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Abstract. Sending mobile robots to accomplish planet exploration missions is scientifically promising and tech- 
nologically challenging. We present in this paper a complete approach that encompasses the major aspects involved 
in the design of a robotic system for planetary exploration. It includes mission teleprogramming and supervision at 
a ground station, and autonomous mission execution by the remote mobile robot. We have partially implemented 
and validated these concepts. Experimental results illustrate the approach and the results. 
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1 Introduction and Overview 

Several aspects make planet exploration a demanding 
and difficult problem for robotics: 

• The robot has to operate in a natural, unstructured 
and a priori unknown environment. 

• In the case of aremote planet (e.g., Mars), there is no 
possibility of continuous interaction with the robot 
because of important delays in communications and 
low bandwidth. 

• The information on the robot and the environment 
is mostly acquired through the robot's own sensors. 
Little and rather poor a priori knowledge exist. 

Because of time delays and low bandwidth, di- 
rect teleoperation is either impossible or very cum- 
bersome. Telerobotics approaches (Sheridan, 1989; 
Hirzinger et al., 1989; Hirai & Sato, 1989) need a rather 
accurate model of the working space, and are therefore 
not applicable as such. The robot clearly needs impor- 
tant autonomous capacities. 

It has been proposed (Angle & Brooks, 1990; 
Miller et al., 1992) to send one or more "simple" and 
completely autonomous robots, without any control 
from a ground station. Such robots, using a behavior- 
based control scheme (Brooks, 1986), would achieve 
an imaging, measurement or sample collection mis- 
sion. However, it is not possible in this scheme to inter- 
act with the robot in order to designate a precise site to 
which the robot has to navigate, or to send different mis- 
sions. Even in this case, reaching a precise site needs 
capacities that such robots cannot be endowed with. 

We present a different approach to meet the chal- 
lenge of planet exploration by mobile robots (Giralt & 
Boissier, 1992). It stems from the following consider- 
ations: 

• The landing site may be remote from areas of interest 
to the scientists, mainly because it will be selected 
for its safety whereas the interesting areas are in 
general rather inadequate for landing (Costard et al., 
1992). Hence the robot has to travel some distance 
(tens of kilometers or more) from the lander to reach 
a specific region (not at random nor merely in a given 
direction). 

• The mission is not defined once and for all. Accord- 
ing to returned data, the scientists on Earth should 
be able to decide for the exploration of such or such 
site, the analysis of such sample, etc. It is necessary 
then to he able to control the robot, i.e., send it new 
missions. It is therefore important to know what it 
is doing. In order to provide it with new objectives, 
it is also important to know where it is. 

• Because the environment is poorly known, the mis- 
sion can only be defined at a task-level in general, and 
not in its every detail (except in very special cases 
such as picking up a rock at reach). Hence the robot 
must be able to interpret the mission according to its 
actual context during its autonomous execution. 

• The robot could fall into difficult situations wherein 
its perception, interpretation or decision making ca- 
pacities are insufficient. Human intervention would 
then be necessary for troubleshooting (which could 
be at a very low-level of command). 
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Fig. 1. Global architecture. 

According to these arguments, we propose a global 
architecture for a robotic exploration system in two 
main parts (Fig. 1): a ground station for mission pro- 
gramming and supervision, and a remote robot able to 
interpret the mission and execute it autonomously. 

2 The Ground Station 

The Ground Station includes the necessary functions 
to allow a human to: 

1. build a mission that can then be interpreted and 
executed by the robot. Such a mission is called an 
executable mission, as opposed to a higher level 
description of objectives as they may be expressed 
by planet scientists, and 

2. supervise its execution, taking into account the de- 
lays and communication constraints. 

The process of building an executable mission is de- 
composed into two phases which correspond to two 
different levels of abstractions and to different plan- 
ning techniques: 

1. a phase called "mission planning" which produces 
a "mission plan", i.e. a set of (partially) ordered 
steps with temporal constraints that will allow the 
robot to achieve a given goal. 

2. a phase called "teleprogramming" that consists in 
refining a step in the mission in terms of tasks that 
can be interpreted and then executed by the robot. 
Depending on the nature of the mission and its diffi- 
culty, and on the amount of information available at 

planning time, an executable mission can be com- 
posed of a variable number of more or less detailed 
steps. 

