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1. Introduction
Jupiter's inner magnetosphere plasma is primarily comprised of heavy ions in the form of O n+ or S n+ and protons 
(H +) (Bagenal et al., 2016; Bodisch et al., 2017; Bridge et al., 1979; Dougherty et al., 2017; Frank et al., 1996; 
Kim et al., 2020; Kollmann et al., 2018). While the heavy ions are believed to be products of ionization of neutrals 
from Io, the protons may have several possible sources (Jupiter, its moons or the solar wind) that have not been 
well constrained (e.g., Bodisch et al., 2017; Hamilton et al., 1980; Szalay et al., 2021).

Protons have been observed in the equatorial Jovian magnetosphere over a wide range of energies from a few eV 
to several tens of MeV. Kollmann et al. (2017) combined data from the Pioneer 11, Galileo and Juno spacecraft 
to show that proton fluxes in the keV-to-MeV range are highest in the inner magnetosphere but decrease sharply 
inward of Io's orbit. Shen et al.  (2022) used data from Juno's energetic particle detector (JEDI) and found an 
increase in 453–542 keV and 0.9–2 MeV proton flux while moving inward. The pitch angle distributions at these 
energies transitioned from nearly field-aligned at 30 RJ (1 RJ = 71,492 km) to pancake-like with a maximum 
flux at 90° near 10 RJ. However, the same behavior was not observed for protons with energies between 106 and 
122 keV. A similar pitch angle transition from field-aligned or butterfly to pancake-like was reported by Tomás 
et al. (2004) for 80–220 keV protons and, 29–42 keV and 304–527 keV electrons.

Lagg et  al.  (2003) observed that at energies between 80 and 220 keV, proton distributions in the vicinity of 
Europa had minimum flux at 0° and 90° pitch angle, whereas protons between 220–540 keV and 0.54–1 MeV had 
pancake-like pitch angle distributions. The butterfly-like distributions (with minimum flux at 90°) observed for 
the 80–220 keV population were similar to those of heavy ions observed near the orbit of Io (Lagg et al., 1998). 
Charge exchange with neutral atoms or cold ions could deplete near-perpendicular fluxes as these ions would 
spend more time in the high neutral density equatorial regions over the course of their bounce motion (Clark 
et al., 2016; Ip, 1981; Kollmann et al., 2016; Lagg et al., 2003; Mauk et al., 2004; Nénon & André, 2019). Hence, 
butterfly pitch angle distributions occurring only at lower energies below a few hundred keV was also consistent 
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Plain Language Summary Protons are seen throughout Jupiter's magnetosphere. Where these 
protons come from and how they evolve is not well understood. Previous observations by the Galileo spacecraft 
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with typical ion-neutral charge exchange cross-sections decreasing with increasing energy above ∼10  keV 
(Lindsay & Stebbings, 2005).

Assuming ion-neutral charge exchange was responsible for the observed proton flux depletions, the observa-
tions were suggested to be consistent with a Europa neutral torus of O with density between 20 and 40 cm −3 
(Lagg et al., 2003). These inferred neutral densities were also commensurate with ENA observations by Mauk 
et al. (2003) and with models of neutral escape from the moons (Smith et al., 2019; Smyth & Marconi, 2003, 2006), 
but not with the lack of atomic oxygen emissions reported by Hansen et al. (2005) and Shemansky et al. (2014). 
Moreover, numerical simulations have predicted that H2, not O, is the most abundant neutral species at the orbit 
of Europa with a nominal H2 density of ∼30 cm −3 in the Europa neutral torus, although this could increase up to 
∼200 cm −3 in the vicinity of Europa. In the Smith et al. (2019) model, the Europa-genic H2 and O tori were quite 
broad and occupied a region from ∼5 to ∼15 RJ. Observations from Juno of 𝐴𝐴 H

+

2
 pickup-ions from a Europa-genic 

source provided evidence of a persistent neutral source of H2 of between 0.5 and 1.9 kg s −1 in the vicinity of 
Europa's orbit (Szalay, Smith, et al., 2022).

