
HAL Id: hal-04299552
https://hal.science/hal-04299552

Submitted on 22 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Planetary Exploration by a Mobile Robot: Mission
Teleprogramming and Autonomous Navigation
Raja Chatila, Simon Lacroix, Thierry Simeon, Matthieu Herrb

To cite this version:
Raja Chatila, Simon Lacroix, Thierry Simeon, Matthieu Herrb. Planetary Exploration by a Mobile
Robot: Mission Teleprogramming and Autonomous Navigation. Autonomous Robots, 1995, 2 (4),
pp.333-344. �10.1007/BF00710798�. �hal-04299552�

https://hal.science/hal-04299552
https://hal.archives-ouvertes.fr

Autonomous Robots, 2, 333-344 (1995)
@ 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Planetary Exploration by a Mobile Robot:
Mission Teleprogramming and Autonomous Navigation

RAJA CHATILA, SIMEON LACROIX, THIERRY SIMEON AND MATTHIEU HERRB
LAAS-CNRS, 7avenue du Colonel-Roche, 31077 Toulouse Cedex

{raja,simon,nic,matthieu } @laas.fr

Abstract. Sending mobile robots to accomplish planet exploration missions is scientifically promising and tech-
nologically challenging. We present in this paper a complete approach that encompasses the major aspects involved
in the design of a robotic system for planetary exploration. It includes mission teleprogramming and supervision at
a ground station, and autonomous mission execution by the remote mobile robot. We have partially implemented
and validated these concepts. Experimental results illustrate the approach and the results.

Keywords: mobile robots, mission teleprogramming, autonomous navigation

1 Introduction and Overview

Several aspects make planet exploration a demanding
and difficult problem for robotics:

• The robot has to operate in a natural, unstructured
and a priori unknown environment.

• In the case of aremote planet (e.g., Mars), there is no
possibility of continuous interaction with the robot
because of important delays in communications and
low bandwidth.

• The information on the robot and the environment
is mostly acquired through the robot's own sensors.
Little and rather poor a priori knowledge exist.

Because of time delays and low bandwidth, di-
rect teleoperation is either impossible or very cum-
bersome. Telerobotics approaches (Sheridan, 1989;
Hirzinger et al., 1989; Hirai & Sato, 1989) need a rather
accurate model of the working space, and are therefore
not applicable as such. The robot clearly needs impor-
tant autonomous capacities.

It has been proposed (Angle & Brooks, 1990;
Miller et al., 1992) to send one or more "simple" and
completely autonomous robots, without any control
from a ground station. Such robots, using a behavior-
based control scheme (Brooks, 1986), would achieve
an imaging, measurement or sample collection mis-
sion. However, it is not possible in this scheme to inter-
act with the robot in order to designate a precise site to
which the robot has to navigate, or to send different mis-
sions. Even in this case, reaching a precise site needs
capacities that such robots cannot be endowed with.

We present a different approach to meet the chal-
lenge of planet exploration by mobile robots (Giralt &
Boissier, 1992). It stems from the following consider-
ations:

• The landing site may be remote from areas of interest
to the scientists, mainly because it will be selected
for its safety whereas the interesting areas are in
general rather inadequate for landing (Costard et al.,
1992). Hence the robot has to travel some distance
(tens of kilometers or more) from the lander to reach
a specific region (not at random nor merely in a given
direction).

• The mission is not defined once and for all. Accord-
ing to returned data, the scientists on Earth should
be able to decide for the exploration of such or such
site, the analysis of such sample, etc. It is necessary
then to he able to control the robot, i.e., send it new
missions. It is therefore important to know what it
is doing. In order to provide it with new objectives,
it is also important to know where it is.

• Because the environment is poorly known, the mis-
sion can only be defined at a task-level in general, and
not in its every detail (except in very special cases
such as picking up a rock at reach). Hence the robot
must be able to interpret the mission according to its
actual context during its autonomous execution.

• The robot could fall into difficult situations wherein
its perception, interpretation or decision making ca-
pacities are insufficient. Human intervention would
then be necessary for troubleshooting (which could
be at a very low-level of command).

Thierry Simeon

334 Chatila et al.

otktr x e m r ~ ,
orblttr

k
M ~ t e m ~ t

I
Tu.k L~el

OPERATOR STATION

h

gummteed j tlmJ

r [
~sx

ROBOT MOI~UL~

ROBOT CONTROL SYST]~I

Fig. 1. Global architecture.

According to these arguments, we propose a global
architecture for a robotic exploration system in two
main parts (Fig. 1): a ground station for mission pro-
gramming and supervision, and a remote robot able to
interpret the mission and execute it autonomously.

