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Abstract: Two regeneration-based bootstrap methods, namely, the Re-
generation based-bootstrap [3, 23] and the Regenerative Block bootstrap [11]
are shown to be valid for the problem of estimating the integral of a func-
tion with respect to the invariant measure in a β-null recurrent Markov
chain with an accessible atom. An extension of the Central Limit Theorem
for randomly indexed sequences is also presented.
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In [27], Bradley Efron introduced the Bootstrap as a way to overcome some lim-
itations of classical methods that often relied on strong assumptions about the
data’s underlying distribution or the model’s form. Since then, these techniques,
first studied in the i.i.d. case, have been developed and extended to time-series
(see [46] for an extensive survey of methods) and applied to a wide range of
problems in various fields such as signal processing [67, 68], soil science [66]
and econometrics [48, 33]. These methods are easy to implement with modern
computing power and can provide more accurate and reliable inferences than
traditional methods in many situations.

Although originally designed for i.i.d. sampling, there has been significant in-
terest in adapting the bootstrap to situations where the data is dependent. Sev-
eral resampling methods have been proposed for time series data: these include
the autoregressive-sieve bootstrap [43], block bootstrap [45], circular bootstrap
[61], the stationary bootstrap [62], continuous-path block bootstrap [56], tapered
block bootstrap [57], frequency-domain bootstrap [55, 41], and local bootstrap
[59]. For detailed reviews and comparisons of these methods see [28, 42, 40, 17]
and the references therein.

In the Markovian case, numerous approaches have been developed and exam-
ined. In [44], the authors proposed a block resampling scheme that consists in
resampling from a nonparametric estimate of the one-step transition matrix of
a finite state Markov chain. This method was extended to the countable case in
[3]. Extensions of this method have been proposed for the case where the state
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space is Euclidean, as seen in [64], [58, 60] and [32]. The general concept is to
estimate the marginal distribution and the transition probability function using
a nonparametric function estimation technique and then resample from those
estimates. For a detailed explanation of this approach, refer to Section 4 in [40].

A completely new approach to this problem was introduced in [3]. Instead of
using estimated transition probabilities, they exploit the regeneration proper-
ties of a Markov chain when an accessible atom is visited infinitely often. The
main idea underlying this method consists in dividing the chain into a ran-
dom number of i.i.d. regeneration blocks and then resampling the same number
of regeneration blocks. This method, named Regeneration based bootstrap, was
proved to be valid for finite state atomic chains in [3], and it was extended to
general atomic positive recurrent Markov chains in [23].

It was pointed out in [10] that the Regeneration based bootstrap is not second-
order correct (its rate is OP(n−1/2) only). To overcome this limitation, a varia-
tion of this method, called Regenerative Block bootstrap (RBB), was introduced
in [11]. This method consists in imitating the renewal structure of the chain by
sampling regeneration data blocks, until the length of the reconstructed boot-
strap series is larger than the length n of the original data series (notice the
difference with the Regeneration based bootstrap, where the number of sampled
blocks is equal to the number of regeneration blocks in the original chain). It was
shown in [11] that, for atomic positive recurrent Markov chains, the RBB for
estimating the integral of a function with respect to the invariant probability,
has a uniform rate of convergence of order OP

(
n−1) (the same as in the i.i.d.

case).
Despite all these efforts in the positive recurrent case, up to our knowledge,

no bootstrap method has been studied in the general null-recurrent scenario,
although some specific AR(1) models with unit roots have been the subject of
investigations. It has been shown that, for those AR(1) models the standard
bootstrap methods (including parametric ones) do not work [22, 54] unless one
works under the null hypothesis of unit root (see [8]). This idea can not be ap-
plied to general null recurrent Markov chain unless one specifies the parametric
or semiparametric forms of the Markov chain. Hence, our objective in this paper
is to propose a general valid method and show that, provided that the estimators
are correctly standardized, both Regeneration based-bootstrap and Regenerative
Block bootstrap are valid schemes for estimating integrals with respect to the
invariant measure when the Markov chain is β-null recurrent and possesses an
accessible atom. The task is challenging because the expectation of the time
of return to an atom of such Markov chains is infinite, the bootstrap of such
quantity does not work [4, 39]: indeed a necessary condition for the bootstrap
to work is generally the finiteness of the variance [21]. Despite this fact, we
will show that, by using the correct random normalization, one can obtain a
CLT for the mean and the validity of both bootstrap regeneration methods in
a null-recurrent framework.

The main difference between the methods described here and its counterparts
in the positive recurrent case is the fact that we use renormalization based on
the number of regenerations blocks (denoted by T (n)) instead of n. Given that
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the number of blocks is of order much smaller than n, it makes the method more
restrictive. But to our knowledge, there are no other bootstrap methods available
in this null-recurrent context (unless we consider a specific parametric model).
Notice that, even standard estimators will have rate of convergence

√
T (n)

with T (n) or order nβ (see [37]) which of course also limits its applicability.
For symmetric random walks, β = 1/2, it is known that estimators of linear
functionals, kernels estimators, volatility estimators have rate close to n−1/4,
[24].

In order to make the exposition simpler, our asymptotic results will be specif-
ically stated for integrals with respect to the invariant measure, however, the
procedures can be applied to any statistic defined over a regeneration blocks,
as long as it has finite variance. Similarly, our results are stated for first or-
der Markov chains, but they can easily be extended to higher order chains by
vectorization [26, pp. 15].

The paper is organized as follows: in section 1 we provide a brief introduction
to null recurrent Markov chains, making a special emphasis on atomic ones and
presenting the main results that we use throughout the paper. In subsection 1.3
we present an extension of the Central Limit Theorem for randomly indexed se-
quences (Lemma 1.2). Section 2 is dedicated to the Regenerative Block bootstrap
in β-null recurrent Markov chains, while Section 3 is devoted to the Regener-
ation based-bootstrap. In section 4 we have performed two simulation studies
to show the behavior of both algorithms in practice. Section 5 contains a few
concluding remarks. The technical proofs are postponed to Section 6.

1. A short introduction to null-recurrent Markov chains

In this section, we introduce some notation and review some important concepts
from Markov chain theory that will be used throughout the paper. For more
details, please refer to [50, 26].

1.1. Notation and definitions

Consider an homogeneous Markov chain X = {X0, X1, . . .} on a countably
generated state space (E, E), with transition kernel P and initial probability
distribution λ. This means that for any B ∈ E and n ∈ N, we have L (X0) = λ
and

P(Xn+1 ∈ B | X0, . . . , Xn) = P (Xn, B) almost surely.
Note that the assumption of a countably generated state space is commonly

used in Markov chain theory to avoid pathological examples known as ‘anormal’
chains [25]. For more information on this topic, see [25], [35], and [65]. An
example of an ‘anormal’ chain can be found in [15]. This assumption does not
significantly limit the generality of our results since most of the time E will be
the borelian σ-algebra of Rd, which is countably generated.

In the following, we use Pλ (or Px for x in E) to denote the probability
measure on the underlying space such that X0 ∼ λ (or X0 = x). We use Eλ to
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represent the Pλ-expectation (or Ex to represent the Px-expectation), and I {A}
to represent the indicator function of event A.

A homogeneous Markov chain is said to be irreducible if there exists a σ-finite
measure φ on (E, E) such that for all x ∈ E and all A ∈ E with φ(A) > 0, there
exists some n � 1 such that Pn(x,A) > 0. In this case, there exists a maximal
irreducibility measure ψ with respect to which all other irreducibility measures
are absolutely continuous. If X is ψ-irreducible, there is d′ ∈ N

∗ and disjoints
sets D1, . . . , Dd′ Dd′+1 = D1 weighted by ψ such that ψ(E\ ∪1�i�d′ Di) = 0
and ∀x ∈ Di, P (x,Di+1) = 1. The g.c.d. d of such integers is called the period
of the chain. X is said to be aperiodic if d = 1.