Kollmann et al. (2016) showed that proton fluxes near Europa were lowest at around 70° equatorial pitch angle 
rather than 90°. This could be explained by ions undergoing charge exchange with a thinner neutral torus that 
is confined to smaller latitudes about the Jovigraphic equator. Kollmann et al. (2016) assumed that the neutral 
torus mainly consisted of H2 and found that the observations required an H2 density in the range of 1.5–410 cm −3, 
depending on assumed transport rates. In addition, Nénon and André (2019) found that the sulfur ion fluxes were 
depleted near 90° pitch angle for some of Galileo's orbits near Europa. They hypothesized that the different distri-
butions for protons and sulfur ions could be explained by the presence of neutral tori of O and H2 with different 
scale heights.

While the observed proton distributions appear consistent with charge exchange related losses, it is also impor-
tant to consider other processes that could create similar distributions. Unlike heavy ions (O n+/S n+), which come 
from the equatorial magnetosphere mainly as pickup-ions through electron-impact ionization, proton sources 
in Jupiter's magnetosphere are less well understood (Bagenal & Dols, 2020). Juno observed up-welling proton 
beams contributing 1–5 kg/s of proton outflow from the polar regions of Jupiter (Szalay et al., 2021) along with 
conic distributions connected to Io's orbit (Clark et al., 2020) and between 3 and 5 RJ in the polar-most regions 
(Szalay, Clark, et al., 2022). These suggest wave-particle interactions can also lead to protons being injected into 
the magnetosphere from Jupiter. In the absence of wave-particle scattering, H + ions originating from the polar 
regions of Jupiter are expected to be highly field-aligned when they reach the equatorial magnetosphere due to 
the ratio of the polar to equatorial magnetic field strength and the conservation of the first adiabatic invariant 
(similar to electron observations by Frank & Paterson, 2002). Hence, the proton butterfly pitch angle distribu-
tions observed by Galileo could also result from adiabatic transport from Jupiter's polar regions instead of charge 
exchange with neutrals.

In this work, we survey the equatorial pitch angle distributions of protons in the inner magnetosphere of Jupiter. 
We combine data from Juno's JADE and JEDI particle detectors to examine distributions of protons with energies 
between 10 and 700 keV. Our work extends previous work from Shen et al. (2022) by including the <50 keV 
proton population between 6 and 20 RJ in terms of equatorial pitch angle. In Section 2, we describe the meth-
odology we use to analyze and combine multiple charged particle datasets from Juno. In Section 3, we describe 
the observations in the region past Io to Ganymede. Using the pitch angle distributions, we discuss implica-
tions for ion-neutral charge exchange and proton transport in the magnetosphere. We conclude in Section 4 with 
a summary of our results and address the question of whether proton distributions observed previously were 
consistent with charge exchange with a neutral torus.

2. Methodology
We analyze data collected by the plasma and energetic particle instruments onboard the Juno spacecraft during its 
prime mission. The JADE-I instrument (McComas et al., 2017) measures lower energy plasma and energetic ions 
between 10 eV/q to 50 keV/q. The JEDI instrument (Mauk, Haggerty, Jaskulek, et al., 2017; Mauk et al., 2023) 
measures higher energy ions, including protons between 40 keV and 20 MeV.

JADE-I has a field-of-view that covers the full sky for each Juno spin period of ∼30 s and therefore has complete 
pitch angle coverage on a cadence of 30 s. However, extracting the pitch angle distribution in the plasma rest 
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frame requires prior knowledge of the plasma flow velocity with respect to the spacecraft, which is non-trivial 
(see Appendix in Szalay et al., 2020). Without knowing the plasma speed, pitch angle alone does not organize 
the directional distribution well and another coordinate such as a clock angle around the field direction would be 
needed. For this reason, we limit the analysis of JADE pitch angle distributions to protons above 10 keV since ion 
velocities at these relatively high energies much larger than the bulk flow velocity.

