minimizing
the heavy rare Earth concentration–by testing a shallow neural network.
If stopping conditions are met, the second loop is active (II) which
receives a set of promising magnet design candidates and validates the
prediction by performing a micromagnetic simulation for each. These
newly simulated demagnetization curves are then updating the
knowledge basis of the shallow neural network.

used one hidden layer with the number of units as hyperparameter.
The rectified linear unit is used as activation function. The mean
squared error is used as the loss function which is minimized by
the limited-memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)
algorithm (Liu and Nocedal, 1989). The feature vector which contains
geometry and intrinsic magnetic properties is augmented with the
minimum Stoner-Wohlfarth switching field of the core and shell
materials.

In Figure 6 we show the prediction performance as a residual
plot and true vs. predicted values for the coercive field of single core-
shell grains with defect shells. We included the calibration errors
of all micromagnetic simulations as final performance measures:
mean absolute error (MAE), root mean squared error (RMSE) and
the explained variance (R2). These should not be confused with
the predictor performance values during fine tuning of the neural
network, which are computed via a 5-fold cross validation. The
number of units of the single hidden layer was the only parameter
optimized, which gave best results with nine units for the multi-layer
perceptron (MLP) regressor inside the sklearn package5. The cross
validated explained variance is 0.975 and the mean absolute error is
0.148 T.

The same bootstrapping approach, as reported in Section 2.1.3,
is applied to the coercivity predictor. 100 slightly different training
sets are prepared to train 100 neural network regressors, predicting
the coercivity. The deviations from their averaged prediction are
used to estimate a prediction confidence interval. Additionally all
features used for the prediction of coercivity, which depend on
the previously predicted material properties are propagated to the
prediction uncertainty of coercivity. We think that this is a good
measure of the distance in feature space between a point in the test
set and the nearest point in the training data.

5 https://scikit-learn.org/
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FIGURE 6
(A) prediction residuum over prediction of the coercive field. (B) true
micromagnetically computed coercive field over predicted coercive
field. Each of those 1908 points refer to a unique micromagnetic
multi-phase grain demagnetization simulation, each with different core,
shell and grain boundary shape and intrinsic material properties. The
inset in the lower right corner shows an example grain structure.

2.3 Hysteresis of multi-grain structures

2.3.1 Sample preparation and magnetic
measurement

Nd-reduced sintered magnets containing Ce and La were
fabricated as base sintered magnets. Hydrogen decrepitation and jet-
milling processes were used to crush the strip cast flakes into powders.
Magnetically aligned green compacts were sintered at 1338 K for 4 h
in a vacuum atmosphere. Grain-boundary diffusion was performed at
1223 K for 165 min in vacuumusingNd-Cu based alloys as infiltration
materials. This diffusion process forms the core/shell structure in base
sintered magnets. The diffused samples were annealed at 773 K for 1 h
in vacuum to enhance coercivity.

Magnetic properties were measured by a vibrating sample
magnetometer (PPMS EverCool II, QuantumDesign, United States).
Scanning electron microscope (SEM) observations were performed
using a field emission SEM (ULTRA55, Carl Zeiss, Germany),
equipped with an in-lens type detector. SEM observations were
performed on specimensmilledwith anAr ion beamat an acceleration
voltage of 4 kV using an ion milling system (IM4000, Hitachi, Japan)
after flat polishing. Crystal structure analysis was carried out by X-ray
diffraction (XRD) (SmartLab SE, Rigaku, Japan).

2.3.2 Digital transformation
We apply materials informatics (MI) (Rajan, 2005) to analyze the

microstructure of permanent magnets. The following steps were taken
to characterize a scanning electron microscope (SEM) image.

1) The two-dimensional power spectrum (Koizumi et al., 2019)
obtained by the Fourier transform of the image is converted into
a one-dimensional (1D) power spectrum by integrating it in the
azimuth direction Figure 7.

2) 10 images of the same magnification per sample are acquired, and
the 1D power spectrum converted by the method 1) is averaged.

3) By preparing power spectra of each image and performing principal
component analysis of those spectra, the 10 principal components

and their weights (principal component scores), the average of all
the power spectra, are obtained.

4) The principal component score obtained by 3) is displayed
by selecting axes. By coloring each point based on a specific
numerical value, for example, it is possible to see whether there
is a correlation between the material performance value and the
principal component scores.

We think that the individualization of analysis and the pre-
processing of inhomogeneous data are the bottlenecks in MI, and in
order to solve these problems, we have built a common platform for
data analysis and storage named “WAVEBASE”6. This system is built
on a cloud, and users can upload measured data from a web browser.
The uploaded data is uniformly pre-processed, features extracted, and
visualized in the system. For example, for image analysis, processing
is performed by the function 1)-4) above. Data from other techniques
such as XRD, small-angle X-ray scattering (SAXS), infrared (IR) and
mass spectroscopy can be analyzed in the same way. By utilizing this
system, we try to shorten the time from data acquisition to analysis
while sharing data and analysis results within multiple joint research
institutes.