Thorough this paper, we assume that the Markov chains under considera-
tion are homogeneous, aperiodic, and irreducible with maximal irreducibility
measure ψ.

An irreducible chain possesses an accessible atom, if there is a set α ∈ E
such that for all x, y in α: P (x, •) = P (y, •) and ψ(α) > 0. For instance,
when a chain can take a countable number of values, any single point visited
by the chain is an atom. Denote by σα and τα, respectively, the times of first
visit and first return of the chain to α, i.e. τα = inf {n � 1 : Xn ∈ α} and
σα = inf {n � 0 : Xn ∈ α}. The subsequent visit and return times σα, τα (k),
k � 1 are defined inductively as follows:

τα (1) = τα , τα (k) = min {n > τα (k − 1) : Xn ∈ α} , (1)
σα (1) = σα , σα (k) = min {n > σα (k − 1) : Xn ∈ α} . (2)

We use Tn(A) to represent the random variable that counts the number of
times the chain visits the set A up to time n, i.e., Tn(A) =

∑n
t=0 I{Xt ∈ A}.

Similarly, we use T∞(A) to represent the total number of visits of chain X to
A.

An atom α is called recurrent if ExT∞(α) = +∞ for all x ∈ α; otherwise,
it is called transient. A notable property of atomic chains is that all accessible
atoms are either all recurrent or all transient. Therefore, we say that an atomic
chain is recurrent if one (and thus all) of its accessible atoms is recurrent. If X
is aperiodic, recurrent and possesses an accessible atom, then the probability of
returning infinitely often to the atom α is equal to one, no matter the starting
point, i.e.

Px

(
T∞(α) = ∞

)
= 1 ∀x ∈ E.

Denote by Pα and Eα the probability and the expectation conditionally to
X0 ∈ α.

A fundamental tool for understanding the long-term behavior of Markov
chains is the existence of invariant measures, that is, a measure π such that

π (A) =
∫

P (x,A) dπ (x) ∀A ∈ E .

Every irreducible and recurrent Markov chain admits a unique (up to a
multiplicative constant) invariant measure [50, Theorem 10.4.9]. In the atomic
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case, the invariant measure is just the occupation measure over the first block
B1 =

(
Xτα(1)+1, . . . , Xτα(2)

)
[26, Theorem 6.4.2], i.e.

πα (A) = Eα

⎛⎝ τα∑
j=1

I {Xj ∈ A}

⎞⎠ , ∀A ∈ E . (3)

An irreducible Markov chain is positive recurrent if its invariant measure is
finite. When the invariant measure is just σ-finite, then the chain is called null
recurrent. From (3), it is clear that an atomic Markov chain is positive recurrent
if and only if Eατα < +∞, and in this case, the measure defined by πα/Eατα is
an invariant probability for the chain. The existence of this invariant probability
makes the theory of positive recurrent Markov chains, very similar to the i.i.d.
case [50, Chapter 17].

Conversely, dealing with null recurrent chains is considerably more challeng-
ing, and a comprehensive theory of non-parametric estimation for this type of
chain does not exist. To address this issue, Karlsen and Tjøstheim introduced in
[37] a regularity condition for the tail behavior of the distribution of τα that ren-
ders the problem more tractable. Specifically, denote by Γ the gamma function1,
then, a chain is referred to as β-null recurrent if there is a constant β ∈ (0, 1)
and a slowly varying function2 L such that

Pα (τα > n) ∼ 1
Γ(1 − β)nβL(n) . (4)

The number β, also known as the regularity index (see [18, 19]) satisfies

β = sup {p > 0 : Eα (τpα) < +∞} .

Some of the most well-known examples of β-null recurrent Markov chains are
the random walks in R, which are 1/2-null recurrent [36], the Bessel random
walks [20, 1] and some types of threshold autoregressive (TAR) [29] and vec-
tor autoregressive processes (VAR) [51]. β-null recurrent Markov chains appear
naturally in many fields of statistics and probability for instance for studying
population dynamics, statistical mechanics or the study of Polymer.

1.2. Renewal properties and Block decomposition

The strong Markov property implies that the sample paths of an atomic Markov
chain can be partitioned into independent blocks of random length correspond-
ing to consecutive visits to α, given by:

B0 =
(
X0, X1, . . . , Xτα(1)

)
1The Γ function is defined as Γ(x) =

∫+∞
0 tx−1 exp(−t) dt.

2A measurable and positive function L is said to be slowly varying at +∞ if it is defined
in [a,+∞) for some a � 0, and satisfies limx→+∞ L (xt)/L (x) = 1 for all t � a. For a detailed
discussion on these types of functions, refer to [14].
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B1 =
(
Xτα(1)+1, . . . , Xτα(2)

)
. . .

Bn =
(
Xτα(n)+1, . . . , Xτα(n+1)

)
. . .

blocks {Bj}j�1 is called regeneration blocks. As customary in the β-null recurrent
Markov chain literature, we will use T (n) to denote the number of complete
regeneration blocks up to time n, i.e. T (n) = max (Tn(α) − 1, 0). We will denote
by 	 (Bi) the length of the i-th block, therefore,

	 (Bj) =
{
τα , j = 0
τα (j + 1) − τα (j) , j � 1

(5)

The random variable T (n), and its relationship with
∑k

j=0 	 (Bj), is crucial
in the theory we will develop in this paper, therefore, we will state in this section
its main properties in the β-null recurrent scenario.

Assume X is a β-null recurrent Markov chain with an accessible atom α. By
(3.27) in [37], the function L in (4) can be normalized in such a way that

u(z) = zβL(z) (6)

is a continuous function that is strictly increasing in the interval [z0,+∞) for
some z0 ∈ R+. Define v(z) as

v(z) = u(−1)(z) = inf {s : u (s) > z} , (7)

then, u (v(z)) = v (u(z)) = z for z � z0.
Consider the space of càdlàg functions defined on the interval [0,+∞), de-

noted by D[0,+∞). This space consists of the real functions that are right-
continuous with left limits and defined over [0,+∞). More precisely, a function
g ∈ D[0,+∞) if and only if g is right-continuous, has left limits at all points
t > 0, and limt↓0 g(t) = g(0). The space D[0,+∞) is equipped with the Sko-
rokhod3 topology, making it a complete and separable metric space. We will use
D[0,+∞)−−−−−→ to denote weak convergence in this space, and fd−→ for convergence of
finite-dimensional laws. Two stochastic processes Yn, Zn in D[0,+∞) are said to

be equivalent if Yn − Zn converges weakly to the zero process. If Yn

D[0,+∞)−−−−−→ Y

and Yn and Zn are equivalent, then Zn

D[0,+∞)−−−−−→ Y (see Lemma 3.31 in [34]).
Define the following processes

Tn(t) = T (�nt	)
u (n) , Cn(t) = 1

v (n)

�nt�∑
k=0

	 (Bk), (8)

and C
(−1)
n (t) = inf{x : Cn(x) > t}. The following Theorem, proved in [37],

shows that these three processes converge in D[0,+∞) and that Tn and C
(−1)
n are

equivalent.
3See Chapter 6 of [34] or Chapter 3 in [13] for more details about this space.
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Theorem 1.1. Assume X is a β-null recurrent atomic Markov chain. Then,

i) Cn

D[0,+∞)−−−−−→ Sβ where Sβ is the one-sided stable Levy process defined by
the marginal characteristics

E [exp (isSβ(t))] = exp
(
isβt

)
s ∈ R, t ∈ [0,+∞].

ii) C
(−1)
n and Tn are equivalent processes and both converge in D[0,+∞) to the

Mittag-Leffler process of parameter β.

Remark 1.1. The Mittag-Leffler process with parameter β is defined as the
inverse of Sβ . It is a strictly increasing continuous stochastic process defined as

Mβ(t) = tβMβ (1) , E
(
Mm

β (1)
)

= m!
Γ (1 + mβ) m � 0.

