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In this paper, we study a nonlinear cointegration-type model of the form
Zt = f0(Xt)+Wt where f0 is a monotone function and Xt is a Harris recur-
rent Markov chain. We use a nonparametric Least Square Estimator to locally
estimate f0, and under mild conditions, we show its strong consistency and
obtain its rate of convergence. New results (of the Glivenko-Cantelli type) for
localized null recurrent Markov chains are also proved.

1. Introduction and motivations.

1.1. Linear and nonlinear cointegation models. Linear cointegration introduced by [16]
and developed by [14] and [21, 22], is a concept used in statistics and econometrics to de-
scribe a long-term relationship between two or more time series. In general, these time series
are non-stationary, integrated of order 1, that is, they behave roughly as random walks. In
traditional linear cointegration analysis, variables are assumed to have a linear relationship,
which means their long-term equilibrium, as time grows, is characterized by a constant lin-
ear combination. This concept has since been extensively studied, particularly in the field
of econometrics [14, 21, 22, 30, 31]. Notice that, when there is indeed a significant linear
relationship, the link is monotone in each of the variables.

However, in some cases, the relationship between variables may exhibit nonlinear behav-
ior, which cannot be adequately captured by linear cointegration models. The incorporation
of nonlinearities allows for a more comprehensive understanding of long-term relationships
between variables. [20] have developed an approach for analyzing nonlinear cointegration
through threshold cointegration models. These models assume that the linear relationship
between variables differs after some changepoints, leading to different long-run equilibrium
states (for instance according to some latent regimes). Threshold cointegration models pro-
vide a framework for capturing nonlinearities in the data and estimating the changepoints.
Refer to [32] for examples and discussions on the importance to introduce nonlinearities in
cointegration applications and for further references.

Another method for analyzing nonlinear cointegration is through the use of smooth transi-
tion cointegration models introduced by [17]. These models assume a ECM (Error Correction
Model) form and allow for smooth transitions between different regimes in the data. Most es-
timators of non-linear cointegration may be seen as Nadaraya-Watson estimators of the link
function. For instance, Wang and Phillips [35–37] show that it is possible to estimate and per-
form asymptotic inference in specific nonparametric cointegration regression models using
kernel regression techniques. Furthermore, they established that the self-normalized kernel
regression estimators converge to a standard normal distribution limit, even when the ex-
planatory variable is integrated. These findings indicate that the estimators can consistently
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capture the underlying relationship between variables, even in cases where the explanatory
variable exhibits non-stationary behavior. The problem of estimating f0 under the Marko-
vian assumptions has also been tackled using local linear M-type estimators in [8, 26] using
smoothing techniques.

These results have been partially extended in the framework of general β-recurrent Markov
chain and not just integrated I(1) time series by [7, 23]. Consider the simple framework
where we observe two Markov chains, Zt and Xt. [23] are essentially interested in the study
of nonlinear cointegrated models such as,

(1) Zt = f0(Xt) +Wt,

where f0 is a nonlinear function. Xt and Wt are independent processes, and Xt is a positive
or β-null recurrent Markov chain. Despite the fact that there is no stationary probability
measure for Xt, they apply the Nadaraya-Watson method to estimate f0 and established the
asymptotic theory of the proposed estimator. The rate of convergence of the estimators at
some point x is essentially linked to the local properties of the β -null recurrent chain Xt and
typically of the order of the square root of the number of visits of the chain in a neighborhood
of the point x.

1.2. Monotone cointegration models: motivations. Monotonicity in cointegration is a
rather natural assumption in many economic applications, for instance for modeling demand
as a function of income or prices (see for instance [11]) or other variables. Suppose, for
example, we are interested in analyzing the long-term relationship between ice cream sales
and the average monthly temperature. These two non-stationary variables may be modeled
by some β-recurrent Markov chains. We hypothesize that as the average monthly tempera-
ture increases, the demand for ice cream also increases: however the rate of increase may
vary according to the season. In that case, the nonlinear relationship between the two vari-
ables will be monotone. In microeconomics, the same phenomenon is expected for Engel
curves, describing how real expenditure varies with household income (see [11]). Expendi-
tures and income (or their log in most models) may be considered as non-stationary variables.
However considering a linear cointegration between them may be misleading, since the rela-
tionship may change along the life cycle. By Engle’s law, the relationship between the two
variables should be monotone. Other types of examples of monotone non-linear cointegration
phenomenon may be found in [32].

The purpose of this paper is to propose a simple estimator that is automatically mono-
tone, does not require strong smoothness assumptions (we only require continuity of the link
function), and operates under general Markovian assumptions. We establish a nonparametric
estimation theory of the nonparametric least squares estimator (LSE) for the function f0 in
the model (1) under the constraints that f0 is monotone non-increasing. Here, {Wt} is an
unobserved process such that E(Wt|Xt) = 0 to ensure identifiability of f0. Since a minimal
condition for undertaking asymptotic analysis on f0(x0) at a given point x0 is that, as the
number of observations on {Xt} increases, there must be infinitely many observations in
the neighborhood of x0, the process {Xt} will be assumed to be a Harris recurrent Markov
chain (cf section 2). We consider at the same time the stationary and β null recurrent non-
stationary framework. To our knowledge, it is the first time that such an estimator is proposed
in the literature in such a large framework.

1.3. The estimator. LetC be a set whose interior contains our point of interest x0. Having
observed (Xt,Zt)}nt=0, we denote by Tn(C) the number of times that X visited C up to time
n and by σC (i) the time of the i-th visit. Then, we consider the nonparametric LSE defined
as the minimizer of
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(2) f 7→
Tn(C)∑
i=1

(
ZσC(i) − f

(
XσC(i)

))2
over the set of non-increasing functions f on R. The nonparametric LSE f̂n has a
well known characterization, as follows. Let m be the number of unique values of
XσC(1), . . . ,XσC(Tn(C)), and Y1 < · · · < Ym be the corresponding order statistics. Then,

f̂n(Yk) is the left-hand slope at
∑Tn(C)

i=1 I
{
XσC(i) ⩽ Yk

}
of the least concave majorant of

the set of points

(3)

(0,0),

Tn(C)∑
i=1

I
{
XσC(i) ⩽ Yk

}
,

Tn(C)∑
i=1

ZσC(i)I
{
XσC(i) ⩽ Yk

} , k = 1, . . . ,m

 ,

and it can be computed using simple algorithms as discussed in [3]. Thus, the constrained
LSE is uniquely defined at the observation points, however, it is not uniquely defined be-
tween these points: any monotone interpolation of these values is a constrained LSE. As is
customary, we consider in the sequel the piecewise-constant and left-continuous LSE that is
constant on every interval (Yk−1, Yk], k = 2, . . . ,m and also on (−∞, Y1] and on [Ym,∞).

The use of a localized estimator is due to the fact that we need to control the behavior of
the chain around x0, and, to do this, we need to estimate the asymptotic "distribution" of X
in a vicinity of x0. For Harris recurrent Markov chains, the long-term behavior of the chain
is given by its invariant measure (see Section 2). In the positive recurrent case, the invariant
measure is finite and it can be estimated by simply considering the empirical cumulative
distribution function of the Xt. However, in the null recurrent case, the invariant measure is
only σ-finite, hence, we need to localize our analysis in a set big enough such that the chain
visits it infinitely often, but small enough that the restriction of the invariant measure to it is
finite. Moreover, contrary to the bandwidth in kernel type estimators, C does not depend on
n, and the rate of convergence of the estimator does not depend on C .

1.4. Outline. Since our paper draws quite heavily on the theory of Harris recurrent
Markov chains, we have added a small introduction to the subject as well as the main re-
sults that we use throughout the paper in Section 2. In Section 3, we show that under very
general assumptions, our estimator f̂n is strongly consistent, while its rate of convergence is
presented in Section 4. In Section 5, we present new results concerning the localized empir-
ical process of Harris recurrent Markov chains that have emerged during our investigation
and we believe are interesting in their own right. Section 6 contains the proofs of our main
results.

2. Markov chain theory and notation. In this section, we present the notation and
main results related to Markov chains that are needed to present our main results. For further
details, we refer the reader to the first section of the Supplementary Material [4] and the
books [12, 27, 29].

Consider a time-homogeneous irreducible Markov Chain, denoted as X =X0,X1,X2, . . .,
defined on a probability space (E,E ,P), where E is countably generated. The irreducibility
measure of the chain is represented by ψ. The transition kernel of the chain is denoted as
P (x,A) and its initial distribution is represented by λ. If the initial measure of the chain is
specified, we use Pλ (and Eλ) to denote the probability (and the expectation) conditioned on
the law of the initial state L (X0) = λ.
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For any set C ∈ E , we will denote by σC and τC , respectively, the times of first
visit and first return of the chain to the set C , i.e. τC = inf {n⩾ 1 :Xn ∈C} and σC =
inf {n⩾ 0 :Xn ∈C}. The subsequent visit and return times σC , τC (k), k ⩾ 1 are defined
inductively.

Given that our methods will only deal with the values of X in a fixed set C , if A is a
measurable set, we will write IC{Xt ∈A} instead of I{Xt ∈A∩C} and if A=E, then we
will simply write IC (Xt). We will use Tn (C) to denote the random variable that counts the
number of times the chain has visited the set C up to time n, that is Tn (C) =

∑n
t=0 IC (Xt).

Similarly, we will write T (C) for the total of numbers of visits the chain X to C . The set C
is called recurrent if ExT (C) = +∞ for all x ∈ C and the chain X is recurrent if every set
A ∈ E such that ψ (A)> 0 is recurrent. A recurrent chain is called Harris recurrent if for all
x ∈E and all A ∈ E with ψ(A)> 0 we have P (Xn ∈A infinitely often |X0 = x) = 1.

Denote by E+ the class of nonnegative measurable functions with positive ψ support. A
function s ∈ E+ is called small if there exists an integer m0 ⩾ 1 and a measure ν ∈ M (E)+
such that

(4) Pm0 (x,A)⩾ s (x)ν (A) ∀x ∈E,A ∈ E .
When a chain possesses a small function s, we say that it satisfies the minorization inequality
M (m0, s, ν). A set A ∈ E is said to be small if the function IA is small. Similarly, a measure
ν is small if there exist m0, and s that satisfy (4). By Theorem 2.1 in [29], every irreducible
Markov chain possesses a small function and Proposition 2.6 of the same book shows that
every measurable set A with ψ (A) > 0 contains a small set. In practice, finding such a set
consists in most cases in exhibiting an accessible set, for which the probability that the chain
returns to it in m steps is uniformly bounded below. Moreover, under quite wide conditions
a compact set will be small, see [15].

An irreducible chain possesses an accessible atom, if there is a set α ∈ E such that for all
x, y in α: P (x, .) = P (y, .) and ψ(α) > 0. When an accessible atom exists, the stochastic
stability properties of X amount to properties concerning the speed of return time to the atom
only. Moreover, it follows from the strong Markov property that the sample paths may be
divided into independent blocks of random length corresponding to consecutive visits to α.
The sequence {τα(j)}j⩾1 defines successive times at which the chain forgets its past, called
regeneration times. Similarly, the sequence of i.i.d. blocks {Bj}j⩾1 are named regeneration
blocks. The random variable T (n) = Tn (α)−1 counts the number of i.i.d. blocks up to time
n. This term is called number of regenerations up to time n.

If X does not possess an atom but is Harris recurrent (and therefore satisfies a minorization
inequality M (m0, s, ν)), a splitting technique, introduced in [28, 29], allows us to extend in
some sense the probabilistic structure of X in order to artificially construct an atomic chain
(named the split chain and denoted by X̌) that inherits the communication and stochastic
stability properties from X. One of the main results derived from this construction is the
fact that every Harris recurrent Markov chain admits a unique (up to multiplicative constant)
invariant measure (see Proposition 10.4.2 in [27]), that is, a measure π such that

π (B) =

∫
P (x,B)dπ (x). ∀B ∈ E .

