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In [22], Bradley Efron introduced the Bootstrap as a way to overcome some
limitations of classical methods that often relied on strong assumptions about
the data’s underlying distribution or the model’s form. Since then, these tech-
niques, first studied in the i.i.d. case, have been developed and extended to
time-series (see [40] for an extensive survey of methods) and applied to a wide
range of problems in various fields such as signal processing [57, 58], soil sci-
ence [56] and econometrics [42, 27]. They can handle any level of complexity in
data or models from fully parametric to completely nonparametric cases. These
methods are easy to implement with modern computing power and can pro-
vide more accurate and reliable inferences than traditional methods in many
situations.

Although originally designed for i.i.d. sampling, there has been significant in-
terest in adapting the bootstrap to situations where the data is dependent. Sev-
eral resampling methods have been proposed for time series data: these include
the autoregressive-sieve bootstrap [37], block bootstrap [39] , circular bootstrap
[51], the stationary bootstrap [52], continuous-path block bootstrap [46], tapered
block bootstrap [47], frequency-domain bootstrap [45, 35], and local bootstrap
[49]. For detailed reviews and comparisons of these methods see [23, 36, 34, 15]
and the references therein.

In the Markovian case, numerous approaches have been developed and exam-
ined. In [38], the authors proposed a block resampling scheme that consists in
resampling from a nonparametric estimate of the one-step transition matrix of
a finite state Markov chain. This method was extended to the countable case in
[3]. Extensions of this method have been proposed for the case where the state
space is Euclidean, as seen in [54], [48, 50] and [26]. The general concept is to
estimate the marginal distribution and the transition probability function using
a nonparametric function estimation technique and then resample from those
estimates. For a detailed explanation of this approach, refer to Section 4 in [34].

A completely new approach to this problem was introduced in [3]. Instead of
using estimated transition probabilities, they exploit the regeneration proper-
ties of a Markov chain when an accessible atom is visited infinitely often. The
main idea underlying this method consists in dividing the chain into a ran-
dom number of i.i.d. regeneration blocks and then resampling the same number
of regeneration blocks. This method, named Regeneration based bootstrap, was
proved to be valid for finite state atomic chains in [3], and it was extended to
general atomic positive recurrent Markov chains in [19].

It was pointed out in [8] that the Regeneration based bootstrap is not second-
order correct (its rate isOPpn

´1{2q only). To overcome this limitation, a variation
of this method, called Regenerative Block bootstrap (RBB), was introduced in [9].
This method consists in imitating the renewal structure of the chain by sampling
regeneration data blocks, until the length of the reconstructed bootstrap series
is larger than the length n of the original data series (notice the difference with
the Regeneration based bootstrap, where the number of sampled blocks is equal
to the number of regeneration blocks in the original chain). It was shown in [9]
that, for atomic positive recurrent Markov chains, the RBB for estimating the
integral of a function with respect to the invariant probability, has a uniform
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rate of convergence of order OP
`

n´1˘ (the same as in the i.i.d. case).
Despite all these efforts in the positive recurrent case, up to our knowledge,

no bootstrap method has been studied in the null-recurrent scenario. Hence, our
objective in this paper is to start this study and show that both Regeneration
based-bootstrap and Regenerative Block bootstrap are valid schemes for estimating
integrals with respect to the invariant measure when the Markov chain is β-null
recurrent and possesses an accessible atom. The task is challenging because the
time returns to an atom of such Markov chains is infinite and we know that the
bootstrap of such quantity does not work [4, 33]. Despite this fact, we will show
that, by using the correct random normalization, one can obtain a CLT for the
mean and the validity of both regeneration methods.

The paper is organized as follows: in section 1 we provide a brief introduction
to null recurrent Markov chains, making a special emphasis on atomic ones and
presenting the main results that we use throughout the paper. In subsection 1.3
we present an extension of the Central Limit Theorem for randomly indexed se-
quences (Lemma 1.1). Section 2 is dedicated to the Regenerative Block bootstrap
in β-null recurrent Markov chains, while Section 3 is devoted to the Regenera-
tion based-bootstrap. In section 4 we have added a few simulations to show the
behavior of both algorithms in practice. The technical proofs are postponed to
Section 5.

1. A short introduction to null-recurrent Markov chains

In this section, we introduce some notation and review some important concepts
from Markov chain theory that will be used throughout the paper. For more
details, please refer to [43, 21].

1.1. Notation and definitions

Consider an homogeneous Markov chain X “ X0, X1, . . . , on a countably gen-
erated state space pE, Eq, with transition kernel P and initial probability dis-
tribution λ. This means that for any B P E and n P N, we have L pX0q “ λ
and

PpXn`1 P B | X0, . . . , Xnq “ P pXn, Bq almost surely.

Note that the assumption of a countably generated state space is commonly
used in Markov chain theory to avoid pathological examples known as ’anormal’
chains [20]. For more information on this topic, see [20], [29], and [55]. An
example of an ’anormal’ chain can be found in [13]. This assumption does not
significantly limit the generality of our results since most of the time E “ B

`

Rd
˘

,
which is countably generated.

In the following, we use Pλ (or Px for x in E) to denote the probability
measure on the underlying space such that X0 „ λ (or X0 “ x). We use Eλp.q
to represent the Pλ-expectation (or Exp.q to represent the Px-expectation), and
I tAu to represent the indicator function of event A.
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A homogeneous Markov chain is said to be irreducible if there exists a σ-finite
measure φ on pE, Eq such that for all x P E and all A P E with φpAq ą 0, there
exists some n ě 1 such that Pnpx,Aq ą 0. In this case, there exists a maximal
irreducibility measure ψ with respect to which all other irreducibility measures
are absolutely continuous. If X is ψ-irreducible, there is d1 P N˚ and disjoints
sets D1, . . . , Dd1 Dd1`1 “ D1 weighted by ψ such that ψpEzY1ďiďd1Diq “ 0 and
@x P Di, P px,Di`1q “ 1. The the g.c.d. d of such integers is called the period of
the chain. X is said to be aperiodic if d “ 1.

In the following, we assume that the Markov chains under consideration are
homogeneous, aperiodic, and irreducible with maximal irreducibility measure
ψ.

An irreducible chain possesses an accessible atom, if there is a set α P E such
that for all x, y in α: P px, ‚q “ P py, ‚q and ψpαq ą 0. For instance, when a chain
can take a countable number of values, any single point visited by the chain is an
atom. Denote by σα and τα, respectively, the times of first visit and first return
of the chain to α, i.e. τα “ inf tn ě 1 : Xn P αu and σα “ inf tn ě 0 : Xn P αu.
The subsequent visit and return times σα, τα pkq, k ě 1 are defined inductively
as follows:

τα p1q “ τα , τα pkq “ min tn ą τα pk ´ 1q : Xn P αu , (1)
σα p1q “ σα , σα pkq “ min tn ą σα pk ´ 1q : Xn P αu . (2)

We use Tnpαq to represent the random variable that counts the number of
times the chain visits the set α up to time n, i.e., Tnpαq “

řn
t“0 ItXt P αu.