Theorem 1.1 shows a striking difference between positive and null recurrent
Markov chains. While in the former the existence of moments for 	 (Bj) im-
plies that Cn and Tn (taking u(n) = n) converge almost surely respectively to
tEατα and t/Eατα, and therefore, T (n) can be approximated almost surely by
the deterministic quantity n/Eατα, in the latter, we only have weak conver-
gence, hence T (n) can only be controlled by the deterministic quantity u(n) in
distribution.

1.3. Properties of linear functionals defined on β-null recurrent
chains

For a measurable function f : E → R, and an atomic Markov chain X with an
accessible atom α, consider the problem of estimating πα(f) =

∫
fdπα, where

πα is as in (3) and πα(f) < +∞. Denote by Sn(f) the partial sums of f over
the chain, that is

Sn(f) =
n∑

k=0
f (Xk). (9)

The Ratio Limit Theorem for atomic chains [26, Theorem 6.6.2] shows that
if g is a measurable function, then, for every invariant measure π we have

Sn(f)
Sn (g)

a.s.−−→ π(f)
π (g) , (10)

as long as π (g) 
= 0.
Remark 1.2. From (10) is clear that Sn(f)/T (n) is a strongly consistent estima-
tor of πα(f), and, in the positive recurrent case, Sn(f)/n a.s.−−→ πα(f)/Eατα. In
the null recurrent case, however, Sn(f)/n a.s.−−→ 0 (see Corollary 6.6.3 in [26]) and
there is no deterministic sequence a (n) such that Sn(f)/a(n) converges almost
surely to a non-zero limit [18].
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Given that our interest in this paper is to apply the bootstrap method to the
study of πα(f) we need to find a series of i.i.d. random variables whose mean
strongly converges to πα(f). To do this, define the following random variables

f(Bj) =

⎧⎪⎪⎨⎪⎪⎩
τα∑
i=0

f (Xi) , j = 0
τα(j+1)∑

i=τα(j)+1
f (Xi) , j � 1

.

The strong Markov property implies that under Pα, the sequence {f(Bj)}j�0
is i.i.d. Moreover, for every initial probability λ such that Pλ (τα < ∞) = 1, the
random variables f(Bj), j � 0 are independent and for j � 1 they are i.i.d.
Therefore, Sn(f) can now be written as a sum of independent random variables
as follows:

Sn(f) = f (B0) +
T (n)∑
j=1

f (Bj) +
n∑

i=τα(T (n)+1)+1

f (Xi), (11)

with the convention that the sum of an empty set is 0. As customary in the
β-null recurrent literature, we will denote the last term in (11) by f(B(n)).

Equation (3) indicates that Eαf(Bj) = πα(f) for j � 1, hence, if we assume
that πα(|f |) < +∞, the Law of Large Numbers for randomly indexed sequences
[30, Theorem 8.2, pp 302] shows that

1
T (n)

T (n)∑
j=1

f(Bj)
a.s.−−→ πα(f). (12)

Remark 1.3. The recurrence of the chain implies that T (n) → ∞ almost surely,
therefore f(B0)/T (n) and f(B(n))/T (n) converge to 0 almost surely (see Lemma
1 in [6]). This allows us to consider only the i.i.d. blocks f(Bj), j � 1 in our
estimations.

If we suppose further that f(B1) has finite second moment, and we denote
by σ2 the variance of f(B1), then

σ̂2
n = 1

T (n)

T (n)∑
j=1

⎛⎝f(Bj) −
1

T (n)

T (n)∑
i=1

f(Bi)

⎞⎠2

a.s.−−→ σ2. (13)

Much of the work carried out in this investigation deals with sequences in-
dexed by the sequence of random variables T (n). As explained at the end of
Section 1.2, this sequence, although it converges almost surely to +∞, can not
be deterministically approximated in probability, it only admits an approxima-
tion in distribution. This creates huge problems, even for simple tasks, as to
obtaining a CLT, because CLTs for randomly indexed sequences (see [2] for
the original formulation and Th. 17.2 in [13] for its more general form) require
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being able to control deterministically, at least in probability, the sequence of
the number of terms. The result we present below extends this CLT, replacing
the requirement of the control in probability by the existence of the limit of a
stochastic process defined in terms of the sequence of the number of terms.

Lemma 1.2 (CLT for randomly indexed sequences). Let X1, X2 . . . be i.i.d.
random variables such that E(X1) = μ and VarX1 = σ2 > 0. Let N(n) be a se-
quence of integer-valued random variables. Assume there exists an unbounded in-
creasing sequence of real numbers un such that the process Nn(t) = N(�nt	)/un

satisfies the following conditions:

• There exists a process Sn in D[0,+∞) such that, for each n it is non-negative
and non-decreasing.

• Sn

D[0,+∞)−−−−−→ S where S is a strictly increasing non-negative process with
independent increments, no fixed jumps, and S(0) ≡ 0.

• Nn is equivalent to S
(−1)
n .

Then, Nn converges to S(−1) in D[0,+∞),√
N(n)
σ

⎛⎝ 1
N(n)

N(n)∑
j=1

(Xj − μ)

⎞⎠ d−→ N(0, 1),

and Nn(1) and
√

N(n)
σ

(
1

N(n)
∑N(n)

j=1 (Xj − μ)
)

are asymptotically independent.

Corollary 1.1. [Theorem 17.2 in [13]] Suppose X1, . . . , Xn are i.i.d. with EX1 =
μ and VarX1 = σ2. If N(n) is a sequence of integer-valued random variables
such that

N(n)
un

p−→ θ, (14)

where θ is a positive random variable and un is a sequence of positive numbers
going to infinity, then√

N(n)
σ

⎛⎝ 1
N(n)

N(n)∑
j=1

(Xj − μ)

⎞⎠ d−→ N(0, 1).

Using Lemma 1.2 and Theorem 1.1 we can provide a different proof of the
following Central Limit Theorem for β-null recurrent atomic Markov chains,
which was originally proved in [5].

Theorem 1.3. Let X be a β-null recurrent Markov chain, with an accessible
atom α. For every πα- measurable function f such that σ2 = Var f(B1) is finite,
we have the following convergence in distribution:√

T (n)
σ

⎛⎝ 1
T (n)

T (n)∑
j=1

f(Bj) −
∫

f dπα

⎞⎠ d−→ N(0, 1). (15)
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Moreover, T (n)/nβL(n) converges to a Mittag-Leffler distribution with param-
eter β and it is asymptotically independent of the left-hand side of (15). If in
addition we also have E[|f |(B1)2] < +∞, then√

T (n)
σ

(
Sn(f)
T (n) −

∫
f dπα

)
d−→ N(0, 1). (16)

The following corollary is a direct consequence of Theorem 1.3, equation (13)
and Slutsky’s theorem.
Corollary 1.2. Under the same hypothesis of Theorem 1.3, we have√

T (n)
σ̂n

⎛⎝ 1
T (n)

T (n)∑
j=1

f(Bj) −
∫

f dπα

⎞⎠ d−→ N(0, 1),

and if E[|f |(B1)2] < +∞ also holds, then√
T (n)
σ̂n

(
Sn(f)
T (n) −

∫
f dπα

)
d−→ N(0, 1).

2. The regenerative block-bootstrap algorithm (RBB)

Let X(n) = (X0, ..., Xn) be observations drawn from a β-null recurrent Markov
chain X with an a priori known accessible atom α. As in the previous section,
let f be a πα-integrable function such that f (B1) has a finite second moment.
Denote by σ2 the variance of f (B1).

The Regenerative block-bootstrap (RBB) method, which we explore in this
section, was initially introduced in [11] for positive recurrent Markov chains. In
their Theorem 2.1, it was shown that, in the atomic case, the RBB distribution
achieves a uniform rate of convergence of order Op

(
n−1) for both the studen-

tized and unstudentized sample mean, meaning that the sup-norm between the
true distribution and its bootstrap approximation is of order Op

(
n−1).