The invariant measure is finite if and only if Eα̌τα̌ < +∞, in this case we say the chain
is positive recurrent, otherwise, we say the chain is null recurrent. A null recurrent chain is
called β-null recurrent (c.f. Definition 3.2 in [24]) if there exists a small nonnegative function
h, a probability measure λ, a constant β ∈ (0,1) and a slowly varying function Lh such that

Eλ

(
n∑

t=0

h (Xt)

)
∼ 1

Γ(1 + β)
nβLh (n) as n→∞.
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As argued in [24], is not a too severe restriction to assume m0 = 1. Therefore, throughout
this paper we assume that X satisfies the minorization inequality M(1, s, ν), i.e, there exist a
measurable function s and a probability measure ν such that 0⩽ s (x)⩽ 1,

∫
E s(x)dν(x)> 0

and

(5) P (x,A)⩾ s (x)ν (A) .

REMARK 2.1. The extensions to the case where m0 > 1 of the results that will be
presented in this paper can be carried out (although they involve some complicated nota-
tions/proofs) using the m-skelethon or the resolvent chains, as described in [9, 10] and Chap-
ter 17 of [27]. However, they are not treated in this paper.

The following theorem is a compendium of the main properties of Harris’s recurrent
Markov chains that will be used throughout the paper. Among other things, it shows that
the asymptotic behavior of T (n) is similar to the function u (n) defined as

(6) u (n) =

{
n, if X is positive recurrent
nβL (n) , if X is β-null recurrent

.

THEOREM 2.1. Suppose X is a Harris recurrent, irreducible Markov chain, with initial
measure λ, that satisfies the minorization condition (5). Let T (n) be the number of complete
regenerations until time n of the split chain X̌ , let C ∈ E be a small set and π be an invariant
measure for X. Then,

1. 0< π (C)<+∞.
2. T (n)

Tn(C) converges almost surely to a positive constant.

3. T (n)
u(n) converges almost surely to a positive constant if X is positive recurrent and converges
in distribution to a Mittag-Leffler1 random variable with index β if X is β-null recurrent.

3. Consistency. The aim of the section is to show that for an arbitrary x0 in the support
of f0, the LSE f̂n(x0) is consistent. We make the following assumptions on the processes
X = {Xt} and W = {Wt}.

(A1) X is a Harris recurrent Markov chain whose kernel P (x,A) satisfies the minorization
condition (5).

Let Fn = σ ({X0, . . . ,Xn}) be sigma algebra generated by the chain X up to time n.

(A2) For each n, the random variables W1, . . . ,Wn are conditionally independent given Fn,
E(Wt|Fn) = 0 and Var (Wt|Fn)⩽ σ2 for some σ > 0.

It follows from Assumption (A1) that the Markov Chain X admits a unique (up to a multi-
plicative constant) σ-finite invariant measure π. Let C be a set such that 0< π (C)<∞ and
x0 ∈C . We denote by Fn the process defined by

(7) Fn(y) =
1

Tn(C)

Tn(C)∑
i=1

I{XσC(i) ⩽ y}= 1

Tn(C)

n∑
t=0

IC{Xt ⩽ y}

1The Mittag-Leffler distribution with index β is a non-negative continuous distribution, whose moments are
given by

E
(
Mm

β (1)
)
=

m!

Γ (1 +mβ)
m⩾ 0.

See (3.39) in [24] for more details.
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for all y ∈ R, which is a localized version of the empirical distribution function of the Xt’s.
It is proved in Lemma 5.1 that Fn converges almost surely to the distribution function F
supported on C and defined by

(8) F (y) =
π (C ∩ (−∞, y])

π (C)
.

Our next two assumptions guarantee that there is a compact C , that is a small set and
contains x0 as an interior point. Sets like this can be found under very wide conditions (cf
[15]).

(A3) There is δ = δ(x0) such that the set C = [x0 − δ,x0 + δ] is small.
(A4) x0 belongs to the interior of the support of Xt.

Notice that by part 1 of Theorem 2.1, (A3) guarantees that π(C) is finite and positive, and
hence, F is properly defined.

In addition to the assumptions on the processes {Xt} and {Wt}, we need smoothness as-
sumptions on F and on f0. In particular, we will assume that F and f0 are continuous and
strictly monotone in C . This implies that f0 and F are invertible in C , so we can find neigh-
borhoods of f0(x0) and F (x0) respectively, over which the inverse functions are uniquely
defined. We denote by f−1

0 and F−1 respectively the inverses of f0 and F over such a neigh-
borhood of f0(x0) and F (x0) respectively. The function f0 is assumed to be monotone on its
whole support.

(A5) F is locally continuous and strictly increasing in the sense that for all x′ in C , for all
ε > 0, there exists γ > 0 such that |F−1(u)− x′|> γ for all u such that |u− F (x′)|⩾ ε.

(A6) f0 is non-increasing, and f0 is locally strictly decreasing in the sense that for all x′

in C , for all ε > 0, there exists γ > 0 such that |f0(x′) − f0(y)| > γ for all y such that
|y− x′|⩾ ε.

(A7) f0 continuous in C .

Assumptions (A1), (A3) and (A5) ensure that Xt visits infinitely many times any small
enough neighborhood of x0 with probability 1, and guarantee that x0 is not at the boundary of
the recurrent states. Assumptions (A1) and (A3) and Lemma 3.2 in [24] imply that Tn(C)→
∞ almost surely.

THEOREM 3.1. Suppose that assumptions (A1)-(A7) are satisfied. Then, as n→∞, one
has

(9) f̂n(x0) = f0(x0) + oP (1),

and

(10) f̂−1
n (f0(x0)) = x0 + oP (1).

4. Rates of convergence. To compute rates of convergence, we need stronger assump-
tions than for consistency. We replace assumption (A1) for the following stronger version

(B1) {Xt} is a positive or β-null recurrent, aperiodic and irreducible Markov Chain whose
kernel P (x,A) satisfies the minorization condition (5).

We replace, (A5), (A6) and (A7), for the following slightly more restrictive assumption

(B2) The function f0 is non-increasing, the functions f0 and FC are differentiable in C , and
the derivatives F ′

C and f ′0 are bounded, in absolute value, above and away from zero in C .
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Let λ be the initial measure of X. Our next hypothesis imposes some control on the be-
havior of the chain in the first regenerative block.

(B3) There exists a constant K and a neighborhood V of 0, such that

Eλ

(
τα̌∑
t=0

(IC {Xt ⩽ x0 + γ} − IC {Xt ⩽ x0 − γ})

)
⩽Kγ ∀γ ∈ V.

Assumption (B3)is satisfied if we assume that the initial measure of the chain is the small
measure used for the construction of the split chain (see equation 4.16c in [29]). In the pos-
itive recurrent case, taking λ equal to the unique invariant probability measure of the chain
also satisfies (B3).

And finally, we need to control the number of times the chain visits C in a regeneration
block.

(B4) ℓC(B1) =
∑

t∈B1
IC{Xt} has finite second moment.

THEOREM 4.1. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and (B4) hold. Then, as
n→∞, one has

(11) f̂n(x0) = f0(x0) +OP (u (n)
−1/3),

with u (n) as defined in (6).

The rate u (n) comes from Lemmas 5.3 and 6.7, and as it can be seen from Theorem
2.1, it is a deterministic approximation of T (n). Note that in the positive recurrent case,
u (n) = n, hence we obtain the same rate n−1/3 as in the i.i.d. case [18, Chapter 2]. In the
β-null recurrent case, however, the rate of convergence is nβ/3L1/3 (n) which is slower than
the usual rate. This is due to the null-recurrence of the chain because it takes longer for the
process to return to a neighborhood of the point x0 and it is these points in the neighborhood
of x0 which are used in nonparametric estimation.

5. Localized Markov chains. Given the localized nature of our approach, in this sec-
tion, we present some results that are particularly useful in this scenario. These results are
well known for positive recurrent chains but are new in the null recurrent case. The detailed
proofs of these results can be found in Section 2 of the Supplementary material [4].

The first result can be viewed as an extension of the Glivenko-Cantelli theorem to the
localized scenario.

LEMMA 5.1. Assume that (A1) and (A3) hold. Then, there exists a stationary σ-finite
measure π, and F defined by (8), such that,

(12) sup
y∈R

|Fn (y)− F (y)| → 0 a.s.

as n→∞. If (A5) is also satisfied, then, for all sufficiently small ε > 0, as n→∞ we have

(13) sup
|p−F (x0)|⩽ε

∣∣F−1
n (p)− F−1 (p)

∣∣→ 0 a.s.

Our next result (Lemma 5.2), which is an extension of Lemma 2 in [5] to the localized
β-null recurrent case, deals with the properties of classes of functions defined over the regen-
eration blocks. Before presenting the result, we need some machinery.
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Recall that E ⊆R denotes the state space of X . Define Ê = ∪∞
k=1E

k (i.e. the set of finite
subsets of E) and let the localized occupation measure MC be given by

MC(B,dy) =
∑

x∈B∩C
δx(y), for every B ∈ Ê.

The function that gives the size of the localized blocks is ℓC : Ê→N

ℓC(B) =

∫
MC(B,dy), for every B ∈ Ê.

Let Ê denote the smallest σ-algebra formed by the elements of the σ-algebras Ek, k ⩾ 1,
where Ek stands for the classical product σ-algebra. Let Q̂ denote a probability measure on
(Ê, Ê). If B(ω) is a random variable with distribution Q′, then MC(B(ω),dy) is a random
measure, i.e., MC(B(ω),dy) is a (counting) measure on (E,E), almost surely, and for ev-
ery A ∈ E , MC(B(ω),A) =

∫
A MC(B(ω),dy) is a measurable random variable (valued in

N). Henceforth ℓ(B(ω)) ×
∫
f(y)MC(B(ω),dy) is a random variable and, provided that

Q̂(ℓ2)<∞, the map QC , defined by

QC(A) =EQ̂

(
ℓC(B)×

∫
A
MC(B,dy)

)
/EQ̂(ℓ

2
C), for every A ∈ E ,(14)

is a probability measure on (E,E). The notation EQC
stands for the expectation with

respect to the underlying measure QC . Introduce the following notations: for any function
g :E→R, let ĝC : Ê→R be given by

(15) ĝC (B) =

∫
g (y)MC (B,dy) =

∑
x∈B∩C

g (x) =
∑
x∈B

gC (x),

and for any class G of real-valued functions defined on E, denote the localized version of the
sums on the blocks by ĜC = {ĝC : g ∈ G}.

Notice that, for any function g,

(16) EQC
(g) =

EQ̂

(
ℓC (B)×

∫
g (y)MC (B,dy)

)
EQ̂

(
ℓ2C
) =

EQ̂ (ℓC (B) ĝC (B))

EQ̂

(
ℓ2C
) .

LEMMA 5.2. Let Q̂ be a probability measure on (Ê, Ê) such that 0 < ∥ℓC∥L2(Q̂) <∞
and G be a class of measurable real-valued functions defined on (E,E). Then we have, for
every 0< ε<∞,

N
(
ε∥ℓC∥L2(Q̂), ĜC ,L

2
(
Q̂
))

⩽N
(
ε,G,L2 (Q)

)
,

where Q is given in (14). Moreover, if G belongs to the Vapnik–Chervonenkis (VC) class of
functions with constant envelope U and characteristic (C, v), then Ĝ is VC with envelope
UℓC and characteristic (C, v).

REMARK 5.1. For a probability measure µ, and a class of functions H, the covering
number N (ε,H,Lr (µ)) is the minimum number of Lr (µ) ε-balls needed to cover H. For
more details about this concept and the VC class of functions, see [25].

To put into perspective Lemma 5.2, consider a class of bounded functions G that is VC
with finite envelope. Lemma 5.2 tells us that the class of unbounded functions ĜC is also VC.
If we also have that (B4) holds, then Theorem 2.5 in [25] tells us that ĜC is a Donsker class.
A reasoning like this is used in the proof of the following result, which is a stronger version
of Lemma 5.1 under assumptions (B1) and (B2) and has some interest on its own.
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LEMMA 5.3. Assume that (B1), (B2), (A3), (A4) and (B4) hold. Then, for all sufficiently
small ε > 0 we have,

(17) Tn(C) sup
|y−x0|⩽ε

|Fn(y)− F (y)|2 =Op (1)

when n goes to +∞. If (B2) is also satisfied, as n→∞ we have

(18) Tn(C) sup
|p−F (x0)|⩽ε

∣∣F−1
n (p)− F−1(p)

∣∣2 =Op (1) .

