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Abstract

It is the purpose of this paper to investigate the issue of estimating the regularity
index β > 0 of a discrete heavy-tailed r.v. S, i.e. a r.v. S valued in N∗ such that
P(S > n) = L(n) ·n−β for all n ≥ 1, where L : R∗

+ → R+ is a slowly varying
function. Such discrete probability laws, referred to as generalized Zipf’s laws
sometimes, are commonly used to model rank-size distributions after a preliminary
range segmentation in a wide variety of areas such as e.g. quantitative linguistics,
social sciences or information theory. As a first go, we consider the situation where
inference is based on independent copies S1, . . . , Sn of the generic variable S.
Just like the popular Hill estimator in the continuous heavy-tail situation, the
estimator β̂ we propose can be derived by means of a suitable reformulation of
the regularly varying condition, replacing S’s survivor function by its empirical
counterpart. Under mild assumptions, a non-asymptotic bound for the deviation
between β̂ and β is established, as well as limit results (consistency and asymptotic
normality). Beyond the i.i.d. case, the inference method proposed is extended to the
estimation of the regularity index of a regenerative β-null recurrent Markov chain.
Since the parameter β can be then viewed as the tail index of the (regularly varying)
distribution of the return time of the chain X to any (pseudo-) regenerative set,
in this case, the estimator is constructed from the successive regeneration times.
Because the durations between consecutive regeneration times are asymptotically
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independent, we can prove that the consistency of the estimator promoted is
preserved. In addition to the theoretical analysis carried out, simulation results
provide empirical evidence of the relevance of the inference technique proposed.

Keywords: generalized discrete Pareto distribution, nonparametric estimation, null
recurrent Markov chain, regularity index, Zipf’s law

MSC Classification: 60K35

1 Introduction

This article is devoted to the study of the problem of estimating the regularity index
β > 0 of a generalized discrete Pareto distribution, namely the probability distribution
of a random variable S defined on a probability space (Ω, F , P), taking its values in
N∗ and such that:

P (S > n) = n−βL (n) for all n ≥ 1, (1)

where L : R+ → R is a slowly varying function, i.e. such that L(λz)/L(z) → +1 as
z → +∞ for any λ > 0, see Bingham, Goldie, and Teugels (1987). Such discrete power
law probability distributions, also referred to as generalized Zipf’s laws sometimes,
are often used to model the distribution of discrete data exhibiting a specific rank-
frequency relationship, namely when the logarithm of the frequency and that of the
rank order are nearly proportional. Such a phenomenon has been empirically observed
in many ranking systems: in quantitative linguistics (i.e. when analysing word frequency
law in natural language, see e.g. Manning and Scütze (1999)) in the first place, as
well as in a very wide variety of situations, too numerous to be exhaustively listed
here. One may refer to Sidra, Shougeng, and Nadeem (2018), Lazzardi et al. (2021)
or Zanette (2006) among many others. In this paper, we first consider the issue of
estimating the parameter β involved in (1) (supposedly unknown, like the function L)
in the classic (asymptotic) i.i.d. statistical setting, i.e. based on an increasing number
n ≥ 1 of independent copies S1, . . . , Sn of the generic r.v. S. Statistical inference for
discrete heavy-tailed distributions has not received much attention in the literature.
Most of the very few dedicated methods documented either deal with very specific
cases as in e.g. Goldstein, Morris, and Yen (2004), Matsui, Mikosch, and Tafakori
(2013) and Clauset, Shalizi, and Newman (2009) or else consist in applying techniques
originally designed for continuous heavy-tailed distributions to the discrete data after
a preliminary addition of an independent uniform noise (Voitalov, van der Hoorn,
van der Hofstad, & Krioukov 2019). The vast majority of the regular variation index
estimators proposed in the literature, Hill or Pickand estimators in particular (Hill
1975; Pickands 1975), are based on order statistics, which causes obvious difficulties
in the discrete case because of the possible occurrence of many ties. In contrast, the
estimator under study here is based on the analysis of the probability of exponentially
separated tail events. It simply rests on the fact that, as can be immediately deduced
from (1), we have ln(pk)− ln(pk+1) = β + ln(L(ek)/L(ek+1)), where ln(x) denotes the
natural logarithm of any real number x > 0 and pl = P(S > el) for all l ∈ N, and
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that L(ek+1)/L(ek) is expected to be very close to 1 for k ∈ N chosen sufficiently
large. A natural (plug-in) inference technique can be then devised by replacing the tail

probabilities pl with their empirical versions p̂
(n)
l = (1/n)

∑n
i=1 I{Si > el} for l ∈ N,

where I{A} denotes the indicator function of an event A. This yields the estimator

β̂n (k) = ln
(
p̂
(n)
k

)
− ln

(
p̂
(n)
k+1

)
, (2)

provided that p̂
(n)
k+1 > 0 (as shall be seen, this occurs with large probability if n is

sufficiently large). By convention, we set β̂n(k) = 0 when p̂
(n)
k+1 = 0. We point out that

it has exactly the same form as that proposed and analysed in Carpentier and Kim
(2015) in a different context, that of (continuous) approximately Pareto distributions1

namely. In the discrete generalized Pareto framework, we prove that for an appropriate
choice of the hyper-parameter k = kn (typically chosen of order ln(n)), the estimator
(2) is strongly consistent and asymptotically normal as n → +∞. Non-asymptotic

upper confidence bounds for the absolute deviations between β̂n (k) and β are also
established here.

Although estimation of the parameter β > 0 in (1) in the discrete i.i.d. setting is
an important issue in itself, the present paper also finds its motivation in the problem
of recovering statistically the regularity index β ∈ (0, 1) of a regenerative regular null-
recurrent Markov chain X = (Xn)n∈N, based on the observation of a finite sample
path X1, . . . , Xn with n ≥ 1. As explained in Chen (1999) (see also Chen (2000)), for
regular Markov chains, the regularity index β ∈ (0, 1] controls the (sublinear) rate at
which the number of visits to any given Harris set increases with observation time n, no
matter the initial distribution. In the regenerative case (i.e. when the chain X possesses
an accessible atom, a Harris set on which the transition probability is constant),
the distribution of the regenerative time, the return time to the atom, is a discrete
generalized Pareto (1) and the parameter β is its tail index. Due to the non-standard
behaviour of traditional estimators in this context, statistical inference for null-recurrent
Markov chains is very poorly documented in the literature (Gao, Tjøstheim, & Yin 2013;
Karlsen, Myklebust, & Tjøstheim 2010; Karlsen & Tjostheim 2001; Myklebust, Karlsen,
& Tjøstheim 2012) and, to the best of our knowledge, estimation of the key quantity β
has not received much attention. It is also the goal of this article to extend the use of
the estimator (2) to the case where the Si’s are the successive durations between the
consecutive regeneration times up to time n. The main difficulty naturally arises from
the fact that the number 1 +Nn ≥ 0 of regeneration times (and thus the number of
durations) is now random, and the variables S1, . . . , SNn are not independent any
more when Nn ≥ 1 (in particular, their sum is less than n by construction). We show
that the limit properties (consistency and asymptotic normality) of the estimator are
however preserved. For illustration purposes, numerical experiments have been carried
out, providing empirical evidence of the relevance of the estimation method promoted.
Extension to the general case of (pseudo-regenerative) null-recurrent chains is also
discussed, the difficulties inherent in applying the methodology originally proposed in

1The distribution of a real-valued r.v. X is said to be approximately Pareto with tail index β > 0 if
its survivor function is of the form: ∀x > 0, P(X > x) = L(x)x−β , where L is asymptotically constant at
infinity, i.e. there exists C ∈ (0, ∞) s.t. L(x) → C as x → +∞.
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Bertail and Clémençon (2006b) in the positive recurrent case to mimic regenerative
Nummelin extensions (Nummelin 1984) being explained at length.

The paper is organized as follows. A thorough analysis of the behaviour of the
estimator (2) in the i.i.d. case, illustrated by numerical experiments, is first carried out
in section 2. The asymptotic results thus established are next extended in section 3
to the regenerative regular Markovian setup, when the estimator is computed based
on a single finite-length trajectory of the atomic chain. Experimental results are also
displayed and the main barrier to the extension of the methodology promoted to
general (i.e. pseudo-regenerative) regular null-recurrent chains is also discussed therein.
Technical proofs are deferred to the Appendix section.

2 Tail Index Estimation - The Discrete Heavy-Tailed
i.i.d. Case

Throughout this section, S1, . . . , Sn are independent copies of a generic discrete
generalized Pareto r.v. S, i.e. a random variable S with survivor function of type (1),
where the parameter β > 0 and the slowly varying function L are supposedly unknown.
As a first go, we start to investigate the (asymptotic) behaviour of the estimator (2) in
this basic general framework and next develop the analysis in particular situations, i.e.
when the function L has a specific form.

2.1 Main Results - Confidence Bounds and Limit Theorems

As explained in the Introduction section, the estimator (2) can be viewed as an empirical
counterpart of the quantity

β(k) = ln(pk)− ln(pk+1) = β + ln

(
L(ek)

L(ek+1)

)
, (3)

see (1), which tends to β as k → ∞ by virtue of the slow variation property of L. As
previously emphasized, unless the function L is supposed to be asymptotically constant
(i.e. there exists C > 0 s.t. L(x) → C as x → +∞), the discrete generalized Pareto
model (1) is not a discrete version of the (continuous) approximately β-Pareto model
considered in Carpentier and Kim (2015) and, consequently, the validity framework
established therein does not apply directly here. The proposition below provides an
upper confidence bound for the absolute deviations between (2) and β (respectively,
between (2) and β(k)).
Proposition 2.1. Let δ ∈ (0, 1/2) and set un(δ) = ln(2/δ)/n for all n ≥ 1. If k ≥ 1
is such that pk+1 ≥ 16un(δ), then, with probability at least 1− 2δ, we have:

∣∣∣β̂n(k)− β
∣∣∣ ≤ 6

√
un(δ)

pk+1
+

∣∣∣∣ln( L(ek)

L(ek+1)

)∣∣∣∣ . (4)

Refer to the Appendix section for the technical proof. The bound (4) reveals some
sort of ’bias-variance’ trade-off, ruled by the hyperparameter k > 0. The second term
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on the right-hand side can be viewed as the bias of the inference method, insofar as
the estimator (2) can be seen as an empirical version of the approximantion (3). It
decays to 0 as k increases towards infinity, while the first term, whose presence is due
to the random nature of the estimator, tends to +∞. We point out that second-order
slow variation conditions (Goldie & Smith 1987) are required to bound the (vanishing)
bias term in (4), as shall be explained in subsection 2.2. The following result reveals
that for an appropriate choice of k = kn, the estimator (2) is strongly consistent.
Theorem 2.2 (Strong consistency). Suppose that, as n→ +∞, we have kn → +∞ so
that (lnn) exp(knβ)/n = o(L(exp(kn)). Then, we have:

β̂n(kn) → β almost surely, as n→ +∞.