Higher energy ion fluxes >50 keV are measured by the JEDI-90 and JEDI-270 sensors, and both have a field-of-view 
that is 160° × 12° with the wide azimuthal portion nearly aligned with the Juno spin plane. Hence, the JEDI sensors 
measure the full pitch angle distribution (PAD) only when the background magnetic field is within ±6° of the Juno 
spin plane, otherwise there are gaps in the distribution. We group the JEDI proton fluxes into two energy ranges: (a) 
50–200 keV, where the bulk of charge-exchange is expected (Lindsay & Stebbings, 2005), and (b) 200–700 keV. 
We chose these energy ranges as charge-exchange cross-sections decrease sharply above ∼100 keV for both H +-O 
and H +-H2 reactions (see Supporting Information S1) and the lifetime for an energetic particle to charge exchange 
with a neutral atom is inversely proportional to its velocity (Lagg et al., 1998). JEDI proton channels below 50 keV 
are ignored to avoid data that is contaminated by penetrating electrons and electronic noise (Mauk, Haggerty, 
Paranicas, et al., 2017). The data from both JADE and JEDI instruments are averaged to 5-min cadence for analysis.

We constructed proton equatorial pitch angle distributions between M-shells M = 5 and M = 30. An M-shell is 
defined by the maximum radial extent of the magnetic field line. We use M-shell instead of L-shell to differen-
tiate between the dipolar field at Earth versus Jupiter where the non-dipolar field contributions from the internal 
magnetic field and current sheet are significant. The local pitch-angle is calculated by using the magnetic field 
measured by Juno's magnetometer (Connerney et al., 2017). The equatorial pitch angle αeq is related to the local 
pitch angle α as,

𝛼𝛼𝑒𝑒𝑒𝑒 = sin
−1

(

sin 𝛼𝛼

√

𝐵𝐵𝑒𝑒𝑒𝑒

𝐵𝐵

)

 (1)

where B is the local magnetic field strength and Beq is the equatorial magnetic field strength. We use the JRM33 
(order 13) internal magnetic field model (Connerney et al., 2022) together with the CON2020 current sheet model 
(Connerney et al., 2020) to find Beq by tracing the field line from Juno's location to the magnetic equator using 
the JupiterMag community code (Wilson et al., 2023). The maximum observable equatorial pitch angle is limited 
by the ratio of the equatorial to the locally measured magnetic field (at α = 90°), 𝐴𝐴 𝐴𝐴max = sin

−1

(

√

𝐵𝐵𝑒𝑒𝑒𝑒∕𝐵𝐵

)

 . While 
analyzing the data, we consider only those particles that reach Juno from the magnetic equator, that is, particles 
with a local pitch angle α ∈ [0°,90°] when it is in the southern hemisphere and α ∈ [90°,180°] when it is in the 
northern hemisphere. The half-sky population reaching Juno from Jupiter is ignored as we are interested in the 
trapped distribution that may undergo charge exchange with the neutral tori.

We describe the conversion between count rate and phase space density (e.g., McComas et al., 2021) as well our 
methodology to create energy and pitch angle spectra, in Supporting Information S1. Example timeseries of pitch 
angle distributions are also shown in Figure S3 in Supporting Information S1.

3. Observations
3.1. Averaged Distribution and Variation With M-Shell

We constructed equatorial pitch angle distributions for all times during the prime mission when Juno was between 
M-shells of M = 6 and M = 30 and averaged the resulting distributions. These averages are shown in Figure 1 
for the innermost M-shells. Missing or invalid data are excluded from the averaging process. Figure 1a shows the 
average distribution without normalization whereas Figures 1b–1d show the distributions averaged and normal-
ized to the maximum/minimum PSD in each M-shell bin. Juno's dwell time in each M-shell bin and availability 
of data with >77% coverage in equatorial pitch angle ±5 RJ from the magnetic equator is shown in Figure 1f. On 
average, ∼2–9 hr of data with near-complete equatorial pitch-angle coverage were available in each bin between 
M = 8 and M = 22. In these limited intervals, proton pitch angle distributions did not show significant abrupt 
changes due to magnetospheric injections.