Similarly, we use T pαq to represent the total number of visits of chain X to α.
An atom α is called recurrent if ExT pαq “ `8 for all x P α; otherwise, it is
called transient. A notable property of atomic chains is that all accessible atoms
are either all recurrent or all transient. Therefore, we say that an atomic chain
is recurrent if one (and thus all) of its accessible atoms is recurrent.

Denote by Pα and Eαp.q the probability and the expectation conditionally to
X0 P α. If X possesses an accessible atom and is aperiodic, the probability of
returning infinitely often to the atom α is equal to one, no matter the starting
point, i.e.

Px
`

T pαq “ 8
˘

“ 1 @x P E.

A fundamental tool for understanding the long-term behavior of Markov
chains is the existence of invariant measures, that is, a measure π such that

π pAq “

ż

P px,Aq dπ pxq @A P E .

Every irreducible and recurrent Markov chain admits a unique (up to a
multiplicative constant) invariant measure [43, Theorem 10.4.9]. In the atomic
case, the invariant measure is just the occupation measure over the first block
B1 “

`

Xταp1q`1, . . . , Xταp2q
˘

[21, Theorem 6.4.2], i.e.

πα pAq “ Eα

˜

τα
ÿ

j“1
I tXj P Au

¸

, @A P E . (3)
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An irreducible Markov chain is positive recurrent if its invariant measure is
finite. When the invariant measure is just σ-finite, then the chain is called null
recurrent. From (3), it is clear that an atomic Markov chain is positive recurrent
if and only if Eατα ă `8, and in this case, the measure defined by πα

Eατα
is an

invariant probability for the chain. The existence of this invariant probability
makes the theory of positive recurrent Markov chains, very similar to the i.i.d.
case [43, Chapter 17].

Conversely, dealing with null recurrent chains is considerably more challeng-
ing, and a comprehensive theory of non-parametric estimation for this type of
chain does not exist. To address this issue, Karlsen and Tjøstheim introduced
in [31] a regularity condition for the tail behavior of the distribution of τα that
renders the problem more tractable. Specifically, a chain is referred to as β-null
recurrent (refer to [31, Definition 3.2 and Theorem 3.1]) if there is a constant
β P p0, 1q and a slowly varying function1 L such that

Pα pτα ą nq „
1

Γp1´ βqnβLpnq . (4)

The number β, also known as the regularity index (see [16, 17]) satisfies

β “ sup tp ą 0 : Eα pτ
p
αq ă `8u .

Some of the most well-known examples of β-null recurrent Markov chain are
the random walks in R, which are 1{2-null recurrent [30], the Bessel random
walks [1], [18] and some types of threshold autoregressive (TAR) [24] and vector
autoregressive processes (VAR) [44].

1.2. Renewal properties and Block decomposition

The strong Markov property implies that the sample paths of an atomic Markov
chain can be partitioned into independent blocks of random length correspond-
ing to consecutive visits to α, given by:

B0 “
`

X0, X1, . . . , Xταp1q
˘

B1 “
`

Xταp1q`1, . . . , Xταp2q
˘

. . .

Bn “
`

Xταpnq`1, . . . , Xταpn`1q
˘

. . .

Note that the distribution of B0 depends on the initial measure, and thus it
does not have the same distribution as Bj for j ě 1. The sequence tταpjqujě1
defines successive times at which the chain forgets its past, which are called

1A measurable and positive function L is said to be slowly varying at `8 if it is defined
in ra,`8q for some a ě 0, and satisfies limxÑ`8

Lpxtq
Lpxq

“ 1 for all t ě a. For a detailed
discussion on these types of functions, refer to [12].
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regeneration times. Similarly, the sequence of i.i.d. blocks tBjujě1 is called re-
generation blocks. As customary in the β-null recurrent Markov chain literature,
we will use T pnq to denote the number of complete regeneration blocks up to
time n, i.e. T pnq “ max pTn pαq ´ 1, 0q. We will denote by ` pBiq the length of
the i-th block, therefore,

` pBjq “

#

τα , j “ 0
τα pj ` 1q ´ τα pjq , j ě 1

(5)

The random variable T pnq, and its relationship with
řk
j“0 ` pBjq, is crucial in

the theory we will develop in this paper, therefore, we will state in this section
its main properties in the β-null recurrent scenario.

Assume X is a β-null recurrent Markov chain with an accessible atom α. By
(3.27) in [31], the function L in (4) can be normalized in such a way that

u pzq “ zβL pzq (6)

is a continuous function that is strictly increasing in the interval rz0,`8q for
some z0 P R`. Define v pzq as

v pzq “ up´1q pzq “ inf ts : u psq ą zu , (7)

then, u pv pzqq “ v pu pzqq “ z for z ě z0.
Consider the space of càdlàg functions defined on the interval r0,`8q, de-

noted by Dr0,`8q. This space consists of the real functions that are right-
continuous with left limits and defined over r0,`8q. More precisely, a function
g P Dr0,`8q if and only if g is right-continuous, has left limits at all points
t ą 0, and limtÓ0 gptq “ gp0q. The space Dr0,`8q is equipped with the Sko-
rokhod2 topology, making it a completely separable metric space. We will use
Dr0,`8q
ÝÝÝÝÝÑ to denote weak convergence in this space, and fd

ÝÑ for convergence of
finite-dimensional laws. Two stochastic processes Yn, Zn in Dr0,`8q are said to
be equivalent if Yn ´ Zn converges weakly to the zero process. If Yn

Dr0,`8q
ÝÝÝÝÝÑ Y

and Yn and Zn are equivalent, then Zn
Dr0,`8q
ÝÝÝÝÝÑ Y (see Lemma 3.31 in [28]).

Define the following processes

Tn ptq “
T ptntuq

u pnq
, Cn ptq “

1
v pnq

tntu
ÿ

k“0
` pBkq, (8)

and C
p´1q
n ptq “ inf tx : Cn pxq ą tu. The following Theorem, proved in [31],

shows that these three processes converge in Dr0,`8q and that Tn and Cp´1q
n are

equivalent.

Theorem 1.1. Assume X is a β-null recurrent atomic Markov chain. Then,
2See Chapter 6 of [28] or Chapter 3 in [11] for more details about this space.
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i) Cn
Dr0,`8q
ÝÝÝÝÝÑ Sβ where Sβ is the one-sided stable Levy process defined by

the marginal characteristics

E rexp pisSβ ptqqs “ exp
`

isβt
˘

s P R, t P r0,`8s.

ii) Cp´1q
n and Tn are equivalent processes and both converge in Dr0,`8q to the

Mittag-Leffler process of parameter β.