2 The Ground Station

The Ground Station includes the necessary functions
to allow a human to:

1. build a mission that can then be interpreted and
executed by the robot. Such a mission is called an
executable mission, as opposed to a higher level
description of objectives as they may be expressed
by planet scientists, and

2. supervise its execution, taking into account the de-
lays and communication constraints.

The process of building an executable mission is de-
composed into two phases which correspond to two
different levels of abstractions and to different plan-
ning techniques:

1. a phase called "mission planning" which produces
a "mission plan", i.e. a set of (partially) ordered
steps with temporal constraints that will allow the
robot to achieve a given goal.

2. a phase called "teleprogramming" that consists in
refining a step in the mission in terms of tasks that
can be interpreted and then executed by the robot.
Depending on the nature of the mission and its diffi-
culty, and on the amount of information available at

planning time, an executable mission can be com-
posed of a variable number of more or less detailed
steps.

2.1 Mission Planning

Mission planning can be carried out with the help of
a planning system able to take into account temporal
and resource constraints as they can be foreseen at this
stage. We have developed a temporal planning sys-
tem called IxTeT (Ghallab & Mounir Alaoui, 1989;
Dousson et al., 1993) which can reason on symbolic
and numeric temporal relations between time instants.
It produces a set of partially ordered tasks with tem-
poral constraints. The explicit representation of time
allows for a representation of planning operators that
specify information concerning the duration of actions,
the relative time when the consequences of an operator
become true, the conditions which must remain true
during action execution, joint effects with other opera-
tors executed in parallel, and the like. The descriptions
of the world, the goals and the planning operators are
given using symbolic and or numeric temporal relations
between time instants or elementary temporal relations
between intervals which can be transformed into rela-
tions between instants.

At the mission planning level, the operator describes
the mission in terms of results to be achieved, goals
to be reached, temporal relations and numerical con-
straints, and so forth. The planner produces a set of
tasks according to that description. This is the nominal
plan.

As an example, let us consider the mission: go from
sitel to site2, there take a video panorama, send
it to Earth, and finally proceed to s i t e 3 , in order to
be there before nightfall. Given the appropriate task
models, the IxTeT planner will produce the plan shown
in Fig. 2, provided the overall time constraint ("before
nightfall") is not too tight. The numerical constraints
between time instants are not represented here.

In this example, we have chosen to use very simple
task models (consisting in two instants: begin and end)
for the sake of demonstrativeness. According to these
models, the two tasks C o t o S i t e and S e n d D a t a do
not share the same resources, so the planner leaves them
unordered. What this means is, they both occur after in-
stant 12 (when G e t P a n o r a m a is finished), and after in-
stant 2 in the case of S e n d D a t a (P a n o r a m a , S i t e 2)
(when the communication with the Earth becomes pos-
sible). In the case of the planetary rover, the physical
machine cannot execute both tasks at the same time,

Thierry Simeon

Planetary Exploration by a Mobile Robot 335

7 ~. 12 I0
Ge~(51te2) !

GotoS i t~ (S I tmi, S | te2)
6otoSitalSitm2, S I t~3)

CDIt.LII~O

A14R I L(PanoPaRa, Si te2) no ~ ;

R~T_INO Stte£ . m.& n/Site2 , lnkn~Stte3

eDiCT(SIal.SIte3) I t ~ I

CDMWECT{SlteI.SIte2) c~Ict~d

,," v , .

Fig. 2. Example of a mission plan.

because talking to the Earth means unfolding the an-
tenna, pointing it, etc. But ordering these two tasks
would be very constraining, considering that we do not
know in advance which instant occurs first, 2 or 12.

2.2 Task-Level Teleprogramming

Depending on the nature of the task and on its difficulty
with respect to environment conditions, and depending
on the robot decisional and operational capacities, a
task selected by the planner can be sent as it is to the
robot or must be further refined at the ground station.
We call this process the "tele-programming phase". It
uses all the information and expertise available at the
ground station which may help the robot in perform-
ing its task. The result of this phase can be a more or
less detailed program together with a set of execution
"modalities" which provide a convenient representa-
tion for a class of conditional plans.

These execution modalities are expressed in terms
of:

• constraints or directions to be used by the robot con-
trol system for executing the mission and each of its
tasks;

• a description of situations to monitor and the appro-
priate reactions to their occurrence; such reactions
are immediate reflexes, "local" correcting actions
(without questioning the mission), or requests for
re-planning a task.

GotoSite(Site 1,Site2) 1

G o t o S i t e : ~ ~

l GetPan°rama(Site2) 1 (GotoSite(current.Site3) 3

G e t P a n o ~ m ~

(SendDam(Panorarr~Site2!~ [GotoSite,Site2,Site3,;

[GotoSite(Site2,Site3))

Fig. 3. The final plan.

