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Cet article vise à présenter une proposition de nouvelle mesure de qualité pour évaluer une implication statistique. Comme Regis Gras et ses collaborateurs, nous adoptons une approche probabiliste en calculant directement la vraisemblance de l'implication statistique. Ce qui distingue notre travail, c'est notre tentative de trouver une mesure dont les implications obtenues établissent une relation de préordre.

Introduction

L'analyse statistique implicative, délivrée par Gras et ses collaborateurs [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF][START_REF] Gras | L'implication statistique, une nouvelle méthode d'analyse de données[END_REF]Gras, Kunt et Briand, 2001), a révolutionné notre compréhension des relations entre les variables en mettant l'accent sur la causalité. Cette approche permet d'identifier des liens essentiels et souvent cachés entre les phénomènes, ouvrant de nouvelles perspectives dans divers domaines de recherche, dont la fouille de données [START_REF] Agrawal | Fast algorithms for mining association rules in large databases[END_REF]. Cependant, malgré les avancées développées, la mesure d'intensité d'implication statistique de [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF] présente des limitations qui nécessitent une exploration plus approfondie.

Dans cette étude, nous nous concentrons sur la notion d'intensité d'implication statistique proposée dans divers travaux de Gras et son équipe [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF][START_REF] Gras | Les fondements de l'analyse statistique implicative et quelques prolongements pour la fouille de données[END_REF]. Nous examinons attentivement cette mesure, en mettant en évidence ses forces et ses faiblesses. Nous cherchons ensuite à proposer une nouvelle 2 Rappel de la mesure de l'intensité d'implication de Gras Une implication 𝑎 ⇒ 𝑏 est logiquement vraie pour tout 𝑥 ∈ 𝐸, si 𝑎(𝑥) = 1 alors 𝑏(𝑥) = 1. C'est-à-dire, tous les individus qui vérifient 𝑎 vérifient aussi 𝑏. Mais statistiquement, on peut observer des individus 𝑥 qui vérifient 𝑎 mais qui ne vérifient pas 𝑏. L'implication 𝑎 ⇒ 𝑏 est ainsi admissible selon le nombre de contre-exemple(s) qui l'infirme [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF]. En effet, ce nombre de contre-exemple(s) doit être faible par rapport au nombre total des individus où on fait l'étude. Ainsi [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF][START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF]) définissent la mesure de qualité confirmatoire de la relation 𝑎 ⇒ 𝑏 à partir de l'invraisemblance de l'apparition, dans les données, du nombre de cas qui l'infirme, c'est-à-dire pour lesquels 𝑎 est vérifié sans que 𝑏 ne le soit.

Cette mesure de Gras et Régnier (2009) revient à comparer l'écart entre le contingent et le théorique si seul le hasard intervenait. Dans le cadre de l'analyse de données, c'est cet écart qui est pris en compte et non pas l'énoncé d'un rejet ou de l'admissibilité d'hypothèse nulle. On essaie alors de quantifier l'étonnement de l'observateur devant le nombre invraisemblablement petit de contre-exemple(s) sous l'hypothèse d'une indépendance entre les variables eu égard aux effectifs en jeu. L'intensité d'implication modélise la qualité de la quasi-règle 𝑎 ⇒ 𝑏 qui fonde la décision de la retenir ou non. C'est une mesure probabiliste, et non une fréquence, qui compare le nombre de contre-exemple(s) à celui qu'on aurait obtenu si seul le hasard intervenait, de façon indépendante.

Gras et Régnier (2009) donnent une modélisation de la mesure de l'intensité d'implication dans les modèles de Poisson et binomiale, dont par la suite ils font une approximation vers une loi Gaussienne. Afin de cadrer la suite de ce texte, on choisit de présenter ici la modélisation dans le modèle binomial puis de Poisson.

On envisage ici un processus temporel transactionnel discret, durant lequel, à certains instants, apparait une transaction. Ceci peut représenter une feuille d'enquête d'un enseignant des mathématiques qui évalue la réussite-échec à des items d'un questionnaire. C'est-à-dire, si l'item 𝑎 est réussi par un élève 𝑥, on l'instancie par 1, sinon 0, à l'intersection de la ligne de 𝑥 et de la colonne de 𝑎. Au bout d'un nombre de 𝑛 élèves, on a observé 𝑛 élèves, dont 𝑛 𝑎 ont réussi l'item 𝑎 et 𝑛 𝑏 ont réussi l'item 𝑏. [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF]. On va chercher ainsi une nouvelle mesure de l'intensité d'implication, qu'on va noter par 𝜑 * (𝑎, 𝑏), dont quelques caractérisations vont être données pour connaitre dans quels cas une implication statistique peut être réflexive et transitive.

Quelques études préliminaires dans les théories des ensembles

Considérons toujours 𝐸 l'ensemble d'individus 𝑥 où on fait l'étude de cardinal 𝑛. 𝐴 et 𝐵 deux parties de 𝐸 de cardinaux respectifs 𝑛 𝑎 et 𝑛 𝑏 , tels que les individus dans 𝐴 vérifient la propriété 𝑎 et les individus dans 𝐵 vérifient la propriété 𝑏. Une implication 𝑎 ⇒ 𝑏 est logiquement vraie dans les trois cas suivants :

1. 𝑎(𝑥) = 1 et 𝑏(𝑥) = 1 2. 𝑎(𝑥) = 0 et 𝑏(𝑥) = 1 3. 𝑎(𝑥) = 0 et 𝑏(𝑥) = 0
On peut vérifier aisément que les éléments de 𝐴 ̅ ∪ 𝐵 vérifient toujours l'un des trois cas cités ci-dessus, avec 𝐴 ̅ est le complémentaire de 𝐴 dans 𝐸. En effet, supposons d'abord que 𝑎(𝑥) = 1, c'est-à-dire 𝑥 ∈ 𝐴. Avec l'hypothèse 𝑥 ∈ 𝐴 ̅ ∪ 𝐵, ces deux hypothèses impliquent que 𝑥 appartient à l'intersection :