Protons at the lowest energies considered (<50 keV) have fluxes that maximize at 0° equatorial pitch-angle and 
gradually decrease with increasing pitch-angle (Figure 1a). The relative depletion, or the ratio of maximum to 
minimum PSD is largest for M-shells 9, 10, and 11 (mean f⊥/f∥ ranges from 1/4 to 1/2), and this ratio decreases 
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with increasing M-shell. At higher energies (>200 keV), the proton distributions are either flat or increasing 
with equatorial pitch-angle (pancake-like), at all M-shells except for M = 7 and M = 16. At intermediate energies 
between 50 and 200 keV (Figure 1a), protons distributions vary at different M-shells. Inward of M = 11, one can 
see a depletion at 90° or 60° pitch-angle at M = 10 and M = 11. Pitch angle distributions of these protons are 
flatter beyond M = 12. The mean fluxes of 90° pitch angle protons are strongly depleted inward of Europa at 
M = 8 and M = 9 (f⊥/f∥ ≈ 0.2).

The variation of proton equatorial pitch-angle with M-shell can be seen clearly in Figures 1b–1d, where the 
distribution is normalized to each M-shell bin. At the lower energies, the highest fluxes are seen consistently 
at 0° pitch-angle (Figure 1b). At energies >200 keV, the highest fluxes inward of M = 14 are seen closer to 
90° (Figure 1d). The 200–700 keV protons seem to transition from a pancake-like toward a more field-aligned 
distribution outward of M = 16 (Figure 1b). This trend was also observed by Shen et al. (2022) for 454–542 keV 

Figure 1. Mean H + equatorial pitch-angle distributions at different M-shells for different energies. The gray region represents ±1σ of all observations made within 
M-shell of M = 11 (b–d) Equatorial pitch-angle distributions normalized for each M-shell bin (e) Ratio of normalized spectra shown in (c) and (b). (f) Juno's dwell time 
and data availability during the prime mission (2016–2021) in each M-shell bin and within ±5 RJ of the magnetic equator in hours. Also shown is the total duration of 
valid data in each bin with >77% coverage in equatorial pitch angle.
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and 0.98–2.01 MeV protons, who propose that this feature is consistent with particles gaining energy in the 
perpendicular direction due to conservation of the first adiabatic invariant (betatron acceleration) while being 
transported inward to regions of higher magnetic field (also similar to Clark et al. (2014) and Rymer et al. (2007) 
for electrons). Protons with energies between 10 and 50 keV do not follow this trend.

From 50 to 200 keV, the proton fluxes generally decrease with increasing pitch angle and minimize at >60° 
pitch-angle or more (Figure 1b). This depletion is not limited to M-shells near the Galilean moons and is seen for 
M-shells M > 12 as well. The proton “depletions” seen beyond M = 12 may be unrelated to charge exchange, as 
similar distributions are also seen for the lower (10–50 keV) and higher energies (>200 keV). Whereas inward of 
M = 15, the distribution for the lower and higher energy protons are different. This is more apparent in Figure 1e, 
which shows the ratio of the normalized spectra shown in panels d) and b). The differences are prominent inward 
of M = 12. If adiabatic acceleration due to radial transport produces the trend expected for the >200 keV popula-
tion, then in the absence of other processes a similar distribution would be expected for protons at lower energies, 
which is not observed. Inward of M = 12, trapped protons at different energies have different pitch-angle distri-
butions. Some possible reasons for this discrepancy are discussed in Section 3.3.

