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Topology of the space of measure-preserving transformations of the circle

This paper is dedicated to prove that the space of circle expanding maps of degree 2 preserving Lebesgue measure is an arc-connected space homeomorphic to an infinite-dimensional Lie group whose fundamental group is Z. The techniques involved in the proof are rather unexpected and lead to a formulation of a general conjecture.

1 Introduction and statement of results.

One of the classical problems in topology, dynamics, and geometry is studying properties of the group of diffeomorphisms of a closed manifold M , preserving a given smooth volume form ω. Questions in terms of the topology of this space, dynamics-rigidity phenomenons, and algebraic properties can be addressed. There has been extensive work in this direction as in [START_REF] Mcduff | On the group of volume preserving diffeomorphisms of R n[END_REF][START_REF] Yagasaki | Groups of volume-reserving diffeomorphisms of noncompact manifolds and mass flow toward end[END_REF]. In particular, in [START_REF] Moser | On the volume element on a manifold[END_REF] J.Moser has shown that these groups are locally arc-connected. In this paper, we generalize Moser's result to a space of non-invertible volume preserving maps in dimension 1. More precisely, we consider our manifold to be the circle, and we study the space of C 1 orientation preserving uniformly expanding maps of degree 2, preserving the natural volume form on the circle i.e Lebesgue measure. We denote this space by Λ Leb . Our results suggest that the facts known for volume preserving diffeomorphism groups can be extended to spaces of non-invertible volume preserving maps. The only topological information we know about Λ Leb is that it is of first category in the space C 1 (S 1 , S 1 ) of all C 1 maps of the circle, this was shown in [START_REF] Krzyzewski | A remark on exanding mapping[END_REF].

Our result shows that Λ Leb is indeed arc-connected, with fundamental group π 1 (Λ Leb ) = Z. Moreover, we show that this space is homeomorphic to a natural infinite dimensional Lie group.

Theorem 1.1. The space Λ Leb endowed with the C 1 -topology is homeomorphic to T 2 \ diag(T 2 ) × D + (S 1 , 0 is fixed), in particular, Λ Leb is arc-connected, and π 1 (Λ Leb ) = Z.

Remark: We always denote by D + (S 1 ) the group of circle diffeomorphisms which preserves the orientation and D + (I, J) for the space of orientation preserving interval diffeomorphisms and D +,exp (I, J) for the expanding ones (i.e f > 1). T 2 denotes the torus S 1 × S 1 . This theorem, as mentioned before, is an extension of Moser result on local arc-connectedness of the group of volume preserving diffeomorphisms. However, our result extends it only in dimension one. Intuitively the result says that for any two Lebesgue preserving expanding circle maps f, g there exists a deformation between each other γ(t) : [0, 1] → Λ Leb which preserves Lebesgue along the deformation. The fact that the fundamental group is isomorphic to Z signifies that any deformation is generated by a fixed deformation in Λ Leb . On the other hand, we show that the space Λ Leb is huge in a sense albeit being meagre in C 1 (S 1 , S 1 ), as we have partially proven in [START_REF] Ounesli | On the existence of invariant absolutely continuous probability measures for C 1 expanding maps of the circle[END_REF]. We conjecture that our result can be extended to arbitrary dimensions.

Conjecture. Let (M, g) be a closed Riemannian manifold and ω its volume form. The space Λ r ω (M ) of C 1 expanding r-folds of M , preserving the volume form, is locally arc-connected.

2 Proof of the theorem.

Circle expanding maps

Denote by E 1 (S 1 ) the space of uniformly expanding maps of the circle, and by Λ Leb the sub-space of maps f of degree 2 and preserving the Lebesgue measure λ (i.e f * λ = λ) and the orientation. We endow this space with the C 1 -topology. The circle is seen as the natural quotient space [0, 1]/(0 ∼ 1). Circle maps of degree 2 which are orientation preserving, up to conjugacy with a rotation, can be regarded as interval maps with two full branches (see figure 1). We recall that expanding circle maps of degree 2 have two main characteristics: a unique fixed point p ∈ S 1 and two branch-arcs determined by two distinct points

x 1 = x 2 ∈ S 1 .

The transfer operator.