2.3.3 Synthetic microstructure generation
A power spectrum as shown in Figure 7C characterizes

the microstructure of a magnet. We aim to generate synthetic
microstructures for micromagnetic simulations that resemble the
grain structure of a given magnet. Instead of matching the SEM image
with an image derived from the synthetic microstructure we try to
create a synthetic microstructure which gives a power spectrum that
is similar to that computed from a SEM image. For this purpose, we
combine synthetic microstructure generation, neural-network-based
image segmentation and a Bayesian optimizer.

We use the software package Neper7, which applies Laguerre
tessellation for the generation of polycrystalline grains with realistic
shape and size distribution (Quey and Renversade, 2018). After
slicing the three-dimensional synthetic structure, we create a three-
colored image where the different colors represent the main NdFeB
phase, the grain boundary phase, and a secondary phase such as
for example Nd-oxides. From this artificial microstructure image the
power spectrum can be computed. In order to obtain three-colored
microstructure images from SEM images we apply automated image
segmentation. A convolutional neural network is trained to map a
SEM image to a three-color segmented image. We use the well-
established unet (Ronneberger et al., 2015; Choudhary et al., 2022) for
the network architecture. Instead of manually labeling SEM images we
use synthetically generated data for training of the network. Three-
colored images which were obtained from synthetic microstructures
are randomized by adding noise. Figure 8A shows input output pairs
used for training the neural network. Figure 8B shows a SEM image
and the segmented three-colored image.

The segmentation of the SEM images ensures close similarity in the
input color space for the computation of the power spectra between
the experimental and the synthetic images. We then apply a Bayesian
optimizer8 to find a set of input parameters for polycrystalline

6 https://www.toyota.co.jp/wavebase, accessed 17-10-2022.

7 https://neper.info/, accessed 24-10-2022.

8 https://scikit-optimize.github.io/stable/, accessed 24-10-2022.
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FIGURE 7
(A) SEM image and (B) 2D power spectrum converted from (A). (C) Azimuthal direction integrated 1D power spectrum from (B).

FIGURE 8
(A) Example of an input-output pair for training the neural network for
SEM image segmentation. (B) SEM image and its segmentation with the
neural network.

structure generation with the aim to create a synthetic microstructure
which is close to the microstructure of a real magnet. The magnet’s
microstructure is characterized by the average of power spectra PSDexp
obtained from SEM images as described above. To characterize the
three-dimensional synthetic grain structure, we compute the average
of the power spectra of nine slices through the magnet PSDsyn. The
Euclidean norm between the powerspectra f = |PSDexp − PSDsyn| will
be minimized during optimization.

2.3.4 Reduced order micromagnetics
For micromagnetic modeling to correctly track magnetic

behaviour, various features on multiple length scales have to be taken
into account. On the smallest length scale of just a few nanometers
crystallographic defects can substantially influence the magnetic
reversal of much larger systems. To consider these defects, the model

FIGURE 9
Comparison of the reduced order model with classic micromagnetic
calculations for single cubic grains of different sizes. The distance
parameters for the Stoner Wolfarth evaluation points and exchange field
were found by a Bayesian optimizer.

needs to operate on a spatial discretization close to δ0 in the nanometer
regime. Hence, the simulations for large systems require a vast amount
of computing resources or are not feasible at all.

To bridge the gap from the nanometer length scale of important
microstructural features to a macroscopic length scale, a reduced
order model was developed. This model is based on the assumption
that nucleation of a sufficiently large reversed domain immediately
leads to the magnetic switching of the entire grain in question.
Therefore, instead of calculating the state of the magnetic moment
on every finite element as in conventional micromagnetism, we
assume that each grain is uniformly magnetized and only one
macroscopicmagneticmoment is assigned per grain. A fast method to
approximate the magnetic state of a grain is to employ the embedded
Stoner-Wohlfarth (SW) model (Fischbacher et al., 2017; Exl et al.,
2018). The embedded approach adapts the original SW method
for small ferromagnetic particles to additionally account for long-
range interactions of uniformly magnetized grains. Previous research
suggests that magnetization reversal of a grain starts close to the
edges. Hence, we define evaluation points in all grains at a distance
of dLex to the grain’s edges. While Lex = √A/(μ0M

2
s ) is the exchange
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FIGURE 10
Results of trained PLS model to predict with chemical composition and infused surrogate exchange integral features the intrinsic material properties Ku and
Ms over lanthanum concentration with (Ndx,La1−x)2Fe14B.