In particular, as stated below, strong consistency is guaranteed when kn is of
logarithmic order.
Corollary 2.1. Let 0 < A < 1/β. Then, we have:

β̂n(A lnn) → β almost surely, as n→ +∞.

Now, the following results establish the asymptotic normality of the deviation
between (2) and β(kn), when appropriately normalized.
Theorem 2.3 (Asymptotic normality). Suppose that kn satisfies the conditions of
Theorem 2.2 and kn = o(n) as n→ +∞.

(i) Then, as n→ +∞, we have the convergence in distribution:

√
npkn

(
β̂n(kn)− β(kn)

)
⇒ N

(
0, eβ − 1

)
.

(ii) In addition, asymptotic normality holds true for the ’standardized’ deviation:√
np̂

(n)
kn

(
β̂n (kn)− β (kn)

)
√
eβ̂n(kn) − 1

⇒ N (0, 1) , as n→ +∞.

The asymptotic normality results above can be extended to the deviation between
(2) and β, provided that the bias term β(kn)− β vanishes at an appropriate rate, as
stated below.
Corollary 2.2. Suppose that the conditions of Theorem 2.3 are fulfilled. In addition,
assume that kn is such that

√
npkn

(
1−

L
(
ekn
)

L (ekn+1)

)
→ 0, as n→ +∞. (5)

(i) Then, we have the convergence in distribution

√
npkn

(
β̂n (kn)− β

)
⇒ N (0, eβ − 1) as n→ +∞.
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(ii) In addition, the “studentized” version is asymptotically normal:√
np̂

(n)
kn

(
β̂n(kn)− β

)
√
eβ̂n(kn) − 1

⇒ N (0, 1) as n→ +∞.

Of course, the condition (5) on kn can be hardly checked in practice. This is a
classic issue in tail estimation and in the statistical analysis of extreme values more
generally. The choice of the hyperparameter k somehow rules the (asymptotic) bias-
variance trade-off: the estimator (2) is expected to be of large variance when k is large
and to have a large bias if k is too small. As depicted in Fig. 1, to choose k, one
may use the same approach as that originally proposed for the Hill estimator (see e.g.
Resnick (2007)), which consists in plotting the values of (2) for a range of values of k
and choosing k in a region where a certain degree of stability is exhibited.

Fig. 1: Behaviour of β̂n(k) for different values of k, to estimate the parameter β = 0.15
based on a dataset of 106 independent realizations of a Zeta distribution2 with
parameter α = β − 1.

Remark 1. (Averaged versions) From a practical point of view, rather than picking
a single value for k, another natural approach would consist in averaging the estimators
(2) over a range of values for the hyperparameter. Let k and m be such that k > m
and define

β (k,m) =
1

2m+ 1

m∑
j=−m

β (k + j), β̂n (k,m) =
1

2m+ 1

m∑
j=−m

β̂n (k + j).

2A discrete r.v. W follows a Zeta distribution with parameter α if P (W = k) = (kαζ (α))−1 where ζ is

the Riemann zeta function. The cdf of a Zeta distribution satisfies P(W ≥ k) ∼ kα+1/(ζ(α)(α + 1)).
This distribution is also known as Zipf’s distribution due to its relationship with Zipf’s law.

6



One may easily check that

β (k,m) = β +
1

2m+ 1

∣∣∣∣∣ln
(

L
(
ek−m

)
L (ek+m+1)

)∣∣∣∣∣ . (6)

The non-asymptotic bound in Proposition 2.1 can be extended to the averaged
version, as revealed by the analysis carried out in A.7 in the Appendix section, as well
as the strong consistency and asymptotic normality results. However, the asymptotic
variance of the averaged version is shown to increase with m.

In the next subsection, we discuss further how the behaviour of the slowly varying
function L impacts the ’bias-variance’ contributions revealed by the bound (4).

2.2 Refined ’Bias vs Variance’ Analysis - Examples

We now consider several specific cases of distributions of type (1) (i.e. several instances
of the slowly varying functions L) to explicit the asymptotic order of magnitude of
the terms 1/

√
npk+1 and | ln(L(ek)/L(ek+1))| involved in the bound (4), when kn is

picked as in Corollary 2.1: kn = A lnn with 0 < A < 1/β.

• The logarithmic case: Suppose that L(n) = C lnn, where C > 0. In this situation,
we have | ln(L(ekn)/L(ekn+1))| ∼ 1/(A lnn) as n → +∞, whereas 1/

√
npk+1 =

O(1/
√
n1−Aβ lnn).

• The inversely logarithmic case: Consider now the situation where L(n) = C/ lnn
with C > 0. Then, we still have we have | ln(L(ekn)/L(ekn+1))| ∼ 1/(A lnn), while
1/

√
npk+1 = O(

√
(lnn)/n1−Aβ) as n→ +∞.

We point out that, in the two examples above, the conditions of Corollary 2.2 are
not met, the bias being too big to get asymptotic normality (centered at β).

• The asymptotically constant case: Suppose that L(n) = eC0(1 + ϵ(n)) where
C0 > 0 and ϵ(n) → 0 as n → +∞. In this case, | ln(L(ekn)/L(ekn+1))| = O(ϵ(nA))

and 1/
√
npk+1 = O(1/

√
n1−Aβ). Hence, if |ϵ(nA)| = O(n−λ) for some λ > 0,

then the conditions of Corollary 2.2 are satisfied if we take kn = A lnn such that
max{(1− 2λ)/β, 0} < A < 1/β.

• Slow variation with a remainder (SR2): Consider the case where the slowly
varying function satisfies the condition SR2 introduced in Bingham et al. (1987):
there exist two real-valued functions k and g defined on R+ such that, for all λ > 0,

L(λx)

L(x)
− 1 ∼ κ(λ)g(x), as x→ +∞, (7)

where κ(λ) = c
∫ λ

1
θρ−1dθ, c > 0 and g is regularly varying with index ρ ≤ 0, i.e.

g(x) = xρU(x) where U is a slowly varying function. Under the additional assumption
that g has positive decrease, Corollary 3.12.3 in Bingham et al. (1987) gives the
following representation:

L(x) = C
(
1− c|ρ|−1g(x) + o (g (x))

)
, as x→ +∞, (8)
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where C is a finite constant. The result below provides precise control of the bias of
the estimation method in this case.

Lemma 2.1. Suppose that conditions (7) and (8) are fulfilled. Then, as n→ +∞,
we have:

ln

(
L
(
nA
)

L (enA)

)
= −c|ρ|−1n−A|ρ|

(
U
(
nA
)
− e−|ρ|U

(
enA

))
+ o

(
n−A|ρ|U

(
nA
))
.

In this situation, the bias of the method is thus of order O(n−A|ρ|), while 1/
√
npk+1

is of order O(n−(1−Aβ)/2). Hence, if 1/(β + 2|ρ|) ≤ A < 1/β, the conditions of
Corollary 2.2 are satisfied with kn = A lnn.

To illustrate this trade-off, we present the following Monte-Carlo experiment:
We generate 104 samples of a heavy-tailed distribution and calculate β̂104(k) for all
admissible values of k, we repeat this experiment 100 times, and then we calculate
the mean and the 95% confidence interval of β̂104(k) for each value of k. The results
of these simulations, for the cases where L(n) is asymptotically constant and L(n) is
logarithmic, are presented in Figures 2a and 2b. As expected, the behaviour of the
estimator is way better in the former case than in the latter.

(a) Case when L(n) ∼ C (b) Case when L(n) ∼ C ln(n)

Fig. 2: Monte-Carlo average and 95% confidence interval for β̂104(k), as k is varying.
The true value of β in both cases is 0.5.

3 Regular Null-Recurrent Chains - Regularity Index
Estimation

We start by setting out the notations used throughout this section, now standard in
the Markov chain literature, and listing first the properties supposedly satisfied by
the class of Markov chains under study. One may refer to Meyn, Tweedie, and Glynn
(2009) for an excellent account of the Markov chain theory. The concept of β-regularity
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for describing how fast a Harris chain returns to Harris sets is then recalled, together
with related asymptotic properties, invoked in the subsequent statistical analysis, for
clarity’s sake. Then, the main results of this paper, related to the inference of the
parameter β and the extended use of the estimator (2) in the (regenerative) Markovian
case, are established and discussed. Here, X = (Xn)n∈N denotes a time-homogeneous
Markov chain, with state space E, equipped with a countably generated σ-field E , and
transition probability Π(x, dy). For any probability distribution ν on E, we denote
by Pν the probability distribution on the underlying space such that X0 ∼ ν(dx) and
by Eν [.] the corresponding expectation. For notational convenience, we shall write
Px and Ex[.] when ν is the Dirac mass at x ∈ E. In the following, we also denote by
t ∈ R 7→ ⌊t⌋ the floor function and by Γ(z) =

∫
t≥0

tz−1e−tdt the Gamma function.

3.1 Background and Preliminaries

Throughout the section, we suppose that the chain X is ψ-irreducible, meaning that
there exists some σ-finite measure ψ on (E, E) such that any measurable set B ⊂ E,
weighted by ψ, can be reached by the chain with positive probability in a finite number
of steps, i.e.

∑
n≥1 Πn(x,B) > 0, no matter the starting point x ∈ E, denoting

by Πn(x, dy) the n-th iterate of the transition probability Π(x, dy). Recall that an
irreducibility measure is said to be maximal if it dominates any other irreducibility
measure. We also assume that X is aperiodic (rather than replacing Π by an iterate)
and Harris recurrent, i.e. that, with probability one, it visits an infinite number of times
any measurable subset B ⊂ E, weighted by maximal irreducibility measures, whatever
the initial state: ∀x ∈ E, Px

(∑∞
n=1 I{Xn ∈ B} = ∞

)
= 1. When Harris recurrent, a

transition kernel Π(x, dy) has a non zero invariant (positive) measure µ(dx) (i.e. such
that

∫
x∈E

µ(dx)Π(x, dy) = µ(dy)), that is unique up to a multiplicative factor (notice
incidentally that µ(dx) is a maximal irreducibility measure). Measurable sets weighted
by µ are said to be Harris. For Harris recurrent chains, recall that the following strong
ratio limit theorem holds. We have indeed, as n→ ∞,∑n

i=1 I{Xi ∈ B}∑n
i=1 I{Xi ∈ C}

→ µ(B)

µ(C)
Pν-almost-surely, (9)

for any initial distribution ν and any measurable sets B and C s.t. µ(C) > 0. When the
measure µ(dx) is finite, the chain is said to be positive recurrent and, by convention,
rather than considering µ(dx)/µ(E), by µ(dx) we mean the stationary probability
measure in this case.