Remark 1.1. The Mittag-Leffler process with parameter β is defined as the
inverse of Sβ . It is a strictly increasing continuous stochastic process defined as

Mβ ptq “ tβMβ p1q , E
`

Mm
β p1q

˘

“
m!

Γ p1`mβq m ě 0.

Theorem 1.1 shows a striking difference between positive and null recurrent
Markov chains. While in the former the existence of moments for ` pBjq implies
that Cn and Tn (taking u pnq “ n) converge almost surely respectively to tEατα

and t
Eατα

, and therefore, T pnq can be approximated almost surely by the deter-
ministic quantity n, in the latter, we only have weak convergence, hence T pnq
can only be controlled by the deterministic quantity upnq in distribution.

1.3. Properties of linear functionals defined on β-null recurrent
chains

For a measurable function f : E Ñ R, and an atomic Markov chain X with an
accessible atom α, consider the problem of estimating παpfq “

ş

fdπα, where
πα is as in (3) and πα pfq ă `8. Denote by Sn pfq the partial sums of f over
the chain, that is

Sn pfq “
n
ÿ

k“0
f pXkq. (9)

The Ratio Limit Theorem for atomic chains [21, Theorem 6.6.2] shows that
if g is a measurable function, then, for every invariant measure π we have

Sn pfq

Sn pgq
a.s.
ÝÝÑ

π pfq

π pgq
, (10)

as long as π pgq ‰ 0.
Remark 1.2. From (10) is clear that Snpfq

T pnq is a strongly consistent estimator
of πα pfq, and, in the positive recurrent case, Snpfq

n

a.s.
ÝÝÑ

παpfq
Eατα

. In the null
recurrent case, however, Snpfqn

a.s.
ÝÝÑ 0 (see Corollary 6.6.3 in [21]) and there is

no deterministic sequence a pnq such that Snpfq
apnq converges almost surely to a

non-zero limit [16].
Given that our interest in this paper is to apply the bootstrap method to the

estimation of πα pfq we need to find a series of i.i.d. random variables whose
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mean strongly converges to πα pfq. To do this, define the following random
variables

f pBjq “

$

’

’

&

’

’

%

τα
ř

i“0
f pXiq , j “ 0

ταpj`1q
ř

i“ταpjq`1
f pXiq , j ě 1

.

The strong Markov property implies that under Pα, the sequence tf pBjqujě0
is i.i.d. Moreover, for every initial measure λ P M pEq` such that Pλ pτα ă 8q “

1, the random variables f pBjq , j ě 0 are independent and for j ě 1 they are
i.i.d. Therefore, Sn pfq can now be written as a sum of independent random
variables as follows:

Sn pfq “ f pB0q `

T pnq
ÿ

j“1
f pBjq `

n
ÿ

i“ταpT pnq`1q`1
f pXiq, (11)

with the convention that the sum of an empty set is 0. As customary in the
β-null recurrent literature, we will denote the last term in (11) by f

`

Bpnq
˘

.
Equation (3) indicates that

EαfpBjq “ πα pfq , j “ 1, . . . . (12)

hence, if the assume that πα p|f |q ă `8, the Law of Large Numbers for ran-
domly indexed sequences [25, Theorem 8.2, pp 302] shows that

1
T pnq

T pnq
ÿ

j“1
fpBjq

a.s.
ÝÝÑ πα pfq . (13)

Remark 1.3. The almost sure convergence of both Snpfq
T pnq and 1

T pnq

řT pnq
j“1 fpBjq to

πα pfq and the decomposition (11) shows that fpB0q
T pnq and fpBpnqq

T pnq both converge
almost surely to 0. This allow us to only consider in our estimations the i.i.d.
blocks f pBjq , j ě 1.

If we suppose further that fpB1q has finite second moment and we denote by
σ2 the variance of fpB1q, then

1
T pnq

T pnq
ÿ

j“1

¨

˝fpBjq ´
1

T pnq

T pnq
ÿ

i“1
fpBiq

˛

‚

2

a.s.
ÝÝÑ σ2. (14)

Much of the work carried out in this investigation deals with sequences in-
dexed by the sequence of random variables T pnq. As explained at the end of
Section 1.2, this sequence, although it converges almost surely to `8, can not
be deterministically approximated in probability, it only admits an approxima-
tion in distribution. This creates huge problems, even for simple tasks, as to
obtaining a CLT, because, CLTs for randomly indexed sequences (see [2] for
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the original formulation and Th. 17.2 in [11] for its more general form) require
being able to control deterministically, at least in probability, the sequence of
the number of terms. The result we present below, extends this CLT, replacing
the requirement of the control in probability by the existence of the limit of a
stochastic process defined in terms of the sequence of the number of terms.

Lemma 1.1 (CLT for randomly indexed sequences). Let X1, X2 . . . be i.i.d.
random variables such that EpX1q “ µ and VarX1 “ σ2 ą 0. Let Npnq be a
sequence of integer-valued random variables. If there exists an unbounded in-
creasing sequence of real numbers un such that the process Nnptq “ Nptntuq

un
satisfy the following conditions:

• Exists a process Sn in Dr0,`8q that is non-negative and non-decreasing for
each n.

• Sn
Dr0,`8q
ÝÝÝÝÝÑ S where S is a strictly increasing non-negative process with

independent increments, no fixed jumps, and Sp0q ” 0.
• Nn is equivalent to Sp´1q

n .

Then, Nn converges to Sp´1q,

a

Npnq

¨

˚

˚

˚

˝

Npnq
ř

j“1
pXj ´ µq

Npnqσ

˛

‹

‹

‹

‚

, (15)

converges weakly to a standard Normal distribution and this distribution is in-
dependent of Sp´1qp1q.

Corollary 1.1. [Theorem 17.2 in [11]] Suppose X1, . . . , Xn are i.i.d. with EX1 “
µ and VarX1 “ σ2. If Npnq is a sequence of integer-valued random variables
such that

Npnq

un

p
ÝÑ θ, (16)

where θ is a positive random variable and the un is sequence of positive numbers
going to infinity, then

a

Npnq

¨

˚

˚

˚

˝

Npnq
ř

j“1
pXj ´ µq

Npnqσ

˛

‹

‹

‹

‚

converges in distribution to a standard normal random variable.