𝐴 ∩ (𝐴 ̅ ∪ 𝐵) = 𝐴 ∩ 𝐵 ⊆ 𝐵 D'où on a 𝑎(𝑥) = 1 et 𝑏(𝑥) = 1. Ce premier cas est vrai si 𝐴 ⊂ 𝐵. Supposons maintenant que 𝑎(𝑥) = 0, c'est-à-dire que 𝑥 ∈ 𝐴 ̅ . On a avec l'hypothèse 𝑥 ∈ 𝐴 ̅ ∪ 𝐵, soit 𝑥 appartient seulement à 𝐴 ̅ mais pas à 𝐵, donc dans ce cas 𝑎(𝑥) = 0 et 𝑏(𝑥) = 0 ; soit 𝑥 appartient à la fois à 𝐴 ̅ et 𝐵, dans ce cas 𝑎(𝑥) = 0 et 𝑏(𝑥) = 1. En bref, les individus appartenant dans 𝐴 ̅ ∪ 𝐵 vérifient l'implication 𝑎 ⇒ 𝑏.
On va maintenant vérifier la propriété de réflexivité et de transitivité par la théorie des ensembles.

Une implication est réflexive si pour toute variable binaire 𝑎, on a : 𝑎 ⇒ 𝑎. Autrement dit dans la théorie des ensembles, on suppose que 𝑥 ∈ 𝐴 ̅ ∪ 𝐴. Or ce dernier est toujours vrai car 𝐴 ̅ ∪ 𝐴 = 𝐸.

Une implication est transitive si pour toutes variables binaires 𝑎, 𝑏, 𝑐, on a : si 𝑎 ⇒ 𝑏 et 𝑏 ⇒ 𝑐 alors 𝑎 ⇒ 𝑐. Dans la théorie des ensembles, on suppose que 𝑥 ∈ 𝐴 ̅ ∪ 𝐵 et 𝑥 ∈ 𝐵 ̅ ∪ 𝐶 et on va démontrer que 𝑥 ∈ 𝐴 ̅ ∪ 𝐶.

(𝐴 ̅ ∪ 𝐵) ∩ (𝐵 ̅ ∪ 𝐶) = (𝐴 ̅ ∩ 𝐵 ̅ ) ∪ [(𝐴 ̅ ∩ 𝐶) ∪ (𝐵 ∩ 𝐶)] ⊆ (𝐴 ̅ ∪ 𝐶)
Cette inclusion nous montre la transitivité de l'implication. A l'instar des méthodes présentées dans [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF], on va donner une mesure de l'intensité d'implication à partir de l'événement 𝐴 ̅ ∪ 𝐵.

Calcul de la nouvelle mesure de l'intensité d'implication

Contrairement à la méthode présentée dans Gras et Régnier (2009) dont l'intensité d'implication est calculée à partir de l'invraisemblance de l'implication 𝑎 ⇒ 𝑏, nous retenons le fait qu'une quasi-règle soit conservable si et seulement si la majorité d'individus 𝑥 de 𝐸 la vérifient. C'est-à-dire on essaie de calculer directement la vraisemblance de l'implication statistique. A l'instar de l'approche proposée par [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF] 

𝜑 * (𝑎, 𝑏) = Pr[𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) ≤ 𝑛 𝑎 ̅˅𝑏 ]
Cette probabilité calcule le nombre d'individus 𝑥 de 𝐸 qui appartiennent à 𝑋 ̅ ∪ 𝑌 pour 𝑘 allant de 0 jusqu'à 𝑛 𝑎 ̅˅𝑏 . De même que celui de [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF], c'est une mesure probabiliste et non une fréquence qui compare le nombre d'exemples qui vérifient la propriété non 𝑎 ou 𝑏 à celui qu'on aurait obtenu si seul le hasard intervenait, de façon indépendante.

En s'intéressant à l'évènement 𝑋 ̅ ∪ 𝑌, on a la formule de probabilité suivante :

Pr(𝑋 ̅ ∪ 𝑌) = Pr(𝑋 ̅ ) + Pr(𝑌) -Pr(𝑋 ̅ ∩ 𝑌)
Comme on a choisi deux parties quelconques, ceci garanti l'absence de lien a priori, c'est-à-dire l'indépendance des évènements 𝑋 ̅ et 𝑌. La probabilité de l'évènement 𝑋 ̅ ∪ 𝑌 est alors : 

Pr(𝑋 ̅ ∪ 𝑌) =
Pr(𝑋 ̅ ∪ 𝑌) = 𝑛 𝑎 ̅ + 𝑛 𝑏 𝑛 - 𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 2
Si 𝑛 𝑎 ̅ et 𝑛 𝑏 sont très petit devant 𝑛 alors la variable aléatoire 𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) peut suivre une loi de Poisson de paramètre 𝑛 × Pr(𝑋 ̅ ∪ 𝑌). Or 𝑛 𝑎 ̅ et 𝑛 𝑏 ne peuvent pas être très petits devant 𝑛 car on souhaite que la majorité des individus 𝑥 soient appartenus dans 𝑋 ̅ ∪ 𝑌. C'est-à-dire que la probabilité doit être grande. Ainsi, le phénomène qu'on étudie ici n'est pas rare. Par la suite, la variable aléatoire 𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) ne peut pas être modélisée suivant la loi de Poisson. Par contre elle peut suivre la loi binomiale de paramètre 𝑛 et Pr(𝑋 ̅ ∪ 𝑌) = 𝑝 * si on considère que l'observation de chaque individu 𝑥 de 𝐸 soit d'une manière répétitive et indépendante. Ainsi, en s'intéressant à la variable aléatoire 𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌), on a une loi binomiale de paramètre 𝑛𝑒𝑡𝑝 * :

𝜑 * (𝑎, 𝑏) = ∑ 𝐶 𝑛 𝑘 𝑝 * 𝑘 (1 -𝑝 * ) 𝑛-𝑘 𝑛 𝑎 ̅˅𝑏 𝑘=0
Si la majorité d'individus 𝑥 de 𝐸 est dans 𝑋 ̅ ∪ 𝑌 alors la probabilité est grande, soit supérieure à 0.5. De la même façon que l'admissibilité d'une implication statistique que celui de [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF] 

𝜑 * (𝑎, 𝑏) = 1 √2𝜋 ∫ 𝑒 - 𝑡 2 2 𝑑𝑡 𝑞 * (𝑎,𝑏) -∞

Etude comparative des deux intensités d'implication

Dans cette dernière section nous exposons quelques études comparatives des deux intensités d'implication, c'est-à-dire de celle de Gras et celle que nous avons proposée.