Regular chains. For a wide class of Harris Markov chains, the regularity index
describes how fast the occupation time related to a Harris set B (i.e. the number of
visits to B) Σn(B) =

∑n
i=1 I{Xi ∈ B} increases with time n. When X is positive

recurrent, it follows from the Strong Law of Large Numbers that occupation times of
Harris sets grow in a linear fashion with the observation time: as n → ∞, Σn(B) ∼
µ(B)n Pν-almost surely. In the general Harris case, some technical assumptions are
required in order to be able to specify the growing rate. In order to formulate them
rigorously, further concepts are required. Recall that a special set (also referred to
as a D-set sometimes (Chen 1999)) for the chain X is any Harris set D such that
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µ(D) <∞ and supx∈E Ex[
∑τB

i=1 I{Xi ∈ D}] <∞, for any Harris set B ⊂ E, denoting
by τB = inf{n ≥ 1 : Xn ∈ B} the hitting time to B. We recall that special sets not only
exist but there are many of them: actually, any Harris set contains a special set at least,
see Proposition 5.13 in Nummelin (1984). For any special set D and initial distribution

ν, consider the so-termed truncated Green function: Gν,D(t) = (1/µ(D))
∑⌊t⌋

n=1 νΠn(D),
where νΠn(B) =

∫
x∈E

ν(dx)Πn(x,B) = Pν(Xn ∈ B) for any B ∈ E . Observe that
Harris recurrence entails that Gν,D(t) → +∞ as t→ ∞. In the following, we restrict our
attention to a specific class of Harris chains for which the rate at which Gν,D(t) grows
to infinity as t→ ∞ can be characterized. Notice that, in such cases, the rate would
be independent from the pair (ν,D). Indeed, by virtue of Theorem 7.3 in Nummelin
(1984), we have Gν1,D1(t)/Gν2,D2(t) → 1 as t goes to infinity, for any distributions ν1
and ν2 and any special sets D1 and D2. One may thus give the following definition,
see Chen (1999, 2000).
Definition 1 (β-regular Markov chain). Let β ∈ [0, 1]. A Harris chain X is said
to be β-regular if there exists a special set D and a distribution ν such that the function
Gν,D is β-regularly varying: ∀t > 0,

lim
λ→∞

Gν,D(λt)

Gν,D(λ)
= tβ . (10)

We point out that property (10) can be rephrased as follows: there exists a slowly
varying function Lν,D(t) such that Gν,D(t) = Lν,D(t)tβ . Notice incidentally that “β-
regularity” is called “β-null recurrence” in Karlsen and Tjostheim (2001) when β < 1,
while β = 1 corresponds to the positive recurrent case. The parameter β thus rules the
’frequency’ at which a (supposedly regular) Harris chain X recurs (Chen 1999) and it
is the purpose of this section to investigate the issue of estimating it with asymptotic
guarantees, based on the observation of a single path X1, . . . , Xn of size n → +∞.
In particular, we shall focus in subsection 3.3 on the case of regenerative chains, for
which an extension of the estimator (2) can be used with statistical guarantees.

Regenerative regular chains. Recall that a Markov chain is regenerative when
it possesses an accessible atom, i.e. a measurable set A such that ψ(A) > 0 and
Π(x, .) = Π(y, .) for all (x, y) ∈ A2. By τA = τA(1) = inf {n ≥ 1, Xn ∈ A} is meant the
hitting time to A and we denote by τA(j) = inf {n > τA(j − 1), Xn ∈ A} , for j ≥ 2,
the successive return times to A, by PA the probability measure on the underlying
space such that X0 ∈ A and by EA[.] the PA-expectation. In the regenerative case, it
results from the strong Markov property that the blocks of observations in between
consecutive visits to the atom

B1 = (XτA(1)+1, ..., XτA(2)), . . . , Bj = (XτA(j)+1, ..., XτA(j+1)), . . . (11)

form a collection of i.i.d. random variables, taking their values in the torus T = ∪∞
n=1E

n,
and the sequence {τA(j)}j≥1, corresponding to successive times at which the chain
forgets its past is a (possibly delayed) renewal process. Incidentally, we point out that
the class of regenerative chains is not that restrictive. Indeed, it includes all chains
with a countable state space (any recurrent state is then an accessible atom), as well as

10



numerous Markov models used in the field of operations research, refer to e.g. Asmussen
(2010). Examples 1 and 3 below also provide examples of (regular) regenerative chains.
In the regenerative setting, all stochastic stability properties may be expressed in terms
of speed of return to the atom. For instance, when X is Harris recurrent, see Theorem
10.0.1 in Meyn et al. (2009). the invariant distribution is equal to the occupation
measure between two consecutive visits to the atom (up to a multiplicative factor):
∀B ∈ E , µ(B) ∼ EA

[∑τA
i=1 I{Xi ∈ B}

]
. For instance, the chain is positive recurrent

if and only if the expected return time to the atom is finite3, i.e. EA[τA] < ∞, see
Theorem 10.2.2 in Meyn et al. (2009). More generally, the β-regularity property can
be characterized by the heaviness of the tail of the probability distribution of the
regeneration times in the atomic case, as the following result shows.
Proposition 3.1. (Karlsen and Tjostheim (2001), Theorem 3.1) Suppose that X is
regenerative Harris recurrent. Let A be an atom for X and β ∈ [0, 1]. The following
assertions are equivalent.

(i) The chain X is β-regular.
(ii) There exists a slowly varying function LA : R+ → R+ such that: ∀n ≥ 1,

PA (τA ≥ n) = LA(n) · n−β . (12)

As a direct consequence of Proposition 3.1, we have that if X is regenerative and β-
regular, then β = sup{θ ∈ [0, 1] : EA

[
τθA
]
< +∞}. Based on the decomposition (11)

of the whole sample path, limit theorems for regenerative Markov chains can be derived
from the application of their i.i.d. counterparts to the sequence of blocks (Bk)k≥1,
see e.g. Meyn et al. (2009). This approach is usually referred to as the regenerative
method and is extensively used to establish the asymptotic results stated in subsection
3.2 in the atomic case. Notice however that the regenerative blocks B1, . . . , BNn

,
where Σn(A) = Nn − 1 denotes the (random) number of regenerations before time
n, forming the truncated trajectory up to time n are not independent (the sum of
their length being less than n in particular), which causes technical difficulties when
establishing higher-order or non-asymptotic results, see e.g. Bertail and Clémençon
(2006b) or Bertail and Clémençon (2004) and the references therein. The inference
technique for the regularity index β of the chain X developed in subsection 3.3 is based
on characterization (ii): the parameter β is the tail index of a discrete generalized
Pareto r.v., the regeneration time namely, i.e. the conditional survivor function of τA
given X0 ∈ A. Incidentally, notice that the parameter β does not depend on the atom
A considered (in contrast to the estimator analysed in subsection 3.3). Based on a
(random) number Nn of (dependent) realizations of the regenerative time, namely

Sj = τA(j + 1)− τA(j) for j = 1, . . . , Nn,

one may naturally compute the estimator (2). As will be shown, in spite of the
dependence structure between the Sj ’s, the consistency property is preserved in the
Markovian framework.

3Its (unique) invariant probability distribution µ is then given by µ(B) = (1/EA[τA])EA[
∑τA

i=1 I{Xi ∈
B}], for all B ∈ E.
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Pseudo-regeneration. Harris chains are not necessarily regenerative, of course.
However, the construction proposed in Nummelin (1984), referred to as the Nummelin
splitting technique, permits to build a regenerative extension of any Harris chain. We
briefly recall it for clarity. It relies crucially on the notion of small set : a set K ∈ E is
said to be small if there exist m ∈ N∗, δ > 0 and a probability measure Φ supported
by K such that

∀ (x,B) ∈ K × E, Πm (x,B) ≥ δΦ (B) . (13)

We refer to (13) as the minorization condition M(m,K, δ,Φ). Recall that accessible
small sets always exist for ψ-irreducible chains: any set B ∈ E such that ψ(B) > 0
contains such a set, see Jain and Jamison (1967). Suppose that X satisfies M =
M(m,K, δ,Ψ) for K ∈ E s.t. ψ(K) > 0. Rather than replacing the initial chain X
by the chain {(Xnm, ..., Xn(m+1)−1)}n∈N, we suppose m = 1. The sample space is
expanded so as to define a sequence (Yn)n∈N of independent Bernoulli r.v.’s with
parameter δ by defining the joint distribution, Pν,M whose construction relies on
the following randomization of the transition probability Π each time the chain hits
K. Note that it occurs with probability one, since the chain is Harris recurrent and
ψ(K) > 0. If Xn ∈ K, and if Yn = 1 (this occurs with probability δ ∈ ]0, 1[), then
Xn+1 ∼ Φ, while, if Yn = 0, we have Xn+1 ∼ (1− δ)−1(Π(Xn, .)− δΦ(.)). Let Berδ be
the Bernoulli distribution with parameter δ. The split chain {(Xn, Yn)}n∈N is valued
in E × {0, 1} and has transition kernel ΠM

• for any x /∈ K, B ∈ E , b and b′ in {0, 1} ,

ΠM ((x, b) , B × {b′}) = Π (x,B)× Berδ(b
′),

• for any x ∈ K, B ∈ E , b′ in {0, 1},{
ΠM ((x, 1) , B × {b′}) = Φ(B)× Berδ(b

′),
ΠM ((x, 0) , B × {β′}) = (1− δ)−1(Π (x,B)− δΦ(B))× Berδ(b

′).

The key point of the construction relies on the fact that AK = K × {1} is an
atom for the bivariate chain XM = (X,Y ), which inherits all its communication and
stochastic stability properties from X.

Recall also that conditions of type (13) can be replaced by Foster-Lyapunov drift
conditions that are much more tractable in practice, see e.g. Chapter 11 in Meyn
et al. (2009). The construction above permits the extension of probabilistic results
established for regenerative chains to general recurrent Harris chains. In particular, we
have the following result, presented in (Chen 1999, pp 19).
Proposition 3.2. Let X be a β-regular chain, with β ∈ [0, 1]. Suppose that condition
M = M(1,K, δ,Ψ) is fulfilled, then, the split chain XM is β-regular.

Hence, X’s regularity index β is the regular variation index of the conditional
survivor function of the hitting time τAK

= inf{n ≥ 1 : (Xn, Yn) ∈ AK} given
(X0, Y0) ∈ AK . However, the return times to AK are not observable, just like the
sample path of the Nummelin extension, and cannot be straightforwardly exploited
from a statistical perspective. We shall explain in subsection 3.4 how estimators tailored
to the regenerative case can be nevertheless extended to the pseudo-regenerative case
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in practice by means of the plug-in approximation procedure originally proposed in
Bertail and Clémençon (2006b) in the positive recurrent case.

In the next section, we explain why the (asymptotic) behaviour of the occupation
times Σk(B) with k ≤ n and B ∈ E , though ruled by the parameter β, can be hardly
directly used for inference.