In this section, we show that the method is also applicable in the β-null
recurrent case, although we have not been able to obtain a rate.
Remark 2.1. Obtaining rates of convergence, for the bootstrap, typically de-
pends on Edgeworth expansions [31]. These expansions can be derived, at least
formally, by calculating cumulants using standard techniques. In the Markovian
case, the validity of these expansions not only depends on the cumulants of f(Bj)
but also on the moments of τα [49, 9]. More precisely, up to our knowledge, these
expansions have been obtained only when Eατ

4
α is finite [9, Theorem 5.1]. Devel-

oping methods to obtain Edgeworth expansions for distributions with very few
moments is an interesting research direction, but it would involve substantial
theoretical developments that are beyond the scope of this work.

Proposition 3.1 in [9] shows that for positive recurrent chains, in the nonsta-
tionary case (when the initial law λ is not the invariant probability measure),
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the first data block B0 induces a bias of order O(n−1), which cannot be esti-
mated from a single realization X(n) of the chain starting from λ. The last block
B(n) (which is incomplete) induces a first-order term in the bias too. This led
the authors in [11] to only consider statistics based on the regenerative data
blocks B1, . . . ,BT (n).

In the β-null recurrent case, the lack of finite first moment for the block sizes
suggests that considering the non-regenerative blocks will incur in an even worse
bias, hence, as in [11], we will only consider statistics based on the regenerative
data blocks B1, . . . ,BT (n).

While our asymptotic results are specifically stated for integrals with respect
to the invariant measure, the algorithm can be applied to any statistic defined
over the regeneration blocks, as long as it has finite variance.

As customary in the bootstrap literature, P∗(•) = P(• | X(n)) denotes the
conditional probability given X(n). We will write Z∗

n
d∗
−→p Z to indicate the

weak converge in probability of the bootstrap random variables Z∗
n to Z, this

is, for all x ∈ R, P∗(Z∗
n � x) p−→ P(Z � x). See pp. 2550 in [16] for more details.

In this section, our goal is to bootstrap a general statistic Gn that converges
to a parameter θ. We will typically prove asymptotic results for the case where
Gn =

∑T (n)
j=1 f(Bi)/T (n). Additionally, we assume the availability of a block-

based standardization, denoted as Stdn = Std(B1, ...,BT (n)) . The distribution
of interest is defined as Hn(x) = P(Std−1

n (Gn − θ) � x).
The RBB procedure is performed in four steps as follows:

1. Count the number of visits Tn(α) to the atom α up to time n, and divide
the observed sample path X(n) = (X0, . . . , Xn) into Tn(α) + 1 blocks, B0,
B1, . . ., BTn(α)−1, B(n)

Tn(α) , corresponding to the pieces of the sample path
between consecutive visits to the atom α. Drop the first and last (non-
regenerative) blocks. Denote by T (n) the number of remaining blocks.

2. Draw sequentially bootstrap data blocks B∗
1,T (n), . . ., B∗

k,T (n) independently
from the empirical distribution Fn = T (n)−1∑T (n)

j=1 δBj of the blocks
{Bj}1�j�T (n) conditioned on X(n), until the length of the bootstrap data
series, 	∗(k) =

∑k
j=1 	(B∗

j,T (n)), is larger than n. Let T ∗
n(α) = inf{k � 1,

	∗(k) > n} and T ∗(n, T (n)) = T ∗
n(α) − 1.

3. From the data blocks generated in step 2, reconstruct a pseudo-trajectory
of size 	∗(T ∗(n, T (n))) by binding the blocks together, that is

X∗(n) =
(
B∗

1,T (n), ...,B∗
T∗(n,T (n)),T (n)

)
.

Compute the RBB statistic G∗
n = Gn(X∗(n)).

4. If Stdn = S(B1, ...,BT (n)) is an appropriate standardization of the original
statistic Gn, compute Std∗n = S(B∗

1,T (n), ...,B∗
T∗(n,T (n)),T (n)).

The RBB distribution is then given by

HRBB(x) = P
∗
(
Std∗−1

n (G∗
n −Gn) � x

)
.



4862 C. A. Fernández

One purpose of the next paragraphs is to show that if we choose a correct
standardization Stdn, then we can obtain that HRBB(x)−Hn(x) p−→ 0 uniformly
in x. Our main asymptotic result, in the case of integrals concerning the invariant
measure, is the following.

Theorem 2.1 (Validity of the RBB). Let X be a β-null recurrent Markov
chain with an accessible atom α, and let f be a πα-integrable function such that
E[f(B1)2] < +∞. Define

σ̂2
T (n) = 1

T (n)

T (n)∑
j=1

⎛⎝f(Bj) −
1

T (n)

T (n)∑
i=1

f(Bi)

⎞⎠2

and μ̂T (n) = 1
T (n)

T (n)∑
i=1

f(Bi).

Then we have,

√
T ∗(n, T (n))
σ̂T (n)

⎛⎝ 1
T ∗(n, T (n))

T∗(n,T (n))∑
j=1

(
f(B∗

j,T (n)) − μ̂T (n)

)⎞⎠ d∗
−→p N (0, 1) .

This theorem yields that the bootstrap distribution of the standardized sum
has asymptotically the same distribution as the statistics

∑T (n)
j=1 f(Bj)/T (n) es-

timating
∫
fdπα. The proof of this result is non-trivial and totally non-standard:

it starts by constructing a space, via Skorokhod-Dudley-Wichura Theorem (see
pp. 1171 in [39]), in which we can get a.s. convergence of order statistics of the
block lengths, as in [39]. Then, in that space we apply the CLT described in
Lemma 1.2 to obtain the convergence in probability of the bootstrap quantity
HRBB to the CDF of a normal distribution, which implies convergence of the
same things in distribution in the original space. But since this bootstrap limit
is non-random (it does not depend on the data), we get in turn the weakly
convergence in probability. The regenerative block bootstrap is thus first-order
correct. In particular, this justifies the use of the quantiles of the bootstrap
distribution (with or without standardizing) to obtain confidence intervals for∫
fdπα.

Remark 2.2. In the original formulation of the RBB for atomic and positive re-
current chains [11, Theorem 2.1], the estimator used was Gn =

∑T (n)
i=1 f(Bi)/nα,

where nα =
∑T (n)

k=1 	(Bk). A key element in their proof is that nα is a.s. equiva-
lent to a multiple of n, however, in the null-recurrent scenario, this equivalence
does not hold due to the lack of first moment for 	(B1). Therefore, we need to
use the random normalization. On the other hand, Remarks 1.2 and 1.3 rule out
the use of

∑T (n)
i=1 f(Bi)/n in the null-recurrence case (it converges a.s. to 0), and

equation (12) suggests
∑T (n)

j=1 f(Bi)/T (n) as its natural replacement. It should
be pointed out that using

∑T (n)
i=1 f(Bi)/u(n) (or Sn(f)/u(n)) is also not useful,

because its limit distribution is a constant multiple of a Mittag-Leffler distribu-
tion, see [18, Theorem 2.1].The random normalization seems unavoidable in the
β-null recurrent scenario.
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3. The regeneration-based bootstrap algorithm

In this section, we adapt the Regeneration-based bootstrap to the β-null recurrent
Markov chain scenario.

Similarly to Section 2, consider observations X(n) = (X0, . . . , Xn) drawn
from a β-null recurrent Markov chain X that has an accessible atom α known
beforehand. Suppose that f is a function such πα(f) is finite and the second
moment of f (B1) is also finite. Let σ2 represent the variance of f (B1).

The algorithm we present in this section was introduced in [3, 23] for positive
recurrent Markov chains with an accessible known atom. Similarly to the RBB,
it consists on dividing the chain into B1, . . . ,BT (n) regenerative blocks and then
resampling blocks to form the empirical distribution of B1, . . . ,BT (n). The main
difference between the Regeneration-based bootstrap and the RBB is that in
the former, the number of bootstrapped blocks is T (n), hence, non-random
conditionally to X(n), while in the latter is random.