Etude des intensités d'implication en fonction des indices

Les deux intensités d'implications sont toutes des fonctions de leurs indices d'implication. Rappelons de celui de [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF] :

𝜑(𝑎, 𝑏) = 1 √2𝜋 ∫ 𝑒 - 𝑡 2 2 𝑑𝑡 ∞ 𝑞(𝑎,𝑏)
On peut constater que lorsque 𝑞(𝑎, 𝑏) augmente, l'intensité d'implication 𝜑(𝑎, 𝑏) diminue et vice-versa. C'est-à-dire que l'intensité d'implication de Gras est une fonction décroissante de l'indice d'implication 𝑞(𝑎, 𝑏).

Rappelons maintenant la nouvelle mesure de l'intensité d'implication que nous avons proposée : 

𝜑 * (𝑎, 𝑏) = 1 √2𝜋 ∫ 𝑒 - 𝑡 2

Etude de variations des indices d'implication en fonction des cardinaux

On va d'abord revenir au résultat trouvé dans [START_REF] Gras | Fondements théoriques de l'analyse statistique implicative[END_REF] Ces dérivations de 𝑞 * (𝑎, 𝑏) par rapport aux cardinaux nous montrent que les deux mesures de l'intensité d'implication se correspondent.

Etude des propriétés de réflexivité et de transitivité des implications statistiques issues de la nouvelle mesure d'intensité

Nous allons maintenant vérifier les propriétés de réflexivité et de transitivité des implications statistiques obtenues par la nouvelle mesure d'intensité d'implication. Admettons alors la définition de la relation implique suivante : 𝑎𝑅𝑏 ⇔ 𝜑 * (𝑎, 𝑏) 𝛼, où 𝛼 est un seuil choisi selon l'observateur.

On va d'abord déterminer la valeur minimum de 𝛼 pour qu'une implication statistique soit toujours réflexive.

Une implication est réflexive si et seulement si 𝜑 * (𝑎, 𝑎) ≥ 𝛼. Pour connaitre la valeur de l'intensité d'implication correspondante, on va chercher les valeurs que peuvent l'indice d'implication 𝑞 * (𝑎, 𝑎) en fonction du nombre d'individus contenant dans 𝐴. On suppose que 𝑛 est en remplaçant 𝑛 𝑎 ̅ par 𝑛 -𝑛 𝑎 et en admettant que 𝑛 𝑎 ̅˄𝑎 = 0, on a :

𝑞 * (𝑎, 𝑎) = - 𝑛 𝑎 2 𝑛 + 𝑛 𝑎 √( 𝑛 𝑎 2 𝑛 -𝑛 𝑎 + 𝑛) (- 𝑛 𝑎 2 𝑛 2 + 𝑛 𝑎 𝑛 )
Dans le cas où 𝑛 𝑎 est un réel variant de ]0, 𝑛[, alors 𝑞 * (𝑎, 𝑎) est une fonction continument dérivable, 𝑞 * (𝑎, 𝑎) étant non défini pour 𝑛 𝑎 = 0 et 𝑛 𝑎 = 𝑛. On a ainsi la dérivée de 𝑞 * (𝑎, 𝑎) par rapport à 𝑛 𝑎 suivante :

𝑑𝑞 * 𝑑𝑛 𝑎 = 𝑛 𝑎 𝑛 (-2 𝑛 𝑎 𝑛 + 1) (1 - 𝑛 𝑎 𝑛 ) ( 𝑛 𝑎 2 𝑛 -𝑛 𝑎 + 𝑛 + 1 𝑛 - 1 2 ) ( 𝑛 𝑎 2 𝑛 -𝑛 𝑎 + 𝑛) 3 2 (- 𝑛 𝑎 2 𝑛 2 + 𝑛 𝑎 𝑛 ) 3 2
Le numérateur de cette dérivée est nul pour 𝑛 𝑎 = 0, 𝑛 𝑎 = On constate la rigidité de la mesure de l'intensité d'implication de [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF] par rapport à la nouvelle intensité d'implication statistique. Cette nouvelle mesure est plus souple pour accepter les implications transitives. L'avantage avec le graphe de la droite est qu'il permet de connaitre la source principale, qui est ici 𝑐, et la destination finale, qui est ici 𝑒. Par exemple, dans un domaine de recherche en didactique, 𝑐 peut être la source principale des erreurs des élèves et 𝑒 la conséquence finale de ces erreurs.

𝑎 𝑏 𝑐 𝑑 𝑒 𝑎 𝑏 𝑐 𝑑 𝑒 𝑥 1 1 0 0 0 0 𝑥 6 1 0 0 1 1 𝑥 2 1 1 1 0 1 𝑥 7 0 1 0 1 0 𝑥 3 1 1 0 0 1 𝑥 8 1 1 1 1 1 𝑥 4 1 0

Conclusion

En conclusion, cette étude comparative entre la mesure d'intensité d'implication de [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF] et la nouvelle a révélé des résultats promoteurs. La spécificité de notre nouvelle mesure réside dans sa permission à étudier des implications statistiques réflexives et transitives, ce qui représente une avancée significative dans le domaine de la mesure d'implication statistique.