6. Proofs. In this section, we provide the proof of Theorems 3.1 and 4.1. These proofs
make use of several intermediate lemmas, whose proofs can be found in Sections 7 and 8.

6.1. Proof of Theorem 3.1. Recall that we consider the piecewise constant and left-
continuous LSE f̂n, that is constant on every interval (Yk−1, Yk], k = 2, . . . ,m and also on
(−∞, Y1] and on [Ym,∞). With δ > 0 fixed, we denote by Tn(C) the number of times the
Markov Chain X visits the set C := [x0 − δ,x0 + δ] until time n:

(19) Tn(C) =

n∑
t=0

I{Xt ∈C}.

Let lk =
∑n

t=1 IC{Xt ⩽ Yk} for all k ∈ {1, . . . ,m} and l0 = 0.
Our aim is to provide a characterization of f̂n(x0). Recall from (7) that the localized

empirical distribution function Fn is defined as

Fn(y) =
1

Tn(C)

Tn(C)∑
i=0

I{XσC(i) ⩽ y}= 1

Tn(C)

n∑
t=0

IC{Xt ⩽ y}

for y ∈ R. Fn is 0 on (−∞, Y1), so, with an arbitrary random variable Y0 < Y1 we have
Fn(y) = Fn(Y0) = 0 for all y < Y1. Let K be the set

(20) K := {Fn(Yk), k = 0, . . . ,m}

and let Λn be the continuous piecewise-linear process on [Fn(Y0), Fn(Ym)] with knots at the
points in K and values

(21) Λn (Fn(Yk)) =
1

Tn(C)

n∑
t=0

ZtIC{Xt ⩽ Yk}

at the knots. The characterization of f̂n in Lemma 6.2 involves the least concave majorant of
Λn. Note that we use Tn(C) as a normalization in the definitions of the processes Fn and Λn

since this choice ensures that Fn and Λn converge to fixed functions, see Lemma 5.1.

LEMMA 6.1. For all y ∈ [Fn (Y0) , Fn (Ym)],

Λn (y) = Ln (y) +Mn (y) ,

where,

(22) Ln (y) =

y∫
0

f ◦ F−1
n

(u)du,
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and Mn is a piece-wise linear processes with knots at Fn(Yk) for k ∈ {0, . . . ,m} such
that

Mn(Fn(Yk)) =
1

Tn(C)

n∑
t=0

WtIC{Xt ⩽ Yk}.

Moreover, Mn can be written as

(23) Mn(y) =

{
0 , if y = 0

Rj
n(y) +M j

n , otherwise

where,

M j
n =Mn(Fn(Yj)) =

1

Tn(C)

n∑
t=0

WtIC{Xt ⩽ Yj},(24)

Rj
n (y) =

n∑
t=0

WtIC{Xt = Yj+1}

lj+1 − lj
(y− Fn (Yj)) ,(25)

and j is such that Yj+1 = F−1
n (y).

In the next lemma, we give an alternative characterization of the monotone nonparametric
LSE f̂n at the observation points Y1, . . . , Ym.

LEMMA 6.2. Let C = [x− δ,x+ δ] for some fixed δ > 0. Let λ̂n be the left-hand slope
of the least concave majorant of Λn. Then,

(26) f̂n(Yk) = λ̂n ◦ Fn(Yk), ∀k ∈ {1, . . . ,m}.

with probability 1 for n big enough.

We consider below the generalized inverse function of f̂n since it has a more tractable
characterization than f̂n itself. To this end, let us define precisely the generalized inverses
of all processes of interest. Since λ̂n is a non-increasing left-continuous step function on
(Fn(Y0), Fn(Ym)] that can have jumps only at the points Fn(Yk), k ∈ {1, . . . ,m}, we define
its generalized inverse Ûn(a), for a ∈ R, as the greatest y ∈ (Fn(Y0), Fn(Ym)] that satisfies
λ̂n(y)⩾ a, with the convention that the supremum of an empty set is Fn(Y0). Then for every
a ∈R and y ∈ (Fn(Y0), Fn(Ym)], one has

(27) λ̂n(y)⩾ a if and only if Ûn(a)⩾ y.

Likewise, since f̂n is a left-continuous non-increasing step function on R that can have jumps
only at the observation times Y1 < · · · < Ym, we define the generalized inverse f̂−1

n (a), for
a ∈ R, as the greatest y ∈ [Y0, Ym] that satisfies f̂n(y) ⩾ a, with the convention that the
supremum of an empty set is Y0. We then have

(28) f̂n(y)⩾ a if and only if f̂−1
n (a)⩾ y

for all a ∈ R and y ∈ (Y0, Ym]. On the other hand, since Fn is a right-continuous non-
decreasing step function on R with range [Fn(Y0), Fn(Ym)], we define the generalized in-
verse F−1

n (a), for a⩽ Fn(Ym), as the smallest y ∈ [Y0, Ym] which satisfies Fn(y)⩾ a. Note
that the infimum is achieved for all a⩽ Fn(Ym). We then have

(29) Fn(y)⩾ a if and only if F−1
n (a)⩽ y
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for all a⩽ Fn(Ym) and y ∈ [Y0, Ym], and thanks to Lemma 6.2 we have

(30) f̂−1
n = F−1

n ◦ Ûn

on R. Moreover, one can check that

(31) Ûn(a) = argmax
p∈[Fn(Y0),Fn(Ym)]

{Λn(p)− ap}, for all a ∈R,

where argmax denotes the greatest location of maximum (which is achieved on the set K
in (20)). Thus, the inverse process Ûn is a location process that is more tractable than f̂n
and λ̂n themselves. A key idea in the following proofs is to derive properties of Ûn from its
argmax characterization (31), then, to translate these properties to f̂−1

n thanks to (30), and
finally to translate them to f̂n thanks to (28).

To go from Ûn to f̂−1
n using (30) requires to approximate F−1

n by a fixed function. Hence,
in the sequel, we are concerned by the convergence of the process Fn given in (7), where δ >
0 is chosen sufficiently small, and by the convergence of the corresponding inverse function
F−1
n .
It is stated in Lemma 5.1 that under (A1) and (A3), Fn converges to a fixed distribution

function F that depends on C , hence on δ. If, moreover, F is strictly increasing in C , then we
can find a neighborhood of F (x0) over which the (usual) inverse function F−1 is uniquely
defined, and F−1

n converges to F−1.
In the following lemma, we show that F (x0) belongs to the domain of Λn with probability

tending to one as n→∞.

LEMMA 6.3. Assume that (A1), (A3), (A4) and (A5) hold. Then, we can find ε > 0 such
that the probability that Y1 + ε⩽ x0 ⩽ Ym − ε tends to one as n→∞. Moreover, the prob-
ability that Fn(Y1)⩽ F (x0)⩽ Fn(Ym) tends to one as n→∞.

We will also need to control the noise {Wt}. The following lemma shows that the noise is
negligible under our assumptions.

LEMMA 6.4. Assume that (A1) and (A2) hold. Let Fn = σ ({X1, . . . ,Xn}). Then,
n∑

t=0

WtIC{Xt =An}= oP (Tn(C)) ,

and

sup
u>An

∣∣∣∣∣
n∑

t=0

WtIC {Xt ∈ (An, u]}

∣∣∣∣∣= oP (Tn(C)) .

for any sequence of random variables An, independent of the process {Wt}, that is adapted
to the filtration {Fn}.

With the above lemmas, we can prove convergence of Ûn to F (x0) given by (31).

LEMMA 6.5. Suppose that assumptions (A1)-(A7) are satisfied. Then, as n→ ∞, one
has

(32) Ûn(f0(x0)) = F (x0) + oP (1).
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Now we proceed to the proof of (10). Fix ε > 0 arbitrarily small. It follows from (30) and
(29) that

P
(
f̂−1
n (a)> x0 + ε

)
⩽ P

(
F−1
n ◦ Ûn(a)> x0 + ε

)
⩽ P

(
Ûn(a)⩾ Fn(x0 + ε)

)
⩽ P

(
Ûn(a)⩾ F (x0 + ε)−Kn

)
,

where

Kn = sup
|y−x0|⩽ε

|Fn(y)− F (y)|.

With ν := F (x0 + ε)− F (x0), we obtain

P
(
f̂−1
n (a)> x0 + ε

)
⩽ P

(
Ûn(a)⩾ F (x0) + ν −Kn

)
,

and ν is strictly positive since F is strictly increasing in the neighborhood of x0. Hence, it
follows from (12) that for sufficiently small ε > 0 one has

P
(
f̂−1
n (a)> x0 + ε

)
⩽ P

(
Ûn(a)⩾ F (x0) + ν/2

)
+ o(1),

so it follows from (32) that the probability that f̂−1
n (a) > x0 + ε tends to zero as n→∞.

Similarly, the probability that f̂−1
n (a)< x0 − ε tends to zero as n→∞ so we conclude that

the probability that |f̂−1
n (a)− x0|> ε tends to zero as n→∞. This completes the proof of

(10).
To prove (9), fix ε > 0 sufficiently small so that F and f0 are continuous and strictly

increasing in the neighborhood of x′ := f−1
0 (f0(x0) + ε). Equation (10) shows that

(33) f̂−1
n (f0(x0) + ε) = f−1

0 (f0(x0) + ε) + oP (1),

as n→∞. Now, it follows from the switch relation (27) that

P
(
f̂n(x0)> f0(x0) + ε

)
⩽ P

(
f̂−1
n (f0(x0) + ε)⩾ x

)
⩽ P

(
f̂−1
n (f0(x0) + ε)⩾ f−1

0 (f0(x0) + ε) + ν
)
,(34)

where ν := x− f−1
0 (f0(x0) + ε)> 0. It follows from (33) that the probability on the right-

hand side tends to zero as n→∞. Hence, the probability on the left-hand side tends to zero
as well as n→∞.

Similarly, the probability that f̂n(x0)< f0(x0)−ε tends to zero as n→∞ so we conclude
that the probability that |f̂n(x0)− f0(x0)|> ε tends to zero as n→∞. This completes the
proof of Theorem 3.1.

6.2. Proof of Theorem 4.1. The proof of Theorem 4.1, uses similar ideas as the ones used
in the proof of Theorem 3.1 but under stronger assumptions (and therefore using stronger
lemmas).

The first intermediate result is the following stronger version of Lemma 6.4.
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LEMMA 6.6. Assume that (A2), (A3), (A4), (B1), (B2) and (B3) hold. Then, there exists
K > 0, γ0 > 0 that do not depend on n andNγ0

∈N, such that for all γ ∈ [0, γ0] and n⩾Nγ0

one has

Eλ

 sup
|y−x0|⩽γ

∣∣∣∣∣
n∑

t=0

Wt (IC{Xt ⩽ y} − IC{Xt ⩽ x0})

∣∣∣∣∣
2
⩽Ku (n)γ(35)

Eλ

 sup
|y−x0|⩽γ

∣∣∣∣∣
n∑

t=0

WtIC{Xt = y}

∣∣∣∣∣
2
⩽Ku (n)γ(36)

Then, we need to quantify how well we can approximate Tn(C) by u (n).

LEMMA 6.7. Assume that (B1) and (A3) hold. Then we have

a) As n→∞ we have

u (n)

Tn(C)
=OP (1).

b) Let α and η be positive constants, then there positive exists constants Nη , cη and cη ,
such that

P
((

Tn (C)

a (n)

)α

∈
[
cη, cη

])
⩾ 1− η, ∀n⩾Nη.

With the above lemmas (including Lemma 5.3 and the ones used in Section 6.1), we can
obtain the rate of convergence of Ûn given by (31).