The full algorithm is as follows:

1. Count the number of visits Tn(α) to the atom α up to time n, and divide
the observed sample path X(n) = (X0, . . . , Xn) into Tn(α) + 1 blocks, B0,
B1, . . ., BTn(α)−1, B(n)

Tn(α) , corresponding to the pieces of the sample path
between consecutive visits to the atom α. Drop the first and last (non-
regenerative) blocks. Denote by T (n) the number of remaining blocks.

2. Draw T (n) bootstrap data blocks B∗
1,T (n), ..., B∗

T (n),T (n) independently
from the empirical distribution Fn = T (n)−1∑T (n)

j=1 δBj of the blocks
{Bj}1�j�T (n) conditioned on X(n).

3. From the bootstrap data blocks generated at step 2, reconstruct a tra-
jectory by binding the blocks together, getting the reconstructed sample
path

X∗(n) = (B∗
1,T (n), ...,B∗

T (n),T (n)).

Compute the statistic G∗
n = Gn

(
X∗(n)).

4. If Stdn = Std(B1, . . . ,BT (n)) is an appropriate standardization of the orig-
inal statistic Gn, compute Std∗n = Std(B∗

1,T (n), . . . ,B∗
T (n),T (n)).

As in the RBB case, the asymptotic result stated below shows the validity of
this bootstrap scheme when used in estimations of integrals with respect to the
invariant measure. In line with the conventions of bootstrap literature, we will
write Z∗

n
d∗
−→a.s. Z to denote the weak convergence almost surely along the data

of the bootstrap random variables Z∗
n towards Z. This means that, for every

x ∈ R, P∗ (Z∗
n � x) a.s.−−→ P (Z � x). For more details, see [16, pp. 2250].

Theorem 3.1 (Validity of the Regeneration based bootstrap). Under the same
hypothesis of Theorem 2.1, we have√

T (n)
σ̂T (n)

⎛⎝ 1
T (n)

T (n)∑
j=1

(
f(B∗

j,T (n)) − μ̂T (n)

)⎞⎠ d∗
−→a.s. N (0, 1) .
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Remark 3.1. In its original formulation for the positive recurrent case, the es-
timator used was Sn(f)/n, however, by Remark 1.2, it can not be used in the
null recurrent case.

4. Simulations

In order to empirically compare the two bootstrap methodologies described in
this paper, we devote this section to simulation examples. The code for all
the experiments is available at https://github.com/carlosds731/boostrap_
markov

As a model for the experiments, we will consider the simple symmetric ran-
dom walk in Z, that is

Xt =

⎧⎨⎩
0 , t = 0
t∑

k=1
Yk , t � 1

(17)

with P (Yi = 1) = P (Yi = −1) = 1/2. In this random walk, the state 0 is an
atom and the invariant measure is π0 ({i}) ≡ 1 (see pp.1143 in [5]). Consider
the function f(k) = 1

k2 if k 
= 0 and f(0) = 0, then∫
f (x) dπ0 (x) = 2

+∞∑
k=1

1
k2 = π2

3 .

Our parameter of interest will be
∫
f (x) dπ0 (x) which we will estimate with

Gn =
∑T (n)

i=1 f(Bi)/T (n). The bootstrap version of this statistic will be denoted
by G∗

RBB,n in the RBB case and by G∗
RgB,n in the regeneration based scenario.

Their standardized versions are defined as follows:

Ln :=
√
T (n)
σ̂n

(
Gn −

∫
f dπα

)
,

L∗
RBB,n :=

√
T ∗(n, T (n))

σ̂n

(
G∗

RBB,n −Gn

)
,

L∗
RgB,n :=

√
T (n)
σ̂n

(
G∗

RgB,n −Gn

)
.

By Corollary 1.2 and Theorems 2.1 and 3.1 we have that Ln
d−→ N(0, 1),

L∗
RBB,n

d∗
−→p N(0, 1) and L∗

RgB,n
d∗
−→a.s. N(0, 1).

4.1. Comparisons with the true distribution

To see the finite sample performance of both bootstrap methods, and compare
its accuracy, for different values of n we have simulated a realization of the chain
of length n and then applied both bootstrap methods 104 times, obtaining that

https://github.com/carlosds731/boostrap_markov
https://github.com/carlosds731/boostrap_markov
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many samples of L∗
RBB,n and L∗

RgB,n. We have then computed the empirical
cumulative distribution function of these statistics and compared with the CDF
of Ln.

The results of these simulations, presented in Figure 1, show that as n in-
creases, the distributions of both L∗

RBB,n and L∗
RgB,n approximate the true

distribution of Ln. Regarding the accuracy, the experiment gives empirical evi-
dence, that, as in the positive recurrent case, the RBB provides a more accurate
approximation of the true distribution than the regeneration based bootstrap
or the asymptotic normal distribution.
Remark 4.1. For each n, the true distribution of Ln is unknown. To obtain
a reliable approximation of its cumulative distribution function, we simulated
105 independent realizations of X of length n. We then used these samples to
compute the empirical cumulative distribution function of Ln.

4.2. Coverage probability

The bootstrap methods’ first-order correctness established in this paper allows
us to use the quantiles of L∗

RBB,n and L∗
RgB,n to construct confidence intervals

for
∫
f dπα. Let q∗RBB(α) and q∗RgB(α) represent the α-quantiles of L∗

RBB,n and
L∗
RgB,n respectively. The bootstrap confidence intervals are then given by:

I∗RBB,n =
[
Gn − σ̂n√

T (n)
q∗RBB(1 − α/2), Gn − σ̂n√

T (n)
q∗RBB(α/2)

]
,

I∗RgB,n =
[
Gn − σ̂n√

T (n)
q∗RgB(1 − α/2), Gn − σ̂n√

T (n)
q∗RgB(α/2)

]
.

Figure 2a shows the coverage probabilities of I∗RBB,n and I∗RgB,n for α =
0.05 for different values of n while figure 2b shows the average length of these
confidence intervals. For comparisons, we have also included in figures 2a and 2b
the coverage probabilities and average interval length of the confidence intervals
obtained when we use the normal approximation.

As expected, as n gets larger, the coverage probability of the confidence in-
tervals approaches the desired level (0.95), while the average length decreases.
This experiment reinforces the idea that the RBB provides a better approxima-
tion than the regeneration based bootstrap, as it produces confidence intervals
with higher coverage probability and very similar length. In comparison with the
asymptotic distribution, the RBB generates confidence intervals with narrower
lengths and similar coverage probabilities. This could be explained by noticing
that the asymptotic distribution, being symmetric, does not take into account
the possible asymmetry of the underlying distribution.
Remark 4.2. To determine the coverage probability for a given n, we simulated
104 independent realizations of X with length n. We then applied both bootstrap
methods 104 times, generating the same number of samples for L∗

RBB,n and
L∗
RgB,n, which were subsequently used to compute their bootstrap quantiles.
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Fig 1. Distribution functions of L∗
RBB,n and L∗

RgB,n, the true distribution of Ln and the
asymptotic distribution (standard normal) for different values of n (left column) and the
realization of X from where the samples of L∗

RBB,n and L∗
RgB,n were obtained (right column),

the orange stars mark the regeneration times, while the orange dotted lines indicate the end
of the last complete block.
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Fig 2. Coverage probabilities and average interval length of the I∗RBB,n and I∗RgB,n at 95%
confidence level. The x-axis is in logarithmic scale.

5. Conclusions and perspectives

In this work we have proved the first order validity of the Regenerative block-
bootstrap and Regeneration based bootstrap for atomic β-null recurrent Markov
chains. Up to our knowledge these are the first bootstrap method whose validity
has been established for these type of non-stationary Markov chains.