The normalized distributions exaggerate the anisotropy pitch angle distribution. This is the reason for the 
pixel-by-pixel variability seen in Figures 1c and 1d. Actual average distributions shown in Figure 1a are flat or 
weakly anisotropic for M > 16 at energies above 50 keV. In Supporting Information S1, we discuss the statistical 
significance of the observations and their variability.

3.2. Charge Exchange Interaction Rate

By using the differential flux measured by JADE and JEDI, we estimate interaction rates for different ion-neutral 
collisions. The rate of charge exchange is determined by the expression (1/f)∂f/∂t = −〈n〉σv, where 〈n〉 is the 
bounce- and drift-averaged neutral density, σ is the collision cross-section, v is the velocity of the incident ion, 
and f is the PSD, depending on M-shell, energy, equatorial pitch angle (Kollmann et al., 2011, 2016). This rate 
describes the relative change in PSD per time. Since the neutral density is not known in our case, we calculate an 
interaction rate via a different method that is independent of the neutral density but considers the distribution of 
incoming ion flux (Equation 2). The interaction rate can be used in combination with a neutral density, assumed 
or derived from numerical models, to estimate a local ENA production rate at different energies, thereby provid-
ing insight into the interaction of neutrals with the magnetospheric plasma (Note that this is different from an 
integrated or bounce-averaged ENA production rate).

𝑟𝑟(𝐸𝐸) = 𝜎𝜎(𝐸𝐸)Δ𝐸𝐸 ∫
Ω

𝑗𝑗(𝐸𝐸𝐸 𝐸𝐸)𝑑𝑑Ω (2)

here r(E) is the interaction rate in units of [s −1] at energy E ± ΔE/2, σ(E) is the collision cross-section, ΔE is the 
width of the energy band, α is the pitch angle, j is the differential number flux in units of [s −1 cm −2 sr −1 keV −1], 
and dΩ is the solid angle for a given pitch angle range. This rate represents the likelihood of a stationary neutral 
encountering an incident ion of certain energy in unit time, given an incident ion flux. The total charge exchange 
rate would be the sum of r(E) over all energies, that is, R = ∑r(E), which will have units of [s −1]. These charge 
exchange rates are shown in Figure 2 for different intervals considering the H +-O and H +-H2 reactions, as O and 
H2 are the most abundant neutral species in the inner magnetosphere. These rates are integrated over the unit 
sphere and hence are omnidirectional. Some periods exhibit a disconnect between the rates observed by JADE-I 
and JEDI 90/270, which could be due to the different fields-of-view for these instruments in equatorial pitch 
angle during one Juno spin.

Figure 2 shows that for all intervals, the interaction rate for a H +-O reaction is larger than that for H +-H2 above 
∼25 keV. This is because the collision cross-section of these two reactions crosses over at this energy (Lindsay & 
Stebbings, 2005; Tatsuo Tabata & Shirai, 2000), with that of the H +-H2 reaction falling off more sharply beyond 
50 keV. Although there is no local maximum in the cross-sections, a peak can be seen in the interaction rate 
between 10 and 50 keV in panels a, c, d-f. This is due to the energy distribution of the proton fluxes, which peak 
at a similar energy. The interaction rates shown here can be used to predict the distribution of energetic neutral 
atoms (ENAs) that are created due to the charge exchange process. As previously described, the interaction rate 
shown here is independent of neutral density, where the product of this interaction rate with neutral density would 
yield the volume production rate of energetic neutrals.
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The rate for each energy bin falls between ∼10 −11 and 5 × 10 −9 s −1. Summing over all energies between 10 and 
200 keV, we calculate the total interaction rate for H-O to be in the range 1.9–6.3 × 10 −9 s −1 and for H +-H2 in 
the range from 1.6–4.8 × 10 −9 s −1. As this is only between 10 and 200 keV energies, these numbers represent 
a lower limit on the rates. Smith et al. (2019) used the plasma densities observed by the Galileo spacecraft and 
estimate H +-O rates between 0.7 and 2.9 × 10 −7 s −1 and H +-H2 rates between 0.8 and 2.7 × 10 −7 s −1 for different 
plasma conditions, which are about two orders of magnitude larger than those calculated in the present work. 
However, the ion-neutral charge exchange rates calculated by Smith et al. (2019) are calculated after assuming 
a neutral density, and particular ion velocity and cross-sections, and thus represent a different quantity from the 
rate described by Equation 2. In addition to the variability in the proton flux (shown in Figure 2), the error in the 
cross-sections for each reaction are also additional sources of uncertainty (not shown).