LEMMA 6.8. Assume that (A2), (A3), (A4), (B1), (B2), (B3) and (B4) hold. Then, as
n→∞, one has

(37) Ûn(f0(x0)) = F (x0) +OP

(
u (n)−1/3

)
,

and

(38) f̂−1
n (f0(x0)) = x+OP

(
u (n)−1/3

)
.

Inspecting the proof of Lemma 6.8, one can see that the convergences in (37) and (38) hold
in a uniform sense in the neighborhood of x0. More precisely, there exists γ > 0, independent
on n, such that for all η > 0 we can find K1 > 0 such that

sup
|a−f0(x0)|⩽γ

P
(∣∣∣Ûn(a)− F ◦ f−1

0 (a)
∣∣∣>K1u (n)

−1/3
)
⩽ η

and

sup
|a−f0(x0)|⩽γ

P
(∣∣∣f̂−1

n (a)− f−1
0 (a)

∣∣∣>K1u (n)
−1/3

)
⩽ η.

Let ε =K1u (n)
−1/3 where K1 > 0 does not depend on n, and recall (34) where ν = x−

f−1
0 (f0(x0) + ε) > 0. It follows from the assumption (B2) that f−1

0 has a derivative that is
bounded in sup-norm away from zero in a neighborhood of f0(x0). Hence, it follows from
the Taylor expansion that there exists K2 > 0 that depends only on f0 such that ν ⩾K2ε,
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provided that n is sufficiently large to ensure that f0(x0)+ ε belongs to this neighborhood of
f0(x0). Hence,

P
(
f̂n(x0)> f0(x0) + ε

)
⩽ P

(
f̂−1
n (f0(x0) + ε)⩾ f−1

0 (f0(x0) + ε) +K2ε
)
.

⩽ sup
|a−f0(x0)|⩽γ

P
(∣∣∣f̂−1

n (a)− f−1
0 (a)

∣∣∣>K2K1u (n)
−1/3

)
,

provided that n is sufficiently large to ensure that f0(x0) + ε belongs to the above neighbor-
hood of f0(x0), and that γ ⩾ Cu (n)−1/3. For fixed η > 0 one can choose K2 > 0 such that
the probability on the right-hand side of the previous display is smaller than or equal to η and
therefore,

lim
n→∞

P
(
f̂n(x0)> f0(x0) +K2u (n)

−1/3
)
⩽ η.

Similarly, for all fixed η > 0, one can find K3 that does not depend on n such that

lim
n→∞

P
(
f̂n(x0)< f0(x0)−K3u (n)

−1/3
)
⩽ η.

Hence, for all fixed η > 0, there exists K > 0 that independent of n such that

lim
n→∞

P
(
|f̂n(x0)− f0(x0)|>Ku (n)−1/3

)
⩽ η.

This completes the proof of Theorem 4.1.

7. Technical proofs for Section 6.1. Proof of Lemma 6.1. Combining (21) and (1)
yields

Λn(Fn(Yk)) =
1

Tn(C)

n∑
t=0

f0(Xt)IC{Xt ⩽ Yk}+
1

Tn(C)

n∑
t=0

WtIC{Xt ⩽ Yk}.

The first term on the right-hand side of the previous display can be rewritten as follows:

1

Tn(C)

n∑
t=0

f0(Xt)IC{Xt ⩽ Yk}=
1

Tn(C)

m∑
j=1

f0(Yl)(lj − lj−1)IC{Yj ⩽ Yk}

=

k∑
j=1

∫ lj/Tn(C)

lj−1/Tn(C)
f0 ◦ F−1

n (u)du,

using that F−1
n (u) = Yj for all u ∈ (lj−1/Tn(C), lj/Tn(C)]. Hence, for all k in {0, . . . ,m}

(39) Λn(Fn(Yk)) =

∫ lk/Tn(C)

0
f0 ◦ F−1

n (u)du+
1

Tn(C)

n∑
t=0

WtIC{Xt ⩽ Yk}.

Combining (39) with the piece-wise linearity of Λn yields

Λn (Fn (Yk)) = Ln (Fn (Yk)) +Mn (Fn (Yk)) ,

where Ln and Mn are piece-wise linear processes with knots at Fn(Yk) for k in {0, . . . ,m}
and such that

Ln(Fn(Yk)) =

∫ lk/Tn(C)

0
f0 ◦ F−1

n (u)du



HARRIS MARKOV CHAINS AND NONLINEAR MONOTONE COINTEGRATED MODELS 15

and

Mn(Fn(Yk)) =
1

Tn(C)

n∑
t=0

WtIC{Xt ⩽ Yk}.

In order to ease the notation, we will write F i
n = Fn(Yi), Li

n = Ln (Fn (Yi)) and M i
n =

Mn (Fn (Yi)). Let y ∈ (Fn (Y0) , Fn (Ym)], take j such that Yj+1 = F−1
n (y), then Fn (Yj)<

y ⩽ Fn (Yj+1). With this notation,

Ln (y) =
Lj+1
n −Lj

n

F j+1
n − F j

n

(
y− F j

n

)
+Lj

n,

Mn (y) =
M j+1

n −M j
n

F j+1
n − F j

n

(
y− F j

n

)
+M j

n.

Notice that

Lj+1
n −Lj

n =

lj+1

Tn(C)∫
lj

Tn(C)

f0 ◦ F−1
n (u)du=

lj+1 − lj
Tn(C)

f (Yj+1) ,

F j+1
n − F j

n =
lj+1 − lj
Tn(C)

,

therefore,

Ln (y) = f0 (Yj+1)
(
y− F j

n

)
+Lj

n =

y∫
lj

Tn(C)

f0 ◦ F−1
n

(u)du+Lj
n =

y∫
0

f0 ◦ F−1
n

(u)du,

which proves (22).
For Mn we have,

M j+1
n −M j

n =
1

Tn(C)

n∑
t=0

WtIC{Xt = Yj+1},

then,

Mn (y) =

n∑
t=1

WtIC{Xt = Yj+1}

lj+1 − lj

(
y− F j

n

)
+M j

n =Rj
n(y) +M j

n.

and this completes the proof.
Proof of Lemma 6.2. By definition, with l0 = 0, and lk =

∑n
t=0 IC{Xt ⩽ Yk} for all

k ∈ {1, . . . ,m}, we have Fn(Yk) = alk for all k ∈ {0, . . . ,m}, where a= 1/Tn(C) and does
not depend on k. Moreover,

Λn (Fn(Yk)) = a

n∑
t=0

ZtIC{Xt ⩽ Yk}

Since f̂n(Yk) is the left-hand slope at lk of the least concave majorant of the set of points in
(3), the equality in (26) follows from Lemma 2.1 in [13].

Proof of Lemma 6.3. The first assertion follows from Assumption (A4) and the second
immediately follows from the first one by (12) combined with the strict monotonicity of F
in C .
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Proof of Lemma 6.4. Let Fn = σ ({X0, . . . ,Xn}) be sigma algebra generated by the chain
{Xt} up to time n. Denote by PFn

the probability conditioned to Fn. Take ε > 0.
By Chebyshev’s inequality, we have

PFn


∣∣∣∣∣∣∣∣

n∑
t=0

WtIC {Xt =An}

Tn (C)

∣∣∣∣∣∣∣∣> ε

⩽

σ2
n∑

t=0
IC {Xt =An}

ε2Tn
2 (C)

⩽
σ2

ε2Tn (C)
,

which implies the first part of the Lemma because Tn(C)→∞ with probability 1.
For the second part, let γn(u) be the number of times the chain visits (An, u] ∩ C up to

time n and An (u) = {t⩽ n :Xt ∈ (An, u]∩C}=
{
a1, . . . , aγn(u)

}
the times of those visits.

Using that γn = sup
u>An

γn (u) ⩽ Tn (C) and Kolmogorov’s inequality (Th 3.1.6, pp 122 in

[19]) we obtain,

PFn

 sup
u>An

∣∣∣∣∣∣∣∣
n∑

t=0
WtIC {Xt ∈ (An, u]}

Tn (C)

∣∣∣∣∣∣∣∣> ε

= PFn

 sup
u>An

∣∣∣∣∣∣
γn(u)∑
i=1

Wtai

Tn (C)

∣∣∣∣∣∣> ε



⩽ PFn

(
sup

1⩽k⩽γn

∣∣∣∣∣
k∑

i=1

Wtai

Tn (C)

∣∣∣∣∣> ε

)

⩽
σ2

ε2Tn (C)
.

which by the same argument as before, implies the second part of the Lemma.
Proof of Lemma 6.5. In the sequel, we set a= f0(x0). We begin with the proof of (32).
Fix ε > 0 arbitrarily, and let ν > 0 and γ > 0 be such that |F−1(u)−x0|> ν for all u such

that |u− F (x0)| ⩾ ε/2, and |f0(x0)− f0(y)| > γ for all y such that |y − x0| ⩾ ν/2. Note
that existence of ν and γ is ensured by assumptions (A5) and (A6).

By Lemma 6.3, we can assume without loss of generality that F (x0) belongs to the domain
[Fn(Y1), Fn(Ym)] of Λn, since this occurs with probability tending to one. Therefore, we can
find j(x0) such that Yj(x0) = Fn

−1 (F (x0)). It follows from the characterization in (31) that
the event E1

n := {Ûn(a)> F (x0) + ε} is contained in the event that there exists p ∈ K such
that p > F (x0) + ε and

Λn (p)− ap⩾Λn (F (x0))− aF (x0) ,

where we recall that a= f0 (x0).
By Lemma 6.1,E1

n is contained in the event that there exists p ∈K such that p > F (x0)+ε
and

(40) Ln(p) +Mn(p)− ap⩾ Ln(F (x0)) +Mn(F (x0))− aF (x0)

Using (22) in (40) we obtain that E1
n is contained in the event that there exists p ∈ K such

that p > F (x0) + ε and∫ p

t0/Tn(C)
f0 ◦ F−1

n (u)du+ Sn − ap⩾
∫ F (x0)

t0/Tn(C)
f0 ◦ F−1

n (u)du− aF (x0),

where

Sn = sup
p>F (x0)+ε, p∈K

{Mn(p)−Mn (F (x0))} .
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Let j and k such that Yj+1 = F−1
n (F (x0)) and p = Fn(Yk). By equation (23) we have

Mn (p)−Mn (F (x0)) =Mk
n −M j

n −Rj
n(F (x0)), therefore,

Sn = sup
p>F (x0)+ε
p∈K

{
Mk

n −M j
n

}
−Rj

n (F (x0))

⩽ sup
p>F (x0)+ε
p∈K

∣∣∣∣∣ 1

Tn(C)

n∑
t=0

Wt

(
IC{Xt ⩽ F−1

n (p)} − IC{Xt ⩽ F−1
n (F (x0))}

)∣∣∣∣∣
+
∣∣Rj

n (Fn (Yj+1))
∣∣

⩽ sup
p>F (x0)+ε
p∈K

∣∣∣∣∣ 1

Tn(C)

n∑
t=0

WtIC
{
Xt ∈

(
F−1
n (F (x0)) ;F

−1
n (p)

]}∣∣∣∣∣

+

∣∣∣∣ n∑
t=0

WtIC
{
Xt = F−1

n (F (x0))
}∣∣∣∣

Tn(C)
.

Hence,

Tn(C)Sn ⩽ sup
p>F (x0)+ε
p∈K

∣∣∣∣∣
n∑

t=0

WtIC
{
Xt ∈

(
F−1
n (F (x0)) ;F

−1
n (p)

]}∣∣∣∣∣
+

∣∣∣∣∣
n∑

t=0

WtIC
{
Xt = F−1

n (F (x0))
}∣∣∣∣∣ .

Therefore, the event E1
n is contained in the event that there exists p > F (x0) + ε such that∫ p

F (x0)
f0 ◦ F−1

n (u)du+ Sn ⩾ a(p− F (x0)).