In terms of extending the methods to non-atomic chains, it is possible to apply
the Nummelin splitting technique [52, 53], following the approach described in
[11, Section 3]. This construction involves “extending” the chain to make it
atomic, then applying the bootstrap to the extended chain. However, to establish
the validity of these bootstrap procedures for non-atomic β-null recurrent chains,
several additional steps are required. First, we need to derive a uniform rate
of convergence on a small set for the transition kernel estimator (which has
been done at specific points by [37] but not uniformly). We also require new
exponential inequalities to obtain rate of convergence. Finally, it must be shown
that the same type of coupling used in [11] still holds in this case. This will be
the subject of further investigations.

6. Proofs

6.1. Proof of Lemma 1.2

For the proof of Lemma 1.2 we need the following result, which appears as part
A.3 of Theorem A.1 in [37].

Lemma 6.1. Let An and Bn be a pair of stochastic processes which are càdlàg,
where An is non-negative and non-decreasing. Let B denote a Brownian motion
defined for t ∈ R and let A denote a strictly increasing non-negative process
with independent increments, A(0) ≡ 0 and with no fixed jumps. Assume that
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Bn

D[0,+∞)−−−−−→ B and An

D[0,+∞)−−−−−→ A. Then, A(−1)
n

D[0,+∞)−−−−−→ A(−1) and⎛⎝A(−1)
n (t), Bn ◦A(−1)

n (t)√
A

(−1)
n (t)

⎞⎠ d−→ (A(−1)(t), Z) ∀t ∈ (0, 1],

where Z is standard normal random variable independent of A(−1)(t).

To prove Lemma 1.2, let Wk = σ−1(Xk − μ), then {Wk}∞k=1 is an i.i.d. se-
quence with EWk = 0 and VarWk = 1 for all k. Define the following continuous
time process for t � 0

Qn(t) = 1√
n

�nt�∑
k=1

Wk. (18)

By Theorem 23 and Example 24 in [63], Qn

D[0,+∞)−−−−−→ B and given that un is
an unbounded increasing sequence, we also have that Qun converges weakly to
B in D[0,+∞).

The conditions imposed to the process Nn allow us to apply Lemma 6.1 with
An = Sn and Bn = Qun . Taking into account that Nn is equivalent to S

(−1)
n we

obtain that for all t > 0

Qun (Nn(t))√
Nn(t)

d−→ N (0, 1). (19)

Using that N (�nt	) = unNn(t), we get

Qun(Nn(t)) = σ−1
√
un

N(�nt�)∑
j=1

(Xj − μ), (20)

and Lemma 1.2 follows after plugging (20) into (19) and taking t = 1.

6.2. Proof of Corollary 1.1

We assume, at first, that θ is bounded, that is, there exists a constant K such
that 0 < θ < K with probability 1. Without loss of generality, assume the un

are integers. Define the process

Nn(t) =
{

tN(n)
un

, if N(n)
un

< 1
tθ , otherwise

.

As stated in pp. 147 of [13], this process converges to the process tθ and
trivially satisfies the conditions of Lemma 1.2 (using Sn(t) = t

θ , S−1
n (t) = tθ).

The case when K is unbounded can be treated by following the same argu-
ment as in pp. 148 of [13].
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6.3. Proof of Theorem 1.3

Recall from Section 1.3 that, by the Strong Markov Property, the sequence
{f(Bj)}+∞

j=1 is i.i.d. with mean
∫
fdπα and variance σ2. Consider the processes

Tn(t) and Cn defined in (8)

Tn(t) = T (�nt	)
u (n) , Cn(t) = 1

v (n)

�nt�∑
k=0

	 (Bk).

By Theorem 1.1, we can apply Lemma 1.2 with Xi = f(Bi), μ =
∫
fdπα,

N(n) = T (n) and un = nβL(n), which completes the proof of (15). In order to
prove (16), denote by Wn the left-hand side of (15), then√

T (n)
σ

(
Sn(f)
T (n) −

∫
f dπα

)
= Wn + f(B0)√

T (n)
+

f(B(n))√
T (n)

,

therefore, (16) will follow from (15) if we show that both f(B0)/
√
T (n) and

f(B(n))/
√

T (n) converge to 0 at least in probability.
The random variable f(B0) is almost surely bounded and T (n) converges

almost surely to +∞, therefore f(B0)/
√
T (n) converges to 0 almost surely. For

the other term, first notice that for all n ∈ N we have

|f(B(n))|√
T (n)

�
|f |
(
B(n)

)√
T (n)

�
|f |
(
BT (n)+1

)√
T (n)

.

The random variables {|f |(Bj)}j�1 are i.i.d. with finite second moment, there-
fore, by Lemma 1 in [6], |f |(Bn)/

√
n converges to 0 a.s. Since T (n) converges

to +∞ almost surely, Theorem 6.8.1 in [30] implies that |f |(BT (n)+1)/
√
T (n)

converges to 0 with probability 1, which concludes the proof of Theorem 1.3.

6.4. Proof of Theorem 2.1

Assume we have observed the chain until time n, i.e., X(n) = X0, X1, . . . , Xn,
and we have extracted the T (n) regeneration blocks: B1, . . . ,BT (n).

Now we start to sequentially bootstrap data blocks B∗
1,T (n), . . . ,B∗

k,T (n) in-
dependently from the empirical distribution FT (n) = T (n)−1∑T (n)

j=1 δBj of the
blocks {Bj}1�j�T (n), conditioned on X(n), until the length of the bootstrap data
series, 	∗(k) =

∑k
j=1 	

(
B∗

1,T (n)

)
, is larger than n.

For each m, define

T ∗ (m,T (n)) = max

⎧⎨⎩k :
k∑

j=1
	
(
f(B∗

j,T (n))
)
� m

⎫⎬⎭ , (21)
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U∗ (m,T (n)) =
√
m

σ̂T (n)

⎛⎝ 1
m

m∑
j=1

(
f(B∗

j,T (n)) − μT (n)

)⎞⎠ . (22)

Theorem 2.1 will be proved if we show that, for all x ∈ R it holds that

P
∗

(
U∗
(
T ∗(n, T (n)), T (n)

)
� x

)
p−→ Φ(x), (23)

where Φ is the cumulative distribution function of a standard normal random
variable and P

∗(•) = P(• | X(n)) denotes the conditional probability given X(n).
Given that we will bootstrap T ∗(n, T (n)) terms, which is a random quantity

conditionally to the data, we will use Lemma 6.1 to prove (23). In order to do
this we need, conditionally to the data:

1. Find a process S∗
n,T (n)(t) that is non-negative, non-decreasing that con-

verges in D[0,+∞) to a process S∗ that is non-negative, strictly increasing,
has independent increments, no fixed jumps and S∗ (0) ≡ 0.

2. Show that T ∗
n,T (n)(t) = T ∗ (�nt	)/T (n) = T ∗ (�nt	 , T (n))/T (n) is equiv-

alent in D[0,+∞) to S
∗(−1)
n,T (n).