FIGURE 11
SHAP explanation of the prediction of saturation magnetization for
(Nd0.4La0.6)2(Fe0.6Co0.6)14B at 433 K. SHAP values explain each feature’s
positive or negative contribution to the prediction. The sum of all SHAP
values and the mean predicted saturation magnetization give the final
predicted value. One can see the reduction in Ms caused by the elevated
temperature, and that compensation is made with Co.

length (Rave et al., 1998), d is a free parameter which will be tuned
by comparison to conventional micromagnetics. At these evaluation
points the local switching fields are determined analytically by the SW
model as

Hsw = 2K1/(μ0Ms)(sin
2/3 ψ+ cos2/3 ψ)−3/2.

Here ψ is the angle between the total field acting on the respective
point and the magneto-crystalline anisotropy direction of the grain.
The total field is the sum of the external field Hext, the magnetostatic
field Hmag and the exchange field Hexch. The magnetostatic field in
each point is calculated from the surface charge density by using
analytical formulas for polyhedral geometries (Guptasarma and Singh,

FIGURE 12
Inverse design optimization, by searching for material compositions
close to two material property pairs (i) K1 = 3.77 MJ/m3 and Ms = 1.45 T
and (ii) K1 = 0.7 MJ/m3 and Ms = 1.04 T for different temperatures.
Markers show the experimentally acquired pairs at 300 K and 433 K,
described in Section 2.1.1. The dashed line is a linear fit through the
experimental data at 300 K.

1999), employing hierarchical matrices as implemented with h2tools9

(Mikhalev and Oseledets, 2016). Hierarchical matrices reduce storage
and CPU time, by computing the magnetostatic field from nearby
grains exactly, while approximating the field from grains far away
from the respective evaluation point. Following the work of Wood,

9 https://pythonhosted.org/h2tools, accessed 17-10-2022.
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FIGURE 13
Two Pareto frontiers of two inverse design optimizations denoted as (i)
fixed 5 nm defect and (ii) 2 nm defect. In both cases the objective was to
minimize the cost in JPY/cm3 while maximizing the coercive field. Only
(Ndx(Ce3/4La1/4)1−x)2Fe14B composites for shell and core materials were
allowed. (A) The Pareto set colored with shell Nd (%) and (B) with the
core Nd (%). The gray dashed lines show the predictors 95% confidence
interval.

the direction of the magnetization vector of a grain is analytically
calculated by the SW model as well (Wood, 2009). This way, in
our reduced order model we can also track the reversible part of
the demagnetization curve of each grain, and therefore of the entire
multigrain system. The exchange field is defined as Hexch =M/l2 with
l being a phenomenological distance parameter.

We start from a magnetically saturated state with a large positive
external field and gradually reverseHext in the negative direction until
negative saturation. At each field step for each grain we evaluate the
total field and check if it overcomes the local switching field Hsw in
each point. If multiple grains would switch, only the magnetization of
the one with the smallest difference between the total field and Hsw is
reversed and the entire system is recomputed. This routine of reversal
and recomputation of the total field is done iteratively until a magnetic
equilibrium state is reached for the current applied field.Only then this
field is reduced by another step and the iterative process starts again.

The free parameters d and l were tuned by comparing calculated
coercive fields of single cubic grains to conventional micromagnetic
results. We used efficient global optimization (Huang et al., 2006) as
implemented in the Dakota suite10 to find theminimal error for grains
with sizes between 100 nm and 800 nm. We included grains with a
magneto-crystalline anisotropy direction alignedwith the applied field
and misaligned by 20°. The intrinsic properties for NdFeB are taken
from literature as μ0Ms = 1.61 T, K1 = 4.9 MJ/m3 and A = 8 pJ/m.
With the optimized parameters d = 1.44 and l = 1.24, the reduced
order model can reproduce the coercive fields from conventional
micromagnetics very well (see Figure 9).

The empirical relation (Kronmüller et al., 1988) for the coercive
field

Hc = α
2K1

μ0Ms
−NeffMs (4)

10 https://dakota.sandia.gov/, accessed 24-10-2022.

is often used to analyze coercivity in permanent magnets. The
microstructural parameter α is expected to account for the decrease
of the coercive field by soft magnetic defects, misorientation, and
intergrain exchange interactions (Kronmüller and Goll, 2002). The
microstructural parameter Neff gives the reduction of the coercive
field caused by strong local demagnetizing fields (Grönefeld and
Kronmüller, 1989). Experimentally, the microstructural parameters
α and Neff are derived from fitting a straight line to the values
of Hc(T)/Ms(T) and 2K1(T)/(μ0M

2
s (T)) measured at different

temperatures T. In micromagnetic simulations, we can compute
the microstructural parameters by separating the effects of the
demagnetizing field. Computing the demagnetization curve but
neglecting themagnetostatic energy term givesH*

c = α2K1/(μ0Ms) and
we canderiveα =H*

cμ0Ms/(2K1). Computing the demagnetizing curve
using magnetostatics gives Hc =H*

c −NeffMs. From the difference of
the coercive fields computed with and without magnetostatic effects,
we obtain the effective demagnetizing factor Neff = (H*

c −Hc)/Ms.