Using Lemma 1.1 and Theorem 1.1 we can provide a different proof of the
following Central Limit Theorem for β-null recurrent atomic Markov chains,
which was originally proved in [5].
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Theorem 1.2. Let X be a β-null recurrent Markov chain, with an accessible
atom α. For every πα- measurable function f such that E

”

pf pB1qq
2
ı

ă `8,

a

T pnq

¨

˚

˚

˚

˝

T pnq
ř

j“1
fpBjq

T pnq
´

ż

fdπα

˛

‹

‹

‹

‚

(17)

converges in distribution to a Normal random variable with mean 0 and variance
σ2. Moreover, T pnq

nβLpnq
converges to a Mittag-Leffler distribution with parameter

β that is independent of the limiting distribution of (17).

The following corollary is a direct consequence of Theorem 1.2, equation (14)
and Slutsky’s theorem.

Corollary 1.2. Under the same hypothesis of Proposition 1.2,

a

T pnq

sn

¨

˚

˚

˚

˝

T pnq
ř

j“1
fpBjq

T pnq
´

ż

fdπα

˛

‹

‹

‹

‚

(18)

converges weakly to a Normal distribution with mean 0 and variance 1. Here

s2
n “

1
T pnq

T pnq
ř

j“1

˜

fpBjq ´ 1
T pnq

T pnq
ř

j“1
fpBjq

¸2

.

2. The regenerative block-bootstrap algorithm

Let Xpnq “ pX0, ..., Xnq be observations drawn from a β-null recurrent Markov
chain X with an a priori known accessible atom α. As in the previous section,
let f be a πα-integrable function such that f pB1q has a finite second moment.
Denote by σ2 the variance of f pB1q.

The bootstrap method we study in this section was introduced in [9] for
positive recurrent Markov chains. In the atomic case, it was shown to have a
uniform rate of convergence of Op

`

n´1˘ under mild conditions.
In this section, we show that the method is also applicable in the β-null

recurrent case, although, we have not been able to obtain a rate.
Proposition 3.1 in [7] shows that for positive recurrent chains, in the nonsta-

tionary case (when the initial law λ is not the invariant probability measure), the
first data block B0 induces a bias of order Opn´1q, which cannot be estimated
from a single realization Xpnq of the chain starting from λ. The last block Bpnq
(which is incomplete) induces a first-order term in the bias too. This led the
authors in [9] to only consider statistics based on the regenerative data blocks
B1, ....,BT pnq.
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In the β-null recurrent case, the lack of finite first moment for the block sizes
suggests that considering the non-regenerative blocks will incur in an even worst
bias, hence, as in [9], we will only consider statistics based on the regenerative
data blocks B1, ....,BT pnq.

While our asymptotic results are specifically stated for integrals with respect
to the invariant measure, the algorithm can be applied to a broader range of
statistics Gn that have an appropriate standardization Sn. This includes non-
degenerate U -statistics and differentiable functionals.

The RBB procedure is performed in four steps as follows:
1. Count the number of visits Tn pαq to the atom α up to time n. And divide

the observed sample path Xpnq “ pX0, ...., Xnq into Tn pαq ` 1 blocks, B0,
B1, ...., BTnpαq´1, BpnqTnpαq

valued in the torus T “ Y8n“1E
n, corresponding

to the pieces of the sample path between consecutive visits to the atom
α. Drop the first and last (non-regenerative) blocks. Denote by T pnq the
number of remaining blocks.

2. Draw sequentially bootstrap data blocks B˚1,T pnq, ..., B˚k,T pnq independently
from the empirical distribution Fn “ T pnq

´1 řT pnq
j“1 δBj of the blocks

tBju1ďjďT pnq conditioned onXpnq, until the length `˚pkq “
řk
j“1 `pB˚j,T pnqq

of the bootstrap data series is larger than n. Let T˚n pαq “ inftk ě 1,
`˚pkq ą nu and T˚ pn, T pnqq “ T˚n pαq ´ 1.

3. From the data blocks generated in step 2, reconstruct a pseudo-trajectory
of size l˚pT˚ pn, T pnqqq by binding the blocks together

X˚pnq “ pB˚1,T pnq, ...,B
˚
T˚pn,T pnqq,T pnqq.

Compute the RBB statistic G˚n “ GnpX
˚pnqq.

4. If Sn “ SpB1, ...,BT pnqq is an appropriate standardization of the original
statistic Gn, compute S˚n “ SpB˚1,T pnq, ...,B

˚
T˚pn,T pnqq,T pnqq.

The RBB distribution is then given by

HRBBpxq “ P˚
´

S˚´1
n pG˚n ´Gnq ď x

¯

where P˚ p‚q “ P
´

‚ | Xpnq
¯

denotes the conditional probability given Xpnq.
Our main asymptotic result, in the case of integrals concerning the invariant

measure, is the following.
Theorem 2.1. Let X be a β-null recurrent Markov chain with an accessible
atom α, and let f be a πα-integrable function such that E

”

pf pB1qq
2
ı

ă `8.
Then we have,

a

T˚ pn, T pnqq

¨

˚

˚

˚

˚

˝

T˚pn,T pnqq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1
fpBiq

¸

T˚ pn, T pnqqσT pnq

˛

‹

‹

‹

‹

‚

d˚
ÝÝÑ N p0, 1q ,
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in probability along the data, where d˚ denotes the convergence in distribution
conditionally to the data and

σ2
T pnq “

1
T pnq

T pnq
ÿ

j“1

¨

˝fpBjq ´
1

T pnq

T pnq
ÿ

i“1
fpBiq

˛

‚

2

.

This theorem yields that the bootstrap distribution of the standardized sum

has asymptotically the same distribution as the statistics

T pnq
ř

j“1
fpBjq

T pnq estimating
ş

fdπα. The regenerative block bootstrap is thus first-order correct. In particu-
lar, this justifies the use of the quantiles of the bootstrap distribution (with or
without standardizing) to obtain confidence intervals for

ş

fdπα.

3. The regeneration-based bootstrap algorithm

In this section, we adapt the Regeneration-base bootstrap to the β-null recurrent
Markov chain scenario.

Similarly to Section 2, consider observations Xpnq “ pX0, . . . , Xnq drawn
from a β-null recurrent Markov chain X that has an accessible atom α known
beforehand. Suppose that f is a function such πα pfq is finite and the second
moment of f pB1q is also finite. Let σ2 represent the variance of f pB1q.

The algorithm we present in this section was introduced in [3, 19] for positive
recurrent Markov chains with an accessible known atom. Similarly to the RBB,
it consists on dividing the chain into B1, . . . ,BT pnq regenerative blocks and then
resampling blocks to form the empirical distribution of B1, . . . ,BT pnq. The main
difference between the Regeneration-based bootstrap and the RBB is that in
the former, the number of bootstrapped blocks is T pnq, hence, non-random
conditionally to Xpnq, while in the latter is random.