3. Find a process Q∗
n,T (n)(t) that converges in D[0,+∞) to a Brownian motion

when n goes to +∞. This process should satisfy, for some t > 0

U∗
(
T ∗(n, T (n)), T (n)

)
=

Q∗
n,T (n) ◦ T ∗

n,T (n)(t)√
T ∗
n,T (n)(t)

. (24)

A natural choice for Q∗
n,T (n), which satisfies (24) for t = 1, is

Q∗
n,T (n)(t) =

√
T (n)

σ̂T (n)

⎛⎝ 1
T (n)

�T (n)t�∑
j=1

(
f(B∗

j,T (n)) − μT (n)

)⎞⎠ . (25)

Take S∗
n,T (n)(t) as

S∗
n(t) = 1

v∗(T (n))

�T (n)t�∑
i=1

	
(
B∗
i,T (n)

)
, (26)

where v∗(T (n)) =
∑T (n)

i=0 	(Bi).
Following the notation of [39], let Yi = 	(Bi) and let Y1,n � Y2,n � · · · � Yn,n

be the order statistics of the sizes of the first n blocks, and take Zk,n = Yk,n/v(n)
where v(n) is as in (7). By Theorem 1 in [39],

Z(n) = (Z1,n, Z2,n, . . . , Zn,n, 0, 0, . . .)
d−→ (Z1, Z2, . . .) = Z, (27)

where Zk = (E1 + · · · + Ek)−
1
β and Ei is a sequence of i.i.d. of exponential

random variables with mean 1. By Skorokhod-Dudley-Wichura Theorem (see
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pp. 1171 in [39] and pp. 476 in [7]) we can choose a probability space such that,
without changing the distribution of the left-hand side of (27),

Z(n) a.s.−−→ Z. (28)

The following Lemma shows that in that space, conditionally to the data, the
process S∗

n,T (n) converges in D[0,+∞).

Lemma 6.2. Suppose that (28) holds. Let λ∗
j (t) be independent Poisson pro-

cesses with parameter 1, and K a positive constant. Define

R∗(t) =
+∞∑
j=1

Zj

(
λ∗
j (t) − t

)
and S∗(t) = KR∗(t) + t.

Then, T (n)/u(n) converges almost surely to a positive random variable and

S∗
n,T (n)

D[0,+∞)−−−−−→ S∗ and S
∗(−1)
n,T (n)

D[0,+∞)−−−−−→ S∗(−1) (29)

almost surely along the data. Moreover, the process S∗ is non-negative, strictly
increasing, continuous, with independent increments and S∗ (0) ≡ 0.

Proof. When (28) holds, by Theorem 1 and Remark 1.3 in [47],

1
v(n)

n∑
j=1

	 (Bj)
a.s.−−→

+∞∑
j=1

Zj .

The length of the first block, 	 (B0), is finite with probability 1 and does not
depend on n, hence 	 (B0)/v(n) converges almost surely to 0. This implies that

1
v(n)

n∑
j=0

	 (Bj)
a.s.−−→

+∞∑
j=1

Zj . (30)

In (7), we defined v(z) as the inverse of u(z) = zβL(z), then, by Proposition
1.5.15 in [14], v(z) ∼ z1/βL1(z) where L1 is a slowly varying function, hence,
v(n)/v(�nt	) → t−1/β , and we have that

1
v(n)

�nt�∑
j=0

	 (Bj)
a.s.−−→ t

1
β

+∞∑
j=1

Zj ∀t > 0. (31)

For each t > 0, let

Sn(t) = 1
v(n)

�nt�∑
j=0

	 (Bj) , S(−1)
n (t) = inf{x > 0 : Sn(x) > t} , S(t) = t1/β

+∞∑
j=1

Zj ,

and define the three processes as 0 on t = 0. By (31) and the Continuous
Mapping Theorem, S(−1)

n
a.s.−−→ S−1.
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Similar to what is described on page 1141 in [5], suppose that y is such
that y < S

(−1)
n (1). Then, since Sn(y) < 1, it follows that

∑�ny�
j=0 	(Bj) < v(n).

Consequently, we have T (�v(n)	) � �ny	 > ny − 1. This in turn implies that
T (�v(n)	)/n � y − 1/n � S

(−1)
n (1) − 1/n for all n. Similarly, but taking y >

S
(−1)
n , we show that T (�v(n)	)/n � S

(−1)
n (1) + 1/n for all n. Then,

S
(−1)
u(n) (1) − 1

u (n) � T (�v (u (n))	)
u (n) � S

(−1)
u(n) (1) + 1

u (n) . (32)

The first part of the lemma now follows from (32), the convergence of S(−1)
u(n) (1)

to S−1 (1) and the fact that u (v(n)) = n for n big enough.
To show (29), consider the following process, which was studied in [7],

Z∗
m,n(t) = 1

v (n)

�mt�∑
j=1

(
	
(
B∗
j,n

)
− 1

n

n∑
i=1

	 (Bi)
)
.

By Corollary 1.2 in [7] (and its proof4), we see that when (28) holds, for any
mn such that mn/n → c, conditionally to the data, the process Z∗

mn,n converges
weakly in D ([0, 1]) to R∗ (ct). Let C > 1, on [0, C] define the process

W ∗
n(t) = 1

v (n)

�nt�∑
j=1

(
	
(
B∗
j,n

)
− 1

n

n∑
i=1

	 (Bi)
)
.

Notice that W ∗
n(t) = Z∗

nC,n (t/C), hence, W ∗
n

D[0,C]−−−−→ R∗ as n → +∞. Because
this convergence holds for arbitrary C > 0, by Lemma 1.3.ii in [38] we have that
W ∗

n

D[0,+∞)−−−−−→ R∗, and therefore, W ∗
T (n)

D[0,+∞)−−−−−→ R∗.
The process S∗

n,T (n) can be written as

S∗
n,T (n)(t) = v(T (n))

v∗(T (n))W
∗
T (n),T (n)(t) + �T (n) t	

T (n) . (33)

Notice that
v(T (n))
v∗(T (n)) =

⎛⎝ 1
v (T (n))

T (n)∑
j=0

	 (Bj)

⎞⎠−1

,

then, conditionally to the data, it converges to a positive constant K by equa-
tion (30). Equation (29) now follows from the convergence of W ∗

T (n),T (n) and (33).
The continuity of S∗ was shown in pp. 466 of [7], and the rest of the properties
are directly deduced from the form of R∗.

The next Lemma handles the equivalence of T ∗
n,T (n) and S

∗(−1)
n,T (n) in D[0,+∞).

4In [7], they standardize by Tn = max
1�k�n

l (Bk) but from the proof is clear that the result

remains valid if we standardize by v(n) (bn in their notation).
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Lemma 6.3. Under the same hypothesis of Lemma 6.2, the processes T ∗
n,T (n)

and S
∗(−1)
n,T (n) are equivalent in D[0,+∞).

Proof. The proof of this result follows the proof of Theorem 3.2 on [37] with
slight modifications.

We need to show that, for any ε > 0 given,

P

(
sup

0<t�K

∣∣∣T ∗
n,T (n)(t) − S

∗(−1)
n,T (n)(t)

∣∣∣ > ε

)
→ 0 ∀K > 0. (34)

To prove this, we will show that

P

(
sup

0<t�K

∣∣∣T ∗
v∗(T (n)),T (n)(t) − S

∗(−1)
n,T (n)(t)

∣∣∣ > ε

)
→ 0 ∀K > 0, (35)

P

(
sup

0<t<K

∣∣∣T ∗
v∗(T (n)),T (n)(t) − T ∗

n,T (n)(t)
∣∣∣ > ε

)
→ 0 ∀K > 0. (36)

from where (34) will follow by triangular inequality.
Let η > 0{

S
∗(−1)
n,T (n)(t) < η

}
⊆
{
S∗
n,T (n) (η) > t

}
=

⎧⎨⎩ 1
v∗ (T (n))

�T (n)η�∑
i=1

	
(
B∗
i,T (n)

)
> t

⎫⎬⎭
=

⎧⎨⎩
�T (n)η�∑

i=1
	
(
B∗
i,T (n)

)
> tv∗ (T (n))

⎫⎬⎭
=
{
T ∗ (�v∗ (T (n))t	, T (n))

T (n) <
�T (n)η	
T (n)

}
. (37)

Because T (v∗ (n)) = n, we can write,

T ∗
v∗(T (n)),T (n)(t) = T ∗ (�v∗ (T (n)) t	, T (n))

u∗ (v∗ (T (n))) = T ∗ (�v∗ (T (n)) t	, T (n))
T (n) ,

therefore, equation (37) becomes{
S
∗(−1)
n,T (n)(t) < η

}
⊆
{
T ∗
v∗(T (n)),T (n)(t) <

�T (n)η	
T (n)

}
. (38)

Similarly, we obtain that{
S
∗(−1)
n,T (n)(t) > η

}
⊆
{
T ∗
v∗(T (n)),T (n)(t) �

�T (n)η	
T (n)

}
. (39)

Let ε1 ∈ (0, 1) be fixed and take η1 < η2, then, by (39) and (38),{
η1 � S

∗(−1)
n,T (n)(t) < η2

}
⊆
{
η1 (1 − ε1) < S

∗(−1)
n,T (n)(t) < η2

}



4874 C. A. Fernández

⊆
{
�T (n)η1 (1 − ε1)	

T (n) � T ∗
v∗(T (n)),T (n)(t) <

�T (n)η2	
T (n)

}
.