2.4 Combinatorial sputtering

A compositionally graded NdCeLaFeB film was fabricated by
co-sputtering three targets onto a stationary thermally oxidised Si
substrate of diameter 100 mm. The targets were NdFeB, LaFeB, and
CeFeB, each with a diameter of 30 mm. The nominal composition
of the individual targets (∼RE17Fe74.5B8.5) was richer in RE than
stoichiometric 2:14:1, to favour the formation of a coercivity
inducing RE-rich grain boundary phase. Ta was used as buffer and
capping layers, giving the following sample structure: Si/SiO2/Ta
(50 nm)/NdLaCeFeB(1500 nm)/Ta (5 nm). The film was deposited
at room temperature and then annealed at 500°C for a duration of
10min, using a rapid thermal annealing furnace (RTA, Jipelec). 2D
maps of composition of the as-deposited filmweremade using Energy
Dispersive X-Ray analysis (EDX, Oxford Instruments, spot size ∼1 μ
m) in a scanning electron microscope (SEM, ZEISS). The nominal
accuracy of the estimated composition values is of the order of ±1-
2 at%. High throughput magnetic characterisation was performed
using an in-house developed scanning polar Magneto-Optic Kerr
effect (MOKE) system with an integrated coolant-free bi-polar pulsed
magnetic field generator and a laser spot size of roughly 50 μm
(Dias et al., 2017). The maximum field strength applied at the film
surface during a given loop measurement was 4 T. The duration of
individual field pulses is of the order of 16 μs, and the delay between
positive and negative field pulses is roughly 10 ms. The evolution of
crystal structure across the composition gradient was characterized
in a high throughput fashion using scanning X-ray diffraction (XRD,
Rigaku SmartLab) with Cu-Kα radiation. EDX, MOKE and XRD data
points were measured at intervals of 5× 5 mm2. Here XRD was used
for high-throughput characterization of the compositionally graded
NdCeLaFeB films. For a more detailed characterization of certain
new phases characterizationmethods such asMössbauer spectroscopy
would give additional phase information (Niarchos et al., 2021).

We applied PLS regression in order to predict coercivity from the
XRD spectra. PLS regression is well suited for this task, because of
its implicit dimensionality reduction. In XRD analysis the number of
features, angles at which the scattering intensities were measured, may
be higher than the number of samples. Therefore a suitable machine
learning method has to be applied when we want to predict material
properties such as the coercivity frommeasuredXRDpatterns. Indeed,
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FIGURE 14
Synthetic microstructure generated according to SEM images of sintered NdFeB magnets by matching experimental and synthetically computed power
spectra. (A): Three-dimensional grain structure. (B): Nine slices through the structure. The grains of the main phase are red. Non-magnetic inclusions
(Nd-Oxides) are green. The grain boundaries shown in black are assumed to be non-magnetic. The structure is generated to resemble that of a magnet
with the SEM image shown in Figure 8B.

PLS regression has already been widely used in chemistry to analyze
spectra (Wold et al., 2001; Eriksson et al., 2014). Machine learning
helps to identify important features. In PLS regression a feature is
important if the corresponding PLS coefficients are high. Then the
feature strongly contributes to Y . On the other hand, a feature is
also important if it strongly contributes to the explanation of X
given by high loadings which correspond to the feature. The variable
importance on projection (VIP) score accounts for both importance
on X and Y (Wold et al., 2001). VIP score measures the importance of
each feature according to variance explained by each latent variable.
The average of the squared VIP scores is one. Therefore features with
a VIP score greater than one are considered to be important.

3 Results

3.1 Machine learning of intrinsic magnetic
properties

To demonstrate an example of forward model results, predictions
of K1 and μ0Ms of the trained partial least squares model, over
lanthanum concentration with (Ndx,La1−x)2Fe14B are shown in
Figure 10 at 300 K and 433 K. The 95% confidence intervals are
computed using bootstrapping (Mendez et al., 2020).

We see that both anisotropy and saturation magnetization
decreases with increasing La content. At 433 K the saturation

magnetization is close to 1 T if Nd is replaced by 60% La. To make
the trained models predictions interpretable, the feature importance
can be used. An example is the variable importance on projection
(VIP) score of the PLS regression method. A model-agnostic method
to compute a feature importance for a prediction has been proposed
by Lundberg and Lee (2017) which computes the contributions of a
feature by completely removing it from the prediction. Those values
are called SHapley Additive exPlanations (in short SHAP values).
This can be done globally for a full training data set or locally
for one single input feature vector. The major advantage of SHAP
values is that they are additive. Starting from the mean model
prediction and summing up all important SHAP values gives the final
prediction value. In Figure 11 we show a SHAP explanation for the
composition (Nd0.4La0.6)2(Fe0.6Co0.6)14B at 433 K. We can see that
the positive contributions for saturation magnetization result from
the increased cobalt content and zero cerium content. The negative
contributions are the increased lanthanum concentration and the
elevated temperature. The addition of cobalt compensates the loss of
saturation magnetization caused by the higher temperature.