Les résultats obtenus ont démontré une grande correspondance avec les propriétés de la mesure de [START_REF] Gras | Contribution à l'étude expérimentale et à l'analyse de certaines acquisitions cognitives et de certains objectifs didactiques en mathématiques[END_REF], mais on peut faire l'hypothèse que les propriétés de réflexivité et de transitivité nous a permis d'avoir des implications plus précises et cohérentes. En effet, ces deux propriétés permettent une meilleure compréhension des relations entre les variables et permettent une interprétation plus solide des résultats.

Cependant, il est important de souligner que des recherches supplémentaires sont nécessaires pour valider et généraliser ces résultats dans divers contextes et domaines d'application. Des études futures pourraient également explorer les implications pratiques de notre mesure, notamment en termes de prise de décision et de prévision.

En résumé, cette étude comparative a démontré l'efficacité et la pertinence de la nouvelle mesure d'implication statistique avec ses implications statistiques réflexives et transitives. Elle ouvre de nouvelles perspectives pour la recherche et l'analyse des données, offrant ainsi une approche plus avancée. 

  Considérons un ensemble 𝐸 qui constitue l'ensemble d'individus où on fait l'étude. Considérons de plus deux sous-ensembles 𝐴 et 𝐵 de 𝐸 dont les éléments vérifient respectivement les propriétés 𝑎 et 𝑏. Pour un élément 𝑥 de 𝐸, on admet les notations suivantes : -𝑎(𝑥) = 1 si 𝑥 vérifie la propriété 𝑎 et 0 sinon -𝐶𝑎𝑟𝑑(𝐸) = 𝑛, 𝐶𝑎𝑟𝑑(𝐴) = 𝑛 𝑎 , 𝐶𝑎𝑟𝑑(𝐵) = 𝑛 𝑏 Ainsi les deux sous-ensembles 𝐴 et 𝐵 sont respectivement notés comme suit : 𝐴 = {𝑥 ∈ 𝐸/𝑎(𝑥) = 1} et 𝐵 = {𝑥 ∈ 𝐸/𝑏(𝑥) = 1}

  Pour mesurer l'intensité d'implication entre deux variables binaires 𝑎 et 𝑏, à l'instar de ce que I. C. Lerman a fait pour la similarité, on considère (Gras et Régnier, 2009 ; Oriol er Régnier 2007) deux parties quelconques 𝑋 et 𝑌 de 𝐸 de mêmes cardinaux respectifs que 𝐴 et 𝐵.

Figure 1 -

 1 Figure 1-Représentation par le diagramme d'Euler (figure tirée dans Gras et Régnier, 2009) On a ici une variable aléatoire 𝐶𝑎𝑟𝑑(𝑋 ∩ 𝑌 ̅ ) dont 𝑛 𝑎˄𝑏 ̅ est une valeur observée, avec 𝑋 ∩ 𝑌 ̅ est l'évènement 𝑥 appartenant à 𝑋 mais pas à 𝑌, et 𝑛 𝑎˄𝑏 ̅ désigne le nombre d'individus appartenant à 𝑋 mais pas à 𝑌. L'intensité d'implication entre deux variables binaires 𝑎 et 𝑏 est donnée par la formule suivante : 𝜑(𝑎, 𝑏) = 1 -Pr[𝐶𝑎𝑟𝑑(𝑋 ∩ 𝑌 ̅ ) ≤ 𝑛 𝑎˄𝑏 ̅ ]

  Pr(𝑋 ̅ ) + Pr(𝑌) -Pr(𝑋 ̅ ) . Pr(𝑌) Puisqu'on peut observer 𝑛 𝑎 ̅ individus dans 𝐸 qui n'appartient pas à 𝑋 et 𝑛 𝑏 individus dans 𝐸 qui appartient à 𝑌, on a Pr(𝑋 ̅ ) = 𝑛 𝑎 ̅ 𝑛 et Pr(𝑌) = 𝑛 𝑏 𝑛 . La probabilité de l'évènement 𝑋 ̅ ∪ 𝑌 dévient alors :

Figure 2 -

 2 Figure 2 -Représentations graphiques des intensités d'implication en fonction du nouvel indice d'implication Ces figurent nous montrent que les deux intensités d'implication sont approximativement égales si 𝑛 𝑎 petit et 𝑛 𝑏 grand. Par contre si 𝑛 𝑎 augmente et 𝑛 𝑏 diminue alors on observe un écart significatif entre eux. Dans tous les cas, la nouvelle intensité d'implication converge plus vite vers 1 lorsque le nouvel indice d'implication augmente. Ceci montre sa souplesse pour la transitivité des implications statistiques.

𝑛 2 et

 2 𝑛 𝑎 = 𝑛. Ainsi 𝑞 * (𝑎, 𝑎) est maximum pour 𝑛 𝑎 = 𝑛 2 et minimum pour 𝑛 𝑎 = 0 et 𝑛 𝑎 = 𝑛. La courbe suivante illustre la variation de 𝑞 * (𝑎, 𝑎) en fonction de 𝑛 𝑎 pour 𝑛 = 100.

Figure 3 -

 3 Figure 3 -Représentation graphique de l'indice d'implication en fonction de 𝑛 𝑎 Cette figure nous montre que la valeur de 𝑞 * (𝑎, 𝑎) est positive ou nulle. Elle est exactement égale à 0 pour deux valeurs extrêmes 𝑛 𝑎 = 0 et 𝑛 𝑎 = 𝑛, autrement dit si 𝐴 = ∅ ou 𝐴 = 𝐸. En supposant que 𝐴 n'est pas vide et 𝐴 ne tend vers pas vers 𝐸, on observe une valeur de 𝑞 * (𝑎, 𝑎) assez élevé et qui correspond avec une intensité élevée aussi. Par exemple, pour 𝑛 = 100 et 𝑛 𝑎 = 2, on a 𝑞 * (𝑎, 𝑎) = 0.63 et 𝜑 * (𝑎, 𝑎) = 0.73. Ainsi l'intensité d'implication 𝜑 * (𝑎, 𝑎) sera strictement supérieur à 0.5 pour toutes valeurs de 𝑛 𝑎 ∈]0, 𝑛[. La courbe suivante nous montre la croissance rapide de l'intensité d'implication suivant les valeurs de 𝑛 𝑎 . Si on choisit une valeur de 𝛼 égal à 0.5, toutes les implications statistiques seront réflexives. En choisissant une autre valeur supérieure à 0.5, très peu d'implications statistiques ne seront pas réflexives.