The full algorithm is as follows:
1. Count the number of visits Tn pαq to the atom α up to time n. And divide

the observed sample path Xpnq “ pX0, ...., Xnq into Tn pαq ` 1 blocks, B0,
B1, ...., BTnpαq´1, BpnqTnpαq

valued in the torus T “ Y8n“1E
n, corresponding

to the pieces of the sample path between consecutive visits to the atom
α. Drop the first and last (non-regenerative) blocks. Denote by T pnq the
number of remaining blocks.

2. Draw T pnq bootstrap data blocks B˚1,T pnq, ..., B˚T pnq,T pnq independently
from the empirical distribution Fn “ T pnq

´1 řT pnq
j“1 δBj of the blocks

tBju1ďjďT pnq conditioned on Xpnq.
3. From the bootstrap data blocks generated at step 2, reconstruct a tra-

jectory by binding the blocks together, getting the reconstructed sample
path

X˚pnq “ pB˚1,T pnq, ...,B
˚
T pnq,T pnqq.

Compute the statistic G˚n “ Gn
`

X˚pnq
˘

.
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4. If Sn “ SpB1, . . . ,BT pnqq is an appropriate standardization of the original
statistic Gn, compute S˚n “ SpB˚1,T pnq, . . . ,B

˚
T pnq,T pnqq.

As in the RBB case, the asymptotic result stated below shows the validity of
this bootstrap scheme when used in estimations of integrals with respect to the
invariant measure.

Theorem 3.1. Let X be a β-null recurrent Markov chain with an accessible
atom α, and let f be a πα-integrable function such that E

”

pf pB1qq
2
ı

ă `8,
then

a

T pnq

¨

˚

˚

˚

˚

˝

T pnq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1
fpBiq

¸

T pnqσT pnq

˛

‹

‹

‹

‹

‚

d˚
ÝÝÑ N p0, 1q ,

almost surely along the data, where d˚ denotes the convergence in distribution
conditionally to the data and

σ2
T pnq “

1
T pnq

T pnq
ÿ

j“1

¨

˝fpBjq ´
1

T pnq

T pnq
ÿ

i“1
fpBiq

˛

‚

2

.

Remark 3.1. In its original formulation for the positive recurrent case, the es-
timator used was Snpfq

n , however, by Remark 1.2, this can not be done in the
null recurrent case, hence, we need to use 1

T pnq

řT pnq
j“1 fpBiq.

4. Simulations

To illustrate the convergence of the regenerative bootstraps method described
in the previous two sections we will do the following simulation experiment.

Take X as the simple symmetric random walk in Z, that is

Xt “

$

&

%

0 , t “ 0
t
ř

k“1
Yk , t ě 1

(19)

with P pYi “ 1q “ P pYi “ ´1q “ 1
2 . In this random walk, the state 0 is an

atom and the invariant measure is π0 piq ” 1 (see pp.1143 in [5]). Consider the
function fpkq “ 1

k2 if k ‰ 0 and fp0q “ 0, then

ż

f pxq dπ pxq “ 2
`8
ÿ

k“1

1
k2 “

π2
0

3 .

In order to show the validity of the proposed methods, we have simulated the
first 108 points of a simple symmetric random walk (see figure 1). Using this
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data, we have applied both the RBB and the Regeneration Based-bootstrap
1000 times each and computed the values of

Z˚RBB “
a

T˚ pn, T pnqq

¨

˚

˚

˚

˚

˝

T˚pn,T pnqq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1
fpBiq

¸

T˚ pn, T pnqqσT pnq

˛

‹

‹

‹

‹

‚

,

Z˚RegBB “
a

T pnq

¨

˚

˚

˚

˚

˝

T pnq
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1
fpBiq

¸

T pnqσT pnq

˛

‹

‹

‹

‹

‚

.

Figure 2 shows the validity of both methods, despite the fact that we observed
a huge block (52% of the whole trajectory is inside this block) and 25% of
the realization is in the final incomplete block. The 95% confidence interval
for

ş

fdπ0 using the RBB is p3.1439, 3.3096q and using the regenerative based-
bootstrap is p3.1434, 3.3067q. Notice that the true value of

ş

fdπ0 is 3.2899,
while the estimation obtained using (13) is 3.2226, and the confidence interval
obtained via Proposition 1.2 is p3.1432, 3.302q.

Fig 1: First 108 points of a realization of a simple symmetric random walk
starting at 0. There are 9406 complete blocks in this realization. The red dashed
lines delimit the largest block, while the green dotted line marks the end of the
last complete block.
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Fig 2: Density estimation of the bootstrap distributions Z˚RBB and Z˚RegBB after
103 simulations.

5. Proofs

5.1. Proof of Lemma 1.1

For the proof of Lemma 1.1 we need the following result, which appears as part
A.3 of Theorem A.1 in [31].

Lemma 5.1. Let An and Bn be a pair of stochastic processes which are càdlàg,
where An is non-negative and non-decreasing. Let B denote a Brownian motion
defined for t P R and let A denote a strictly increasing non-negative process
with independent increments, Ap0q ” 0 and with no fixed jumps. Assume that
Bn

Dr0,`8q
ÝÝÝÝÝÑ B and An

Dr0,`8q
ÝÝÝÝÝÑ A. Then, Ap´1q

n
Dr0,`8q
ÝÝÝÝÝÑ Ap´1q and

¨

˝Ap´1q
n ptq ,

Bn ˝A
p´1q
n ptq

b

A
p´1q
n ptq

˛

‚

d
ÝÑ

´

Ap´1q ptq , Z
¯

@t P p0, 1s ,

where Z is standard normal variable independent of Ap´1qptq.

To prove Lemma 1.1, let Wk “ σ´1`Xk ´ µ
˘

, then tWku
8
k“1 is an i.i.d.

sequence with EpWkq “ 0 and VarWk “ 1 for all k.
Let’s define the following continuous time process for t ě 0

Qnptq “
1
?
n

tntu
ÿ

k“1
Wk. (20)
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By Theorem 23 and Example 24 in [53], Qn
Dr0,`8q
ÝÝÝÝÝÑ B and given that un is

an unbounded increasing sequence, we also have Qun converges weakly to B in
Dr0,`8q.

The conditions imposed to the process Nn allow us to apply Lemma 5.1 with
An “ Sn and Bn “ Qun . Taking into account that Nn is equivalent to Sp´1q

n we
obtain that for all t ą 0

Qun pNn ptqq
a

Nn ptq

d
ÝÑ N p0, 1q. (21)

Using that N ptntuq “ unNnptq, we get

QunpNnptqq “
σ´1
?
un

Nptntuq
ÿ

j“1
pXj ´ µq, (22)

and Lemma 1.1 follows after plugging (22) into (21) and taking t “ 1.