The above results show that by adding Co it is possible to
compensate the loss of Ms owing to La addition. The SHAP plot
of Figure 11 shows that increasing the temperature from 300 K to
433 K decreases the saturation magnetization by 0.06 T. In contrast,
substituting Sm with a heavy rare-earth such as Gd, Tb or Dy in
Sm2Co17 shows almost zero temperature dependence of remanence
in the range from 223 K to 423 K (Hadjipanayis et al., 2006).
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FIGURE 15
Comparison of the demagnetization curve calculated by the reduced
order model (red) and the curve calculated by conventional
micromagnetics (blue). The insets show the portion of switched grains at
three different values of the external field for both models.

3.2 Coercivity of multi-phase grains

In this section, we demonstrate our inverse design approach.
Using micromagnetic simulations, we calculated the coercive fields
for a platelet-shaped multi-phase grain. The shape and size of the
model were inspired by grains found in hot-deformed Nd-Fe-B
magnets. A 400× 400× 100 nm3 core was enclosed within a 10 nm
thick shell. For the simulations we enclosed the multi-phase grain
within a 4 nm thick ferromagnetic defect layer (K1 = 0,μ0Ms = 1.1 T)
which represents the presence of a soft magnetic grain boundary
(gb) phase. The volume shares of the core, the shell and the
gb are 68%, 22% and 10%, respectively. The intrinsic properties,
K1 and Ms, for the core and shell phase were extracted along a
linear fit (dashed line shown in Figure 12) of measured values
for chemical compositions at 300 K and do not represent actual
measured values. As nucleation is expected to start close to the
surface of the multi-phase grain (Grönefeld and Kronmüller, 1989;
Fischbacher et al., 2018), K1 of the shell phase is always higher
or equal than K1 of the core phase. The exchange constant A is
assumed to be 8 pJ/m for all three phases. We then reduced K1 (and
consequently Ms) in the core and shell phases until the coercive
field μ0Hc was reduced to 1 T. One suitable phase combination
identified was K1 = 3.77 MJ/m3, μ0Ms = 1.45 T for the shell phase and
K1 = 0.7 MJ/m3, μ0Ms = 1.04 T for the core phase. The inverse design
approach then predicted (Nd0.29La0.36Pr0.35)2Fe14B for the shell phase
and (La0.33Ce0.67)2(Fe0.75Co0.25)14B for the core phase at 300 K. Since
this approach can be seen as temperature independent, the same can be
done with the 433 K dataset. The predicted chemical compositions are
Nd2(Fe0.6Co0.4)14Band (Nd0.04La0.22Ce0.62Pr0.11)2(Fe0.98Co0.02)14B for
shell and core, respectively. The core phase, which represents 68%
of the volume, is almost Nd-free. It is recalled that heavy rare Earth
elements are not yet included in the predictor.

In Figure 12 the bars around the predicted points give the 95%
confidence interval of the forward regressor which was evaluated at
the best point found by the genetic optimizer. We see that the model
uncertainty given by the width of the confidence interval increases
with the distance from the experimental data points which are blue
crosses for T = 300 K and red crosses for T = 433 K.

FIGURE 16
(A) Demagnetization curves for cubes with 160 grains of different
average grain size. The dark colored curves are the average of curves of
ten structure variations drawn in the brighter version of the same color.
(B) Calculated local effective demagnetization factor Neff depending on
the grain size of the cube. The depicted distribution for each grain size is
calculated from ten microstructural variations. The circles mark the
median; the gray lines show the distance between minimum and first
quartile (Q1) and maximum and third quartile (Q3), respectively.

FIGURE 17
Obtained grain size distribution of four SEM images. After manual
labeling of grain boundaries the surface areas of the grains were derived
with the image processing tool ImageJ (Schneider et al., 2012) and
corrected with the method of Saltykov (1961) using GrainSizeTools
(Lopez-Sanchez, 2018).
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FIGURE 18
(A) EDX maps of Nd, La, Ce and Fe content of a NdCeLaFeB film deposited at room temperature, (B) MOKE loops and (C) coercivity map, (D) coercivity and
(E) total rare earth as a function of rare earth over total rare earth content of a NdCeLaFeB film annealed at 500°C for 10 min.

FIGURE 19
XRD waterfall map along lines (A) y = −35 mm and (B) x = −20 mm of the NdCeLaFeB film.

With a trained model that predicts coercivities from multi-phase
grain geometries and chemical compositions of its phases (explained
in Section 2.2.2), we can do inverse modelling: We can search for
multi-phase grain structures targeted for a defined coercive field.
During optimization we can define conditions, such as only grains
with a fixed defect layer thickness or a given maximum Nd content.