2.1 Mission Planning 

Mission planning can be carried out with the help of 
a planning system able to take into account temporal 
and resource constraints as they can be foreseen at this 
stage. We have developed a temporal planning sys- 
tem called IxTeT (Ghallab & Mounir Alaoui, 1989; 
Dousson et al., 1993) which can reason on symbolic 
and numeric temporal relations between time instants. 
It produces a set of partially ordered tasks with tem- 
poral constraints. The explicit representation of time 
allows for a representation of planning operators that 
specify information concerning the duration of actions, 
the relative time when the consequences of an operator 
become true, the conditions which must remain true 
during action execution, joint effects with other opera- 
tors executed in parallel, and the like. The descriptions 
of the world, the goals and the planning operators are 
given using symbolic and or numeric temporal relations 
between time instants or elementary temporal relations 
between intervals which can be transformed into rela- 
tions between instants. 

At the mission planning level, the operator describes 
the mission in terms of results to be achieved, goals 
to be reached, temporal relations and numerical con- 
straints, and so forth. The planner produces a set of 
tasks according to that description. This is the nominal 
plan. 

As an example, let us consider the mission: go from 
sitel to site2, there take a video panorama, send 
it to Earth, and finally proceed to s i t e 3 ,  in order to 
be there before nightfall. Given the appropriate task 
models, the IxTeT planner will produce the plan shown 
in Fig. 2, provided the overall time constraint ("before 
nightfall") is not too tight. The numerical constraints 
between time instants are not represented here. 

In this example, we have chosen to use very simple 
task models (consisting in two instants: begin and end) 
for the sake of demonstrativeness. According to these 
models, the two tasks C o t o S i t e  and S e n d D a t a  do 
not share the same resources, so the planner leaves them 
unordered. What this means is, they both occur after in- 
stant 12 (when G e t P a n o r a m a  is finished), and after in- 
stant 2 in the case of S e n d D a t a  ( P a n o r a m a ,  S i t e 2  ) 
(when the communication with the Earth becomes pos- 
sible). In the case of the planetary rover, the physical 
machine cannot execute both tasks at the same time, 
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Fig. 2. Example of a mission plan. 

because talking to the Earth means unfolding the an- 
tenna, pointing it, etc. But ordering these two tasks 
would be very constraining, considering that we do not 
know in advance which instant occurs first, 2 or 12. 

2.2 Task-Level Teleprogramming 

Depending on the nature of the task and on its difficulty 
with respect to environment conditions, and depending 
on the robot decisional and operational capacities, a 
task selected by the planner can be sent as it is to the 
robot or must be further refined at the ground station. 
We call this process the "tele-programming phase". It 
uses all the information and expertise available at the 
ground station which may help the robot in perform- 
ing its task. The result of this phase can be a more or 
less detailed program together with a set of execution 
"modalities" which provide a convenient representa- 
tion for a class of conditional plans. 

These execution modalities are expressed in terms 
of: 

• constraints or directions to be used by the robot con- 
trol system for executing the mission and each of its 
tasks; 

• a description of situations to monitor and the appro- 
priate reactions to their occurrence; such reactions 
are immediate reflexes, "local" correcting actions 
(without questioning the mission), or requests for 
re-planning a task. 

GotoSite(Site 1,Site2) 1 

G o t o S i t e : ~ ~  

l GetPan°rama(Site2) 1 (GotoSite(current.Site3) 3 

G e t P a n o ~ m ~  

( SendDam(Panorarr~Site2!~ [ GotoSite,Site2,Site3,; 

[ GotoSite(Site2,Site3) ) 

Fig. 3. The final plan. 

The plan produced by IxTeT corresponds to the 
nominal path of each task. We have to introduce the 
necessary indications to the robot to take into account 
failures and non-nominal events. A specific procedure 
is used to interactively build the final plan by appending 
other tasks, are signalled to the operator. The operator 
can modify and/or append tasks sing a graphic display 
and tools for the verification of preconditions and re- 
source consumption. 

Figure 3 shows an example. Here, the operator de- 
cided that the robot proceed to Site3 should it fail 
to reach S i t e 2 ;  as well if it is short of time after 
completing the task GetPanoraraa .  Of course, all 
events not made explicit should be handled by the robot 
itself. 

At this point, the plan skeleton is complete, but 
the tasks need yet to be refined. For example, a mo- 
tion task "GO-TO(site)" is replaced by a sequence of 
more robust global motions that guide the robot along 
a "good" route as it may be selected from data taken 
from orbit, and also relying on environment features 
or landmarks- i f  any (Chatila et al., 1992). The robot 
will be still executing autonomously its navigation, but 
instead of using only its own data, it also takes ad- 
vantage of other observations. In addition, execution 
modalities can be added to the task, to be used by the 
robot to take its own decisions. Such modalities include 
constraints and indications for selecting the adequate 
actions (e.g., decision to cross an uneven terrain, with 
respect to try to avoid it, at the price of a longer but 
easier trajectory). This teleprogramming phase ends 
up for the case of g]obal navigation in constructing 
navigation routes as shown in Fig. 4. 