The plan produced by IxTeT corresponds to the
nominal path of each task. We have to introduce the
necessary indications to the robot to take into account
failures and non-nominal events. A specific procedure
is used to interactively build the final plan by appending
other tasks, are signalled to the operator. The operator
can modify and/or append tasks sing a graphic display
and tools for the verification of preconditions and re-
source consumption.

Figure 3 shows an example. Here, the operator de-
cided that the robot proceed to Site3 should it fail
to reach S i t e 2 ; as well if it is short of time after
completing the task GetPanoraraa . Of course, all
events not made explicit should be handled by the robot
itself.

At this point, the plan skeleton is complete, but
the tasks need yet to be refined. For example, a mo-
tion task "GO-TO(site)" is replaced by a sequence of
more robust global motions that guide the robot along
a "good" route as it may be selected from data taken
from orbit, and also relying on environment features
or landmarks- i f any (Chatila et al., 1992). The robot
will be still executing autonomously its navigation, but
instead of using only its own data, it also takes ad-
vantage of other observations. In addition, execution
modalities can be added to the task, to be used by the
robot to take its own decisions. Such modalities include
constraints and indications for selecting the adequate
actions (e.g., decision to cross an uneven terrain, with
respect to try to avoid it, at the price of a longer but
easier trajectory). This teleprogramming phase ends
up for the case of g]obal navigation in constructing
navigation routes as shown in Fig. 4.

Some task need also to be completely programmed
if they are not already defined at the robot level. Then,
the operator has to supply a program for that task. Here
is a simplified example:

Thierry Simeon

336 Chatila et al.

!i:! i Ei !̧ I̧I::I :: • ::ii!i!iliiii! ! il,i I !

set of tasks, defined with their arguments, temporal
constraints (relative to the start and end point, as well
as duration) and modalities, connected by transitions
labelled with internal and external events.

2.3 Telesupervision

Telesupervision in this context has both a mission
monitoring role and a troubleshooting role. Because of
communication constraints (communication requires
pointing the antenna and hence cannot be done conti-
nuously) specific supervision commands such as status
reports and data on mission execution must be included
in the mission itself. In case of a problem encountered
during execution, the robot must take the decision to
call for help, or to continue the mission according to
the given modalities.

local view (robot)
with terrain classification

Fig. 4. Construction of a navigation route.

Task GetPanorama (place) {

do {
exec check_robot_at_place(place);

report RESULT;
if (is_false(?RESULT))

raise END("context_failure");
post point_camera(0.00)

report STATUS;
if (is_failed(?STATUS))

raise END(~hardware_failure");
loop {

post get_picture();
post move_camera(30.00);

exec check_camera_position(0.00)

report RESULT;

if (is_true(?RESULT))
raise BREAK;

} watching BREAK;
raise END(~success") ;

} watching END;
} export END;

The robot's version of the mission program includes
the final mission plan, the modalities, the description
of new tasks, and all necessary pieces of data. The
plan is expressed as a data structure, consisting in a

3 The Rover

Because the robot is in a remote ill-known environ-
ment, and communications constraints prevent from a
continuous exchange of data with it, it is not possi-
ble in general to plan its actions with all the details.
Therefore, the robot control system should be able to
interpret the tasks in terms of actions to be executed,
taking into account the actual state of the system and
of the environment (Chatila et al., 1992). Mission exe-
cution is completely autonomous and controlled on-
board, without any direct interaction with the station
(except if planned). Exchange of data with the Ground
Station takes place as planned in the mission or when
necessary because of execution status, e.g., the failure
of some tasks.

The robot control architecture is derived from the ar-
chitecture for complete autonomy presented in (Alami
et al., 1993), in which the mission planning compo-
nent is deported on the operator station, having more
powerful computers as well as computer-aided facili-
ties and human expertise at its disposal. It is organized
into three levels.

The higher level is composed of a mission supervisor
which interacts with the operator station and the next
level (viewed as a set of processes which exchange
signals with it).

The second level is composed of a task refinement
planner and a task supervisor.

The activity of the supervisors consists in monitor-
ing plan execution at their level by performing situa-
tion detection and assessment and by taking appropriate

Thierry Simeon

Planetary Exploration by a Mobile Robot 337

decisions in real time. In order to achieve this, the su-
pervisor makes use of deliberation algorithms which
are guaranteed to be time-bounded and compatible
with the dynamics of the controlled system. Indeed, all
deliberation algorithms which do not verify this prop-
erty are actually performed by the planner (on-board
or at the Operator's Station) upon request of the super-
visor.

Note that in this architecture, on-board planning is
necessary only at the second level. It is essentially a
"refinement" using domain- or task-specific knowl-
edge. For this, we use C-PRS (Ingrand et al., 1992).
which provides a suitable framework for goal-driven
as well as situation driven deliberation processes. In-
deed, PRS implements script (called KA in PRS) se-
lection and goal posting mechanisms. Planning can be
performed through context-dependent goal decomposi-
tion; situation driven reaction can be performed by trig-
gering procedures according to the environment model.