Figure 13 demonstrates the two optimization problems and their
final Pareto frontiers after 200 generations with a population size of
200. A pareto front is a hypothetical border described by the points
of evaluations from an iterative optimization which most efficiently
minimize both objective functions. No other points can be found
outperforming one objectivewithout losing on the other objective.The

two objective functions for both scenarios are maximizing coercivity
while minimizing the cost. In both cases the only available material is
(Ndx(Ce3/4La1/4)1−x)2Fe14B following a press release of Toyota Motor
Corporation in 201811 in which this special lanthanum to cerium ratio
has been announced. The difference between the two optimization
problems is that in i) a fixed defect shell of 5 nm in each direction
has been set which inherits a saturation magnetization 0.8 times
the saturation magnetization of the selected shell phase, reflecting

11 https://global.toyota/en/newsroom/corporate/21139684.html, accessed 09-
11-2022.
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FIGURE 20
(A) Measured coercivity versus coercivity predicted from the XRD pattern and chemical composition, (B) 95% confidence interval for the coercivity
prediction of different points on the wafer, (C) peaks of the PDF cards of the pure RE2Fe14B phases, variable importance on projection (VIP) and PLS
coefficient for the XRD peak positions, and (D) VIP and PLS coefficient for the different chemical elements.

some kind of diffusion process. In the second scenario ii) the defect
thickness is a free parameter. One can see that the optimization
problem for grains with a fixed 5 nm defect reach only 1 T coercivity
and cannot be increased anymore by increasing the amount of Nd
in the shell phase. On the other hand, if the defect layer thickness
is a free parameter, the final population of the optimization consists
mainly of designs with the thinnest possible defect, allowing a clear
improvement in price efficiency and effective usage of shell Nd in order
to increase coercivity.

3.3 Simulations of hysteresis of multigrain
structures

We generated synthetic microstructures of NdFeB magnets by
Laguerre tessellation and Bayesian optimization which matches the
power spectra of SEM images with those obtained from the synthetic
structure. Applying the methodology outlined in Section 2.3.3, we
obtained the polycrystalline structure shown in Figure 14. One out
of eight experimental SEM images of the magnet whose structure
was reconstructed is shown in Figure 8B. The structure generation
algorithm minimized the difference between the average power
spectrum of the eight experimental images and the average power
spectrum of nine slices through the synthetic microstructure. An
average grain size of 6.68 μm was obtained for the main phase.

The newly developed reduced order model based on the
embedded Stoner-Wohlfarth model enables the fast computation of
demagnetization curves of large multigrain systems. To validate our
new model we compare computed demagnetization curves of a cube

to the results of conventionalmicromagnetics.The cube has 160 grains
with a mean grain size of 0.1 μm (see inset in Figure 16A). The
grains are decoupled by a non-magnetic boundary phase.The intrinsic
properties for Nd2Fe14B are taken from literature as μ0Ms = 1.61 T,
K1 = 4.9 MJ/m3 and A = 8 pJ/m. On average, each grain has about
2000 points where the local switching field is evaluated. The magneto-
crystalline anisotropy direction assigned to the grains is uniformly
distributed with a maximal deviation of 35° from Hext. The resulting
demagnetization curves in Figure 15 show very good agreement along
the entire reversal process. Along the curves the reversed grains are
shown at three different field values. For both models the reversal of
the system starts with the same grain. While individual grains deviate,
most of the demagnetization progresses via the same grains.

Encouraged by this promising result, we enlarged the system to
length scales inaccessible by conventional micromagnetic models. We
calculate the demagnetization curves of cubes with 160 grains for five
different grain sizes from 0.1 μm to 29.3 μm.The cubewith the biggest
grains has an edge length of 128 μm. For each cubewith a specific grain
size we generate ten variations of the granular structure to calculate
an average demagnetization curve. In Figure 16A the curves of these
variations are plotted in light colors, while the darker lines of the
respective colors represent their average. The inset shows an example
of the used microstructure. With increasing grain size the slope of the
demagnetization curve increases and the coercive field decreases. This
can be solely attributed to the increased magnetostatic field of larger
grains. Furthermore, the distribution of Hc broadens with increasing
grain size.

Figure 16B shows the calculated demagnetization factor Neff for
a synthetic microstructure consisting of 160 grains as function of
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TABLE 1 Summary of appliedmachine learningmodels described in Sections 2.1 and 2.2. All R2 values have been computed with the full data set but through
5-fold cross-validation. R2 is the percentage of howmuch variance of the predicted quantity can be explained by the trainedmodel.