Before that, we illustrate the fact that the class of (regenerative) regular Markov
chains includes many stochastic processes used in probabilistic modelling by a few
examples.
Example 1. (Bessel random walks) Recall that a Bessel random walk with drift
δ ∈ [−1, +∞) is a Markov chain with N as state space, jumps in {−1, +1}, reflecting
at 0 and with transition probabilities of the form: Π(0,+1) = +1 and, for all k ≥ 1,
1−Π(k, k− 1) = Π(k, k+1) = (1+h(k)− δ/(2k))/2, where h(k) ∈ (−1+ δ/(2k), 1+
δ/(2k)) and h(k) = o(1/k) as k → +∞. It is recurrent when δ > −1, positive recurrent
when δ > 1 and transient when δ = −1. For δ = 1, it is either recurrent or else transient,
depending on the function h(x). In the null recurrent case, the chain is β-regular with
β = (1+δ)/2 , see Theorem 2.1 in Alexander (2011). Of course, when δ = 0 and h ≡ 0,
this chain corresponds to a simple reflected random walk with p = 1/2. As shown by the
next example, this random walk is not the sole regular chain with an index equal to 1/2.
Example 2. (Threshold autoregressive model) Let α1 ∈ R and K be a compact
subset of R (typically, K = (−∞, τ ] with τ ∈ R). Consider the parametric threshold
autoregressive (TAR) model: X0 = 0 and ∀n ≥ 1, Xn = α1Xn−1I {Xn−1 ∈ K} +
Xn−1I {Xn−1 /∈ K}+εn, where {εn}n≥1 is an i.i.d sequence of centred random variables
such that E[ε4n] <∞, εn is independent of Xk for all k < n. In addition, the distribution
of the εn’s is absolutely continuous with density f0 supposed to be bounded away from
zero on any compact set. It is proved in Gao et al. (2013) (see Lemma 2.1 therein)
that (Xn) is a regular Markov chain with index 1/2.
Example 3. (Null recurrent, not necessarily regular, chains) By means
of the model below, originally presented in Myklebust et al. (2012), one can generate
β-null recurrent chains for any β > 0, as well as null recurrent chains that are not
regular. Let {ηn}n∈N be a sequence of i.i.d. real-valued random variables. Consider
the chain defined by: ∀n ≥ 1, Xn = (Xn−1 − 1)I{Xn−1 > 1} + ηnI{Xn−1 ∈ [0, 1]}.
The chain X is regenerative, with the interval [0, 1] as atom. In addition, we have
Px(τ[0,1] > n) = P(⌊η1⌋ > n). Hence, X is null recurrent iff E⌊η1⌋ = ∞ and β-regular
with β ∈ (0, 1] iff the r.v. ⌊η1⌋ has generalized discrete Pareto distribution with tail
index β.

3.2 Limit Theorems for Regular Markov Chains

We now recall the limit results related to the behaviour of the random occupation
times Σn(.) for regular Markov chains and discuss their limitations regarding their
possible use to infer the regularity index β with (asymptotic) guarantees. The latter
essentially reveals that the empirical occupation measures Σn(B) of Harris sets B grow
at the sublinear rate nβ (up to a slowly varying factor). As shall be seen, however, due
to the great dispersion of their (asymptotic) distribution, the empirical occupation
measures can hardly be used directly to estimate the key parameter β. The following
result corresponds to Theorem 2.4 in Chen (1999) (see equation (4.2) therein) when
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specialized to β-regular chains (assertion (i)) and to Lemma 3.4 (assertion (ii)) in
Karlsen and Tjostheim (2001).
Theorem 3.3 (Strong boundedness). Suppose that the chain X is regular with index
β ∈ [0, 1] and has initial distribution ν. The following assertions hold true.

(i) Let D be any special set. Then, there exists a positive constant c such that, we
Pν-almost surely have:

lim sup
Σn (B)

nβKν,D (n)
= cµ(B), (14)

for all Harris set B with a finite and strictly positive µ-measure, where Kν,D (n) =
Lν,D(n/ ln lnGν,D)(ln lnGν,D)1−β.

(ii) If β ∈ (0, 1), for any ϵ > 0, we Pν-almost surely have:

lim
n→+∞

Σn (B)

nβ+ϵ
= 0 and lim

n→+∞

nβ−ϵ

Σn (B)
= 0. (15)

Incidentally, it is worth noticing that deriving a similar result to (14) for the limit
inferior is not straightforward. The established result for the limit superior, which is
presented in a more general form involving random integrals of measurable functions
f : E → R with respect to (1/n)

∑
i≤n δXi

in Theorem 2.3 of Chen (1999), only applies
to positive functions f(x). A key part of its proof relies on Borel–Cantelli’s first lemma
and the fact that the distribution of Σn(B)/(nβKν,D(n)) satisfies the Large Deviation
Principle, as detailed on pages 16-17 of Chen (1999).

The result stated below claims that the logarithm of the occupation time of any
Harris set provides a strongly consistent estimator of the regularity index β when
appropriately normalized. It corresponds to the comment in Remark 3.7 of Karlsen
and Tjostheim (2001) and follows immediately from (15).
Corollary 3.1. Suppose that the chain X is β-regular with β ∈ (0, 1) and B is a
Harris set. Let ν be its initial probability distribution. Then, we have:

β̃n(B) → β Pν − a.s., as n→ +∞, (16)

where
β̃n(B) = ln(Σn(B))/ lnn. (17)

It was pointed out in Remark 3.7 of Karlsen and Tjostheim (2001) that this
estimator is of limited practical use due to its slow rate of convergence, although
no specific rate was given therein. Equation (14) may suggest that |β̃n(B) − β| is
almmost-surely O(lnKν,D(n)/ lnn) as n → +∞. However, this has not been proven
to the best of our knowledge, due to the lack of an equivalent of (14) for the limit
inferior, as recalled above. The description of the limit distribution of the strongly
consistent estimator β̃n(B) relies on the asymptotic distribution of the (appropriately
standardized) occupation measure, which is given in the following result, see (Chen
1999, Theorem 2.3).
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Theorem 3.4 (Limit distributions). Let β ∈ [0, 1) and ν be any probability distribution
on E. Suppose that the chain X is β-regular and let B be a Harris set with finite and
strictly positive µ-measure. We have the following convergences in Pν-distribution.

(i) If β = 0, we then have, as n→ ∞,

1

Lν,D(n)
Σn(B) ⇒ E(1/µ(B)) in Pν-distribution,

where E(λ) denotes the exponential distribution with mean 1/λ > 0.
(ii) If β ∈ (0, 1), we have, as n→ ∞,

1

nβLν,D(n)
Σn(B) ⇒ µ(B)/(Zβ)

β in Pν-distribution,

where Zβ is a stable random variable with Laplace transform

ψβ (t) = exp
(
−tβ/Γ(β + 1)

)
, t ≥ 0.

When β ∈ (0, 1), a direct application of the Continuous Mapping Theorem provides

the limit distribution of the estimator β̃n(B) under the additional assumption that
Lν,D has a finite non-zero limit. In this case, this estimator has a logarithmic rate of
convergence, as revealed by the result stated below.
Corollary 3.2. Suppose that the chain X is β-regular with β ∈ (0, 1), B is a Harris
set, and ν is its initial probability distribution. Then, as n→ +∞,

ln(n)

(
β̃n(B)− β − lnLν,D

lnn

)
⇒ ln

(
µ(B)/(Zβ)

β
)
in Pν-distribution.

In addition, if limn→+∞ Lν,D(n) exists and is not 0, then, there exists a constant κ > 0
such that

ln(n)
(
β̃n(B)− β

)
⇒ ln

(
κ/(Zβ)

β
)
in Pν-distribution.

We also establish a functional version of the preceding theorem. Let n ≥ 1, and
define the step function

σn(B) : t ≥ 0 7→
Σ⌊nt⌋(B)

nβLv,D(n)
. (18)

The result stated below is new and describes the asymptotic distribution of the
process σn(B). See Theorem 17.4.4 in Meyn et al. (2009) for an analogous result in
the positive recurrent case. We denote by Mβ = (Mβ(t))t≥0 the Mittag-Leffler process
with parameter β ∈ (0, 1), defined by:

E
[(
M

β
(1)
)m]

=
m!

Γ (1 +mβ)
, for all m ⩾ 0,

Mβ (t)
d
= tβMβ (1) , for all t ≥ 0.
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The characteristic functions describing the marginal distributions are given by (see
3.39 in Karlsen and Tjostheim (2001))

E
[
eiζMβ(t)

]
=

+∞∑
k=0

(
iζtβ

)k
Γ (1 + kβ)

, ζ ∈ R, t ⩾ 0. (19)

Theorem 3.5 (Functional Limit Theorem). Let β ∈ (0, 1) and ν be any probability
distribution. Suppose that the chain X is β-regular and B is a Harris set. Then, as
n→ ∞, we have:

σn(B) ⇒ µ(B)Γ (1 + β)Mβ in Pν-distribution,

in the sense of Skorokhod topology.
Remark 2. Let Y = 1/Zβ

β where Zβ is as in Theorem 3.4. By virtue of equation (8.3)
in page 453 of Feller (1971), the Laplace transform of Y is

E
[
e−sY

]
=

+∞∑
k=0

(−Γ (1 + β) s)
k

Γ (1 + kβ)
,

which equals the Laplace transform of Γ (1 + β)Mβ (1), cf (19).

The almost sure convergence of β̃n(B) towards β suggests that, for n large enough,
lnΣn(B) ≈ β ln(n) and that the log-log plot of Σn(B) and n should look like a linear
function with slope β, which could be possibly used to infer the value of β. Unfortunately,
the dispersion of such a plot (and that of the process σn(B), asymptotically described
by Theorem 3.5) is way too large in practice. To illustrate this, we simulated a Simple
Symmetric Random Walk (β = 0.5) with n = 105 points, and we computed lnΣ⌊nt⌋(B)
for 0.1 ≤ t ≤ 1 (choosing B = {0}, which is an atom for this regenerative regular
chain). The outcomes of this simulation are depicted in Fig. 3.

This simulation illustrates in particular the slow convergence of β̃n(B) described in
Corollary 3.2. Hence, in the regenerative case, it is more suitable to exploit the tail
behaviour of the regenerative times (cf Proposition 3.1) to estimate the regularity
index β, as shall be investigated in the next subsection.