3.3. Interpretation of Pitch Angle Distributions

We summarize the various processes involved in the proton pitch angle distributions in Figure 3. Figures 1b–1d 
shows that protons at all energies tend to lower, field-aligned pitch angles at M-shells larger than M ∼ 16. The 
10–50 keV protons peak at 0° whereas for the 50–200 keV protons, the peak fluxes were seen at ∼30° pitch angle. 
The predominantly field-aligned angle distributions seen at all energies could result from outward transport (e.g., 

Figure 2. Estimated proton-neutral charge exchange interaction rates calculated from the observed proton fluxes and 
different collision cross-sections for different intervals. Solid lines are averages over the whole interval and error range 
represents 1σ of the observed rates.
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due to interchange) and adiabatic deceleration in the perpendicular direction, similar to that observed for elec-
trons by Rymer et al. (2008). However, if the 200–700 keV distribution at M > 20 represents an outward moving 
population, then it raises the question of how protons at these energies are produced inward of M = 15. Rather, 
Shen et al. (2022) and Kollmann et al. (2017) have observed a gradual increase of MeV proton flux with decreas-
ing M-shell together with a positive slope of PSD versus M-shell inward of M = 30, that suggests weak inward 
diffusion. Hence, it is more likely that the 200–700 keV protons are moving inward and in the process transition 
from being “field-aligned” at M > 20 to pancake-like inward of M ∼16. Similar transitions were noted by Tomás 
et al. (2004) and Shen et al. (2022) in the normalized proton and electron distributions, but it is unclear why this 
transition happens in the narrow range of M-shells between M = 7 and M = 16.

If inward adiabatic transport is expected to affect protons at all energies, why do pitch angle distributions for 
10–50 keV and 50–200 keV protons differ from those of 200–700 keV protons inward of M = 16? One possible 
reason is that the lower energy protons at more equatorial pitch angles are being lost due to charge-exchange with 
neutral tori or cold ions. Then based on the differences in the pitch angle spectra (Figure 1e), charge exchange is 
occurring over a wide M-shell range between M = 7 and M = 12, which is consistent with the broad neutral tori 
seen in the model of Smith et al. (2019) and predicted from ENA observations by Mauk et al. (2003). Kollmann 
et al. (2016) used a charge exchange model to show that it is possible to reproduce the Galileo proton observations 
from a pancake-like pitch angle distribution as the source (∝sin 1.6αeq) using H2 densities of ∼1.5–410 cm −3. More-
over, the charge exchange rates shown in Figure 2 peak at energies between 10 and 100 keV. Charge exchange 
between keV energy protons and ions (O n+, S n+) is also possible though these reactions have cross-sections that 
are roughly an order of magnitude smaller than proton-neutral reactions, and heavy ion densities near Europa are 
expected to be between 1 and 50 cm −3, similar to the dominant neutral species (Smith et al., 2019). Also, other 

Figure 3. Schematic of Jupiter's inner magnetosphere highlighting possible proton transport processes and their influence on pitch angles. The inset shows a schematic 
of a charge exchange collision between and ion and a H2 neutral molecule. The field lines represent a snapshot in time. In reality, the magnetic equator oscillates about 
the Jovigraphic equator due to the non-axisymmetric internal magnetic field of Jupiter.
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neutral species like O, SO2, H, H2O (etc.) are also present but with lower densities, that could mean they are less 
important for charge exchange (Smith et al., 2019).