prediction of with input features sklearn model name R2

surrogate ab-initio data Jij,M0,μ, etc. Nd, Pr, La, Ce, Fe, Co, Ni (%) PLSRegression .958

intrinsic material properties μ0Ms,Ku Nd, Pr, La, Ce, Fe, Co, Ni (%) PLSRegression .961

coercivity μ0Hc μ0Ms,Ku of core, shell and grain boundary MLPRegression .975

and geometrical description of each phase

coercivity μ0Hc XRD pattern PLSRegression .847

grain size. In this simulation the grains were decoupled with a non-
magnetic grainboundary phase. The demagnetizing factor increases
with increasing grain size. The microstructural parameter resulting
from the misorientation of the grains is α = 0.55. The results of
the reduced order model are consistent with both experiments and
previous mircomagnetic results for a single grain (Bance et al., 2014).
Here we compare the computed demagnetizing factors with those
of commercial sintered NdFeB magnets. Depending on the heat
treatment the demagnetizing factor ranges from 1.0 to 1.5. The grain
size distribution for the sintered magnet is shown in Figure 17. In
order to obtain the grain size distribution we used four SEM images,
wemanually labeled the grain boundaries and derived the surface area
of the grains with the image processing tool ImageJ (Schneider et al.,
2012). The resulting grain size distribution from 2D images was
corrected using the method of Saltykov (Saltykov, 1961). For this
purpose we applied the software GrainSizeTools (Lopez-Sanchez,
2018). The average grain size is 6.42 μm which is close to the value
6.68 μm obtained by matching the experimental and synthetically
computed power spectra. The resulting microsctructure is shown in
Figure 14.

3.4 High throughput methods,
combinatorial sputtering

EDX composition maps of the as-deposited NdCeLaFeB film are
shown in Figure 18A. Note that only the rare earth (RE) and Fe
content is considered (i.e., B is neglected). The RE gradients respect
the relative disposition of the individual targets, with the Nd, Ce and
La contents being highest in the south-west, east and north-west,
respectively. Despite the composition of the individual targets being
very close, the Fe content varies somewhat, from a maximum value
close to 86 at% to a minimum close to 80 at%. The higher maximum
content of Ce compared to Nd and La is tentatively attributed to an
inhomogeneity in the sputtering plasma. A 2D array of MOKE loops
and the corresponding coercivity map of the annealed NdCeLaFeB
film is shown in Figures 18B,C. Coercivity is found to vary across the
wafer, with the highest values found in the south of the wafer, where
the content of La is lowest. Comparing spatial variations in EDX and
MOKE data allows us to plot coercivity on a ternary diagram of Ce,
La and Nd content as a percentage of total rare earth (TRE) content
(Figure 18D). The zone of maximum coercivity is limited to low La
content (<12.5%), and stretches to a Ce content of close to 60%. The
drop in coercivity with increasing Nd content identified with a red
dashed line in the ternary coercivity diagram is attributed to the drop
in TRE content in this region of the ternary diagram (Figure 18E).

High throughput XRD analysis was applied over an area of 60 by
80 mm2. Examples of XRD waterfall plots measured along specific
lines are shown in Figure 19. The diffraction peak positions from
the powder diffraction file (PDF) card of Nd2Fe14B (ICSD 00-036-
1296) is overlaid on the lower x-axis of both patterns for reference,
and all observed XRD peaks can be assigned to the 2-14-1 structure.
The diffraction peak positions from the PDF card of Ce2Fe14B (ICSD
01-079-9727) are overlaid on the upper x-axis of Figure 19A, as
the measured points stretch towards Ce-rich compositions while
those of La2Fe14B (ICSD 01-079-9726) are overlaid on the upper x-
axis of Figure 19B, as the measured points stretch towards La-rich
compositions. Comparison of the experimental peak positions with
the PDF cards suggests that La has a lower tendency than Nd and Ce
to enter the 2-14-1 crystal structure.

From the data which is shown in Figures 18, 19we know the local
chemical composition, local XRD pattern, and the locally measured
coercive field. Machine learning can be used to create a regression
model that predicts the coercive field from the chemical composition
and the XRD pattern. The features are the XRD intensities sampled
for 2ϑ ranging from 28° to 31° and from 40.5° to 45.5° with a step
size of 0.04° and the chemical composition Nd, La, Ce, Fe. This gives
a total number of 206 features. The total number of samples, positions
at which data is available, is 209. PLS regression is a suitable method
for a problem for which the number of features is approxmately the
same as the number of samples. Therefore, we applied PLS regression
to predict the coercive field from the local XRD pattern and the local
chemical composition.

