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REINFORCEMENT LEARNING METHODS ARE NOT PRACTICAL FOR CRITICAL APPLICATIONS

Most RL Algorithms require agents

to explore the environment through Problem Statement

a trial-and-error approach
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* Cannot charge (discharge) a full (empty) battery
* Cooling system switched off from 10 PM to 5 AM
* Cooling system must stay ON if Tindoor > 26.5°C

The agent is trained using PPO, a popular DRL algorithm

The action mask constrains the exploration space by
dynamically limiting the actions the agent can take.

MASKED AGENTS CAN OUTPERFORM DIRECT RL AGENTS

Table 1: Summary of Results

Comparison of Training Rewards

2006 Agent Cost ($) Comfort Score Conclusions
RBC 468.43 0.43
Direct RL 428.89 0.09
= 600 - Masked RL 439.27 0.39 1. The Direct RL controller prioritized a
5 “PPO lower energy bill over thermal comfort
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0 6 12 18
Training Duration (Months)

24 30 36

significantly worse comfort score. respecting thermal comfort rules, without

any modifications to the reward function

3. Action masking achieved a similar comfort o hyperparameters.

score to the baseline while reducing costs.
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