Some task need also to be completely programmed 
if they are not already defined at the robot level. Then, 
the operator has to supply a program for that task. Here 
is a simplified example: 
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set of tasks, defined with their arguments, temporal 
constraints (relative to the start and end point, as well 
as duration) and modalities, connected by transitions 
labelled with internal and external events. 

2.3 Telesupervision 

Telesupervision in this context has both a mission 
monitoring role and a troubleshooting role. Because of 
communication constraints (communication requires 
pointing the antenna and hence cannot be done conti- 
nuously) specific supervision commands such as status 
reports and data on mission execution must be included 
in the mission itself. In case of a problem encountered 
during execution, the robot must take the decision to 
call for help, or to continue the mission according to 
the given modalities. 

local view (robot) 
with terrain classification 

Fig. 4. Construction of a navigation route. 

Task GetPanorama (place) { 

do { 
exec check_robot_at_place(place); 

report RESULT; 
if (is_false(?RESULT) ) 

raise END("context_failure"); 
post point_camera(0.00) 

report STATUS; 
if (is_failed(?STATUS)) 

raise END(~hardware_failure"); 
loop { 

post get_picture(); 
post move_camera(30.00); 

exec check_camera_position(0.00) 

report RESULT; 

if (is_true(?RESULT) ) 
raise BREAK; 

} watching BREAK; 
raise END(~success") ; 

} watching END; 
} export END; 

The robot's version of the mission program includes 
the final mission plan, the modalities, the description 
of new tasks, and all necessary pieces of data. The 
plan is expressed as a data structure, consisting in a 

3 The Rover 

Because the robot is in a remote ill-known environ- 
ment, and communications constraints prevent from a 
continuous exchange of data with it, it is not possi- 
ble in general to plan its actions with all the details. 
Therefore, the robot control system should be able to 
interpret the tasks in terms of actions to be executed, 
taking into account the actual state of the system and 
of the environment (Chatila et al., 1992). Mission exe- 
cution is completely autonomous and controlled on- 
board, without any direct interaction with the station 
(except if planned). Exchange of data with the Ground 
Station takes place as planned in the mission or when 
necessary because of execution status, e.g., the failure 
of some tasks. 

The robot control architecture is derived from the ar- 
chitecture for complete autonomy presented in (Alami 
et al., 1993), in which the mission planning compo- 
nent is deported on the operator station, having more 
powerful computers as well as computer-aided facili- 
ties and human expertise at its disposal. It is organized 
into three levels. 

The higher level is composed of a mission supervisor 
which interacts with the operator station and the next 
level (viewed as a set of processes which exchange 
signals with it). 

The second level is composed of a task refinement 
planner and a task supervisor. 

The activity of the supervisors consists in monitor- 
ing plan execution at their level by performing situa- 
tion detection and assessment and by taking appropriate 
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decisions in real time. In order to achieve this, the su- 
pervisor makes use of deliberation algorithms which 
are guaranteed to be time-bounded and compatible 
with the dynamics of the controlled system. Indeed, all 
deliberation algorithms which do not verify this prop- 
erty are actually performed by the planner (on-board 
or at the Operator's Station) upon request of the super- 
visor. 

Note that in this architecture, on-board planning is 
necessary only at the second level. It is essentially a 
"refinement" using domain- or task-specific knowl- 
edge. For this, we use C-PRS (Ingrand et al., 1992). 
which provides a suitable framework for goal-driven 
as well as situation driven deliberation processes. In- 
deed, PRS implements script (called KA in PRS) se- 
lection and goal posting mechanisms. Planning can be 
performed through context-dependent goal decomposi- 
tion; situation driven reaction can be performed by trig- 
gering procedures according to the environment model. 

The lowest level includes the robot modules that per- 
form perception and action execution. The response 
time of these modules that implement polynomial time 
algorithms is bounded. This level is managed and con- 
trolled by a central Executive in order to execute the 
actions requested by the task supervisor. The executive 
is a time-bounded system: its reactions to events are 
predetermined in a precompiled structure. 