3.3 Regularity Index of a Regular Chain - Statistical Inference

Assume that X is a regenerative regular chain with atom A and unknown regularity
index β ∈ (0, 1), and suppose that a sample path X1, . . . , n of length n ≥ 1 is
observed. Because the chain is Harris recurrent, the number of observed regeneration
times Σn(A) almost-surely tends to +∞ as n→ +∞. Hence, with probability 1, we
have Nn ≥ 1 for n large enough and one can define

p̂
(Nn)
l =

1

Nn

Nn∑
i=1

I{Si > el} for any l ∈ R (20)
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Fig. 3: Log-log plot of lnΣ⌊nt⌋({0}) in dark blue, the orange line representing the plot
of the linear function x 7→ 0.5× x, while the blue area represents the 95% confidence
interval for lnΣ⌊nt⌋({0}) calculated from 100 independent trajectories.

and form the statistic
β̂Nn(k) = ln

(
p̂
(Nn)
k /p̂

(Nn)
k+1

)
, (21)

provided that p̂
(Nn)
k+1 > 0. We point out that, due to the randomness of Nn, (20) is a

biased (strongly consistent) estimator of pl = PA(τA > el) for any l ∈ R. The estimator
(21) is of the same form as (2) except that the number Nn of observations is random,
and the observations are not independent anymore (in particular S1 + . . .+ SNn ≤ n).
Theorem 3.6. Suppose that the atomic chain X is β-regular with β ∈ (0, 1). Let ν be
its initial probability distribution. If, as n→ +∞, we Pν almost-surely have kn → +∞
so that (lnn) exp(knβ)/n = o(LA(exp(kn)), the estimator (21) is strongly consistent:

β̂Nn
(kNn

) → β Pν − a.s as n→ +∞. (22)

In particular, strong consistency holds for β̂Nn
(lnNn).

In order to show the finite sample behaviour of our estimator in the Markovian
scenario, we have simulated 100 independent trajectories of 107 points for two Markov
chains (a Simple Symmetric Random Walk where β = 0.5 and a Bessel Random Walk

with β = 0.6), and we have computed β̂N107
(lnN107) for each one of the trajectories.

As a comparison, we also include the estimations using the statistic β̃107 described in
(17). Figure 4 shows the KDE for both estimators.
Remark 3. (On investigating convergence rates) Due to the impossibility of
tightly controlling the sequence Nn by a deterministic quantity in probability and the
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(a) Bessel random walk with β = 0.6 (b) Bessel random walk with β = 0.6

Fig. 4: KDE for the estimators β̂N107
(lnN107) and β̃N107

(A) in different β-regular
chains.

non-linearity of the estimator, we have not been able to extend to the Markovian case
the asymptotic normality results of Theorem 2.3 and Corollary 2.2 via Anscombe’s
theorem (Gut 2013, Theorem 7.3.2). Heuristically, if in Theorem 2.3 we take kn = lnNn

and replace Nn by its approximate expectation nβLν,A(n) (Karlsen & Tjostheim 2001,
Lemma 3.3), we would get a convergence rate of order n−β(1−β)/2L1 (n), where L1 (n)
is the slowly varying function given by

√
Lν,A(nβLν,A(n))/Lν,A(n)1−β. This suggests

a convergence rate of order n−β(1−β)/2 when Lν,A ∼ C > 0. However, we have not
been able to prove this claim.
Remark 4. (Trajectories of random length) Suppose that the trajectory is
observed until the N-th regeneration, i.e. n = τA(N), with N ≥ 2. In this case, we
will obtain a sequence of N i.i.d blocks whose sizes follow the heavy-tailed distribution
described in (1), and therefore, the results of Section 2.1 can be applied directly to this
sequence. Notice that in this case, the total number of points observed in the chain (i.e.
the amount of time we need to wait to collect the N blocks) is a random variable that,
while finite with probability one, has infinite expectation.
Remark 5. (The (atomic) positive recurrent case) When the chain is positive
recurrent (or equivalently 1-regular), the estimator (21) can be naturally used to estimate
the tail index β′ ≥ 1 of the regeneration time, when the latter has a regularly varying
distribution. Dedicated theoretical results can be found in section A.8 of the Appendix.

3.4 Perspectives - Extension to the Pseudo-regenerative Case

Proposition 3.2 and the algorithmic construction described after Eq. (13) guarantee
that if the chain satisfies the minorization condition M = M(1,K, δ,Ψ), and K, δ and
Ψ are known, then we can generate samples of the split chain, which is atomic and
has the same β as the original chain. Assume the existence of a σ-finite measure λ
of reference on (E, E) that dominates the conditional probability measures Π(x, dy),
x ∈ E, and the initial distribution ν: Π(., dy) = π(., y)λ(dy) and ν(dy) = g(y)λ(dy).
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Notice incidentally that the measure Ψ involved in M is then absolutely continuous
w.r.t. λ as well: Ψ(dy) = ψ(y)λ(dy) and then π (x, y) ≥ δψ (y) for all (x, y) ∈ K2. As
shown in Section 3.2 in Bertail and Clémençon (2006b), givenX(n+1) = (X1, . . . , Xn+1),
samples from the distribution of Y (n) = (Y1, . . . , Yn) can be obtained as follows. From
i = 1 to n, the r.v. Yi is drawn from a Bernoulli distribution with parameter δ, unless
X hits the small set K at time i: in the latter case, Yi is drawn from a Bernoulli
distribution with parameter δψ (Xi+1) /π (Xi, Xi+1). Given that AK = K × {1} is an
atom for the split chain, and the statistics under study in this paper only depends on
the size of the regeneration blocks, sampling Yi when Xi ∈ K is sufficient here. The
accuracy of our estimator improves as the (random) number of samples (the number
of regeneration blocks namely) increases. This number is influenced by the size of the
chosen small set and how frequently the chain visits it in a finite-length trajectory.
It is also affected by the sharpness of the lower bound in the minorization condition.
Essentially, there is a trade-off that can be described as follows. Increasing the size of
the small set K used for constructing the pseudo-blocks naturally increases the number
of time points that could determine a block (or a cut in the trajectory). However, it
also reduces the probability of cutting the trajectory, as the uniform lower bound for
π(x, y) over K2 then decreases. This suggests a criterion for selecting the small set K:
choose a small set that maximizes the maximum expected number of data blocks given
the trajectory, that is

Nn(K) = Eν

[
n∑

i=1

I {Xi ∈ K,Yi = 1} | X(n+1)

]
.

In Section 3.6 of Bertail and Clémençon (2006b), a data-driven approach to select
the small set is proposed for the cases where the chain takes real values. The idea
relies on the fact that, in many cases, for a well-chosen x0 and ϵ small enough, certain
intervals Vx0,ϵ = [x0 − ϵ, x0 + ϵ] are small sets, with the minorization measure Ψ being
the Lebesgue measure on Vx0,ϵ. Given a point x0 (generally taken as the mean or the
median of the Xi’s), the proposed algorithm finds the value of ϵ that maximizes the
expected number of regeneration blocks, that is

Nn (Vx0,ϵ) =
δ (Vx0,ϵ)

2ϵ

n∑
i=1

I
{
(Xi, Xi+1) ∈ V 2

x0,ϵ

}
π (Xi, Xi+1)

,

where δ (Vx0,ϵ) = 2ϵ inf(x,y)∈V 2
x0,ϵ

π(x, y). Then, the samples of the split chain can be

obtained by following the procedure described at the begining of this subsection with
K = Vx0,ϵ, δ = 2ϵ inf(x,y)∈V 2

x0,ϵ
π(x, y) and ψ(y) = 1/(2ϵ).

A practical example can be built by considering a random walk in R defined
by X0 = 0, Xn+1 = Xn + Zn for n ≥ 1, where Zn is a sequence i.i.d. standard
normal random variables. The density of the kernel of this Markov chain is given by
π(x, y) = f(x − y), whereby f is meant the density of a standard normal random
variable. Using the data-driven construction described above, we have generated the
split chain for the random walk and then applied our estimator to it. The results are
shown in Fig. 5. There, it can be seen that the estimations of β using the estimator
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β̂Nn(k) in the split chain are close to the true value (β = 1/2) when k is chosen close
lnNn.

(a) Selection of the value of ϵ. (b) β estimations.

(c) Dividing the trajectories into data blocks corresponding
to the pseudo-regeneration times. The small set (-28.2203,
-26.7643) is marked in red, the visits to the pseudo-atom are
shown as green dotted lines.

Fig. 5: Application of the pseudo-regeneration technique to construct the split chain
and estimate β using β̂Nn

(k) in the random walk Xn+1 = Xn + Zn where Zn is an
i.i.d. sequence of standard normal random variables. The total number of observed
points in the chain is 106 and the number of pseudo-blocks (Nn) is 418.

When the kernel density is unknown, a procedure to approximate the split chain,
based on an estimation π̂n of the kernel was presented as Algorithm 3 in Bertail and
Clémençon (2006a). As indicated in Theorem 3.1 of Bertail and Clémençon (2006b),
the accuracy of this construction depends on the rate at which π is estimated by π̂n. To
our knowledge, in the null-recurrent case, the sole consistent estimator of the transition
density documented in the literature is the Nadaraya-Watson estimator. The proof of
the consistency can be found in section 5 of Karlsen and Tjostheim (2001). However,
no results regarding its rate of convergence have been established so far. Moreover, the
practical choice of the bandwidth parameter involved in this estimator is a difficult
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and largely unresolved problem, as discussed on pp. 412 in Karlsen and Tjostheim
(2001). Hence, an ambitious line of further research consists in understanding how to
implement practically the approximate regenerative block construction presented in
Bertail and Clémençon (2006a) in order to extend the estimation methodology studied
in the previous subsection to the regular pseudo-regenerative case with theoretical
guarantees.
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Appendix A Technical Proofs

This appendix contains the technical proofs of all the new results presented in the paper.
Throughout this section we will use un(δ) to denote ln (2/δ) /n for δ > 0 and n ∈ N.

A.1 Proof of Proposition 2.1

By the triangular inequality and equation (3), we have

∣∣∣β̂n(k)− β
∣∣∣ ≤ ∣∣∣β̂n(k)− β(k)

∣∣∣+ ∣∣∣∣ln( L(ek)

L(ek+1)

)∣∣∣∣ .
Proposition 2.1 now follows by Lemma A.1.
Lemma A.1. Let δ > 0 and k such that pk+1 ≥ 16un(δ), then

∣∣∣β̂n(k)− β(k)
∣∣∣ ≤ 6

√
un(δ)

pk+1
, (A1)

with probability larger than 1− 2δ.

Proof. In order to prove this result, we need the following lemma, proved in the
supplementary material of Carpentier and Kim (2015).

Lemma A.2. Bernstein’s inequality for Bernoulli random variables Let
W1, . . . ,Wn be i.i.d. samples from a distribution F , and we define pk = 1 − F (ek),
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p̂
(n)
k = n−1

∑n
i=1 I{Wi > ek}. Let δ > 0 and take n large enough so that pk ≥ 4un(δ).

Then, with probability 1− δ, ∣∣∣p̂(n)k − pk

∣∣∣ ≤ 2
√
pkun(δ).