5.2. Proof of Corollary 1.1

We assume, at first, that θ is bounded, that is, there exists a constant K such
that 0 ă θ ă K with probability 1. Without loss of generality, assume the un
are integers. Define the process

Nn ptq “

#

tNpnq
un

, if Npnqun
ă 1

tθ , otherwise
.

As stated in pp. 147 of [11], this process converges to the process tθ and
trivially satisfies the conditions of Lemma 1.1 (using Sn ptq “ t

θ , S´1
n ptq “ tθ).

The case when K is unbounded can be treated by following the same argu-
ment as in pp. 148 of [11].

5.3. Proof of Theorem 1.2

Recall from Section 1.3 that, by the Strong Markov Property, the sequence
tfpBjqu`8j“1 is i.i.d. with mean

ş

fdπα and variance σ2. Consider the processes
Tn ptq and Cn defined in (8)

Tn ptq “
T ptntuq

u pnq
, Cn ptq “

1
v pnq

tntu
ÿ

k“0
` pBkq.

By Theorem 1.1, we can apply Lemma 1.1 with Xi “ fpBiq, µ “
ş

fdπα,
Npnq “ T pnq and un “ nβLpnq, which completes the proof.
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5.4. Proof of Theorem 2.1

Assume we have observed the chain until time n, i.e., Xpnq “ X0, X1, . . . , Xn,
and we have extracted the T pnq regeneration blocks: B1, . . . ,BT pnq.

Now we start to sequentially bootstrap data blocks B˚1,T pnq, . . . ,B
˚
k,T pnq in-

dependently from the empirical distribution FT pnq “ T pnq
´1 řT pnq

j“1 δBj of the
blocks tBju1ďjďT pnq, conditioned onXpnq, until the length `˚pkq “

řk
j“1 `

´

B˚1,T pnq
¯

of the bootstrap data series is larger than n.
For each m, define

T˚ pm,T pnqq “ max
#

k :
k
ÿ

j“1
`
´

fpB˚j,T pnqq
¯

ď m

+

, (23)

U˚ pm,T pnqq “
?
m

¨

˚

˚

˚

˚

˝

m
ř

j“1

˜

fpB˚j,T pnqq ´
1

T pnq

T pnq
ř

i“1
fpBiq

¸

mσT pnq

˛

‹

‹

‹

‹

‚

. (24)

Theorem 2.1 will be proved if we show that

P˚
˜

U˚
´

T˚ pn, T pnqq , T pnq
¯

ď x

¸

p
ÝÑ P pN ď xq @x P R, (25)

where P is a standard normal random variable and P˚ p‚q “ P
´

‚ | Xpnq
¯

de-
notes the conditional probability given Xpnq.

Given that we will bootstrap T˚ pn, T pnqq terms, which is a random quantity
conditionally to the data, we will use Lemma 5.1 to prove (25). In order to do
this we need, conditionally to the data:

1. Find a process S˚n,T pnqptq that is non-negative, non-decreasing that con-
verges in Dr0,`8q to a process S˚ that is non-negative, strictly increasing,
has independent increments, no fixed jumps and S˚ p0q ” 0.

2. Show that T˚n,T pnqptq “
T˚ptntuq
T pnq “

T˚ptntu,T pnqq
T pnq is equivalent in Dr0,`8q to

S
˚p´1q
n,T pnq.

3. Find a process Q˚n,T pnq ptq that converges in Dr0,`8q to a Brownian motion
when n goes to `8. This process should satisfy, for some t ą 0

U˚
´

T˚ pn, T pnqq , T pnq
¯

“
Q˚n,T pnq ˝ T

˚
n,T pnq ptq

b

T˚n,T pnq ptq
. (26)
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A natural choice for Q˚n,T pnq, which satisfies (26) for t “ 1, is

Q˚n,T pnq ptq “
a

T pnq

¨

˚

˚

˚

˚

˝

tT pnqtu
ř

j“1

˜

f
´

B˚j,T pnq
¯

´ 1
T pnq

T pnq
ř

j“1
fpBiq

¸

T pnqσT pnq

˛

‹

‹

‹

‹

‚

. (27)

Take S˚n,T pnqptq as

S˚n ptq “
1

v˚ pT pnqq

tT pnqtu
ÿ

i“1
`
´

B˚i,T pnq
¯

, (28)

where v˚ pT pnqq “
T pnq
ř

i“0
` pBiq.

Following the notation of [33], let Yi “ l pBiq and let Y1,n ě Y2,n ě . . . ě Yn,n
be the order statistics of the sizes of the first n blocks, and take Zk,n “ Yk,n

vpnq

where v pnq is as in (7). By Theorem 1 in [33],

Zpnq “ pZ1,n, Z2,n, . . . , Zn,n, 0, . . . , 0q d
ÝÑ pZ1, Z2, . . . ,q “ Z, (29)

where Zk “ pE1 ` ¨ ¨ ¨ ` Ekq
´ 1
β and Ei is a sequence of i.i.d. of exponential

random variables with mean 1. By Skorokhod-Dudley-Wichura Theorem (see
pp. 1171 in [33] and pp. 476 in [6]) we can choose a probability space such that,
without changing the distribution of the left hand side of (29),

Zpnq
a.s.
ÝÝÑ Z. (30)

The following Lemma shows that in that space, conditionally to the data, the
process S˚n,T pnq converges in Dr0,`8q.

Lemma 5.2. Suppose that (30) holds, then T pnq
upnq converges almost surely to a

positive random variable and

S˚n,T pnq
Dr0,`8q
ÝÝÝÝÝÑ S˚ and S

˚p´1q
n,T pnq

Dr0,`8q
ÝÝÝÝÝÑ S˚p´1q (31)

almost surely along the data.

Here, S˚ ptq “ KR˚ ptq ` t, R˚ ptq “
`8
ř

j“1
Zj

`

λ˚j ptq ´ t
˘

, λ˚j ptq are indepen-

dent Poisson processes with parameter 1 and K is a positive constant. Moreover,
the process S˚ is non-negative, strictly increasing, continuous, with independent
increments and S˚ p0q ” 0.
Proof. When (30) holds, by Theorem 1 and Remark 1.3 in [41],

1
vpnq

n
ÿ

j“1
` pBjq

a.s.
ÝÝÑ

`8
ÿ

j“1
Zj .
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The length of the first block, ` pB0q, is finite with probability 1 and does not
depend on n, hence `pB0q

vpnq converges almost surely to 0. This implies that

1
vpnq

n
ÿ

j“0
` pBjq

a.s.
ÝÝÑ

`8
ÿ

j“1
Zj . (32)

In (7), we defined v pzq as the inverse of u pzq “ zβL pzq, then, by Proposition
1.5.15 in [12], vpzq „ z1{βL1 pzq where L1 is a slowly varying function, hence,

1
vpnq

tntu
ÿ

j“0
` pBjq

a.s.
ÝÝÑ t

1
β

`8
ÿ

j“1
Zj @t ą 0. (33)

For each t ą 0, let Sn ptq “ 1
vpnq

tntu
ř

j“0
` pBjq, Sp´1q

n ptq “ inf tx ą 0 : Sn pxq ą tu

and S ptq “ t
1
β

`8
ř

j“1
Zj , and define the three processes as 0 on t “ 0. By (33) and

the Continuous Mapping Theorem, Sp´1q
n

a.s.
ÝÝÑ S´1.