Let f ∈ E 1 (S 1 ). We define the transfer operator associated to f , and acting on L 1 λ (S 1 ) as: if h ∈ L 1 λ (S 1 ) then:

P h = d f * µ h dλ . ( 1 
)
where µ h = h • λ. This operator can be interpreted as the density of the push-forward of measures in respect to Lebesgue. The transfer operator for maps of degree 2 has an explicit formula:

P h(x) = y∈f -1 (x) h(y) f (y) . (2) 
The main property of this operator is the following Folklore proposition:

Proposition 2.1. The set of absolutely continuous invariant measures of f correspond to the fixed points of the operator P .

Proof of Theorem 1.

The proof of the theorem will be based on the following proposition, which on a part we consider to be of independent interest: Proposition 2.2. Let a ∈ (0, 1) and f 1 : [0, a] → [0, 1] be an expanding C 1 -diffeomorphism, then there exists a unique extension of f 1 to a Lebesguepreserving full branch expanding transformation of the unit interval.

Proof. Consider the differential equation

1 f 1 f -1 1 (x) + 1 f 2 f -1 2 (x) = 1, x ∈ [0, 1], (3) 
where

f 2 : [a, 1] → R is a diffeomorphism into it's image. The equation (3) is equivalent to f 2 (x) = f 1 f -1 1 f 2 (x) f 1 f -1 1 f 2 (x) -1 , x ∈ [a, 1], (4) 
and since f 1 is C 1 , by Peano's existence theorem the Cauchy problem with the initial condition f 2 (a) = 0 admits a maximal solution f 2 defined on the interval [a, 1]. Let's show that f 2 maps diffeomorphically onto [0, 1]. Notice that f 2 (x) > 1 for all x ∈ [a, 1], therefore it only remains to show that f 2 (1) = 1. Assume that f 2 (1) < 1, and consider I = [f 2 (1), 1]. By construction the map f : [0, 1] → [0, 1] defined by f 1 and f 2 preserves Lebesgue measure since (3) corresponds to (2) by taking h to be the constant function 1, so

λ(I) = λ(f -1 (I)) = λ(f -1 1 (I)) because f -1 2 (I) = ∅, this is a contradiction because f -1
1 is a contraction. We conclude that f is indeed a uniformly expanding full branch map of the interval. Uniqueness cannot be deduced directly from the equation (4), because Peano's existence theorem provides only existence, we will deduce it using the fact that the solution preserves λ. Let f, g : [0, 1] → [0, 1] be two full branch interval maps which preserve Lebesgue measure, assume they have the same first branches (i,e f 1 = g 1 ) on an interval [0, a], then for every y ∈ [0, 1] we have

λ([0, y]) = λ(f -1 ([0, y])) = λ(g -1 ([0, y])),
which implies by assumption that λ([a, f -1 2 (y)]) = λ([a, g -1 2 (y)]), this implies that f -1 2 (y) = g -1 2 (y), thus uniqueness of solutions.

Lemma 2.3. The extension of an expanding diffeomorphism f 1 : [0, a] → [0, 1] to a full branch interval map preserving Lebesgue is a C 1 circle map, if and only if the following holds:

f 1 (0) = f 1 (a) f 1 (a) -1 (5)
Proof. This is because for a full branch map to lift to a circle map, the derivatives at the end points must coincide, as well as the left and right derivatives at the point a, and so by equation (4), we need (5) to hold.

We will use the previous results to show that Λ Leb is arc connected.

Corollary 2.4. Λ Leb is arc connected.

Proof. Let f be the doubling map of the circle, and g ∈ Λ Leb . Up to composing g with a rotation, we can assume that g and f have the same fixed point 0. Denote by x g the point in S 1 such that xg 0 g (t) dt = 1, we will construct a homotopy between g and g in Λ Leb , such that x g = 1 2 . Without loss of generality, let us assume that x g > 1 2 . For x g > > 1 2 , translate horizontally the graph of g| ( ,xg) to ( 1 2 -x g + , 1 2 ) by a linear homotopy T (t, .). Now let z close enough to 0, more precisely, chose z < 1 2 -x g + . Construct a homotopy H(t, x) as follows: for every t define H(t, .)| [0,z] = g and H(t, )| [ -t,xg-t] = T (t, ), and for every t extend it in a C 1 and expanding way to the whole interval [0, x g -t], as represented on the figure below. This yields a homotopy between g and g in Λ Leb , because condition (5) is satisfied for every t, also g satisfies x g = 1 2 .