Because pk ≥ 16un(δ) we can apply the previous lemma, then with probability
greater than 1− δ we have

−2
√
pkun(δ) ≤ p̂

(n)
k − pk ≤ 2

√
pkun(δ)

pk

(
1− 2

√
un(δ)

pk

)
≤ p̂

(n)
k ≤ pk

(
1 + 2

√
un(δ)

pk

)
,

taking the log in the previous equation we get

ln pk + ln

(
1− 2

√
un(δ)

pk

)
≤ ln p̂

(n)
k ≤ ln pk + ln

(
1 + 2

√
un(δ)

pk

)

ln

(
1− 2

√
un(δ)

pk

)
≤ ln p̂

(n)
k − ln pk ≤ ln

(
1 + 2

√
un(δ)

pk

)

−3

√
un(δ)

pk
≤ ln p̂

(n)
k − ln pk ≤ 2

√
un(δ)

pk
, (A2)

where the last pair of inequalities is obtained by using ln (1 + x) ≤ x and ln (1− x) ≥
−3x/2 for x < 1/2. Inequality (A2) implies that

∣∣∣ln p̂(n)k − ln pk

∣∣∣ ≤ 3

√
un(δ)

pk
(A3)

with probability bigger than 1-δ. Applying (A3) for k+1 we get with probability bigger
than 1-δ that ∣∣∣ln p̂(n)k+1 − ln pk+1

∣∣∣ ≤ 3

√
un(δ)

pk+1
. (A4)

Combining the triangular inequality with (A3) and (A4) completes the proof.

A.2 Proof of Theorem 2.2

The first element in the proof of Theorem 2.2 is the following simple lemma, that shows
that the non-empirical version of β̂n(k) converges to β.
Lemma A.3.

lim
k→+∞

β(k) = β.
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Proof. Because L is slowly varying, limx→∞ L(tx)/L(x) = 1 (see 1.2.1 of Bingham et
al. (1987)) for all t > 0, therefore L(ek)/L(ek+1) = L(ek)/L(eek) → 1 and the result
follows after taking limits in (3).

Let ϵ > 0. Because kn → ∞, Lemma A.3 implies that β(kn) → β, therefore we can
find N1 ∈ N such that, for all n ≥ N1

|β(kn)− β| ≤ ϵ

2
. (A5)

Take δ = 2/n2, then un(δ) = 2 lnn/n. Because L is slowly varying, L
(
ekn+1

)
∼

L
(
ekn
)
, then eknβ lnn/n = o

(
L
(
ekn+1

))
and we can find N2 ∈ N such that for all for

n ≥ N2 we have pkn+1 = L(ekn+1)/e(kn+1)β ≥ 32 lnn/n = 16un(δ). Therefore, we can
apply Lemma A.1, obtaining that, for all n ≥ N2,

P

(∣∣∣β̂n(kn)− β(kn)
∣∣∣ ≤ 6

√
2 lnn

npkn+1

)
≥ 1− 4

n2
. (A6)

Combining the triangular inequality with equations (A5) and (A6) we have that
for all n ≥ max (N1, N2)

∣∣∣β̂n(kn)− β
∣∣∣ ≤ 6

√
2 lnn

npkn+1
+
ϵ

2
(A7)

with probability bigger than 1− 4/n2. Plugging pkn+1 = L(ekn+1)/e(kn+1)β in the first
term of the right-hand side of (A7), we get

6

√
2 lnn

npkn+1
= 6

√
2 lnn

n

e(kn+1)β

L(ekn+1)
= 6

√
2eβ

√
lnn

n

e(kn)β

L(ekn+1)
.

The assumption that eknβ lnn/n = o(L(ekn+1)) implies that the above equality
converges to 0, therefore we can find N3 ∈ N such that |6

√
2 lnn/(npkn+1| ≤ ϵ/2 for

all n ≥ N3. Then, for all n ≥ max(N1, N2, N3)

P
(∣∣∣β̂n(kn)− β(kn)

∣∣∣ ≤ ϵ
)
≥ 1− 4

n2
,

which shows that β̂n(kn) converges in probability to β. Moreover, because the series∑
n 4/n

2 converges, Borell-Cantelli lemma implies that β̂n(kn) → β almost surely.

A.3 Proof of Corollary 2.1

If we take kn = A lnn, we have eβkn = nAβ then

lim
n
eknβ

lnn

nL(ekn)
= lim

n

lnn

n(1−Aβ)/2

1

n(1−Aβ)/2L(nA)
= 0.
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For the last limit we have used that if L is slowly varying, then L(nA) is also slowly
varying and that limn n

γL(n) → +∞ for γ > 0 (Bingham et al. 1987, Proposition
1.3.6.v, pp. 16). Corollary 2.1 now follows by Theorem 2.2.

A.4 Proof of Theorem 2.3 and Corollary 2.2

Before starting with the proof of the asymptotic normality of the β̂n (kn) estimator,
we need the following technical lemmas.
Lemma A.4. Let Wn be a sequence of positive random variables and an and bn two
positive sequences such that an > 0, bn/an → 0. If there exists a random variableW with
continuous distribution function F such that (Wn − an)/bn converges in distribution
to W , then an(lnWn − ln an)/bn also converges in distribution to W .

Proof. Let x ∈ R be fixed. Because (Wn − an)/bn ⇒W in distribution, we have

P (Wn ⩽ an + bnx) → F (x) .

Using that an + bnx = an
(
1 + a−1

n bnx
)
and taking logs we get

P
(
lnWn ⩽ ln an + ln

(
1 +

bn
an
x

))
→ F (x) .

The condition bn/an → 0 implies that ln
(
1 + a−1

n bnx
)
= a−1

n bnx+o
(
a−1
n bn

)
. Then,

P
(
anb

−1
n (lnWn − ln an) ⩽ x+ o (1)

)
converges to F (x) and the Lemma follows by the

continuity of F .

Lemma A.5. If kn satisfies the hypothesis of Theorem 2.2, then,

p̂nkn

F̄ (ekn)
→ 1 almost surely.

Proof. By Lemma A.2, for any δ > 0 such that pk ≥ 4un (δ) we have that,

P

(∣∣∣∣ p̂nkpk − 1

∣∣∣∣ ⩽ 2

√
un (δ)

pk

)
⩾ 1− δ. (A8)

As in the proof of Theorem 2.2, let δ = 2/n2, so un(δ) = 2 lnn/n. The condition
eknβ lnn/n = o

(
L
(
ekn
))

implies that we can find N1 ∈ N such that pkn
⩾ 8 lnn/n for

all n ≥ N1, therefore, by equation (A8), we have, for all n ⩾ N1

P

(∣∣∣∣ p̂nkn

pkn

− 1

∣∣∣∣ ⩽ 2

√
2 lnn

npkn

)
⩾ 1− 2

n2
.

Let ϵ > 0. Notice that lnn(npkn
)−1 = eknβ lnn/(nL

(
ekn
)
) and this goes to 0 as n

goes to +∞, therefore, we can find N2 such that 2
√

2 lnn/(npkn) ⩽ ϵ for all n ≥ N2,
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then, for all n ⩾ max (N1, N2)

P
(∣∣∣∣ p̂nkn

pkn

− 1

∣∣∣∣ ⩽ ϵ

)
⩾ 1− 2

n2
,

and the result follows by Borel-Cantelli’s Lemma.

The next result can be obtained using the same arguments of Example 11 on Drees
and Rootzén (2010).
Lemma A.6. Let Wn be a sequence of i.i.d. random variables with survival function
(1), ϕ1 and ϕ2 bounded functions and un an increasing sequence of real numbers such
that un → +∞. Define

Wn,i =
Wi

un
I
{
Wi

un
> 1

}
, vn = P (Wn,i ̸= 0) and

Z̃n (ϕk) =
1

√
nvn

n∑
i=1

(ϕk (Wn,i)− Eϕk (Wn,i)).

If there exists a sequence rn such that

A1 rn = o(n).
A2 rnvn → 0.
A3 nvn → +∞.

A4 E
[

rn∑
i=1

ϕk (Wn,i)

]4
= O (rnvn) k = 1, 2.

A5 lim
n

1
rnvn

rn∑
i=1

rn∑
j=1

E [ϕk (Wn,i)ϕl (Wn,j)] = σkl.

Then
(
Z̃n (ϕk)

)
1⩽k⩽2

converges weakly to a centred normal distribution with covariance

matrix (σkl)1⩽k,l⩽2.

Let kn satisfy the conditions of Theorem 2.2, take un = ekn , ϕ1 (x) = I {x > 1}
and ϕ2 (x) = I {x > e}. With this notation:

ϕ1 (Wn,i) = I
{(

Wi

un
I
{
Wi

un
> 1

})
> 1

}
= I

{
Wi

un
> 1

}
,

ϕ2 (Wn,i) = I
{(

Wi

un
I
{
Wi

un
> 1

})
> e

}
= I

{
Wi

un
> e

}
,

E [ϕ1 (Wn,i)] = P
(
Wi

un
> 1

)
= F (un) ,

E [ϕ2 (Wn,i)] = P
(
Wi

un
> e

)
= F (eun) ,

vn = P (Wn,i ̸= 0) = P
(
Wi

un
> 1

)
= F (un) .
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Let wn = F (eun), λn = F (un)/F (eun) = vn/wn (notice that λn → eβ) and
yn =

√
vn/(nwn

2), then,

λ̂n =

n∑
i=1

I {Wi > un}
n∑

i=1

I {Wi > eun}
=

nE [ϕ1 (Wn,1)] +
n∑

i=1

{ϕ1 (Wn,i)− E [ϕ1 (Wn,1)]}

nE [ϕ2 (Wn,1)] +
n∑

i=1

{ϕ2 (Wn,i)− E [ϕ2 (Wn,1)]}

=

E[ϕ1(Wn,1)]
E[ϕ2(Wn,1)]

+

n∑
i=1

{ϕ1(Wn,i)−E[ϕ1(Wn,1)]}

nE[ϕ2(Wn,1)]

1 +

n∑
i=1

{ϕ2(Wn,i)−E[ϕ2(Wn,1)]}

nE[ϕ2(Wn,1)]

=

E[ϕ1(Wn,1)]
E[ϕ2(Wn,1)]

+ Z̃n (ϕ1)
√

vn
nwn

2

1 + Z̃n (ϕ2)
√

vn
nwn

2

=
λn + Z̃n (ϕ1) yn

1 + Z̃n (ϕ2) yn
. (A9)

To apply Lemma A.6, take rn = kn. Condition A1 is satisfied by hypothesis. For
condition A2we have:

lim
n
rnvn = lim

n
knF

(
ekn
)
= lim

n

knL
(
ekn
)

eknβ
= lim

n

kn

e
knβ
2

L
(
ekn
)

e
knβ
2

= 0.

Because eknβ lnn/n = o
(
L
(
ekn+1

))
and L is slowly varying, we can write

eknβ lnn/n = L
(
ekn
)
ε (n) where ε (n) → 0 and this implies A3.