A module embeds primitive robot functions which 
share common data or resources. An internal control 
process called the "module manager" is responsible for 
receiving requests to perform these functions from the 
robot controller, and for otherwise managing the mod- 
ule. Each function being well defined, its activation 
or termination must respect certain conditions that the 
module manager verifies. Modules interact by message 
passing or by reading data exported by other modules, 
and by putting their own processing results into ex- 
ported data structures (EDS). At a given time, a module 
can be executing several functions. 

Such an architecture allows a level of robot auton- 
omy which is essentially dependent upon the difficulty 
of the task and the state of the environment. The au- 
tonomy is determined by the procedures implemented 
on the refinement level, and the algorithms within the 
module functions. 

4 Mission Execution 

On-board plan supervision consists in sequencing the 
tasks according to expected events specified in the 

plan (begin and end events of the tasks, and time- 
synchronization events) as well as unspecified (for in- 
stance, task failure not addressed in the plan). In case 
of conflict between two tasks, the plan supervisor is res- 
ponsible for deciding which task should be executed or 
interrupted and for enforcing that decision. 

Each task in the plan corresponds to the execution 
of one or several procedures. According to the tasks 
and to the execution context, the procedures are either 
selected because they are explicitly designated in the 
task plan, and are then instanciated for execution, or 
are selected as a result of goal posting. In this case the 
selection of a procedure follows the general scheme of 
PRS and is based on some invocation conditions and on 
the context of execution as expressed in the data base. 
The choice of the best procedure, when several are 
possible candidates, is made by a meta-procedure that 
reasons on applicability criteria. Procedure selection 
is an iterative process. 

The execution of a procedure may produce sev- 
eral outcomes. The plan explicitly provides the desired 
chaining between the tasks according to some of these 
outcomes. If this chaining is not explicit in the plan, 
default procedures are selected (or goals) and executed 
by the supervision system. Usually, such procedures 
will put the robot in a safe and stable situation, and try 
to communicate with the ground station. 

As an example, we describe the procedure 
G o t o S i t e  which loops until the robot has reached 
the target site. Executing this procedure makes the sys- 
tem post new goals, and select new procedures that 
will eventually result in executing some actions (e.g., 
perception, trajectory planning, etc.) and so on: 

task GotoSite (site) £ 

loop { 
exec check_robot_at_site (site) 

report RESULT; 

if ( is_true (?RESULT)) 

raise END(~success") ; 

post get_environment_model () 

report MODEL; 

post choose_navigation_mode (?MODEL) 

report MODE; 

if (equals(?MODE,#reactive) ) { 

fork watch_site_entry (site) 

report SITE_REACHED; 

exec move_until_obstacle () 

watching SITE_REACHED 

report STATUS; 

if (is-true(?SITE--REACHED) ) 
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raise END(~success") ; 
} 

else { 

post ~nd_sub_goal (?MODEL) 
report SUB_GOAL; 

post frnd_traj (?MODEL,?SUB_GOAL) 
report TRAJECTORY; 

if (is_void(?TRAJECTORY) ) 

raise END(~failure"); 
exec follow_tra- (?TRAJECTORY); 

} 

} watching END; 

Here the robot starts by acquiring new data on the en- 
vironment, and decides, on the basis of a first modelling 
of the terrain, which navigation mode should be se- 
lected. Two modes are possible: reactive and planned. 
The reactive mode is selected in case of a flat terrain 
almost free of obstacles. It makes the robot move to- 
ward the goal while trying to detect obstacles--without 
a full analysis of the terrain. In the planned mode, a 
navigation map is built, and a trajectory planner is se- 
lected to compute a collision free trajectory (either on 
flat or uneven terrain). 

I Missiontmm Ground Station 
repoNs to 

On-Board MISSION 
L su+v, R I 

Decisional Level I 

EXECUTIVE 

Functional Modules I / 

The selection of subgoals for navigation depends on 
the modalities associated with the plan, such as the 
navigation routes and landmarks. 

The task supervisor then updates the execution 
modalities and posts the goal corresponding to the task. 
The task refinement level (see Fig. 5) selects the suit- 
able procedures for achieving the goal with respect to 
the execution context and the modalities. When the 
goal is fulfilled or recognized as unreachable, the task 
supervisor generates the task-termination event. 

5 Autonomous Navigation 

This section presents an approach to autonomous robot 
navigation in an unknown planetary environment. It in- 
volves several levels of reasoning, several environment 
representation s , and three different motion modes. We 
emphasize here especially on the "navigation level" of 
the whole system, which is in charge of reaching a 
distant goal by selecting sub-goals to reach, navigation 
modes to apply, and perception tasks to execute for this 
purpose. 