Figure 4 -

 4 Figure 4 -Représentation graphique de l'intensité d'implication en fonction de 𝑛 𝑎

Figure 5 -

 5 Figure 5 -Des graphes implicatifs
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Il suffit alors de choisir la valeur de 𝛼 entre l'intervalle [0.5,1]. 3 Proposition d'une nouvelle mesure d'intensité d'implication

  Pour évaluer cette qualité, parmi les 𝑛 individus dans 𝐸, les événements aléatoires qui nous intéressent sont 𝑋 et 𝑌 ̅ . Puisqu'il existe 𝑛 𝑎 individus dans 𝑋 et 𝑛 𝑏 ̅ dans 𝑌 ̅ , alors les probabilités respectives de 𝑋 et 𝑌 ̅ sont . Sous l'hypothèse d'absence de lien a priori entre les éléments de 𝑋 et 𝑌, on a deux événements indépendants 𝑋 et 𝑌 ̅ . Ainsi, la probabilité de l'événement 𝑋 ∩ 𝑌 ̅ est 𝑛 𝑎 .𝑛 𝑏 ̅ 𝑛 2 . De plus, sous les hypothèses ci-dessous (Gras et Régnier, 2009), avec les 𝑛 individus de 𝐸, on a 𝐶𝑎𝑟𝑑(𝑋 ∩ 𝑌 ̅ ) suit une loi binomiale de paramètre 𝑛𝑒𝑡𝑝 =

	La formule de l'intensité d'implication entre deux variables binaires 𝑎 et 𝑏 est alors
	la suivante :				
				𝑛 𝑎˄ 𝑏 ̅
		𝜑(𝑎, 𝑏) = 1 -∑ 𝐶 𝑛 𝑘 𝑝 𝑘 (1 -𝑝) 𝑛-𝑘
				𝑘=0
	Les hypothèses qu'on a mentionnées plus haut (Gras et Régnier, 2009) permettent une
	approximation de la loi binomiale en loi de Poisson. Ainsi on peut avoir la formule d'intensité d'implication par une approximation dont le paramètre est 𝜆 = 𝑛𝑝 = 𝑛 𝑎 .𝑛 𝑏 ̅ 𝑛 :
		𝜑(𝑎, 𝑏) = 1 -∑ 𝑛 𝑎˄ 𝑏 ̅ 𝑘=0	𝜆 𝑘 𝑘!	𝑒 -𝜆
	Pour une valeur de 𝜆 ≥ 5 (Gras et Régnier, 2009, Oriol et Régnier, 2007), on peut
	approximer la loi de poisson par une loi Gaussienne centrée réduite suivante
		𝑄(𝑎, 𝑏) =	𝐶𝑎𝑟𝑑(𝑋 ∩ 𝑌 ̅ ) -√ 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛	𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛
	La valeur empirique de l'indice d'implication correspondante à cette nouvelle
	variable aléatoire centrée réduite est :			
		𝑞(𝑎, 𝑏) =	𝑛 𝑎˄𝑏 ̅ -√ 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛 𝑛
	Enfin, la formule finale de l'intensité d'implication est la suivante :
		𝜑(𝑎, 𝑏) =	1 √2𝜋	𝑞 ∫ 𝑒 ∞	𝑡 2 -2	𝑑𝑡
	Une implication statistique 𝑎 ⇒ 𝑏 est admissible au niveau de confiance 𝛼 si et
	𝑛 𝑎 𝑛 et seulement si 𝜑(𝑎, 𝑏) ≥ 𝛼. L'intensité d'implication proposée par Gras (1979) nous donne une mesure qui sert 𝑛 𝑏 ̅
	pour la décision de la conservation de l'implication statistique 𝑎 ⇒ 𝑏. Considérons la
	relation binaire suivante : 𝑛 𝑎 .𝑛 𝑏 ̅ 𝑛 2 .	𝑎𝑅𝑏 ⇔ 𝜑(𝑎, 𝑏) ≥ 𝛼
	-H1 : les temps d'attente successifs d'un événement (𝑋 et 𝑌 ̅ ) sont des variables Cette relation est réflexive mais elle n'est pas transitive, or logiquement une aléatoires indépendantes. Cette hypothèse est légitimée par l'indépendance a implication doit être réflexive et transitive. Pour accepter une fermeture transitive de cette priori de 𝑋 et 𝑌 ; relation on doit admettre que 𝑎𝑅𝑏 et 𝑏𝑅𝑐 et de plus 𝜑(𝑎, 𝑐) ≥ 0.5
	-H2 : la loi du nombre d'événements survenant dans un intervalle de temps de
	durée 𝑇 = 𝑛 ne dépend que de 𝑇 indépendamment de l'origine du temps ;

𝑛

  individus qui ne vérifient pas 𝑎 ou vérifient 𝑏, est la valeur maximale observée. La nouvelle formule de l'intensité d'implication est donnée ci-dessous :

, on considère toujours deux parties quelconques 𝑋 et 𝑌 de 𝐸 de mêmes cardinaux respectifs que 𝐴 et 𝐵. On a ainsi une variable aléatoire 𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) dont 𝑛 𝑎 ̅˅𝑏 , XII Colloque International A.S.I. Analyse Statistique Implicative XII International Conference Statistical Implicative Analysis 2023 http://sites.univ-lyon2.fr/ASI/12/ 6 nombre d'

  , l'observateur doit fixer un seuil 𝛼 ∈ [0.5,1] de telle manière que l'implication statistique est conservable si 𝜑 * (𝑎, 𝑏) ≥ 𝛼.En pratique, la population étudiée doit être grande, plus de 50 individus. Autrement dit, la population 𝑛 tend vers plus l'infini, donc on peut toujours approximer la variable aléatoire 𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) par une variable gaussienne 𝑄 en remplaçant 𝑛 𝑎 ̅˅𝑏 par 𝑎 ̅ + 𝑛 𝑏 -𝑛 𝑎 ̅˄𝑏 .