For A4, observe that
∑rn

i=1 ϕ1 (Wn,i) follows a binomial distribution with parameters

rn and un, then, E
[∑rn

i=1 ϕ1 (Wn,i)
]4

= rnvn (1− h (rn, vn)) , where h is a two variables
polynomial of degree 3 such that the degree of rn on each monomial is always greater or

equal than the degree of vn. Condition A2 and vn → 0 imply that E
[∑rn

i=1 ϕ1 (Wn,i)
]4

=
O (rnvn). With a similar argument but using that wn/vn → e−β , it can be shown that

E
[∑rn

i=1 ϕ2 (Wn,i)
]4

= O (rnvn). Hence, the condition A4 is fulfilled.
Finally, for A5, observe that

E [ϕ1 (Wn,i)ϕ1 (Wn,j)] =

{
vn , i = j

vn
2 , i ̸= j

,

E [ϕ1 (Wn,i)ϕ2 (Wn,j)] =

{
wn , i = j

vnwn , i ̸= j
,

E [ϕ2 (Wn,i)ϕ2 (Wn,j)] =

{
wn , i = j

wn
2 , i ̸= j

,

therefore,

σ11 = lim
n

1

rnvn

rn∑
i=1

rn∑
j=1

E [ϕ1 (Wn,i)ϕ1 (Wn,j)] = lim
n

rnvn + rn (rn − 1) vn
2

rnvn
= 1,
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σ12 = lim
n

1

rnvn

rn∑
i=1

rn∑
j=1

E [ϕ1 (Wn,i)ϕ2 (Wn,j)] = lim
n

rnwn + rn (rn − 1) vnwn

rnvn
= e−β ,

σ22 = lim
n

1

rnvn

rn∑
i=1

rn∑
j=1

E [ϕ2 (Wn,i)ϕ2 (Wn,j)] = lim
n

rnwn + rn (rn − 1)wn
2

rnvn
= e−β .

By Lemma A.6, (Z̃n (ϕk))1⩽k⩽2 converges to a centred normal distribution with
covariance matrix (σkl)1⩽k,l⩽2. Taking into account that yn ∼ eβ/

√
nvn, it follows that

λ̂n =
(
λn + Z̃n (ϕ1) yn

)(
1− Z̃n (ϕ2) yn + oP

(
1

√
nvn

))
= λn + yn

(
Z̃n (ϕ1)− λnZ̃n (ϕ2)

)
+ oP

(
1

√
nvn

)
. (A10)

Then,
√
nvn(λ̂n − λn) converges weakly to a centred normal distribution with vari-

ance e2β
(
σ11 + e2βσ22 − 2eβσ12

)
= e2β

(
eβ − 1

)
. This can be resumed in the following

lemma.
Lemma A.7. Let Wn and un be as in Lemma A.6, if kn satisfies the conditions of
Theorem 2.2 and kn = o(n), then

√
nF̄ (ekn)


n∑

i=1

I
{
Wi > ekn

}
n∑

i=1

I {Wi > ekn+1}
−

F̄
(
ekn
)

F̄ (ekn+1)


converges in distribution to a centred normal distribution with variance e2β

(
eβ − 1

)
.

Lemmas A.3, A.4 and A.7 combined with equation (3) imply the first part of
Theorem 2.3, the second part follows from Lemma A.5 and Slutsky’s Theorem. Corollary
2.2 follows immediately.

A.5 Proof of Theorem 3.5

Let Ls (n) be such that L (n) = (Γ (1− β)Ls (n))
−1

with L as defined in (1). Observe
that,

Gν,D (n) =
1

µ (D)

n∑
k=1

Pν (Xk ∈ D) =
1

µ (D)
Eν

[
n∑

k=1

I {Xk ∈ D}

]
.

By Lemma 3.1 and Definition 3.2 of Karlsen and Tjostheim (2001)
Eν

[∑n
k=1 I {Xk ∈ D}

]
is asymptotically equivalent to Γ (1 + β)

−1
nβµ (D)Ls (n) ,

therefore,

Gν,D (n) ∼ 1

Γ (1 + β)
nβLs (n) . (A11)
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Let u (n) = nβLs (n), and define the process

Tn,B =

{
S⌊nt⌋ (B)

u (n)

}
t⩾0

=
Gν,D (n)µ (B)

u (n)
Sn,B .

By Lemma 3.6 and Theorem 3.2 of Karlsen and Tjostheim (2001), Tn,B con-
verges weakly on the Skorokhod topology to the process µ (B)Mβ and by (A11),
Gν,D (n)/u (n) → 1/Γ (1 + β) which completes the proof.

A.6 Proof of Lemma 2.1

The representation is a direct application of Lemma A.8 and the fact that g is a
regularly varying function of index ρ.
Lemma A.8. Assume that L satisfies SR2, has positive decrease and x is big enough
such that representation the (8) holds, then

ln

(
L(x)

L(λx)

)
= −c|ρ|−1 (g(x)− g(λx)) + o (g(x)) . (A12)

Proof. Denote A(x) = cρ−1g(x) + o (g (x)). By (8) we have

ln

(
L(x)

L(λx)

)
= ln

(
C(1 +A(x))

C(1 +A(λx))

)
= ln

(
1 +A(x)

1 +A(λx)

)
= ln (1 +A (x))− ln(1 +A(λx)). (A13)

Using the first order expansion for ln(1 +A(x)) we have that

ln (1 +A (x)) = cρ−1g(x) + o (g (x)) + o
(
cρ−1g(x) + o (g (x))

)︸ ︷︷ ︸
o(g(x))

= cρ−1g(x) + o (g (x)) . (A14)

Applying (A14) to λx we get

ln (1 +A (λx)) = cρ−1g(λx) + o (g (x)) , (A15)

where we have used that if g is regularly varying then o (g (λx)) = o (g (x)). The result
now follows by plugging (A14) and (A15) into (A13).

A.7 Averaged Estimators

Here we collect some remarks and results related to the averaged estimator β̂n (k,m).
First, we detail how to get the expression (6) from (3). Let k > 0 be fixed, for each j
we have:

β (k + j) = β + ln

(
L
(
ek+j

)
L (ek+j+1)

)
,
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then,

1

2m+ 1

m∑
j=−m

β (k + j) =
1

2m+ 1

m∑
j=−m

β +
1

2m+ 1

m∑
j=−m

ln

(
L
(
ek+j

)
L (ek+j+1)

)

= β +
1

2m+ 1
ln

(
m∏

j=−m

L
(
ek+j

)
L (ek+j+1)

)

= β +
1

2m+ 1
ln

(
L
(
ek−m

)
L (ek+m+1)

)
.

Our first result in this regard is the concentration inequality equivalent to (4) but
for the averaged version of the estimator.
Proposition A.1. Let k and m such that k > m and let δ ∈ (0, 1/(2(1 + 2m)). Then,
as soon as pk+m+1 ≥ 16un(δ), we have with probability larger than 1− 2δ(1 + 2m):

∣∣∣β̂n (k,m)− β
∣∣∣ ⩽ 6

√
un (δ)

pk+m+1
+

1

2m+ 1

∣∣∣∣∣ln
(

L
(
ek−m

)
L (ek+m+1)

)∣∣∣∣∣ . (A16)

The following results show that, for well-chosen kn andmn, the estimator β̂n(kn,mn)
is strongly consistent.
Theorem A.2 (Strong consistency). Let kn and mn such that, as n→ ∞

i) kn −mn → +∞,

ii)
+∞∑
n=1

4
n2 (1− 2mn) is convergent,

iii) e(kn+mn)β lnn
n = o

(
L
(
ekn+mn

))
;

then, β̂n (kn,mn) converges almost surely to β.
Corollary A.1. Let A, l be a positive numbers such that l > 1 and l > Aβ/(1−Aβ)
then

β̂n

(
A lnn,

A lnn

l

)
→ β a.s.

A.7.1 Proof of Proposition A.1

Similarly to the proof of Theorem 2.1, Theorem A.1 follows by triangular inequality,
the definition of β (k,m) and the following Lemma A.9, which provides us a bound for

the difference between β̂(k,m)− β(k,m).
Lemma A.9. Let δ > 0 and k and m such that pk+m+1 ≥ 16un(δ), then

∣∣∣β̂n(k,m)− β(k,m)
∣∣∣ ⩽ 6

√
un(δ)

pk+m+1
, (A17)

with probability larger than 1− 2δ (1− 2m).
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Proof. For the left-hand side of equation (A17) we have

∣∣∣β̂n(k,m)− β(k,m)
∣∣∣ = 1

2m+ 1

∣∣∣∣∣
m∑

j=−m

(
β̂n (k + j)− β (k + j)

)∣∣∣∣∣
=

1

2m+ 1

∣∣∣∣∣
2m∑
j=0

(
β̂n (k −m+ j)− β (k −m+ j)

)∣∣∣∣∣ ,
then,

∣∣∣β̂n(k,m)− β(k,m)
∣∣∣ ⩽ 1

2m+ 1

2m∑
j=0

∣∣∣β̂n (k −m+ j)− β (k −m+ j)
∣∣∣. (A18)

Given pk+m+1 ≥ 16un(δ), it follows that pk−m+j+1 ⩾ 16un(δ) for all j between 0 and
2m, allowing the application of Lemma A.1. This yields, for each j,

∣∣∣β̂n (k −m+ j)− β (k −m+ j)
∣∣∣ ⩽ 6

√
un(δ)

pk−m+j+1
, (A19)

with probability bigger than 1− 2δ.
The joint probability of inequality (A19) holding for all j between 0 and 2m is

greater than (2m+ 1) (1− 2δ) − 2m = 1 − 2δ (1− 2m). Hence, with at least this
probability, equation (A18) simplifies to,

∣∣∣β̂n(k,m)− β(k,m)
∣∣∣ ⩽ 1

2m+ 1

2m∑
j=0

6

√
un(δ)

pk−m+j+1
⩽ 6

√
un(δ)

pk+m+1
.

A.7.2 Proof of Theorem A.2

The following Lemma A.10 shows that if kn − mn → +∞, then β (kn,mn) → β.
Theorem A.2 now follows by the same argument used to prove Theorem 2.2, using the
convergence of β (kn,mn) instead of Lemma A.3 and Lemma A.9 instead of Lemma A.1.
Lemma A.10. Let αn, kn and bn be sequences such that, αn → α, kn → +∞ and
kn − nn → +∞. Then,

1

2bn + 1

bn∑
j=−bn

αkn+j → α.
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Proof. Let ρn = 1
2bn+1

bn∑
j=−bn

αkn+j , then

ρn − α =
1

2bn + 1

bn∑
j=−bn

(αkn+j − α) =
1

2bn + 1

2bn∑
j=0

(αkn−bn+j − α).

Fix ϵ > 0. The convergence of αn ensures the existence of N1 such that |αn − α| < ϵ
for all n ≥ N1. Given that kn − bn → +∞, there exists N2 satisfying kn − bn ≥ N1, for
all n ≥ N2, which yields |αkn−bn+j − α| ≤ ϵ for all n ≥ N2 and j ∈ N. Consequently,
for n ≥ N2,

|ρn − α| ≤ 1

2bn + 1

2bn∑
j=0

|αkn−bn+j − α| ≤ 1

2bn + 1

2bn∑
j=0

ϵ = ϵ.