The lowest level includes the robot modules that per-
form perception and action execution. The response
time of these modules that implement polynomial time
algorithms is bounded. This level is managed and con-
trolled by a central Executive in order to execute the
actions requested by the task supervisor. The executive
is a time-bounded system: its reactions to events are
predetermined in a precompiled structure.

A module embeds primitive robot functions which
share common data or resources. An internal control
process called the "module manager" is responsible for
receiving requests to perform these functions from the
robot controller, and for otherwise managing the mod-
ule. Each function being well defined, its activation
or termination must respect certain conditions that the
module manager verifies. Modules interact by message
passing or by reading data exported by other modules,
and by putting their own processing results into ex-
ported data structures (EDS). At a given time, a module
can be executing several functions.

Such an architecture allows a level of robot auton-
omy which is essentially dependent upon the difficulty
of the task and the state of the environment. The au-
tonomy is determined by the procedures implemented
on the refinement level, and the algorithms within the
module functions.

4 Mission Execution

On-board plan supervision consists in sequencing the
tasks according to expected events specified in the

plan (begin and end events of the tasks, and time-
synchronization events) as well as unspecified (for in-
stance, task failure not addressed in the plan). In case
of conflict between two tasks, the plan supervisor is res-
ponsible for deciding which task should be executed or
interrupted and for enforcing that decision.

Each task in the plan corresponds to the execution
of one or several procedures. According to the tasks
and to the execution context, the procedures are either
selected because they are explicitly designated in the
task plan, and are then instanciated for execution, or
are selected as a result of goal posting. In this case the
selection of a procedure follows the general scheme of
PRS and is based on some invocation conditions and on
the context of execution as expressed in the data base.
The choice of the best procedure, when several are
possible candidates, is made by a meta-procedure that
reasons on applicability criteria. Procedure selection
is an iterative process.

The execution of a procedure may produce sev-
eral outcomes. The plan explicitly provides the desired
chaining between the tasks according to some of these
outcomes. If this chaining is not explicit in the plan,
default procedures are selected (or goals) and executed
by the supervision system. Usually, such procedures
will put the robot in a safe and stable situation, and try
to communicate with the ground station.

As an example, we describe the procedure
G o t o S i t e which loops until the robot has reached
the target site. Executing this procedure makes the sys-
tem post new goals, and select new procedures that
will eventually result in executing some actions (e.g.,
perception, trajectory planning, etc.) and so on:

task GotoSite (site) £

loop {
exec check_robot_at_site (site)

report RESULT;

if (is_true (?RESULT))

raise END(~success") ;

post get_environment_model ()

report MODEL;

post choose_navigation_mode (?MODEL)

report MODE;

if (equals(?MODE,#reactive)) {

fork watch_site_entry (site)

report SITE_REACHED;

exec move_until_obstacle ()

watching SITE_REACHED

report STATUS;

if (is-true(?SITE--REACHED))

Thierry Simeon

338 Chat i la et aL

raise END(~success") ;
}

else {

post ~nd_sub_goal (?MODEL)
report SUB_GOAL;

post frnd_traj (?MODEL,?SUB_GOAL)
report TRAJECTORY;

if (is_void(?TRAJECTORY))

raise END(~failure");
exec follow_tra- (?TRAJECTORY);

}

} watching END;

Here the robot starts by acquiring new data on the en-
vironment, and decides, on the basis of a first modelling
of the terrain, which navigation mode should be se-
lected. Two modes are possible: reactive and planned.
The reactive mode is selected in case of a flat terrain
almost free of obstacles. It makes the robot move to-
ward the goal while trying to detect obstacles--without
a full analysis of the terrain. In the planned mode, a
navigation map is built, and a trajectory planner is se-
lected to compute a collision free trajectory (either on
flat or uneven terrain).

I Missiontmm Ground Station
repoNs to

On-Board MISSION
L su+v, R I

Decisional Level I

EXECUTIVE

Functional Modules I /

The selection of subgoals for navigation depends on
the modalities associated with the plan, such as the
navigation routes and landmarks.

The task supervisor then updates the execution
modalities and posts the goal corresponding to the task.
The task refinement level (see Fig. 5) selects the suit-
able procedures for achieving the goal with respect to
the execution context and the modalities. When the
goal is fulfilled or recognized as unreachable, the task
supervisor generates the task-termination event.

5 Autonomous Navigation

This section presents an approach to autonomous robot
navigation in an unknown planetary environment. It in-
volves several levels of reasoning, several environment
representation s , and three different motion modes. We
emphasize here especially on the "navigation level" of
the whole system, which is in charge of reaching a
distant goal by selecting sub-goals to reach, navigation
modes to apply, and perception tasks to execute for this
purpose.