The observations inward of M = 16 could also result from protons coming directly from Jupiter's ionosphere at 
these M-shells. Jupiter-origin protons will have extremely small pitch angles at the magnetic equator due to the 
conservation of their first adiabatic invariant during their bounce motion (equatorial loss cone at 10 RJ is ∼0.02°). 
The preferentially field-aligned population observed at all energies at M-shells M > 20 is also consistent with 
outflow from Jupiter (shown in gray in Figure 3). Up-welling proton conics at energies ranging from 10 eV to 10 
keV have been observed close to Jupiter's main auroral emission (Szalay et al., 2021) and the Io flux tube (Clark 
et al., 2020), which occupy M-shells between M = 6 and M > 30.

Lastly, proton pitch angle distributions may also be altered by pitch angle scattering due to resonant interaction 
with Alfvén or EMIC waves (Clark et al., 2023). At high latitudes and close to Jupiter, JEDI is able to resolve the 
atmospheric loss cone and has shown that >50 keV protons are scattered at the strong diffusion limit (flux inside 
the loss cone is equal to flux just outside it) in a large region around M ∼15–18 (Mauk et al., 2022). While this 
finding suggests that pitch angle scattering of >50 keV protons may be strong, we find that the equatorial pitch 
angle distribution of >50 keV protons are not isotropic, which means that whatever process scatters protons in 
the atmospheric loss cone does not act on all equatorial pitch angle populations, or not fast enough compared to 
other mechanisms.

4. Conclusions
We examined the equatorial pitch angle distributions of energetic protons in the inner Jovian magnetosphere 
near the orbits of Io, Europa and Ganymede as measured by the JADE and JEDI instruments onboard the Juno 
spacecraft.

1.  10–50  keV protons have maximum fluxes in the field-aligned direction (0° equatorial pitch angle) at all 
M-shells between M = 7 to M = 20.

2.  200–700  keV protons transition from being predominantly field-aligned at M  >  16 to pancake-like at 
M = 7–10. Similar transitions have been observed previously for protons and electrons (Shen et al., 2022; 
Tomás et al., 2004) at Jupiter and electrons at Saturn (Clark et al., 2014), suggesting a universal process.

3.  The abundance of field-aligned protons at all energies at M > 16 suggests that they could come from Jupiter's 
ionosphere and become field-aligned through adiabatic bounce motion.

4.  The energy-dependent pitch angle distributions inward of M  =  16 could result from charge exchange 
with neutral tori or from adiabatic inward transport of protons originating from the ionosphere. If charge 
exchange is responsible, the observations are consistent with a broad neutral torus present between M = 7 
and M = 12.

5.  Based on the observed particle fluxes and the collision cross-sections for H +-O and H +-H2 reactions, we esti-
mate a neutral-density-independent charge exchange interaction rate as a function of proton energy. The rates 
for both reactions maximize at energies of about ∼10–50 keV.

There remain several open questions regarding proton transport at Jupiter. Future work could investigate how 
proton pitch angle distributions change with latitude to understand the proton source from Jupiter. Fokker-Plank 
modeling could also help understand the complex interaction between protons, adiabatic transport, plasma 
waves, and charge exchange with neutral tori. The neutral tori of Europa, and possibly Ganymede, remain poorly 
constrained. Juno has collected more data in this region during its extended mission, which could also be analyzed 
in the future.

Data Availability Statement
All data analyzed in this work is publicly available from the NASA Planetary Data System Plasma Inter-
actions Node. In particular, we use data from the JADE, JEDI and magnetometer instruments, which is 
available at the following URLs—https://doi.org/10.17189/1519715, https://doi.org/10.17189/1519713, 
https://doi.org/10.17189/1519711. The JupiterMag community code can be accessed at https://github.com/
mattkjames7/JupiterMag.
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