Similar to what is described on page 1141 in [5], suppose that y is such
that y ă S

p´1q
n p1q. Then, since Snpyq ă 1, it follows that

řtnyu

j“0 `pBjq ă vpnq.
Consequently, we have T ptvpnquq ě tnyu ą ny ´ 1. This in turn implies that
T ptvpnquq

n ě y´ 1
n ě S

p´1q
n p1q´ 1

n for all n. In a similar way, but taking y ą S
p´1q
n ,

we show that T ptvpnquq
n ď S

p´1q
n p1q ` 1

n for all n. Then,

Supnqp´1qp1q ´
1

u pnq
ď
T ptv pu pnqquq

u pnq
ď Supnqp´1qp1q `

1
u pnq

. (34)

The first part of the lemma now follows from (34), the convergence of Sp´1q
upnq p1q

to S´1 p1q and the fact that u pv pnqq “ n for n big enough.
To show (31), consider the following process, which was studied in [6],

Z˚m,n ptq “
1

v pnq

tmtu
ÿ

j“1

ˆ

`
`

B˚j,n
˘

´

řn
i“1 ` pBiq
n

˙

.

By Corollary 1.2 in [6] (and its proof3), we see that when (30) holds, for any
mn such that mn

n Ñ c, conditionally to the data, the process Z˚mn,n converges
weakly in D pr0, 1sq to R˚ pctq. Let C ą 1, on r0, Cs define the process

W˚
n ptq “

1
v pnq

tntu
ÿ

j“1

ˆ

`
`

B˚j,n
˘

´

řn
i“1 ` pBiq
n

˙

.

3In [6], they standardize by Tn “ max
1ďkďn

l pBkq but from the proof is clear that the result

remains valid if we standardize by v pnq (bn in their notation).
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Notice that W˚
n ptq “ Z˚nC,n

`

t
C

˘

, hence, W˚
n

Dr0,Cs
ÝÝÝÝÑ R˚ as n Ñ `8. Because

this convergence holds for arbitrary C ą 0, by Lemma 1.3.ii in [32] we have that
W˚
n

Dr0,`8q
ÝÝÝÝÝÑ R˚, and therefore, W˚

T pnq

Dr0,`8q
ÝÝÝÝÝÑ R˚.

The process S˚n,T pnq can be written as

S˚n,T pnq ptq “
v pT pnqq

v˚ pT pnqq
W˚
T pnq,T pnq ptq `

tT pnq tu

T pnq
(35)

Conditionally to the data, vpT pnqq
v˚pT pnqq “

´

1
vpT pnqq

řT pnq
j“0 ` pBjq

¯´1
converges to

a positive constant K by equation (32). Equation (31) now follows from the
convergence of W˚

T pnq,T pnq and (35).
The continuity of S˚ was shown in pp. 466 of [6], and the rest of the properties

are evident from the form of R˚.

The next Lemma handles the equivalence of T˚n,T pnq and S
˚p´1q
n,T pnq in Dr0,`8q.

Lemma 5.3. Under the same hypothesis of Lemma 5.2, the processes T˚n,T pnq
and S˚p´1q

n,T pnq are equivalent in Dr0,`8q.

Proof. The proof of this result follows the proof of Theorem 3.2 on [31] with
slight modifications.

We need to show that, for any ε ą 0 given,

P
ˆ

sup
0ătďK

ˇ

ˇ

ˇ
T˚n,T pnq ptq ´ S

˚p´1q
n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

Ñ 0 @K ą 0. (36)

To prove this, we will show that

P
ˆ

sup
0ătďK

ˇ

ˇ

ˇ
T˚v˚pT pnqq,T pnq ptq ´ S

˚p´1q
n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

Ñ 0 @K ą 0, (37)

P
ˆ

sup
0ătăK

ˇ

ˇ

ˇ
T˚v˚pT pnqq,T pnq ptq ´ T

˚
n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

Ñ 0 @K ą 0. (38)

from where (36) will follow by triangular inequality.
Let η ą 0

!

S
˚p´1q
n,T pnq ptq ă η

)

Ď

!

S˚n,T pnq pηq ą t
)

“

$

&

%

1
v˚ pT pnqq

tT pnqηu
ÿ

i“1
`
´

B˚i,T pnq
¯

ą t

,

.

-

“

$

&

%

tT pnqηu
ÿ

i“1
`
´

B˚i,T pnq
¯

ą tv˚ pT pnqq

,

.

-

“

"

T˚ ptv˚ pT pnqqtu, T pnqq

T pnq
ă

tT pnqηu

T pnq

*

. (39)
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Because T pv˚ pnqq “ n, we can write,

T˚v˚pT pnqq,T pnq ptq “
T˚ ptv˚ pT pnqq tu, T pnqq

u˚ pv˚ pT pnqqq
“
T˚ ptv˚ pT pnqq tu, T pnqq

T pnq
,

therefore, equation (39) becomes
!

S
˚p´1q
n,T pnq ptq ă η

)

Ď

"

T˚v˚pT pnqq,T pnq ptq ă
tT pnqηu

T pnq

*

. (40)

Similarly, we obtain that
!

S
˚p´1q
n,T pnq ptq ą η

)

Ď

"

T˚v˚pT pnqq,T pnq ptq ě
tT pnqηu

T pnq

*

. (41)

Let ε1 P p0, 1q be fixed and take η1 ă η2, then, by (41) and (40),
!

η1 ď S
˚p´1q
n,T pnq ptq ă η2

)

Ď

!

η1 p1´ ε1q ă S
˚p´1q
n,T pnq ptq ă η2

)

Ď

"

tT pnqη1 p1´ ε1qu

T pnq
ď T˚v˚pT pnqq,T pnq ptq ă

tT pnqη2u

T pnq

*

.