We first present our general adaptive and hierarchical
approach to autonomous navigation, pointing out the
importance of the navigation level. Then we describe
how terrain representations required by this level are
incrementally built on the basis of 3D range and video
sensory data. The algorithms that perform the selec-
tion of sub-goals and perception tasks are described,
and illustrated by experimental results with the robot
ADAM 1 (see Fig. 6) that has performed a large number
of runs using this system in two different test sites at
LAAS and at the Geroms lunar site at the French space
Agency CNES.

The problem of long range navigation in un-
known outdoors environments is not very frequently

Fig. 5. On-board architecture. Fig. 6. ADAM in the geroms test site.

Thierry Simeon

Planetary Exploration by a Mobile Robot 339

addressed. Important achievements are Robbie (Weis-
bin et al., 1992), Ambler (Krotkov et al., 1994) and the
navigation of the UGV (Hebert, 1994).

An Adaptative Approach. According to a general
"economy of means" principle due to limitations of on-
board processing capacities, memory and energy put
on the system, and to achieve a time-efficient behav-
ior, we favor an adaptive approach in which the robot
adapts its behavior to the nature of the terrain (Chatila
et al., 1993; Lacroix et al., 1994). Hence, three motion
modes are considered:

• A reflex navigation mode: on large flat and lightly
cluttered zones, the robot locomotion commands are
determined on the basis of a goal and informations
provided by "obstacle detector" sensors;

• A 2D planned navigation mode: it relies on the
execution of a planned 2D trajectory, using a bi-
nary description of the environment in terms of
Crossable~on- Crossable areas;

• A 3D planned navigation mode: this mode requires
a precise model of the terrain, on which a fine 3D
trajectory is planned and executed;

A HierarchicaIApproach. We assume that the terrain
on which the robot must fulfill a navigation task is ini-
tially unknown, or mapped with a very low resolution.
It is then only possible for an operator to specify a graph
of routes, i.e., large corridors within which the robot
has to move autonomously. To tackle this problem, we
defined three layers of planning (Fig. 7):

Route planning

~'~:T-~. ,,.L7 -7" Path planning (navigation)

i ~ Trajectory planning
Goal ~ J ~ "

Forbidden area ~ J ~
Planned motion ~ ~
Executed motion , / _ ~

Fig. 7. Three levels of planning.

• route planning which chooses long-term paths to the
goal on the basis of the initial informations. It selects
a sub-goal for the path planning level;

• path planning (or navigation) which reasons on a
global qualitative representation of the terrain, built
from the data acquired by the robot's sensors. It
selects the next perception task to perform, the sub-
goal to reach and the motion mode to apply;

• Finallytrajectoryplanningwhichdeterminesthetra-
jectory to execute (in one of the above mentioned
three motion modes to reach the goal defined by the
path planning level.

The Main "Go-To" Loop. Our approach to determine
which navigation mode can be applied is based on a
quick analysis of the raw 3D data produced either by
a Laser Range Finder (LRF) or by stereovision. This
quick analysis provides a description of the terrain in
terms of navigation classes. This representation is
incrementally built as the robot moves and new per-
ceptions are fused with it to maintain a global qualita-
tive representation of the environment. All "strategic"
decisions are taken on the basis of this global repre-
sentation. They concern the determination of the in-
termediate goal positions, the choice of the navigation
mode to apply to reach them, as well as the definition
of the next perception task to execute (which sensor to
use? with what operating modalities? how should the
data be processed?). Such an approach involves the
development of different perception and motion plan-
ning processes, and emphasizes the importance of the
navigation planner, which is in charge of the strategic
decisions.

5.1 Terrain Representations

During navigation, a terrain representation is required
for various processes: navigation planning, trajectory
planning and robot localization. Aiming at building a
"universal" terrain model that contains all the neces-
sary informations is extremely difficult, inefficient, and
moreover not really useful. It is more direct and easier
to build different representations adapted to their use:
for navigation decisions, for motion planning on flat
terrain, on uneven terrain, and for localisation. Coher-
ence relationships between these representations are
to be maintained when necessary. The model is then
multi-layered and heterogeneous (Fig. 8). Several per-
ception processes coexist in the system, each dedicated
to the extraction of specific representations. Perception
is multi-purpose.

Thierry Simeon

340 Chatila et al.

I m "--

roL~o'ltl~s*

Fig. 8. The various terrain representations used in the system.
Arrows represent the constructive dependencies between them.

Incremental Terrain Modelling. For the purpose of
navigation planning, a global representation that de-
scribes the terrain in terms of navigation classes is re-
quired. We focus in this section on the algorithms
developed to build such a model from 3D data (pro-
duced either by a laser range finder or a correlation
stereovision algorithm).