Now, let E2
n be the event that

sup
|u−F (x0)|⩽ε

|F−1
n (u)− F−1(u)|⩽ η

where η ∈ (0, ν/4) is such that |f0(y)− f0(x0)|⩽ γ/2 for all y such that |x0 − y|⩽ η. Note
that the existence of η is ensured by assumption (A7). Then, it follows from the monotonicity
of f0 and Fn that on E2

n,∫ p

F (x0)
f0 ◦ F−1

n (u)du⩽
∫ F (x0)+ε/2

F (x0)
f0(F

−1(u)− η)du+

∫ p

F (x0)+ε/2
f0(F

−1
n (F (x0) + ε/2))du.

Hence, it follows from the definitions of η, ν and γ that on E2
n,∫ p

F (x0)
f0 ◦ F−1

n (u)du⩽
ε

2
f0(x0) +

γε

4
+ (p− F (x0)− ε/2)f0(F

−1(F (x0) + ε/2)− η)

⩽
ε

2
f0(x0) +

γε

4
+ (p− F (x0)− ε/2)f0(x0 + ν/2)

⩽
ε

2
f0(x0) +

γε

4
+ (p− F (x0)− ε/2)(f0(x0)− γ).
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This implies that on E2
n,∫ p

F (x0)
f0 ◦ F−1

n (u)du⩽ a(p− F (x0))− (p− F (x0)− 3ε/4)γ

⩽ a(p− F (x0))− εγ/4

for all p > F (x0)+ε. Hence, the event E1
n∩E2

n is contained in the event {Sn ⩾ εγ/4}. Now,
on E2

n, for all p > F (x0) + ε we have

F−1
n (p)⩾ F−1

n (F (x0) + ε)

⩾ F−1(F (x0) + ε)− η

⩾ x+ ν − η

⩾ F−1
n (F (x0)) + ν − 2η

⩾ F−1
n (F (x0)) + ν/2,

since ν > 4η. Therefore,

Tn(C)Sn ⩽ sup
u>F−1

n (F (x0))+ν/2

∣∣∣∣∣
n∑

t=0

WtIC{Xt ∈ (F−1
n (F (x0)), u]}

∣∣∣∣∣+
+

∣∣∣∣∣
n∑

t=0

WtIC{Xt = F−1
n (F (x0))}

∣∣∣∣∣ .
Hence, it follows from Lemma 6.4 that Sn converges in probability to zero as n→∞, so that
the probability of the event {Sn ⩾ εγ/4} tends to zero as n→∞. It follows from Lemma
5.1 that for ε sufficiently small, the probability of the event E2

n tends to one as n→∞, so
we conclude that the probability of E1

n tends to zero as n→∞. Similarly, the probability of
the event {Ûn(a)<F (x0)− ε} tends to zero as n→∞, so that

lim
n→∞

P(|Ûn(a)− F (x0)|> ε) = 0

for all ε > 0. This completes the proof of (32).

8. Technical proofs for Section 6.2. Proof of Lemma 6.6. Let Fn = σ ({X0, . . . ,Xn})
be sigma algebra generated by the chain X up to time n. Denote by EFn

the expected value
conditioned to Fn. Take 0< γ ⩽ δ and define I0 = [x0 − γ,x0], I1 = [x0, x0 + γ] and

S0 (γ) = sup
y∈I0

∣∣∣∣∣
n∑

t=0

Wt (I{Xt ⩽ y} − I{Xt ⩽ x0})

∣∣∣∣∣
2

S1 (γ) = sup
y∈I1

∣∣∣∣∣
n∑

t=0

Wt (I{Xt ⩽ y} − I{Xt ⩽ x0})

∣∣∣∣∣
2

then,

S (γ) = sup
|y−x0|⩽γ

∣∣∣∣∣
n∑

t=0

Wt (I{Xt ⩽ y} − I{Xt ⩽ x0})

∣∣∣∣∣
2

=max
(
S0 (γ) , S1 (γ)

)
,

⩽ S0 (γ) + S1 (γ)(41)
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Following the notation of section 2, let

α(0)
n (γ) = sup

y∈I0
Tn ([y,x0]) , α(1)

n (γ) = sup
y∈I1

Tn ([x0, y]) ,

with this notation, S0 = sup
y∈I0

∣∣∣∣∣Tn([y,x0])∑
i=1

Wσ[y,x0)(i)

∣∣∣∣∣
2

and S1 = sup
y∈I1

∣∣∣∣∣Tn([x0,y])∑
i=1

Wσ[x0,y](i)

∣∣∣∣∣
2

.

By Doob’s maximal inequality (Th 10.9.4 in [19]), we have, for j = 0,1,

EFn
Sj (γ)⩽ 4EFn

α(j)
n∑

i=1

Wti

2

= 4σ2α(j)
n (γ)

⩽ 4σ2Tn ([x0 − γ,x0 + γ])

⩽ 4σ2
n∑

t=0

(I{Xt ⩽ x0 + γ} − I{Xt < x0 − γ}).(42)

Therefore, by (41) and (42)

(43) EFn
S (γ)⩽ 8σ2

n∑
t=0

(
I{Xt ⩽ x0 + γ} − I{Xt < x0 − γ}

)
.

Define,

• h (y, γ) = I{y ∈ [x0 − γ,x0 + γ]},

• h (Bj , γ) =


τα∑
t=0

h (Xt, γ) , j = 0

τA(j+1)∑
t=τA(j)+1

h (Xt, γ) , j ⩾ 1

• Zn (γ) =
n∑

t=0
h (Xt, γ)

• ℓ (Bj) =

{
τα , j = 0

τα(j + 1)− τα(j) , j ⩾ 1

• T̃ (n) =min

{
k :

k∑
i=0

ℓ (Bj)⩾ n

}
.

• Gk = σ
(
{(h (Bj , γ) , ℓ (Bj))}kj=0

)
for k ⩾ 0.

By the Strong Markov property, {(h (Bj , γ) , ℓ (Bj))}+∞
j=1 is an i.i.d. sequence which is

independent of (h (B0, γ) , ℓ (B0)) (and, therefore, of the initial measure λ). For n fixed, the
random variable T̃ (n) is a stopping time for the sequence {(h (Bj , γ) , ℓ (Bj))}+∞

j=0 , in effect{
T̃ (n) = 0

}
= {ℓ (B0)⩾ n} ∈ G0,

{
T̃ (n) = k

}
=

k−1⋂
j=0

{
j∑

i=0

ℓ (Bi)< n

}⋂{
k∑

i=0

ℓ (Bj)⩾ n

}
∈ Gk ∀k ⩾ 1.

For each n and γ we have that

Zn (γ) =

τα∑
t=0

h (Xt, γ) +

T (n)∑
j=1

h (Bj , γ) +

n∑
t=tα(T (n))+1

h (Xt, γ)
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⩽ h (B0, γ) +

T̃ (n)∑
j=1

h (Bj , γ).(44)

where the last inequality is justified by the fact that, T (n)⩽ T̃ (n) and h (y, γ) is a nonneg-
ative function. Because ℓ (Bj)⩾ 1 for all j, we have that,

T̃ (n)∑
j=1

h (Bj , γ) =

n∑
j=1

h (Bj , γ) I
{
T̃ (n)⩾ j

}
,

then,

(45) E

T̃ (n)∑
j=1

h (Bj , γ)

=

n∑
j=1

E
(
h (Bj , γ) I

{
T̃ (n)⩾ j

})
.

For each j we have,

Eλ

(
h (Bj , γ) I

{
T̃ (n)⩾ j

})
= Eλ

(
E
(
h (Bj , γ) I

{
T̃ (n)⩾ j

}
|Gj−1

))
Notice that I

{
T̃ (n)⩾ j

}
= 1− I

{
T̃ (n)⩽ j − 1

}
∈ Gj−1 and h (Bj , γ) is independent of

Gj−1, therefore,

Eλ

(
h (Bj , γ) I

{
T̃ (n)⩾ j

})
= Eλ

(
I
{
T̃ (n)⩾ j

})
E (h (Bj , γ)) .

Plugging this into equation (45) we get,

Eλ

T̃ (n)∑
j=1

h (Bj , γ)

=

n∑
j=1

E (h (Bj , γ))Pλ

(
T̃ (n)⩾ j

)
⩽ E (h (B1, γ))EλT̃ (n) .

Then, by taking expectation in (44) we obtain

EλZn (γ)⩽ Eλh (B0, γ) +E (h (B1, γ))EλT̃ (n)

⩽ Eλh (B0, γ) +E (h (B1, γ))Eλ (T (n) + 1) .(46)

By Theorem 1.1 and the fact that F is Lipschitz we can find K1 independent of γ such that,

E (h (B1, γ)) =

∫
h (t, γ)dπ (t) =Kππ (C) (F (x0 + γ)− F (x0 − γ))

⩽K1γ.(47)

If X is positive recurrent, by Theorem 1.1, T (n)
u(n) converges almost surely to a positive constant

K2 > 0. Moreover, T (n)
u(n) ⩽ 1 therefore, by the Dominated Convergence Theorem we obtain

that EλT (n) ∼ u(n)
K2

. If X is β-null recurrent, by Lemma 3.3 in [24], EλT (n) ∼ u(n)
Γ(1+β) ,

hence, for both positive and β-null recurrent chains, we can findK2 andN , both independent
of γ, such that EλT (n)⩽K2u (n) for all n⩾N . Using this with (46) and (47) we get,

(48)
EλZn (γ)

u (n)γ
⩽

Eλh (B0, γ)

u (n)γ
+K1K2 ∀n⩾N, ∀γ ∈ (0, δ] .

Combining (48) with assumption (B3) and the fact that Zn (0) ≡ 0 we obtain that there
exist positive constants K3 and γ0 such that

EλZn (γ)⩽ u (n)γ ∀n⩾N, ∀γ ∈ (0, γ0] .
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Equation (35) now follows after taking expectation in (43). The proof of (36) follows the
same reasoning, but using

Sj (γ) = sup
y∈Ij

∣∣∣∣∣
n∑

t=0

Wt (IC {Xt = y})

∣∣∣∣∣
2

.

Proof of Lemma 6.7. a) If X is positive recurrent, Theorem 1.1 implies that there exists a
positive constant K such that Tn(C)

u(n) converges almost surely to Kπ(C), which is not zero by
(A3).

On the other hand, if X is β-null recurrent, Theorem 1.1 and Slutsky’s Theorem implies
that there exists a constantK > 0 such that Tn(C)

u(n) converges in distribution toKMβ(1) where
Mβ(1) denotes a Mittag-Leffler distribution with parameter β. This distribution is continuous
and strictly positive with probability 1, then, by the Continuous Mapping Theorem, u(n)

Tn(C)

converges in distribution to a multiple of 1
Mβ

, therefore, u(n)
Tn(C) is bounded in probability by

Theorem 2.4 in [33].
b) Let X be positive recurrent, then, we can find Nη such that

P
(∣∣∣∣(Tn (C)u (n)

)α

−Kαπ(C)α
∣∣∣∣⩽(Kπ (C)2

)α)
⩾ 1− η, ∀n⩾Nη.

hence,

P
((

Tn (C)

u (n)

)α

∈
[
Kαπ(C)α

2
,
3Kαπ(C)α

2

])
⩾ 1− η, ∀n⩾Nη.

Now let X be β-null recurrent. Let Z = (KMβ (1))
α, This random variable is continuous

and positive, therefore, we can find positive constants cη and cη such that

(49) P
(
Z ∈

[
cη, cη

])
⩾ 1− η

2
.

By the Continuous Mapping Theorem,
(
Tn(C)
u(n)

)α
converges in distribution to Z , therefore,

we can find Nη ∈N such that

(50)
∣∣∣∣P((Tn(C)u (n)

)α

∈
[
cη, cη

])
− P

(
Z ∈

[
cη, cη

])∣∣∣∣⩽ η

2
, ∀n⩾Nη,

Combining (49) and (50) we obtain that

(51) P
((

Tn(C)

u (n)

)α

∈
[
cη, cη

])
⩾ 1− η, ∀n⩾Nη.