We first present our general adaptive and hierarchical 
approach to autonomous navigation, pointing out the 
importance of the navigation level. Then we describe 
how terrain representations required by this level are 
incrementally built on the basis of 3D range and video 
sensory data. The algorithms that perform the selec- 
tion of sub-goals and perception tasks are described, 
and illustrated by experimental results with the robot 
ADAM 1 (see Fig. 6) that has performed a large number 
of runs using this system in two different test sites at 
LAAS and at the Geroms lunar site at the French space 
Agency CNES. 

The problem of long range navigation in un- 
known outdoors environments is not very frequently 

Fig. 5. On-board architecture. Fig. 6. ADAM in the geroms test site. 
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addressed. Important achievements are Robbie (Weis- 
bin et al., 1992), Ambler (Krotkov et al., 1994) and the 
navigation of the UGV (Hebert, 1994). 

An Adaptative Approach. According to a general 
"economy of means" principle due to limitations of on- 
board processing capacities, memory and energy put 
on the system, and to achieve a time-efficient behav- 
ior, we favor an adaptive approach in which the robot 
adapts its behavior to the nature of the terrain (Chatila 
et al., 1993; Lacroix et al., 1994). Hence, three motion 
modes are considered: 

• A reflex navigation mode: on large flat and lightly 
cluttered zones, the robot locomotion commands are 
determined on the basis of a goal and informations 
provided by "obstacle detector" sensors; 

• A 2D planned navigation mode: it relies on the 
execution of a planned 2D trajectory, using a bi- 
nary description of the environment in terms of 
Crossable~on- Crossable areas; 

• A 3D planned navigation mode: this mode requires 
a precise model of the terrain, on which a fine 3D 
trajectory is planned and executed; 

A HierarchicaIApproach. We assume that the terrain 
on which the robot must fulfill a navigation task is ini- 
tially unknown, or mapped with a very low resolution. 
It is then only possible for an operator to specify a graph 
of routes, i.e., large corridors within which the robot 
has to move autonomously. To tackle this problem, we 
defined three layers of planning (Fig. 7): 

Route  planning 

~'~:T-~. ,,.L7 -7" Path planning (navigation) 

i ~ Trajectory planning 
Goal ~ J ~ "  

Forbidden area ~ . . . . .  J ~ 
Planned motion ~ ~ 
Executed motion , / _ ~  

Fig. 7. Three levels of planning. 

• route planning which chooses long-term paths to the 
goal on the basis of the initial informations. It selects 
a sub-goal for the path planning level; 

• path planning (or navigation) which reasons on a 
global qualitative representation of the terrain, built 
from the data acquired by the robot's sensors. It 
selects the next perception task to perform, the sub- 
goal to reach and the motion mode to apply; 

• Finallytrajectoryplanningwhichdeterminesthetra- 
jectory to execute (in one of the above mentioned 
three motion modes to reach the goal defined by the 
path planning level. 

The Main "Go-To" Loop. Our approach to determine 
which navigation mode can be applied is based on a 
quick analysis of the raw 3D data produced either by 
a Laser Range Finder (LRF) or by stereovision. This 
quick analysis provides a description of the terrain in 
terms of navigation classes. This representation is 
incrementally built as the robot moves and new per- 
ceptions are fused with it to maintain a global qualita- 
tive representation of the environment. All "strategic" 
decisions are taken on the basis of this global repre- 
sentation. They concern the determination of the in- 
termediate goal positions, the choice of the navigation 
mode to apply to reach them, as well as the definition 
of the next perception task to execute (which sensor to 
use? with what operating modalities? how should the 
data be processed?). Such an approach involves the 
development of different perception and motion plan- 
ning processes, and emphasizes the importance of the 
navigation planner, which is in charge of the strategic 
decisions. 

5.1 Terrain Representations 

During navigation, a terrain representation is required 
for various processes: navigation planning, trajectory 
planning and robot localization. Aiming at building a 
"universal" terrain model that contains all the neces- 
sary informations is extremely difficult, inefficient, and 
moreover not really useful. It is more direct and easier 
to build different representations adapted to their use: 
for navigation decisions, for motion planning on flat 
terrain, on uneven terrain, and for localisation. Coher- 
ence relationships between these representations are 
to be maintained when necessary. The model is then 
multi-layered and heterogeneous (Fig. 8). Several per- 
ception processes coexist in the system, each dedicated 
to the extraction of specific representations. Perception 
is multi-purpose. 
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Fig. 8. The various terrain representations used in the system. 
Arrows represent the constructive dependencies between them. 