3D Data Classification. Applied each time 3D data
are acquired, the classification process produces a de-
scription of the perceived areas in term in terrain
classes. I t relies on a specific discretization of the
perceived area that respects the sensor resolution. The
discretization defines "cells" on which different char-
acteristics are determined: density (number of points
contained in a cell compared with a nominal den-
sity defined by the discretization rates), mean altitude,
variance on the altitude, mean normal vector and corre-
sponding var iances . . . A non-parametric bayesian clas-
sification procedure is used to label each cell: a learning
phase based on prototypes classified by a human leads
to the determination of probability density functions,
and the classical bayesian approach is applied, which
provides an estimate of the probability for each possible
label. A decision function that privileges false alarms
(i.e., labeling a flat area as obstacle or uneven) instead
of the non-detections (i.e., the opposite: labeling an
obstacle as a flat area) is used (Fig. 9).

Incremental Fusion. The partial probabilities of a cell
to belong to a terrain class and the variance on their al-
titude allow to perform a fusion procedure of several
classified images. The fusion procedure is performed
on a bitmap, in the pixels of which are encoded all the

Fig. 9. Classificationofacorrelatedstereoimage: correlatedpixels
(left) and reprojection of the result in the camera frame (right--from
clear to dark: unknown, flat, uneven and obstacle).

Fig. 10. Fusion of 8 different classified laser images: terrain classes
(left) and altitude (right).

cell attributes determined by the classification proce-
dure (Fig. 10).

Model Structure and Management. For the purpose
of navigation planning, the global bitmap model is
structured into a region map, that defines a connec-
tion graph. Planning a path (as opposed to p!anning a
trajectory) does not require a precise evaluation of the
static and kinematic constraints on the robot: we sim-
ply consider a robot point model, and therefore perform
an obstacle growing in the bitmap before segmenting it
into regions (Fig. 11). The regions define a connection
graph, whose nodes are on their borders, and whose
arcs correspond to a region crossing.

Fig. 11. The model of Fig. 10 after obstacle growing (left) and the
nodes defined by the region segmentation (right).

Thierry Simeon

Planetary Exploration by a Mobile Robot 341

Fig. 12.
bitmap.

Only the area surrounding the robot is explicited as a

In order to satisfy memory constraints, the global
model is represented as a bitmap only in the surround-
ings of the robot's current position, and the region
model (much more compact) is kept in memory during
the whole mission (Fig. 12).

5.2 Navigation Planning

Each time 3D data are acquired, classified and fused in
the global model, the robot has to answer autonomously
the following questions:

• Where to go? (sub-goal selection)
• How to go there? (motion mode selection)
• Where to perceive? (data acquisition control)
• What to do with the acquired data? (perception task

selection)

For that purpose, the navigation planner reasons on
the robot capabilities (action models for perception and
motion tasks) and the global terrain representation.

A straightforward fact is that motion and perception
tasks are strongly interdependent: executing a motion
requires to have formerly modeled the environment,
and to acquire some specific data, a motion is often
necessary to go the adequate observation position.

Finding paths in the connection graph that minimizes
some criteria (time and energy) is easily solved by clas-
sical search techniques, using cost functions that ex-
press these criteria; but estimating the result (and the
utility) of a perception task is much more difficult. We
developed an error model of the classification proce-
dure that allows to estimate the amount of informa-
tion it can bring, and a model of the localisation task

that predicts the precision on the robot position it can
provide.

A direct and brute force approach to answer the for-
mer questions would be to perform a search in the
connection graph, in which all the possible perception
tasks would be predicted and evaluated at each node
encountered during the search. Besides its drastic al-
gorithmic complexity, this approach appeared unreal-
istic because the model of the classification task cannot
not predict what will be effectively perceived: it is then
difficult to estimate the interest of these tasks.

We therefore choose a different approach to tackle
the problem: the perception task selection is subordi-
nated to the motion task. A search algorithm provides
an optimal path, that is analyzed afterwards to deduce
the perceptions tasks to perform. The "optimality" cri-
terion takes here a crucial importance: it is a linear
combination of time and energy consumed, weighted
by the terrain class to cross and the confidence of the
terrain labeling. The introduction of the robot position
uncertainty in the cost function allows to plan localisa-
tion tasks along the path.

5.3 Trajectory Planning

Depending on tile label of the regions produced by
the navigation planner, the adequate trajectory planner
(2D or 3D) is selected to compute the actual trajectory
within these regions.

Flat Terrain. The trajectory is searched with a sim-
plified and fast method, based on bitmap and potential
fields techniques. In a natural environment, and given
the uncertainties of motion, perception and modelling,
we consider it sufficient to approximate the robot by
a circle and its configuration space is hence two di-
mensional, corresponding to the robot's position in the
horizontal plane. Path planning is done according the
following procedure:

• a binary bitmapfree/obstacle is first extracted from
the global bitmap model over the region to be
crossed;

• a classical wavefront expansion algorithm then pro-
duces a distance map from which the skeleton of the
free-space is computed (Fig. 13(a));

• the path reaching the sub-goal is obtained by propa-
gating a potential through this skeleton. This path is
finally transformed into a sequence of line segments
and rotations (Fig. 13(b)).