Proof of Lemma 6.8. Fix ε ∈ (0,1) small enough so that F ′ and |f ′0| are bounded from
above and away from zero on [F−1(F (x0)−2ε), F−1(F (x0)+2ε)], see the assumption (B2).
Then, the proper inverse functions of F and f0 are well defined on [F (x0)− 2ε,F (x0)+ 2ε]
and

[f0 ◦ F−1(F (x0)− 2ε), f0 ◦ F−1(F (x0) + 2ε)]

respectively. We denote the inverses on that intervals by F−1 and f−1
0 respectively. Let

(52) Un(a) = argmax
|p−F (x0)|⩽ε

{Λn(p)− ap}

where a = f0(x0) and where the supremum is restricted to p ∈ [Fn(Y0), Fn(Ym)]. We will
show below that

(53) Un(a) = F (x0) +OP (u (n)
−1/3),
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as n→∞. Combining (31) to Lemma 6.5 ensures that Ûn(a) coincides with Un(a) with a
probability that tends to one as n→∞, so (37) follows from (53).

We turn to the proof of (53). Fix η > 0 arbitrarily and let

(54) γn =K0u (n)
−1/3

for some K0 ⩾ 1 sufficiently large so that

(55) γn ⩾
1√
u (n)

.

Then, by part ii) of Lemma 6.7, we can find positive constants cη , c̄η and Nη such that

(56) P
(
Tn(C)

2/3γnu (n)
−1/3 ∈ [K0cη,K0c̄η]

)
⩾ 1− η/2 ∀n⩾Nη,

Let c =K0cη and c̄ =K0cη . It follows from (18) that for sufficiently small ε > 0, we can
find K1 > 0 such that

P

(
Tn(C) sup

|p−F (x0)|⩽2ε
|F−1

n (p)− F−1(p)|2 ⩽K1

)
⩾ 1− η/2

for all n. Hence for n⩾Nη ,

P(En)⩾ 1− η,

where En denotes the intersection of the events

(57) Tn(C)
2/3γnu (n)

−1/3 ∈ [c, c̄]

and

(58) Tn(C) sup
|p−F (x0)|⩽2ε

|F−1
n (p)− F−1(p)|2 ⩽K1.

Combining equations (57) and (58), we obtain that, in En,

(59) sup
|p−F (x0)|⩽2ε

∣∣F−1
n (p)− F−1 (p)

∣∣2 ⩽K2a(n)
−1

where K2 =K1

(
K0

c

)3/2
is independent of n and K0.

By Lemma 6.3, we can assume without loss of generality that F (x0) belongs to
[Fn(Y0), Fn(Ym)], since this occurs with probability that tends to one. Hence, by (52), the
event {|Un(a)−F (x0)|⩾ γn} is contained in the event that there exists p ∈ [Fn(Y0), Fn(Ym)]
with |p− F (x0)|⩽ ε, |p− F (x0)|⩾ γn and

(60) Λn(p)− ap⩾Λn(F (x0))− aF (x0).

Obviously, the probability is equal to zero if γn > ε so we assume in the sequel that γn ⩽ ε.
For all p ∈ [F (x0)− ε,F (x0) + ε] define

Λ(p) =

∫ p

F (x0)
f0 ◦ F−1(u)du.

Let c > 0 such that |f ′0|/F ′ > 2c on the interval [F−1(F (x0)− 2ε), F−1(F (x0) + 2ε)].
Since Λ′(F (x0)) = a and Λ′′ = f ′0 ◦ F−1/F ′ ◦ F−1, it then follows from Taylor’s expansion
that

Λ(p)−Λ(F (x0))⩽ (p− F (x0))a− c(p− F (x0))
2
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for all p ∈ [F (x0)− ε,F (x0) + ε] and therefore, (60) implies that

∆n(p)−∆n(F (x0))− c(p− F (x0))
2 ⩾ 0

for all such p’s, where we set ∆n := Λn −Λ. Hence, for all n⩾Nη ,

P (|Un (a)− F (x0)|⩾ γn)

⩽ η+ P

(
sup

|p−F (x0)|∈[γn,ε]
{∆n(p)−∆n(F (x0))− c(p− F (x0))

2}⩾ 0 and En

)

⩽ η+
∑
j

P

(
sup

|u|∈[γn2j ,γn2j+1]
{∆n(F (x0) + u)−∆n(F (x0))}⩾ c(γn2

j)2 and En

)

⩽ η+
∑
j

P

(
sup

|u|⩽γn2j+1

|∆n(F (x0) + u)−∆n(F (x0))|⩾ c(γn2
j)2 and En

)
(61)

where the sums are taken over all integers j ⩾ 0 such that γn2j ⩽ ε. Recall that we have (39)
for all k ∈ {0, . . . ,m}. Since Λn is piecewise-linear with knots at Fn(Y0), . . . , Fn(Ym), by
(22) and (23) we get that for every j in the above sum,

sup
|u|⩽γn2j+1

|∆n(F (x0) + u)−∆n(F (x0))|

⩽ sup
|u|⩽γn2j+1

∣∣∣∣∣∣∣
F (x0)+u∫
F (x0)

(
f0 ◦ F−1

n (y)− f0 ◦ F−1 (y)
)
dy

∣∣∣∣∣∣∣
+ sup

|u|⩽γn2j+1

|Mn (F (x0) + u)−Mn (F (x0))| .(62)

Moreover, |f ′0| is bounded above on [F−1(F (x0)−2ε), F−1(F (x0)+2ε)], so we obtain that
for every j with γn2j ⩽ ε, the first term on the right-hand side of (62) satisfies

sup
|u|⩽γn2j+1

∣∣∣∣∣
∫ F (x0)+u

F (x0)

(
f0 ◦ F−1

n (p)− f0 ◦ F−1(p)
)
dp

∣∣∣∣∣
⩽
∫ F (x0)+γn2j+1

F (x0)−γn2j+1

∣∣f0 ◦ F−1
n (p)− f0 ◦ F−1(p)

∣∣dp
⩽K3γn2

j sup
|p−F (x0)|⩽2ε

∣∣F−1
n (p)− F−1(p)

∣∣ ,
for some K3 > 0 that does not depend on n. Hence, it follows from the previous display and
(59) that

E

 sup
|u|⩽γn2j+1

∣∣∣∣∣
∫ F (x0)+u

F (x0)
(f0 ◦ F−1

n (p)− f0 ◦ F−1(p)dp

∣∣∣∣∣
2

I(En)


⩽K2

3γ
2
n2

2jE

(
sup

|p−F (x0)|⩽2ε
|F−1

n (p)− F−1(p)|2I(En)

)
⩽K2

3γ
2
n2

2jK2u (n)
−1.
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Hence, taking K4 =K2
3K2 we get that for all j with γn2j ⩽ ε⩽ 1.

(63)

E

 sup
|u|⩽γn2j+1

∣∣∣∣∣
∫ F (x0)+u

F (x0)
(f0 ◦ F−1

n (p)− f0 ◦ F−1(p)dp

∣∣∣∣∣
2

I(En)

⩽K4γn2
ju (n)−1 .

By equations (23) and (24) in Lemma 6.1, the second term on the right-hand side of (62)
satisfies,

(64) sup
|u|⩽γn2j+1

|Mn (F (x0) + u)−Mn (F (x0))|⩽ In,j1 + In,j2 ,

where In,j1 and In,j2 are given by

In,j1 =
1

Tn(C)
sup

|u|⩽γn2j+1

∣∣∣∣∣
n∑

t=0

Wt

(
IC{Xt ⩽ F−1

n (F (x0) + u)} − IC{Xt ⩽ F−1
n (F (x0))}

)∣∣∣∣∣ ,
In,j2 =

2

Tn (C)
sup

|u|⩽γn2j+1

∣∣∣∣∣
n∑

t=0

Wt

(
IC
{
Xt = F−1

n (F (x0) + u)
})∣∣∣∣∣ .

For In,j1 , it follows from the triangle inequality that

In,j1 ⩽
2

Tn(C)
sup

|u|⩽γn2j+1

∣∣∣∣∣
n∑

t=0

Wt

(
IC{Xt ⩽ F−1

n (F (x0) + u)} − IC{Xt ⩽ x0}
)∣∣∣∣∣ .

Combining (59) and the fact that F−1 is Lipschitz in [F (x0)− 2ε,F (x0) + 2ε] we can find
K5 =max

(√
K2, sup

(
F−1

))
independent of n such that, on En,

sup
|p−F (x0)|⩽2ε

|F−1
n (p)− F−1(p)|⩽ K5√

u (n)

and |F−1(F (x0) + u) − x| = |F−1(F (x0) + u) − F−1(F (x0))| ⩽ K5|u|/2 for all u with
|u|⩽ 2ε. Hence, on En

In,j1 ⩽
2

Tn(C)
sup

|y−x0|⩽K5γn2j+K5/
√

u(n)

∣∣∣∣∣
n∑

t=0

Wt (IC{Xt ⩽ y} − IC{Xt ⩽ x0})

∣∣∣∣∣ ,
In,j2 ⩽

2

Tn (C)
sup

|y−x0|⩽K5γn2j+K5/
√

u(n)

∣∣∣∣∣
n∑

t=0

Wt

(
IC{Xt = y}

)∣∣∣∣∣ .
It follows from (55) that γn2j ⩾ γn ⩾ 1/

√
u (n) for all j ⩾ 0, then, on En

In,j1 ⩽
2

Tn(C)
sup

|y−x0|⩽2K5γn2j

∣∣∣∣∣
n∑

t=0

Wt (IC{Xt ⩽ y} − IC{Xt ⩽ x0})

∣∣∣∣∣ ,
In,j2 ⩽

2

Tn (C)
sup

|y−x0|⩽2K5γn2j

∣∣∣∣∣
n∑

t=0

Wt

(
IC{Xt = y}

)∣∣∣∣∣ .
By Lemma 6.6, we conclude that there exists K6 > 0 and N ′

η such that, for n⩾N ′
η

(65) E
((
In,j1 + In,j2

)2
I(En)

)
⩽K6γn2

ju (n)−1
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Combining (62), (63), (64) and (65), we conclude that there exists K7 > 0, independent of n
and K0, such that for all n⩾N ′

η and j ⩾ 0 where γn2j ⩽ ε, one has

E

(
sup

|u|⩽γn2j+1

|∆n(F (x0) + u)−∆n(F (x0))|2I(En)

)
⩽K7γn2

ju (n)−1.

Combining this with (61) and the Markov inequality, we conclude that there exist K8 > 0
and N ′′

η , that do not depend on n nor K0, such that, for all n⩾N ′′
η ,

P (|Un(a)− F (x0)|⩾ γn)⩽ η+K8

∑
k⩾0

γn2
ju (n)−1

(γn2j)4

⩽ η+K8γ
−3
n u (n)−1

∑
j⩾0

2−3j .

The sum on the last line is finite, so there exists K > 0, independent of n and K0, such that
for n bigger than N ′′

η

(66) P (|Un(a)− F (x0)|⩾ γn)⩽ η+Kγ−3
n u (n)−1 = η+

K

K3
0

.

The above probability can be made smaller than 2η by setting (54) for some sufficiently large
K0 independent of n. This proves (53) and completes the proof of (37).
Now, we turn to the proof of (38). It follows from (30) combined to (32) and Lemma 5.3 that

f̂−1
n (f0(x0)) = F−1 ◦ Ûn(f0(x0)) + Tn(C)

−1/2OP (1) .

Hence, by Lemma 6.7 we have

f̂−1
n (f0(x0)) = F−1 ◦ Ûn(f0(x0)) +OP

(
u (n)−1/2

)
.

Now, it follows from the assumption (B2) that F−1 has a bounded derivative in the neigh-
borhood of F (x0), to which Ûn(f0(x0)) belongs with probability that tends to one. Hence, it
follows from Taylor’s expansion that

f̂−1
n (f0(x0)) = F−1 ◦ F (x0) +O

(
|Ûn(f0(x0))− F (x0)|

)
+OP

(
u (n)−1/2

)
= x+OP (u (n)

−1/3) +OP

(
u (n)−1/2

)
,

where we used (37) for the last equality. This proves (38) and completes the proof of Lemma
6.8.