						7
	𝑄 * (𝑎, 𝑏) =	𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) -𝑛𝑝 * √𝑛𝑝 * (1 -𝑝 * )	=	𝐶𝑎𝑟𝑑(𝑋 ̅ ∪ 𝑌) -(𝑛 𝑎 ̅ + 𝑛 𝑏 -√(𝑛 𝑎 ̅ + 𝑛 𝑏 -𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 ) (1 -𝑛 𝑎 ̅ + 𝑛 𝑏 𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 𝑛 + 𝑛 𝑎 ̅ 𝑛 𝑏 ) 𝑛 2 )
	Une valeur empirique 𝑞 * (𝑎, 𝑏) de cette variable gaussienne, qu'on appellera valeur
	empirique du nouvel indice d'implication, est :
		𝑞 * (𝑎, 𝑏) =	𝑛 𝑎 ̅˅𝑏 -(𝑛 𝑎 ̅ + 𝑛 𝑏 -√(𝑛 𝑎 ̅ + 𝑛 𝑏 -𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 ) (1 -𝑛 𝑎 ̅ + 𝑛 𝑏 𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 ) 𝑛 +	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 2 )
	soit,				
		𝑞 * (𝑎, =	√(𝑛 𝑎 ̅ + 𝑛 𝑏 -	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 ) (1 --𝑛 𝑎 ̅˄𝑏 𝑛 𝑎 ̅ + 𝑛 𝑏 𝑛	+	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 2 )

* (𝑎, 𝑏) donner par la formule suivante : XI Colloque International A.S.I. Analyse Statistique Implicative XI International Conference Statistical Implicative Analysis Belfort (France) -3-6 Novembre 2023 http://sites.univ-lyon2.fr/ASI/11/ D'où la valeur de l'intensité d'implication approximée est donnée par la formule suivante :

  Etudions la relation entre les indices d'implication 𝑞(𝑎, 𝑏) et 𝑞 * (𝑎, 𝑏).On peut remarquer que 𝑛 𝑎 ̅ = 𝑛 -𝑛 𝑎 𝑛 𝑏 = 𝑛 -𝑛 𝑏 ̅ De plus on a les relations suivantes : 𝑛 𝑎˅𝑏 = 𝑛 𝑎 ̅˄𝑏 + 𝑛 = 𝑛 𝑎˄𝑏 ̅ + 𝑛 𝑏 , d'où en exprimant le rapport par 𝑛 𝑎 , 𝑛 𝑏 ̅ et 𝑛 𝑎˅𝑏 on a :

	En faisant le rapport entre eux, on a :			
	𝑞(𝑎, 𝑏) 𝑞 * (𝑎, 𝑏)	=	𝑛 𝑎˄𝑏 ̅ -√ 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛 𝑛	×	√(𝑛 𝑎 ̅ + 𝑛 𝑏 -	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 𝑛 𝑎 ̅ 𝑛 𝑏 ) (1 -𝑛 -𝑛 𝑎 ̅˄𝑏 𝑛 𝑎 ̅ + 𝑛 𝑏 𝑛	+	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 2 )
	C'est-à-dire :								
	𝑞(𝑎, 𝑏) 𝑞 * (𝑎, 𝑏)	= √	(𝑛 𝑎 ̅ + 𝑛 𝑏 -	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛	) (1 -𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛	𝑛 𝑎 ̅ + 𝑛 𝑏 𝑛	+	𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 2 )	×	𝑛 𝑎˄𝑏 ̅ -𝑛 𝑎 ̅ 𝑛 𝑏 𝑛 -𝑛 𝑎 ̅˄𝑏 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑛
				𝑞(𝑎, 𝑏) 𝑞 * (𝑎, 𝑏)	= -√1 -	𝑛 𝑎 𝑛 𝑏 ̅ 𝑛 2
									𝑞 * (𝑎,𝑏)
											2 𝑑𝑡
									-∞	

Cette deuxième valeur d'intensité d'implication est une fonction croissante du nouvel indice d'implication 𝑞 * (𝑎, 𝑏). XII Colloque International A.S.I. Analyse Statistique Implicative XII International Conference Statistical Implicative Analysis 2023 http://sites.univ-lyon2.fr/ASI/12/ 8