We split the total available data randomly into a test and a training
set. For the test set we randomly picked 20% to be used for testing
the final machine learning model. The remaining 80% of the data
were used for training. First, we applied 5-fold cross validation to
determine the best number of PLS components. A maximum average
R2 score was achieved with seven PLS components. Figure 20A shows
the measured versus predicted values for the coercive field. The
mean absolute error and the R2 score for the test set are 0.09 T
and 0.81, respectively. Figure 20B gives the 95% confidence interval
at the different points on the wafer. The confidence interval was
computed using bagging (Mendez et al., 2020). For most points the
size of the confidence interval is in the range from 0.1T to 0.15 T.
Figures 20C, D give the variable importance on projection (VIP) and
the PLS coefficient for the XRD peaks and the chemical elements,
respectively. A VIP score greater than 1 is important for the coercive
field. Comparing the VIP scores >1 and the peak positions from
the PDF cards of the pure RE2Fe14B phases which are well resolved
(i.e., the peaks between 41° and 42.5°) shows that the PLS regression
identifies peaks with lattice parameters between those of Nd2Fe14B
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and Ce2Fe14B as important contributions to the coercive field. The
positive peak in the PLS coefficient at around 30.2° corresponds to
a VIP score >1. This peak contributes positively to the coercive field
and it is tentatively attributed to a RE-rich phase (Ren et al., 2018).The
VIP peak at 29.13°may indicate a peak of pure La (ICSD04-001-0368).
The corresponding PLS coefficient is negative.The contributions of the
different elements to the coercive field are clearly seen in Figure 20D.
All VIP scores are >1. The most important variable is the Nd content
with a VIP score reaching almost 3. Nd has positive effect on the
coercivity with a high positive PLS coefficient. Ce and La both have
a negative effect on the coercivity. La reduces the coercivity greater
than Ce. The PLS coefficient of Fe is negative. Increasing the Fe
content reduces the coercive field because the total RE content is
decreasing.

4 Discussion

Machine learning assisted materials design may lead to tailored
magnetic materials. However, in materials science the available data
to establish reliable machine predictions is limited. Accurate physics
simulations based on electronic structure and micromagnetic theory
are time consuming even on modern hardware. Similarly, gathering
experimental data, which relates structure and property of magnetic
materials is cumbersome. In this workwe proposed different strategies
to address these problems. i) The combination of experimental data
sets and data obtained from physics simulation may lead to reliable
machine learning models. ii) High-throughput measurements on
sputtered magnetic films are a means to generate data quickly and in
an automated fashion.

To judge the quality of the predictions, the explained variance
and the model uncertainty need to be tracked. Though standard
statistical methods are available for these tasks, further improvement
of the methodologies to test the robustness of regression models
and to quantify model uncertainties are needed. Simulated data
as input for machine learning models may create a biased model.
For intrinsic magnetic data, fusion as presented previously by
(Harashima et al., 2021) helps to reduce the error introduced by
the approximations of the simulations. On the other hand, the
predictor performance for estimating intrinsic magnetic properties
can be improved when the experimental datasets are augmented
with ab initio data as shown in Section 2.1.3. At the mesoscopic
length scale, at which grain morphology, secondary phases,
and grain boundary phases are relevant, building of synthetic
microstructures that resemble real magnets is a prerequisite for the
critical assessment of simulation results. To address this problem we
developed methodologies for grain structure generation based on
experimental data and micromagnetic simulations for large-grained
magnets.

A possibility for the critical review of machine learning
models is the comparison of model interpretation results with the
well-established expert knowledge in the field. Additive variable
importance, as provided by SHAP values, quantitatively explains how
the various chemical elements contribute to the intrinsic magnetic
properties of magnetic materials. Similarly, the variable importance
on projection (VIP) identifies the important peaks in the XRDpattern,
the associated phases of which have a strong impact on the coercive
field of permanent magnets.

Table 1 shows the applied machine learning models, their input
features, predicted outputs and their explained variance measure R2.

We demonstrated the possibility of inverse design of magnetic
materials. Starting from the desired spontaneous magnetization
and magneto-crystalline anisotropy, we estimated possible chemical
compositions with intrinsic magnetic properties close to the target
values. Furthermore, we can search for Nd-lean magnets composed
of core/shell grains with a low price and high coercive field. These
magnets are typically fabricated by diffusion of Nd along the grain
boundaries in a base magnet with low or zero Nd content (Sepehri-
Amin et al., 2013; Ito et al., 2016). Restricting the search space to a
base material in which the Ce to La ratio is 3:1, we show that a
coercive field close to 1 T can be reached with a Nd-free core under
the assumption of unavoidable soft defects with a thickness of 5 nm.
This result was obtained using micromagnetic simulations of single
multi-phase grains which is a crude approximation. Once generative
models for multi-phase multi-granular structures that resemble the
microstructure of real magnets are fully established, it will be possible
to apply inverse design for the joint optimization of the chemical
composition and the magnet’s grain structure. Advances in high-
throughput experimental measurements will contribute to overcome
this challenge. One example is systematic microstructure variation in
terms of grain size or secondary phase of sputtered thin films and the
proper local measurement of the grain size by scanning SEM or XRD
analysis.

In this work, we adopted feature extraction within a magnetic
material data set obtained from a systematically designed
experimental data space. In our case, good features from XRD
spectra could be extracted by dimensionality reduction for modeling
performance of materials by machine learning. We also apply this
method to other materials, e.g. catalyst, battery, and carbon materials,
and in each case the extracted feature appears to be suitable for
expressing their objective value, performance, porosity, etc. In the
future, by introducing the WAVEBASE system, it will be possible for
collaborators to always share the latest data and analysis results in
real time, and we will assess whether it will lead to the acceleration of
research.
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