Search time only depends on the bitmap discretiza-
tion, and not on the complexity of the environment. The

Thierry Simeon

342 Chatila et aL

Fig. 13. The 2D planner: (a) distance to the obstacles and skeleton
of the free space, (b) trajectories produced by the planner.

final trajectory is obtained within less than 2 seconds
(on a Sparc 10) for a 256 x 256 bitmap.

Uneven Terrain. On uneven terrain, irregularities
are important enough and the binary partition into
free~obstacle areas is not anymore sufficient: the notion
of obstacle clearly depends on the capacity of the lo-
comotion system to overcome terrain irregularities and
also on specific constraints acting on the placement of
the robot over the terrain. The trajectory planner there-
fore requires a 3D description of the terrain, based on
the elevation map, and a precise model of the robot
geometry in order to produce collision-free trajecto-
ries that also guarantee vehicle stability and take into
account its kinematic constraints.

This planner, described in (Sim6on & Dacre Wright,
1993), computes a motion verifying such constraints
by exploring a three dimensional configuration space
CS = (x, y, O) (the x-y position of the robot frame
and its heading 0). The obstacles are defined in CS as
the set of configurations which do not verify some of
the constraints imposed to the placement of the robot
(Fig. 14). The ADAM robot is modelled by a rigid
body and six wheels linked to the chassis by passive
suspensions. For a given configuration, its placement
results from the interaction between the wheels and the
terrain, and from the balance of the suspensions. The
remaining parameters of the placement vector (the z
coordinate, the roll and pitch angles 4), ~p), are obtained
by minimizing an energy function.

S
Fig. 14. The constraints considered by the 3D planner: (a) collision,
(b) stability, (c) terrain irregularities, and (d) kinematic constraint.

The planner builds incrementally a graph of discrete
configurations that can be reached from the initial posi-
tion by applying sequences of discrete controls during
a short time interval. Typical controls consist in driv-
ing forward or backwards with a null or a maximal
angular velocity. Each arc of the graph corresponds
to a trajectory portion computed for a given control.
Only the arcs verifying the placement constraints men-
tioned above are considered during the search. In order
to limit the size of the graph, the configuration space
is initially decomposed into an array of small cuboid
cells. This array is used during the search to keep track
of small CS-regions which have already been crossed
by some trajectory. The configurations generated into
a visited cell are discarded and therefore, one node is
at most generated in each cell.

In the case of incremental exploration of the envi-
ronment, an additional constraint must be considered:
the existence of unknown areas on the terrain elevation
map. Indeed, any terrain irregularity may hide part
of the ground. When it is possible (this caution con-
straint can be more or less relaxed), the path must avoid
such unknown areas. If not, it must search the best way
through unknown areas, and provide the best percep-
tion point of view on the way to the goal. The avoidance
of such areas is obtained by an adapted weight of the arc
cost and also by computing for the heuristic guidance of
the search, a potential bitmap which includes the diffÉ-
culty of the terrain and the proportion of unknown areas
around the terrain patches (Nashashibi et al., 1994).

The minimum-cost trajectory returned by the plan-
ner realizes a compromise between the distance crossed
by the vehicle, the security along the path and a

Thierry Simeon

Planetary Explora t ion by a Mob i l e Robo t 343

Fig. 15. A 3D trajectory planned on a real elevation map.

small number o f maneuvers . Search t ime strongly

depends on the difficulty o f the terrain. The whole

procedure takes be tween 40 seconds to a few min-

utes, on an Indigo R4000 Si l icon Graphics workstat ion.

F igure 15 shows a t rajectory computed on a real terrain,

where darker areas correspond to interpolated unknown

terrain.

6 Conclusion

The presented approach is based on a gener ic architec-

ture for in tervent ion robots we are developing for sev-

eral h igh ly demand ing applicat ions, including planet

explorat ion. It has been part ial ly instanciated in the

" E D E N " exper iment carried out at L A A S with the mo-

bile robot A D A M , especia l ly the funct ions necessary

for au tonomous navigat ion in a natural environment ,

inc luding percept ion, env i ronment model ing, local iza-

tion, path and trajectory planning and execut ion on flat

or uneven terrain. The integrat ion of the full sys tem

including the miss ion planning and te leprogramming

phases is be ing current ly achieved.

Notes

L ADAM is property of Framatome and Matra Marconi Space,
currently lent to LAAS.