  . Ils ont étudié la stabilité de l'indice d'implication 𝑞(𝑎, 𝑏) en fonction des cardinaux 𝑛, 𝑛 𝑎 , 𝑛 𝑏 , 𝑛 ̅ . Les hypothèses a priori sont : on suppose que ces cardinaux sont des valeurs réelles et 𝑞(𝑎, 𝑏) est une continûment différentiable par à eux. De plus on respecte les inégalités suivantes : 0 ≤ 𝑛 𝑎 ≤ 𝑛 𝑏 et 𝑛 𝑎˄𝑏 ̅ ≤ min{𝑛 𝑎 , 𝑛 𝑏 } et sup{𝑛 𝑎 , 𝑛 𝑏 } ≤ 𝑛. La différentielle de 𝑞(𝑎, 𝑏) s'exprime ainsi : En supposant constat 𝑛 et 𝑛 𝑎 et faire varier 𝑞 en fonction de 𝑛 𝑏 et 𝑛 𝑎˄𝑏 ̅ on obtient les dérivées partielles suivantes : Ces deux dérivées partielles de 𝑞 s'interprètent qu'à 𝑛 et 𝑛 𝑎 constants, l'indice d'implication 𝑞(𝑎, 𝑏) croit avec 𝑛 𝑏 et 𝑛 𝑎˄𝑏 ̅ . Ainsi l'intensité d'implication 𝜑(𝑎, 𝑏) est maximum aux valeurs observées 𝑛 𝑏 et 𝑛 𝑎˄𝑏 ̅ et minimum aux valeurs 𝑛 𝑏 + ∆𝑛 𝑏 et 𝑛 𝑎˄𝑏 ̅ + ∆𝑛 𝑎˄𝑏 ̅ . Ainsi sur [0, 𝑛 𝑏 ], la fonction indice d'implication 𝑞(𝑎, 𝑏) est toujours décroissante par rapport à 𝑛 𝑎 et est donc minimum pour 𝑛 𝑎 = 𝑛 𝑏 , maximum pour 𝑛 𝑎 = 0. Faisons maintenant la variation de 𝑞 * (𝑎, 𝑏) par rapport aux cardinaux. Nous retenons les mêmes hypothèses posées par Gras et Régnier (2009) et en plus nous disons que les variations de 𝑞 * (𝑎, 𝑏) par rapport à 𝑛 𝑎 et 𝑛 𝑏 sont l'inverse des variations de 𝑞 * (𝑎, 𝑏) par rapport à 𝑛 𝑎 ̅ et 𝑛 𝑏 ̅ . En effet, puisque 𝑛 𝑎 = 𝑛 -𝑛 𝑎 ̅ , on a donc à 𝑛 constant : 𝑑𝑛 𝑎 = -𝑑𝑛 𝑎 ̅ ; de même pour 𝑛 𝑏 . Faisons varier 𝑞 * (𝑎, 𝑏) par rapport à 𝑛 𝑎 et 𝑛 𝑏 en supposant que 𝑛 et 𝑛 𝑎˄𝑏 ̅ constants. La formule précédente nous donne l'expression de 𝑞 * (𝑎, 𝑏) en fonction de 𝑞(𝑎, 𝑏), 𝑛 𝑎 𝑒𝑡𝑛 𝑏 ̅ . La dérivée partielle par rapport à 𝑛 𝑎 est la suivante : 𝑛 𝑎 est positif. La croissance de l'intensité d'implication 𝜑 * (𝑎, 𝑏) suivant 𝑛 𝑎 découle de ce résultat. C'est-à-dire qu'elle est minimum pour 𝑛 𝑎 = 0 et maximum pour 𝑛 𝑎 = 𝑛 𝑏 . De même, la dérivée partielle de 𝑞 * (𝑎, 𝑏) par rapport à 𝑛 𝑏 est : Nous avons trouvé plus haut que la dérivée partielle de 𝑞(𝑎, 𝑏) par rapport à 𝑛 𝑏 est positive. Donc le premier terme de cette expression de 𝑛 𝑏 . Donc, l'intensité d'implication est aussi une fonction décroissante de 𝑛 𝑏 . C'est-à-dire que 𝜑 * (𝑎, 𝑏) est maximum pour la valeur observée 𝑛 𝑏 et minimum pour la valeur 𝑛 𝑏 + ∆𝑛 𝑏 . Maintenant, on suppose que 𝑛, 𝑛 𝑎 et 𝑛 𝑏 sont constants. Faisons la variation de 𝑞 * (𝑎, 𝑏) par rapport à 𝑛 𝑎˄𝑏 ̅ : est négatif. Donc 𝜑 * (𝑎, 𝑏) décroit suivant 𝑛 𝑎˄𝑏 ̅ .

	De en faisant varier 𝑞(𝑎, 𝑏) en fonction de 𝑎 , on a la dérivée partielle
	𝑑𝑞 = = 1 2 𝑛 𝑎˄𝑏 ̅ ( 𝜕𝑞 𝜕𝑛 𝑑𝑛 + 𝑛 𝑎 𝑛 ) -𝜕𝑛 𝑎 𝜕𝑞 1 2 (𝑛 -𝑛 𝑏 ) -3 𝑑𝑛 𝑎 + 𝜕𝑞 𝜕𝑛 𝑏 2 + 𝜕𝑞 𝜕𝑛 𝑎˄𝑏 ̅ = √ 𝑛 𝑛 𝑎 . 𝑛 𝑏 ̅ 𝑑𝑛 𝑏 + 1 2 ( 𝑛 𝑎 𝑛 ) 𝜕𝑛 𝑎˄𝑏 ̅ 𝜕𝑞 1 2 (𝑛 -𝑛 𝑏 ) -1 𝑑𝑛 𝑎˄𝑏 ̅ 2 > 0 > 0 1 𝜕𝑞 𝜕𝑛 𝑎 = -1 2 𝑛 𝑎˄𝑏 ̅ ( 𝑛 𝑏 ̅ 𝑛 ) -1 2 ( 𝑛 𝑛 𝑎 ) -3 2 -1 2 ( 𝑛 𝑏 ̅ 𝑛 𝑎 ) 1 2 < 0 𝑞 * (𝑎, 𝑏) = -𝑞(𝑎, 𝑏)√ 𝑛 2 𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ = -1 2 𝜕𝑞 𝜕𝑛 𝑎 √ 𝑛 2 𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ -1 2 𝑞 𝑛 𝑏 ̅ 𝑛 2 (𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ ) 2 √ 𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ 𝑛 2 𝜕𝑞 𝜕𝑛 𝑎 < 0, donc le premier terme de la dérivation partielle de 𝑞 𝜕 𝑞 * 𝜕𝑞 𝜕𝑛 𝑏 suivante : 𝜕𝑞 * 𝜕𝑛 𝑎 𝜕𝑛 𝑏 = -𝜕𝑞 𝜕𝑛 𝑏 √ 𝑛 2 𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ + 1 2 𝑞 𝑛 𝑎 𝑛 2 (𝑛 2 -𝑛 𝑎 (𝑛 -𝑛 𝑏 )) 2 √ 𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ 𝑛 2 𝜕𝑛 𝑎˄𝑏 ̅ = -𝜕𝑞 𝜕𝑛 𝑎˄𝑏 ̅ √ 𝑛 2 𝑛 2 -𝑛 𝑎 𝑛 𝑏 ̅ 𝜕𝑞 𝜕𝑞 * Puisque 𝜕𝑞 𝜕 𝑛 𝑎˄ 𝑏 ̅ 𝜕𝑞 * est positif, alors 𝜕𝑛 𝑎˄ 𝑏 ̅