SUPPLEMENTARY MATERIAL

1. Markov chain theory and notation. This section extends Section 2 of the main pa-
per, presenting a more detailed exposition of the Markov chain theory required in the proofs.
For further details, we refer the reader to [12, 27, 29].

Let X =X0,X1,X2, . . . be a time-homogeneous Markov Chain defined on a probability
space (E,E ,P) where E is countably generated. Let P (x,A) denote its transition kernel, i.e.
for x ∈E , A ∈ E we have

P (x,A) = P (Xi+1 ∈A |Xi = x) , i= 0,1, . . .

Let Pn(x,A) denote the n-step transition probability, i.e.

Pn (x,A) = P (Xi+n ∈A |Xi = x) ∀i.
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If λ is a probability measure in (E,E) such that L (X0) = λ, then λ is called the initial
measure of the chain X. A homogeneous Markov chain is uniquely identified by its kernel
and initial measure.

When the initial measure of the chain is given, we will write Pλ (and Eλ) for the probability
(and the expectation) conditioned on L (X0) = λ. When λ = δx for some x ∈ E we will
simply write Px and Ex.

An homogeneous Markov chain is irreducible if there exists a σ-finite measure ϕ on (E,E)
such that for all x ∈E and all A ∈ E with ϕ(A)> 0 we have Pn(x,A)> 0 for some n⩾ 1.
In this case, there exists a maximal irreducibility measure ψ (all other irreducibility measures
are absolutely continuous with respect to ψ). In the following, all Markov chains are supposed
to be irreducible with maximal irreducibility measure ψ.

For any set C ∈ E , we will denote by σC and τC , respectively, the times of first
visit and first return of the chain to the set C , i.e. τC = inf {n⩾ 1 :Xn ∈C} and σC =
inf {n⩾ 0 :Xn ∈C}. The subsequent visit and return times σC , τC (k), k ⩾ 1 are defined
inductively as follows:

τC (1) = τC , τC (k) =min{n > τC (k− 1) :Xn ∈C} ,(67)

σC (1) = σC , σC (k) =min{n > σC (k− 1) :Xn ∈C} .(68)

Given that our methods will only deal with the values of X in a fixed set C , if A is a
measurable set, we will write IC{Xt ∈A} instead of I{Xt ∈A∩C} and if A=E, then we
will simply write IC (Xt).

We will use Tn (C) to denote the random variable that counts the number of times the
chain has visited the set C up to time n, that is Tn (C) =

∑n
t=0 IC (Xt). Similarly, we will

write T (C) for the total of numbers of visits the chain X to C . The set C is called recurrent
if ExT (C) = +∞ for all x ∈C . The chain X is considered recurrent if every set A ∈ E , such
that ψ (A)> 0, is recurrent.

Although recurrent chains possess many interesting properties, a stronger type of recur-
rence is required in our analysis. An irreducible Markov chain is Harris recurrent if for all
x ∈E and all A ∈ E with ψ(A)> 0 we have

P (Xn ∈A infinitely often |X0 = x) = 1.

An irreducible chain possesses an accessible atom, if there is a set α ∈ E such that for all
x, y in α: P (x, .) = P (y, .) and ψ(α)> 0. Denote by Pα and Eα(.) the probability and the
expectation conditionally to X0 ∈α. If X possesses an accessible atom and is Harris recur-
rent, the probability of returning infinitely often to the atom α is equal to one, no matter the
starting point, i.e. ∀x ∈ E,Px (τα <∞) = 1. Moreover, it follows from the strong Markov
property that the sample paths may be divided into independent blocks of random length
corresponding to consecutive visits to α:

B0 =
(
X0,X1, . . . ,Xτα(1)

)
B1 =

(
Xτα(1)+1, . . . ,Xτα(2)

)
. . .

Bn =
(
Xτα(n)+1, . . . ,Xτα(n+1)

)
. . .

taking their values in the torus T= ∪∞
n=1E

n. Notice that the distribution of B0 depends on the
initial measure, therefore it does not have the same distribution as Bj for j ⩾ 1. The sequence
{τα(j)}j⩾1 defines successive times at which the chain forgets its past, called regeneration
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times. Similarly, the sequence of i.i.d. blocks {Bj}j⩾1 are named regeneration blocks. The
random variable T (n) = Tn (α) − 1 counts the number of i.i.d. blocks up to time n. This
term is called number of regenerations up to time n.

Notice that for any function defined on E, we can write
∑n

t=0 f (Xt) as a sum of indepen-
dent random variables as follows:

(69)
n∑

t=0

f (Xt) = f (B0) +

T (n)∑
j=1

f (Bj) + f
(
B(n)

)
,

where, f (B0) =
∑τα

t=0 f (Xt), f (Bj) =
∑τα(j+1)

t=τα(j)+1 f (Xt) for j = 1, . . . , T (n) and f
(
B(n)

)
denotes the last incomplete block, i.e. f

(
B(n)

)
=
∑n

t=τα(T (n)+1)+1 f (Xt).
When an accessible atom exists, the stochastic stability properties of X amount to proper-

ties concerning the speed of return time to the atom only. For instance, the measure πα given
by:

(70) πα (B) = Eα

(
τα∑
n=1

I{Xi ∈B}

)
, ∀B ∈ E

is invariant, i.e.

πα (B) =

∫
P (x,B)dπα (x).

Denote by E+ the class of nonnegative measurable functions with positive ψ support. A
function s ∈ E+ is called small if there exists an integer m0 ⩾ 1 and a measure ν ∈ M (E)+
such that

(71) Pm0 (x,A)⩾ s (x)ν (A) ∀x ∈E,A ∈ E .

When a chain possesses a small function s, we say that it satisfies the minorization inequality
M (m0, s, ν). As pointed out in [29], there is no loss of generality in assuming that 0 ⩽
s (x)⩽ 1 and

∫
E s(x)dν(x)> 0.

A set A ∈ E is said to be small if the function IA is small. Similarly, a measure ν is
small if there exist m0, and s that satisfy (71). By Theorem 2.1 in [29], every irreducible
Markov chain possesses a small function and Proposition 2.6 of the same book shows that
every measurable set A with ψ (A) > 0 contains a small set. In practice, finding such a set
consists in most cases in exhibiting an accessible set, for which the probability that the chain
returns to it in m steps is uniformly bounded below. Moreover, under quite wide conditions
a compact set will be small, see [15].

If X does not possess an atom but is Harris recurrent (and therefore satisfies a minorization
inequality M (m0, s, ν)), a splitting technique, introduced in [28, 29], allows us to extend in
some sense the probabilistic structure of X in order to artificially construct an atom. The
general idea behind this construction is to expand the sample space so as to define a sequence
(Yn)n∈N of Bernoulli r.v.’s and a bivariate chain X̌ = {(Xn, Yn)}+∞

n=0, named split chain, such
that the set α̌ = (E,1) is an atom of this chain. A detailed description of this construction
can be found in [29].

The whole point of this construction consists in the fact that X̌ inherits all the commu-
nication and stochastic stability properties from X (irreducibility, Harris recurrence,...). In
particular, the marginal distribution of the first coordinate process of X̌ and the distribution
of the original X are identical. Hence, the splitting method enables us to establish all the
results known for atomic chains to general Harris chains, for example, the existence of an
invariant measure which is unique up to multiplicative constant (see Proposition 10.4.2 in
[27]).
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The invariant measure is finite if and only if Eα̌τα̌ < +∞, in this case we say the chain
is positive recurrent, otherwise, we say the chain is null recurrent. A null recurrent chain is
called β-null recurrent (c.f. Definition 3.2 in [24]) if there exists a small nonnegative function
h, a probability measure λ, a constant β ∈ (0,1) and a slowly varying function Lh such that

Eλ

(
n∑

t=0

h (Xt)

)
∼ 1

Γ(1 + β)
nβLh (n) as n→∞.

As argued in [24], is not a too severe restriction to assume m0 = 1. Therefore, throughout
this paper we assume that X satisfies the minorization inequality M(1, s, ν), i.e, there exist a
measurable function s and a probability measure ν such that 0⩽ s (x)⩽ 1,

∫
E s(x)dν(x)> 0

and

(72) P (x,A)⩾ s (x)ν (A) .

A measurable and positive function L, defined in [a,+∞) for some a⩾ 0, is called slowly
varying at +∞ if it satisfies limx→+∞

L(xt)
L(x) = 1 for all t ⩾ a. See [6] for a detailed com-

pendium of these types of functions.
It was shown in Theorem 3.1 of [24] that if the chain satisfies the minorization condition

(5), then it is β-null recurrent if and only if

(73) P (τα̌ > n)∼ 1

Γ(1− β)nβL (n)
,

where L is a slowly varying function.
The following theorem is a compendium of the main properties of Harris’s recurrent

Markov chains that will be used throughout the proofs. Among other things, it shows that
the asymptotic behavior of T (n) is similar to the function u (n) defined as

(74) u (n) =

{
n, if X is positive recurrent
nβL (n) , if X is β-null recurrent

.

The Mittag-Leffler distribution with index β is a non-negative continuous distribution,
whose moments are given by

E
(
Mm

β (1)
)
=

m!

Γ (1 +mβ)
m⩾ 0.

See (3.39) in [24] for more details.

THEOREM 1.1. Suppose X is a Harris recurrent, irreducible Markov chain, with initial
measure λ, that satisfies the minorization condition (72). Let T (n) be the number of complete
regenerations until time n of the split chain X̌ , let C ∈ E be a small set and π be an invariant
measure for X. Then,

1. 0< π (C)<+∞.
2. For any function f , defined on E, the decomposition (69) holds. Moreover, there is a con-

stantKπ , that only depends on π, such that if f ∈ L1 (E,π), then Eλf (B1) =Kπ

∫
E fdπ.

3. T (n)
Tn(C) converges almost surely to a positive constant.

4. T (n)
u(n) converges almost surely to a positive constant if X is positive recurrent and converges
in distribution to a Mittag-Leffler random variable with index β if X is β-null recurrent.
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REMARK 1.1. The Mittag-Leffler distribution with index β is a non-negative continuous
distribution, whose moments are given by

E
(
Mm

β (1)
)
=

m!

Γ (1 +mβ)
m⩾ 0.

See (3.39) in [24] for more details.

REMARK 1.2. Part 1 of Theorem 1.1 is Proposition 5.6.ii of [29], part 2 is equation (3.23)
of [24] and part 3 is an application of the Ratio Limit Theorem (Theorem 17.2.1 of [27]). For
the positive recurrent case, part 4 also follows by the aforementioned Ratio Limit Theorem
while the claim for the null recurrent case appears as Theorem 3.2 in [24].

2. Technical proofs for Section 5. Proof of Lemma 5.1. Equation (12) follows from
Corollary 2 in [2] and part 2 of Theorem 1.1.

Now, we turn to the proof of (13). To do this, we adapt some of the ideas presented in the
proof of Lemma 21.2 in [33].

Let V be a normal random variable independent of theXi’s, and Φ its distribution function.
it follows from (12) that conditionally on the Xt’s, Fn(V ) converges almost surely to F (V ).
Thus, denoting by PX the conditional probability given the Xt’s, it follows from (29) that
Φ(F−1

n (u)) = PX(Fn(V )< u) converges almost surely to PX(F (V )< u) = Φ(F−1(u)) at
every u at which the limit function is continuous . Since F is strictly increasing in C , one can
find ε > 0 such that F−1 is continuous on [F (x0)− ε,F (x0)+ ε], so the above limit function
is continuous at every u ∈ [F (x0)− ε,F (x0) + ε]. By continuity of Φ−1 on (0,1), F−1

n (u)
converges almost surely to F−1(u) for every such u. By monotonicity, the convergence is
uniform, hence

sup
|p−F (x0)|⩽ε

|F−1
n (p)− F−1(p)|= o(1) a.s.

as n→∞.
Proof of Lemma 5.2. This proof is an adaptation to the localized case of the proof of

Lemma 2 in [5]. Let f ′C ∈ F ′
C , i.e., there exists f ∈ F such that f ′C(B) =

∫
f(y)MC(B,dy).