References

Alami, R., Chatila, R., and Espiau, B. 1993. Designing an intellin-
gent control architecture for autonomous robots. In International
CongCerence on Advance Robotics, ICAR'93, Tokyo, Japan.

Angle, C.M. and Brooks, R.A. 1990. Small planetary rovers. In IEEE
International Workshop on Intelligent Robots and Systems (IROS
"90), Tsuchiura, Japan.

Brooks, R.A. 1986. A robust layered control system for a mobile
robot. 1EEE Journal of Robotics and Automation.

Chatila, R., Alami, R., Degallaix, B., and Laruelle, H. 1992. In-
tegrated planning and execution control of autonomous robot ac-
tions. In 1EEE International Conference on Robotics and Automa-
tion, Nice, France.

Chatila, R., Alami, R., Lacroix, S., Perret, J., and Proust, C.
1993. Planet exploration by robots: from mission planning to
autonomous navigation. In International Conference on Advance
Robotics, ICAR'93, Tokyo, Japan.

Chatila, R., Fleury, S., Herrb, M., Lacroix, S., and Proust, C. 1993.
Autonomous navigation in natural environment. In Third Interna-
tional Symposium on Experimental Robotics, Kyoto, Japan.

Costard, E et al. 1992. A reference martian mission for a long range
rover. In Missions, Technologies and Design of Planetary Mobile
Vehicles, Toulouse, France.

Dousson, C., Gaborit, R, and Ghallab, M. 1993. Situation recog-
nition: Representation and algorithms. In 13th International
Joint Conference on Artificial Intelligence (IJCAI), Chambery,
France.

Ghallab, M. and Mounir Alaoui, A. 1989. Managing efficiently tem-
poral relations through indexed spanning trees. In l l th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), Detroit,
Michigan, USA, pp. 1297-1303.

Giralt, G. and Boissier, L. 1992. THE FRENCH PLANETARY
ROVER VAP: Concept and current developments. In IEEE Inter-
national Worlc~hop on Intelligent Robots and Systems, (IROS'92),
Raleigh, North Carolina, USA, pp. 1391-1398.

Hebert, M. 1994. Pixel-based range processing for autonomous driv-
ing. In IEEE International Conference on Robotics and Automa-
tion, San Diego, California.

Hiral, S. and Sato, T. 1989. Motion understanding for world model
management of telerobot. In Robotics Research: The F~fth Inter-
national Symposium, Tokyo, Japan, pp. 5-12.

Hirzinger, G., Heindl, J., and Landzettel, K. 1989. Predictive and
knowledge-based telerobotic control concepts. In IEEE Interna-
tional Conference on Robotics and Automation, Scottsdale, USA,
pp. 1768-1777.

Ingrand, F., Georgeff, M.R, and Rao, A.S. 1992. An architecture for
real-time reasoning and system control. IEEE Expert, Intelligent
Systems and Their Applications, 7:34-44.

Krotkov, E., Hebert, M., Buffa, M., Cozman, E, and Robert, L. 1994~
Stereo friving and position estimation for autonomous planetary
rovers. In IARP 2nd Workshop on Robotics in Space, Montreal,
Canada.

Lacroix, S., Chatila, R., Fleury, S., Herrb, M., and Simeon, T.
1994. Autonomous navigation in outdoor environment: Adapta-
rive approach and experiment. In IEEE International Conference
on Robotics and Automation, San Diego, California.

Miller, D.P., Desai, R.S., Gat, E., Ivlev, R., and Loch, J. 1992. Ex-
periments with a small behaviour controlled planetary rover. In
Missions, Technologies and Design of Planetary Mobile Vehicles,
Toulouse, France.

Nashashibi, E, Fillatreau, P., Dacre-Wright, B., and Sim6on, T. 1994.
3D autonomous navigation in a natural terrain. IEEEInternational
Conference on Robotics and Automation, San Diego, LISA.

Sheridan, T. 1989. Telerobotics. In 1EEE International Conference
on Robotics and Automation, Scottsdale, USA.

Thierry Simeon

344 Chatila et al.

Simeon, T. and Dacre Wright, B. 1993. A Practical Motion Planner
for All-Terrain Mobile Robots. 1EEEInternational Conference on
Robots and Systems, Yokohama, Japan.

Thorpe, C., Hebert, M., Kanade, T., and Shafer, S. 1991. Toward
autonomous driving: the cmu navlab. Part I: Perception. 1EEE
Expert, 6(4).

Weisbin, C.R., Montenerlo, M., and Whittaker, W. 1992. Evolving
directions in nasa's planetary rover requirements end technology.
In Missions, Technologies and Design of Planetary Mobile Vehi-
cles. Centre National d'Etudes Spatiales, France.

Wilcox, B. and Gennery, D. 1987. A mars rover for the 1990's.
Journal of the British Interplanetary Society, 40:484-488.

Thierry Simeon