XII Colloque International A.S.I. Analyse Statistique Implicative XII International Conference Statistical Implicative Analysis 2023 http://sites.univ-lyon2.fr/ASI/12/ 10 D'après la dérivation partielle de 𝑞(𝑎, 𝑏) par rapport à 𝑛 𝑎 , on a * (𝑎, 𝑏) par rapport à 𝑛 𝑎 est positif. De plus, si on veut une implication entre les deux variables binaires 𝑎 et 𝑏, il faut que 𝑞(𝑎, 𝑏) soit négatif. Ceci nous donne aussi la positivité du deuxième terme. Ainsi, la dérivée partielle de 𝑞 * (𝑎, 𝑏) par rapport à * 𝜕𝑛 𝑏 est négatif. On conserve l'hypothèse précédente que 𝑞(𝑎, 𝑏) doit être négatif pour qu'il y a une implication entre 𝑎 et 𝑏, alors le deuxième terme aussi est négatif. Ceci nous donne une dérivée négative par rapport à

  des cardinaux nous a donné les résultats suivants, 𝑞 * (𝑎, 𝑏) est une fonction croissante de 𝑛 𝑎 et 𝑛 𝑏 ̅ et est une fonction décroissante de 𝑛 𝑎˄𝑏 ̅ . Faisons d'abord la comparaison de 𝑞 * (𝑎, 𝑏) avec 𝑞 * (𝑎, 𝑐).La valeur de 𝑛 𝑎 est ici une constante pour les deux valeurs de 𝑞 * . Ce qu'on doit observer pour connaitre qui est la plus grande sont les valeurs de 𝑛 𝑏 ̅ par rapport à 𝑛 𝑐̅ et 𝑛 𝑎˄𝑏 ̅ par rapport à 𝑛 𝑎˄𝑐̅ . On a l'inégalité 𝑞 * (𝑎, 𝑏) ≤ 𝑞 * (𝑎, 𝑐) lorsque les conditions suivantes sont satisfaites : 𝑛 𝑏 ̅ ≤ 𝑛 𝑐̅ et 𝑛 𝑎˄𝑏 ̅ ≥ 𝑛 𝑎˄𝑐̅ . En particulier, lorsque 𝐵 ̅ ⊆ 𝐶 ̅ et 𝐴 ∩ 𝐶 ̅ ⊆ 𝐴 ∩ 𝐵 ̅ alors ces deux conditions sont satisfaites. On peut ainsi donner une caractérisation particulière des individus 𝑥 de 𝐸 qui forment des sous-ensembles préordonnés4 . En fait ce sont les sous-ensembles 𝑋 de 𝐸 dont si 𝑥 ∈ 𝑋 ne vérifie pas la propriété 𝑏 alors il ne vérifie pas aussi la propriété 𝑐 au sens strict de la logique formelle, de plus si 𝑥 ∈ 𝑋 est un contre-exemple pour l'implication statistique 𝑎 ⇒ 𝑐 alors 𝑥 est un contre-exemple pour l'implication 𝑎 ⇒ 𝑏. 'est la valeur de 𝑛 𝑐̅ qui ne change pas ici. Donc on devrait comparer 𝑛 𝑏˄𝑐̅ avec 𝑛 𝑎˄𝑐̅ et 𝑛 𝑏 avec 𝑛 𝑎 . En raisonnant comme précédemment, on a l'inégalité 𝑞 * (𝑏, 𝑐) ≤ 𝑞 * (𝑎, 𝑐) si les conditions suivantes sont satisfaites : 𝑛 𝑏˄𝑐̅ ≥ 𝑛 𝑎˄𝑐̅ et 𝑛 𝑏 ≤ 𝑛 𝑎 . En particulier lorsque 𝐴 ∩ 𝐶 ̅ ⊆ 𝐵 ∩ 𝐶 ̅ et 𝐵 ⊆ 𝐴 alors les conditions sont satisfaites. Ainsi les sous-ensembles dont les éléments vérifient les propriétés suivantes forment des sousensembles préordonnés : lorsque 𝑥 est un contre-exemple de l'implication 𝑎 ⇒ 𝑐 alors 𝑥 est un contre-exemple de l'implication 𝑏 ⇒ 𝑐 et lorsque 𝑥 vérifie 𝑏 alors il vérifie 𝑎, c'està-dire il vérifie la réciproque de l'implication 𝑎 ⇒ 𝑏.Nous allons illustrer ces propriétés par un exemple. Ainsi, construisons les sousensembles préordonnés 𝑋 1 = {𝑎, 𝑏, 𝑐} et 𝑋 2 = {𝑎, 𝑑, 𝑒} qui vérifient respectivement les propriétés P1 et P2, avec : P1 : 𝑛 𝑏 ̅ ≤ 𝑛 𝑐̅ et 𝑛 𝑎˄𝑏 ̅ ≥ 𝑛 𝑎˄𝑐̅ P2 : 𝑛 𝑏 ≤ 𝑛 𝑎 𝑒𝑡𝑛 𝑏˄𝑐̅ ≥ 𝑛 𝑎˄𝑐̅ Le tableau suivant nous montre les données construites auprès de 10 individus :
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Un ensemble est préordonné si on le muni d'une relation de préordre, c'est -à-dire une relation à la fois réflexive et transitive.