This means, that, if S˚p´1q
n,T pnq ptq P rη1, η2q, then

tT pnqη1 p1´ ε1qu

T pnq
´ η2 ă T˚v˚pT pnqq,T pnq ptq ´ S

˚p´1q
n,T pnq ptq ă

tT pnqη2u

T pnq
´ η1,

which implies that, if S˚p´1q
n,T pnq ptq P rη1, η2q, then

ˇ

ˇ

ˇ
T˚v˚pT pnqq,T pnq ptq ´ S

˚p´1q
n,T pnq ptq

ˇ

ˇ

ˇ
ď η2 ´ η1 ` ε1η1 `

1
T pnq

. (42)

Let ε ą 0 be fixed. For any s we have

P
ˆ

sup
tďK

ˇ

ˇ

ˇ
ξ˚n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

ď P

ˆ

sup
tďK

ˇ

ˇ

ˇ
ξ˚n,T pnq ptq

ˇ

ˇ

ˇ
ą ε, sup

tďK
S
˚p´1q
n,T pnq ptq ă s

˙

` P

ˆ

sup
tďK

S
˚p´1q
n,T pnq ptq ě s

˙

,

where ξ˚n,T pnq ptq “ T˚v˚pT pnqq,T pnq ptq ´ S
˚p´1q
n,T pnq ptq.

By (31),

lim
sÒ8

lim
nÑ8

P

ˆ

sup
tďK

S
˚p´1q
n,T pnq ptq ě s

˙

“ 0.

Therefore, for any δ ą 0 we can choose s0 such that P
ˆ

sup
tďK

S
˚p´1q
n,T pnq ptq ě s0

˙

is smaller than δ for n big enough. By (42), sup
tďK

S
˚p´1q
n,T pnq ptq ă s0 implies that

ˇ

ˇ

ˇ
ξ˚n,T pnq ptq

ˇ

ˇ

ˇ
ď η2 ´ η1 ` ε1η1 `

1
T pnq

@t P r0,Ks , @ε1 P p0, 1q .
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Choose η0, . . . , ηL, N1, ε1 with η0 “ 0 ă η1 ă . . . ă ηL´1 ă ηL “ s0 such that
ηi ´ ηi`1 ă

ε
3 for all i. Let ε1 ă

ε
s0

and choose N1 such that 1
T pN1q

ă ε
3 .

Notice that for all t P r0,Ks there is only one in,t such that S˚p´1q
n,T pnq ptq belongs

to
“

ηin,t , ηin,t`1
˘

, then, by (42)
ˇ

ˇ

ˇ
ξ˚n,T pnq ptq

ˇ

ˇ

ˇ
ď ηin,t ´ ηin,t`1 ` ε1η1 `

1
T pnq

ď ε @t P r0,Ks , @n ą N1,

whenever S˚p´1q
n,T pnq ptq ă s0. This implies that

P
ˆ

sup
tďK

ˇ

ˇ

ˇ
ξ˚n,T pnq ptq

ˇ

ˇ

ˇ
ą ε, sup

tďK
S
˚p´1q
n,T pnq ptq ă s0

˙

“ 0 @n ě N1.

Hence,
P
ˆ

sup
tďK

ˇ

ˇ

ˇ
ξ˚n,T pnq ptq

ˇ

ˇ

ˇ
ą ε

˙

ă δ @n ą N1. (43)

which implies (37).
Now we turn to the proof of (38).

According to the definition of v˚, v˚ pT pnqq “
T pnq
ř

i“0
l pBiq ď n, therefore,

T˚v˚pT pnqq,T pnq ptq “
T˚ ptv˚ pT pnqq tu, T pnqq

T pnq
ď
T˚ ptntu, T pnqq

T pnq

ď T˚n,T pnq ptq @n, t.

Notice that v˚ pT pnq ` 1q “
T pnq`1
ř

i“0
l pBiq ą n, therefore,

T˚n,T pnq ptq ď T˚v˚pT pnq`1q,T pnq ptq
T pnq ` 1
T pnq

@n, t.

Hence,

T˚v˚pT pnqq,T pnq ptq ď T˚n ptq ď T˚v˚pT pnq`1q ptq
T pnq ` 1
T pnq

@n, t.

Equation (38) now follows from the convergence of both T˚v˚pT pnqq,T pnq and
T˚v˚pT pnq`1q,T pnq to S

˚p´1q and the fact that T pnq`1
T pnq

a.s.
ÝÝÑ 1.

By (27), Lemmas 5.1, 5.2 and 5.3 we have that, in a space where (30) holds,
the convergence in (25) holds almost surely. Therefore, in the original space we
have the weakly-weakly (see pp.2550 in [14]) convergence

P˚
˜

U˚
´

T˚ pn, T pnqq , T pnq
¯

ď x

¸

d
ÝÑ P pN ď xq @x P R. (44)

However, given that the right hand side of (44) is a constant for each x,
the convergence in (44) can be improved to convergence in probability, which
completes the proof.
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5.5. Proof of Theorem 3.1

This proof follows the line of the proof of Theorem 2.1 in [10]. As in that paper,
let Γ2 be the set of distribution functions G satisfying

ş

x2dG pxq ă 8 and define
the following notion of convergence in Γ2

Gn ñ G iff Gn Ñ G weakly and
ż

x2dGn pxq Ñ

ż

x2dG pxq. (45)

Denote by d2 a Mallows metric that metricizes the ñ convergence in Γ2 (see
details in Section 8 of [10])

If Y1, . . . , Yn are i.i.d. random variables with common distribution G, denote
by Gpmq the distribution of

m´
1
2

m
ÿ

j“1
pYj ´ EYjq.

By pp. 1198 in [10], if G,H P Γ2 then Gpmq and Hpmq are also in Γ2 and

d2

´

Gpmq, Hpmq
¯

ď d2 pG,Hq . (46)

Let F be the distribution of fpB1q and denote by Fn the empirical distribution
function of fpB1q, . . . , fpBnq. By (2.1) in [10] and the fact that T pnq Ñ `8 a.s.,
FT pnq ñ F along almost almost all sample paths, hence, conditionally to the
data

d2
`

FT pnq, F
˘

Ñ 0. (47)

Denote by Nσ a standard distribution with mean 0 and variance σ2. By
Proposition 1.2,

d2

´

F pT pnqq, Nσ

¯

Ñ 0. (48)

Conditionally to the data, the distribution of

a

T pnq

¨

˚

˚

˚

˚

˝

řT pnq
j“1

˜

f
´

B˚j,T pnq
¯

´ 1
T pnq

T pnq
ř

i“1
f pBiq

¸

T pnq

˛

‹

‹

‹

‹

‚

is F pT pnqqT pnq , then, conditionally to the data,

d2

´

F
pT pnqq
T pnq , Nσ

¯

ď d2

´

F
pT pnqq
T pnq , F pT pnqq

¯

` d2

´

F pT pnqq, Nσ

¯

which goes to 0 by (47) and (48). The theorem now follows by (45), (14) and
Slutsky’s theorem.
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