This means, that, if S∗(−1)
n,T (n)(t) ∈ [η1, η2), then

�T (n)η1 (1 − ε1)	
T (n) − η2 < T ∗

v∗(T (n)),T (n)(t) − S
∗(−1)
n,T (n)(t) <

�T (n)η2	
T (n) − η1,

which implies that, if S∗(−1)
n,T (n)(t) ∈ [η1, η2), then∣∣∣T ∗

v∗(T (n)),T (n)(t) − S
∗(−1)
n,T (n)(t)

∣∣∣ � η2 − η1 + ε1η1 + 1
T (n) . (40)

Let ε > 0 be fixed. For any s we have

P

(
sup
t�K

∣∣∣ξ∗n,T (n)(t)
∣∣∣ > ε

)
� P

(
sup
t�K

∣∣∣ξ∗n,T (n)(t)
∣∣∣ > ε, sup

t�K
S
∗(−1)
n,T (n)(t) < s

)
+ P

(
sup
t�K

S
∗(−1)
n,T (n)(t) � s

)
,

where ξ∗n,T (n)(t) = T ∗
v∗(T (n)),T (n)(t) − S

∗(−1)
n,T (n)(t).

By (29),

lim
s↑∞

lim
n→∞

P

(
sup
t�K

S
∗(−1)
n,T (n)(t) � s

)
= 0.

Therefore, for any δ > 0 we can choose s0 such that, for n big enough,

P

(
sup
t�K

S
∗(−1)
n,T (n)(t) � s0

)
< δ.

By (40), sup
t�K

S
∗(−1)
n,T (n)(t) < s0 implies that

∣∣∣ξ∗n,T (n)(t)
∣∣∣ � η2 − η1 + ε1η1 + 1

T (n) ∀t ∈ [0,K] , ∀ε1 ∈ (0, 1) .

Choose η0, . . . , ηL, N1, ε1 with η0 = 0 < η1 < . . . < ηL−1 < ηL = s0 such that
ηi−ηi+1 < ε/3 for all i. Let ε1 < ε/s0 and choose N1 such that 1/T (N1) < ε/3.

Notice that for all t ∈ [0,K] there is only one in,t such that S∗(−1)
n,T (n)(t) belongs

to
[
ηin,t , ηin,t+1

)
, then, by (40)∣∣∣ξ∗n,T (n)(t)

∣∣∣ � ηin,t − ηin,t+1 + ε1η1 + 1
T (n) � ε ∀t ∈ [0,K] , ∀n > N1,

whenever S
∗(−1)
n,T (n)(t) < s0. This implies that

P

(
sup
t�K

∣∣∣ξ∗n,T (n)(t)
∣∣∣ > ε, sup

t�K
S
∗(−1)
n,T (n)(t) < s0

)
= 0 ∀n � N1.



Regenerative bootstrap for β-null recurrent Markov chains 4875

Hence,

P

(
sup
t�K

∣∣∣ξ∗n,T (n)(t)
∣∣∣ > ε

)
< δ ∀n > N1, (41)

which implies (35).
Now we turn to the proof of (36).
According to the definition of v∗, v∗(T (n)) =

∑T (n)
i=0 	 (Bi) � n, therefore,

T ∗
v∗(T (n)),T (n)(t) = T ∗ (�v∗ (T (n)) t	, T (n))

T (n) � T ∗ (�nt	, T (n))
T (n)

� T ∗
n,T (n)(t) ∀n, t.

Notice that v∗ (T (n) + 1) =
∑T (n)+1

i=0 	(Bi) > n, therefore,

T ∗
n,T (n)(t) � T ∗

v∗(T (n)+1),T (n)(t)
T (n) + 1
T (n) ∀n, t.

Hence,

T ∗
v∗(T (n)),T (n)(t) � T ∗

n(t) � T ∗
v∗(T (n)+1)(t)

T (n) + 1
T (n) ∀n, t.

Equation (36) now follows from the convergence of both T ∗
v∗(T (n)),T (n) and

T ∗
v∗(T (n)+1),T (n) to S∗(−1) and the fact that (T (n) + 1)/T (n) converges almost

surely to 1.

By (25), Lemmas 6.1, 6.2 and 6.3 we have that, in a space where (28) holds,
the convergence in (23) holds almost surely. Therefore, in the original space we
have the weakly-weakly convergence5

∀x ∈ R P
∗

(
U∗
(
T ∗(n, T (n)), T (n)

)
� x

)
d−→ Φ(x). (42)

However, given that the right-hand side of (42) is a constant for each x,
the convergence in (42) can be improved to convergence in probability, which
completes the proof.

6.5. Proof of Theorem 3.1

This proof follows the line of the proof of Theorem 2.1 in [12]. As in that paper,
let Γ2 be the set of distribution functions G satisfying

∫
x2dG (x) < ∞ and

5The weakly-weakly convergence, introduced in [16] is the translation of the concept of
weak convergence of random measures to the probabilistic setting, that is, for random vari-
ables (Z,X) and (Zn, Xn) defined on possibly different probability spaces, the weakly-weakly
convergence of Zn|Xn to Z|X is defined by the fact E[g(Zn)|Xn] d−→ E[g(Z)|X] for all bounded
and continuous functions g. For a detailed description of this concept as well as other examples
of its application in the bootstrap setting, please refer to pp. 2550 and Appendix A in [16].
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define the following notion of convergence in Γ2

Gn ⇒ G iff Gn → G weakly and
∫

x2dGn (x) →
∫

x2dG (x). (43)

Denote by d2 a Mallows metric that metricizes the ⇒ convergence in Γ2 (see
details in Section 8 of [12])

If Y1, . . . , Yn are i.i.d. random variables with common distribution G, denote
by G(m) the distribution of

m− 1
2

m∑
j=1

(Yj − EYj).

By pp. 1198 in [12], if G,H ∈ Γ2 then G(m) and H(m) are also in Γ2 and

d2

(
G(m), H(m)

)
� d2 (G,H) . (44)

Let F be the distribution of f(B1) and denote by Fn the empirical distribution
function of f(B1), . . . , f(Bn). By (2.1) in [12] and the fact that T (n) → +∞
a.s., FT (n) ⇒ F along almost almost all sample paths, hence, conditionally to
the data

d2
(
FT (n), F

)
→ 0. (45)

Denote by Nσ a standard distribution with mean 0 and variance σ2. By
Proposition 1.3,

d2

(
F (T (n)), Nσ

)
→ 0. (46)

Conditionally to the data, the distribution of

√
T (n)

⎛⎜⎜⎜⎜⎝
∑T (n)

j=1

(
f
(
B∗
j,T (n)

)
− 1

T (n)

T (n)∑
i=1

f (Bi)
)

T (n)

⎞⎟⎟⎟⎟⎠
is F

(T (n))
T (n) , then, conditionally to the data,

d2

(
F

(T (n))
T (n) , Nσ

)
≤ d2

(
F

(T (n))
T (n) , F (T (n))

)
+ d2

(
F (T (n)), Nσ

)
which goes to 0 by (45) and (46). The theorem now follows by (43), (13) and
Slutsky’s theorem.
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