Figure 2: A representation of the homotopies H and T .

The second step is to construct an appropriate homotopy between g and f . This is straight forward by considering a continuous family of expanding Proof. Let Γ be the space:

C 1 maps (h c : [0, 1 2 ] → [0, 1]) c∈[2,g ( 
Γ = 0≤x-y<1 {f ∈ D 1 +,exp ([x, y], [0, 1]) such that f (x) = f (y) f (y) -1 }.
Proposition 2.2 results naturally in a map F:

F : Γ → Λ Leb ,
defined by sending an element f ∈ Γ to a Lebesgue preserving circle map, by extension after translating [x, y] to [0, x -y], and translating the solution back.

Proposition 2.6. The map F is a homeomorphism (in the C 1 -topology).

Proof. By proposition 2.2 and lemma 2.3, the map is well defined and for every f ∈ Γ, there exists a unique extension of f to a circle expanding map preserving Lebesgue measure. Continuity follows from the fact that the unique solutions to a continuous family of Cauchy problems (ODE t ) t∈I , with a continuous family of initial conditions form a continuous family (f t ) t∈I in the C 1 -topology and this shows that F is a continuous injection. The image of the operator F covers all Lebesgue preserving circle maps f , whose fixed point p f is inside the branch interval [x, y] of the specific element, hence it is surjective, the inverse is clearly continuous and hence is a homeomorphism.

to finish the proof, notice that Γ is homeomorphic to

(T 2 ) \ diag(T 2 ) × {f ∈ D + ([0, 1 2 ], [0, 1]) such that f (0) = f ( 1 2 ) f ( 1 2 ) -1 } and that: {f ∈ D + ([0, 1 2 ], [0, 1]) such that f (0) = f ( 1 2 ) f ( 1 2 ) -1 } D + ([0, 1], [0, 1] such that f (0) = f (1)) D + (S 1 , 0 is fixed).
Now remark that T 2 \ diag(T 2 ) inherits the Lie group structure of C \ {0} and D + (S 1 , 0 is fixed) is an infinite dimensional Lie group.

Corollary 2.7. π 1 (Λ Leb ) = Z.

Proof. First, notice that π 1 ((T 2 ) \ diag(T 2 )) = π 1 (C \ {0}) = Z, on the other hand, by results of [START_REF] Cerf | Topologie de certains éspaces de plongement[END_REF], we know that the injection of SO(2) in D + (S 1 ) induces a splitting of the fundamental group π 1 (D + (S 1 )) = π 1 (SO(2)) ⊕ π 1 (D + ([0, 1], ∂[0, 1])), and since we know that π 1 (SO(2)) = Z, and that D + ([0, 1], ∂[0, 1]) is contractible, we deduce that π 1 (D + (S 1 )) = Z and that D + (S 1 , 0 is fixed) is simply connected. So we have π 1 (Λ Leb ) = Z.

Remark. Arc-connectedness can be deduced again by the fact that our space is homeomorphisc to an infinite dimensional Lie group. However, we consider our prove of arc-cnnectedness to be of independent interest since we believe the idea can be generalized to higher dimensions as we conjectured in the statement of results.
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 1 Figure 1: A representation of a circle map of degree 2 on the unit interval.

  0)]or[g (0),2] with h c (0) = c and h c ( 1 2 ) = c c-1 . Notice in this case that g| [0, 1 2 ] is homotopic to h g (0) by simply taking H(t, x) = tg| [0, 1

] (x) + (1 -t)h g (0) (x) and same for f| [0, 1 2 ] and h 2 by G(t, x) = tf | [0, 1 2 ] (x) + (1 -t)h 2 (x), this homotopies satisfy (5), and so they extend to a homotopy in Λ Leb between g and f by concatenating the extension of the homotopy H with the extenstion of the family (h c ) c and the extension of G in Λ Leb , this finishes the proof of arc-connectedness.Proposition 2.5. The space Λ Leb is homeomorphic to the infinite dimensional Lie group T 2 \ diag(T 2 ) × Dif f (S 1 ).