A.7.3 Proof of Corollary A.1

We just need to show that sequences kn = A lnn and mn = A lnn/l satisfy conditions
(i), (ii) and (iii) of Theorem A.2. The first two are trivially satisfied, for the third one,
notice that

lim
n

e(A lnn+A lnn
l )β

L
(
eA lnn+A lnn

l

) lnn

n
= lim

n

1

n
1−(1+ 1

l )Aβ

2 L
(
n(1+

1
l )A
) lnn

n
1−(1+ 1

l )Aβ

2

.

The condition l > Aβ/(1−Aβ) implies that 1− (1 + 1/l)Aβ > 0, therefore,

lim
n

1

n
1−(1+ 1

l )Aβ

2 L
(
n(1+

1
l )
) = 0 and lim

n

lnn

n
1−(1+ 1

l )Aβ

2

= 0,

which shows that kn and mn satisfy condition (iii) in Theorem A.2.

A.8 Tail index estimation in the positive recurrent case

In this section, we prove the asymptotic normality of our estimator in the positive
recurrent case. The main result is the following
Theorem A.3 (Asymptotic normality in the positive recurrent case). Suppose X
is a regenerative positive recurrent Markov chain such that the distribution of its
regeneration time satisfies equation (1). Assume that kn satisfies the hypothesis of
Theorem 2.3 as well as the following extra assumption:
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A6 There exists D′ > 0 such that for any 0 < D < D′

n(1+D)∑
j=n+1

F̄
(
ekj
)
= nDF̄

(
ekn
)
+ o

(
F̄
(
ekn
))
. (A20)

Then,

(i) as n→ +∞, we have the convergence in distribution:√
NnpkNn

(
β̂Nn

(kNn
)− β(kNn

)
)
⇒ N

(
0, eβ − 1

)
.

(ii) In addition, asymptotic normality holds true for the ’standardized’ deviation:√
Nnp̂

(Nn)
kNn

(
β̂Nn

(kNn
)− β (kNn

)
)

√
eβ̂Nn (kNn ) − 1

⇒ N (0, 1) , as n→ +∞.

Remark 6. Assumption A6 can be replaced by the following slightly more restrictive,
but easier to verify, assumption:

A6’ There exists D′ > 0 such that for any 0 < D < D′

F̄
(
ekn(1+D)

)
= F̄

(
ekn
)
+ o

(
F̄
(
ekn
)

n

)
.

As in the case of Theorem 2.3, the main result follows directly from the following
lemma, which is an extension of Lemma A.7 for the case where the number of i.i.d
samples we have is random.
Lemma A.11. Let Wn be a sequence of i.i.d. random variables with survival function
(1), and kn be a sequence such that satisfies the hypothesis of Theorem A.3. Suppose
that Tn is a sequence of positive, integer-valued random variables such that Tn

n converges
in probability to some positive number θ. Then

√
TnF̄ (ekTn )


Tn∑
i=1

I
{
Wi > ekTn

}
Tn∑
i=1

I {Wi > ekTn+1}
−

F̄
(
ekTn

)
F̄ (ekTn+1)

 .

converges weakly to a centred normal distribution with variance e2β
(
eβ − 1

)
.
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A.8.1 Proof of Lemma A.11

For this proof, we will reuse the notation we utilized in the proof of Lemma A.7 and
will add the following definitions: qn = nvn, yn =

√
vn/(nwn

2) and

Un,k =

n∑
i=1

(ϕk (Wn,i)− E [ϕk (Wn,i)]).

By equation (A10) and Lemma A.6

√
qn

(
λ̂n − λn

)
= yn

√
qn

(
Z̃n (ϕ1)− λnZ̃n (ϕ2)

)
+ oP (1) ,

and (Z̃n (ϕk))1⩽k⩽2 converges weakly to a centred normal distribution. Using that
λn → eβ and yn ∼ eβ/

√
qn, this implies that

√
qn

(
λ̂n − λn

)
eβ

= Z̃n (ϕ1)− eβZ̃n (ϕ2) + oP (1) . (A21)

Take n0 = ⌊θn⌋, and Vn =
√
qn(Z̃n (ϕ1)− eβZ̃n (ϕ2)) = Un,1 − eβUn,2, then

√
qTn

eβ

(
λ̂Tn − λTn

)
=

(
Vn0√
qn0

+
VTn

− Vn0√
qn0

)√
qn0

qTn

+ oP (1).

By Lemma A.7 and our assumption about the convergence in probability of Tn/n,
we have that Vn0/

√
qn0 converges in distribution to a centred Normal random variable

with variance e2β(eβ − 1) and qn0/qTn converges in probability to 1. Therefore, if we
show that

VTn
− Vn0√
qn0

→ 0 (A22)

in probability then our lemma will be proved by two successive applications of Slutsky’s
theorem.

Notice that VTn − Vn0 = UTn,1 − Un0,1 − eβ (UTn,2 − Un0,2), hence, if we show
that (UTn,1 − Un0,1)/

√
qn0 and (UTn,2 − Un0,2)/

√
qn0 converge to 0 in probability, then

(A22) will be proved. Given that the proofs of both convergences are analogous, we
will only demonstrate the first one.

Let ϵ > 0 be fixed, and set n1 =
⌊
n0
(
1− ϵ3/32

)⌋
+ 1, n2 =

⌊
n0
(
1 + ϵ3/32

)⌋
, then

P
(
|UTn,1 − Un0,1| > ϵ

√
qn0

)
≤ In,1 + In,2, (A23)

where,

In,1 = P (Tn /∈ [n1, n2]) ,

In,2 = P
({

|UTn,1 − Un0,1| > ϵ
√
qn0

}
∩ Tn ∈ [n1, n2]

)
.
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The convergence in probability of Tn/n to θ implies that there exists N1 such that
In,1 < ϵ/2 for all n ≥ N1, hence,

∀n ≥ N1 P
(
|UTn,1 − Un0,1| > ϵ

√
qn0

)
≤ ϵ

2
+ In,2. (A24)

To bound the second term on the right-hand side of the previous display, observe
that In,2 is smaller than

P
(

max
n1≤j≤n0

|Uj,1 − Un0,1| > ϵ
√
qn0

)
+ P

(
max

n0<j≤n2

|Uj,1 − Un0,1| > ϵ
√
qn0

)
.

We just need to focus on the case n0 < j ≤ n2 because the other will be analogous.
To ease the notation, for any a < b, we will write F̄ b

a instead of F̄ (ua)− F̄ (ub) and we
will use F̄a to denote F̄ (ua). Let Cn be the set {maxn0<j≤n2 |Uj,1 − Un0,1| > ϵ

√
qn0}.

We can write the difference Uj,1 − Un0,1 as

Uj,1 − Un0,1 =

j∑
i=1

(
I {Wi > uj} − F̄j

)
−

n0∑
i=1

(
I {Wi > un0} − F̄n0

)
=

j∑
i=n0+1

(
I {Wi > un0

} − F̄n0

)
−

j∑
i=1

(
I {Wi ∈ (un0

, uj ]} − F̄ j
n0

)
. (A25)

Suppose for the moment that

max
n0<j≤n2

∣∣∣∣ j∑
i=1

(
I {Wi ∈ (un0

, uj ]} − F̄ j
n0

)∣∣∣∣
√
qn0

→ 0 (A26)

in probability.
Let Gn be the event {maxn0<j≤n2 |

∑j
i=1(I {Wi ∈ (un0 , uj ]} − F̄ j

n0
)| ≤ ϵ

√
qn0/2}.

By (A26), we can find N2 such that P (Gn) ≥ 1− ϵ/8 for all n ≥ N2. Therefore, for all
n ≥ N2 we have

P (Cn) ≤ P
({

max
n0<j≤n2

|Uj,1 − Un0,1| > ϵ
√
qn0

}
∩ Gn

)
+
ϵ

8
.

Using (A25), we obtain that {maxn0<j≤n2
|Uj,1 − Un0,1| > ϵ

√
qn0

}∩Gn is contained
in the event {

max
n0<j≤n2

∣∣∣∣∣
j∑

i=n0+1

(
I {Wi > un0

} − F̄n0

)∣∣∣∣∣ > ϵ
√
qn0

2

}
.

34



By Kolmogorov inequality,

P

(
max

n0<j≤n2

∣∣∣∣∣
j∑

i=n0+1

(
I {Wi > un0

} − F̄n0

)∣∣∣∣∣ > ϵ
√
qn0

2

)
≤ 4 (n2 − n0) F̄n0

ϵ2n0F̄n0

.

The right-hand side of the previous equation equals
4
(⌊
n0
(
1 + ϵ3/32

)⌋
− n0

)
/(ϵ2n0), and that is smaller than ϵ/8. Hence,

P (Cn) ≤ ϵ
4 for all n ≥ N2. In a similar fashion, we can find N3 such that

P
(
maxn1≤j≤n0 |Uj,1 − Un0,1| > ϵ

√
qn0

)
≤ ϵ/4 for n ≥ N3. This shows that In,2 ≤ ϵ/2

for n ≥ max(N2, N3). Combining this with equation (A24), proofs (A22).
To finish, we proceed with the proof of (A26). Let δ > 0 be fixed. Without loss

of generality, assume that 1 + ϵ3/8 < 2 and ϵ3/8 < D′. Denote by Hn,δ the event

{maxn0<j≤n2
|
∑j

i=1(I{Wi ∈ (un0
, uj ]} − F̄ j

n0
)| > δ

√
qn0

}, then,

Hn,δ ⊆
n2⋃

j=n0+1

{∣∣∣∣∣
j∑

i=1

(
I {Wi ∈ (un0

, uj ]} − F̄ j
n0

)∣∣∣∣∣ > δ
√
qn0

}
. (A27)

By Chebyshev’s inequality,

P

(∣∣∣∣∣
j∑

i=1

(
I {Wi ∈ (un0

, uj ]} − F̄ j
n0

)∣∣∣∣∣ > δ
√
qn0

)
≤

2F̄ j
n0

δ2F̄n0

=
2

δ2

(
1− F̄j

F̄n0

)
.

Combining this with (A27) and A6, we obtain

P (Hn,δ) ≤
2

δ2

n2∑
j=n0+1

(
1− F̄j

F̄n0

)
≤ 2

δ2

(
n2 − n0 −

∑n2

j=n0+1 F̄j

F̄n0

)

≤ 2

δ2

(
n2 − n0 −

(n2 − n0) F̄n0 + o
(
F̄n0

)
F̄n0

)
= o (1) ,

which completes the proof of (A26).
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Bertail, P., & Clémençon, S. (2006a). Dependence in probability and statistics. In
P. Bertail, P. Soulier, & P. Doukhan (Eds.), Dependence in probability and
statistics (pp. 3–54). New York: Springer New York.
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