By Cauchy–Schwarz inequality,(∫
f(y)MC(B,dy)

)2

⩽ ℓC (B)

(∫
f2MC(B,dy)

)
,

then

EQ′(f ′2C )⩽ EQ′

(
ℓC(B)

(∫
f(y)2MC(B,dy)

))
= EQC

(f2)EQ′(ℓ2C),

where the last equality follows from (16). Applying this to the function

f ′C(B)− f ′k(B) =

∫
(f(y)− fk(y))MC(B,dy),

when each fk is the center of an ε-cover of the space F and ∥f−fk∥L2(QC) ⩽ ε gives the first
assertion of the lemma. To obtain the second assertion, note that U ′

C = UℓC is an envelope
for F ′

C . In addition, we have that

∥U ′
C∥L2(Q′) = U∥ℓC∥L2(Q′).

From this, we derive that, for every 0< ε< 1,

N (ε∥U ′
C∥L2(Q′), U ′

C , L2(Q
′)) =N (εU∥ℓC∥L2(Q′), U ′, L2(Q

′)).
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Then using the first assertion of the lemma, we obtain for every 0< ε< 1,

N (ε∥U ′
C∥L2(Q′), F ′

C , L2(Q
′))⩽N (εU, F , L2(QC)),

which implies the second assertion of the Lemmaz whenever the class F is VC with envelope
U .

Proof of Lemma 5.3. Let B ∈ Ê and g :E×R→R+. For each y ∈R we define gy (x) =
g (x, y), then, using the notation of section 6.2 we will have ĝy (B) =

∑
x∈B∩C g (x, y). Fi-

nally, for any function h :R→R, we define

g̃hy (B) = ( ̂gy − h(y))(B) =
∑

x∈B∩C
(g (x, y)− h (y)) = ĝy (B)− ℓC (B)h (y) .

Let g (x, y) = I{x⩽ y}, and h = F as defined in (8). Then, ĝy (B) =
∑

x∈B IC{x⩽ y}
and

g̃Fy (B) =
∑

x∈B∩C
(I{x⩽ y} − F (y)) = ĝy (B)− ℓC (B)F (y) .

From now on, we’ll remove the superindex from g̃Fy to ease the notation.
By the definition of Fn and F ((7) and (8)), we have that

Fn(y)− F (y) =
1

Tn(C)

Tn(C)∑
i=1

(
I{XσC(i) ⩽ y} − F (y)

)
=

1

Tn(C)

n∑
i=0

(IC{Xt ⩽ y} − IC{Xi}F (y))

=
1

Tn(C)

g̃y (B0) +

T (n)∑
i=1

g̃y (Bi) + g̃y
(
B(n)

) ,

therefore, √
Tn(C)

(
Fn(y)− F (y)

)
=

g̃y (B0)√
Tn(C)

+

∑T (n)
i=1 g̃y (Bi)√
Tn(C)

+
g̃y
(
B(n)

)√
Tn(C)

.

Notice that |g̃y (B0)| ⩽ 2ℓC(B0) < +∞ and Tn(C) → +∞ almost surely, therefore, the
first term in the last equation converges almost surely to 0 uniformly in y. For the last term,
we have that ∣∣g̃y (B(n)

)∣∣√
Tn(C)

≤
2ℓC(BT (n))√

Tn(C)
= 2

√
T (n)

Tn(C)

ℓC(BT (n))√
T (n)

,

by (B4), the expectation of ℓ2C(B1) is finite, then, Lemma 1 in [2] shows that ℓ2C(Bn)
n → 0 a.s.

which implies that ℓC(Bn)√
n

also converges to 0 a.s. Since T (n)→+∞ a.s., by Theorem 6.8.1

in [19] we have ℓC(BT (n))√
T (n)

→ 0 almost surely. Joining this with the almost sure convergence

of T (n)
Tn(C) to a positive constant (see Theorem 1.1) we obtain that |g̃y(B(n))|√

Tn(C)
converges almost

surely to 0 uniformly in y. Therefore,

(75)
√
Tn(C)

(
Fn(y)− F (y)

)
=

∑T (n)
i=1 g̃y (Bi)√
T (n)

+ oP (1) .
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where we have used that Tn(C)
T (n) converges almost surely to a positive constant to use T (n)

instead of Tn(C).
Then, (17) will be proved if we show that, for ε small enough

(76) sup
|y−x0|⩽ε

∣∣∣∑T (n)
i=1 g̃y (Bi)

∣∣∣√
T (n)

=Op (1) .

Fix η > 0 arbitrarily. By Lemma 6.7 and Slutsky’s theorem, we can find positive numbers
aη, aη and an integer Nη such that P (En)⩾ 1− η

2 for all n⩾Nη , where

(77) En =
{
aηu (n)⩽ T (n)⩽ aηu (n)

}
.

Define Wn(ε) = sup
|y−x0|⩽ε

|
∑n

i=1 g̃y (Bi)| and let Mη be a fixed positive number. Then, for

all n⩾Nη

P

(
1√
T (n)

WT (n) >Mη

)
< P

({
1√
T (n)

WT (n) >Mη

}
∩ En

)
+ 1− P (En)

< P

({
1√
T (n)

WT (n) >Mη

}
∩ En

)
+
η

2
.(78)

On En, aηu (n)⩽ T (n)⩽ aηu (n), therefore for all n⩾Nη

P

({
1√
T (n)

WT (n) >Mη

}
∩ En

)
< P

 1√
aηu (n)

max
1⩽k⩽aηu(n)

Wk >Mη

∩ En

 ,

< P

 1√
aηu (n)

max
1⩽k⩽aηu(n)

Wk >Mη

 .(79)

The random variables
{
g̃(·) (Bk)

}aηu(n)

k=1
are i.i.d., therefore, by Montgomery-Smith’s in-

equality (Lemma 4 in [1]), there exists a universal constant K such that for all n⩾Nη ,

P

 1√
aηu (n)

max
1⩽k⩽aηu(n)

Wk >Mη

<KP

 1√
aηu (n)

Waηu(n) >
Mη

K

 ,

< KP

 1√
aηu (n)

sup
|y−x0|⩽ε

∣∣∣∣∣∣
aηu(n)∑
i=1

g̃y (Bi)

∣∣∣∣∣∣> Mη

K

 .(80)

For an arbitrary set T , let ℓ+∞(T ) be the space of all uniformly bounded, real functions
on T , equipped with the uniform norm. Weak convergence to a tight process in this space
is characterized by asymptotic tightness plus convergence of marginals (see Chapter 1.5 in
[34]).

The class of functions G−F = {gy(·)− F (y)}y∈R is VC with constant envelope 2, hence,

by Lemma 5.2, the class of functions Ĝ − F is also VC and has 2ℓC as envelope. Eℓ2C(B1)

is finite (by (B4)), therefore, by Theorem 2.5 in [25], Ĝ − F is Donsker. Then, the process
1√

aηu(n)

∣∣∣∑aηu(n)
i=1 g̃y (Bi)

∣∣∣ converges weakly in ℓ∞
[
Ĝ − F

]
to a tight process Z . The map
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y 7→ ∥y∥∞ from ℓ∞
[
Ĝ − F

]
to R is continuous with respect to the supremum norm (cf.

pp 278 of [33]), therefore, 1√
aηu(n)

sup
|y−x0|⩽ε

∣∣∣∑aηu(n)
i=1 g̃y (Bi)

∣∣∣ converges in distribution to

sup
|y−x0|⩽ε

Z (y), hence, we can find Vη and N ′
η such that

(81) P

 1√
aηu (n)

sup
|y−x0|⩽ε

∣∣∣∣∣∣
aηu(n)∑
i=1

g̃y (Bi)

∣∣∣∣∣∣> Vη

<
η

2K
, ∀n >N ′

η.

Choosing Mη =KVη in 81 and joining (80), (79) and (78), completes the proof of (17).
Now we proceed to prove (18). Let η be fixed, by (17) and Lemma 6.7, we can find ε′, M ′

η

and N ′
η such that

P

(√
Tn(C) sup

|y−x0|⩽ε′
|Fn(y)− F (y)|>M ′

η

)
<
η

4
∀n⩾N ′

η(82)

P (Dn)⩾ 1− η

2
∀n⩾N ′

η(83)

where Dn =
{
aηu (n)⩽ Tn(C)⩽ aηu (n)

}
. Define the sets

Un =

{√
Tn(C) sup

|p−F (x0)|⩽ε

∣∣F−1
n (p)− F−1(p)

∣∣>Mη

}
,

U1
n =

{
∃p ∈ [F (x0)− ε,F (x0) + ε] : F−1

n (p)− F−1(p)>
Mη√
Tn(C)

}
,

U2
n =

{
∃p ∈ [F (x0)− ε,F (x0) + ε] : F−1(p)− F−1

n (p)>
Mη√
Tn(C)

}
.

where ε and Mη are constants that will be specified later.
On U1

n ∩Dn, F−1
n (p)> Mη√

Tn(C)
+ F−1 (p)> Mη√

aηu(n)
+ F−1 (p), hence,

Fn

(
Mη√
aηu (n)

+ F−1 (p)

)
⩽ Fn

(
F−1
n (p)

)
⩽ p+

1

Tn(C)

⩽ p+
1

aηu (n)
.(84)

Assumption (B2) indicates that F has bounded derivative in C , take K1 as the maximum
value of this derivative in C , then, the Mean Value Theorem implies that

p= F
(
F−1 (p)

)
= F

(
Mη√
aηu (n)

+ F−1 (p)

)
− F ′ (θp)Mη√

aηu (n)

⩽ F

(
Mη√
aηu (n)

+ F−1 (p)

)
− K1Mη√

aηu (n)
.

After plugging this into (84) we get

F

(
Mη√
aηu (n)

+ F−1 (p)

)
− Fn

(
Mη√
aηu (n)

+ F−1 (p)

)
⩾

K1Mη√
aηu (n)

− 1

aηu (n)
.
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Because u (n)→+∞, we can find N1 such that
√

aη

u(n)
1

aηK1
< 1 for all n⩾N1, taking Mη

bigger than M ′
η

K1

√
aη

aη
+ 1 and using that Tn(C)⩽ aηu (n) on Dn, we obtain, for all n⩾N1

(85) F

(
Mη√
aηu (n)

+ F−1 (p)

)
− Fn

(
Mη√
aηu (n)

+ F−1 (p)

)
>

M ′
η√

Tn(C)
.

Let N2,η be such that Mη√
aηu(n)

< ε′

2 for n⩾N2,η . By the continuity of F−1 in F (x0) there

exists ε > 0 such that
∣∣F−1 (p)− x0

∣∣⩽ ε′

2 for all p in [F (x0)− ε,F (x0) + ε], therefore, the
triangular inequality implies that Mη√

aηu(n)
+F−1 (p) lies in the interval [x0 − ε′, x0 + ε′] for

all n⩾Nη = max (N1,N2,η). This, alongside (85), shows that for all n⩾Nη

U1
n ∩Dn ⊆

{
∃y ∈

[
x0 − ε′, x0 + ε′

]
: F (y)− Fn(y)>

M ′
η√

Tn(C)

}

⊆

{√
Tn(C) sup

|y−x0|⩽ε′
|Fn(y)− F (y)|>M ′

η

}
.

By a similar argument, it can be shown that

U2
n ∩Dn ⊆

{
∃y ∈

[
x0 − ε′, x0 + ε′

]
: Fn(y)− F (y)>

M ′
η√

Tn(C)

}
∀n⩾Nη.

Using (82) and Un = U1
n ∪ U2

n we obtain that P (Un ∩Dn)⩽
η
2 for all n⩾Nη . Equation

(18) now follows by (83).
Supplement of “Harris recurrent Markov chains and nonlinear monotone cointe-

grated models”
This is the supplementary material associated with the present article.
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