Incremental Terrain Modelling. For the purpose of 
navigation planning, a global representation that de- 
scribes the terrain in terms of navigation classes is re- 
quired. We focus in this section on the algorithms 
developed to build such a model from 3D data (pro- 
duced either by a laser range finder or a correlation 
stereovision algorithm). 

3D Data Classification. Applied each time 3D data 
are acquired, the classification process produces a de- 
scription of the perceived areas in term in terrain 
classes. I t  relies on a specific discretization of the 
perceived area that respects the sensor resolution. The 
discretization defines "cells" on which different char- 
acteristics are determined: density (number of points 
contained in a cell compared with a nominal den- 
sity defined by the discretization rates), mean altitude, 
variance on the altitude, mean normal vector and corre- 
sponding var iances . . .  A non-parametric bayesian clas- 
sification procedure is used to label each cell: a learning 
phase based on prototypes classified by a human leads 
to the determination of probability density functions, 
and the classical bayesian approach is applied, which 
provides an estimate of  the probability for each possible 
label. A decision function that privileges false alarms 
(i.e., labeling a flat area as obstacle or uneven) instead 
of the non-detections (i.e., the opposite: labeling an 
obstacle as a flat area) is used (Fig. 9). 

Incremental Fusion. The partial probabilities of a cell 
to belong to a terrain class and the variance on their al- 
titude allow to perform a fusion procedure of  several 
classified images. The fusion procedure is performed 
on a bitmap, in the pixels of  which are encoded all the 

Fig. 9. Classificationofacorrelatedstereoimage: correlatedpixels 
(left) and reprojection of the result in the camera frame (right--from 
clear to dark: unknown, flat, uneven and obstacle). 

Fig. 10. Fusion of 8 different classified laser images: terrain classes 
(left) and altitude (right). 

cell attributes determined by the classification proce- 
dure (Fig. 10). 

Model Structure and Management. For the purpose 
of navigation planning, the global bitmap model is 
structured into a region map, that defines a connec- 
tion graph. Planning a path (as opposed to p!anning a 
trajectory) does not require a precise evaluation of the 
static and kinematic constraints on the robot: we sim- 
ply consider a robot point model, and therefore perform 
an obstacle growing in the bitmap before segmenting it 
into regions (Fig. 11). The regions define a connection 
graph, whose nodes are on their borders, and whose 
arcs correspond to a region crossing. 

Fig. 11. The model of Fig. 10 after obstacle growing (left) and the 
nodes defined by the region segmentation (right). 
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Fig. 12. 
bitmap. 

Only the area surrounding the robot is explicited as a 

In order to satisfy memory constraints, the global 
model is represented as a bitmap only in the surround- 
ings of the robot's current position, and the region 
model (much more compact) is kept in memory during 
the whole mission (Fig. 12). 

5.2 Navigation Planning 

Each time 3D data are acquired, classified and fused in 
the global model, the robot has to answer autonomously 
the following questions: 

• Where to go? (sub-goal selection) 
• How to go there? (motion mode selection) 
• Where to perceive? (data acquisition control) 
• What to do with the acquired data? (perception task 

selection) 

For that purpose, the navigation planner reasons on 
the robot capabilities (action models for perception and 
motion tasks) and the global terrain representation. 

A straightforward fact is that motion and perception 
tasks are strongly interdependent: executing a motion 
requires to have formerly modeled the environment, 
and to acquire some specific data, a motion is often 
necessary to go the adequate observation position. 

Finding paths in the connection graph that minimizes 
some criteria (time and energy) is easily solved by clas- 
sical search techniques, using cost functions that ex- 
press these criteria; but estimating the result (and the 
utility) of a perception task is much more difficult. We 
developed an error model of the classification proce- 
dure that allows to estimate the amount of informa- 
tion it can bring, and a model of the localisation task 

that predicts the precision on the robot position it can 
provide. 

A direct and brute force approach to answer the for- 
mer questions would be to perform a search in the 
connection graph, in which all the possible perception 
tasks would be predicted and evaluated at each node 
encountered during the search. Besides its drastic al- 
gorithmic complexity, this approach appeared unreal- 
istic because the model of the classification task cannot 
not predict what will be effectively perceived: it is then 
difficult to estimate the interest of these tasks. 

We therefore choose a different approach to tackle 
the problem: the perception task selection is subordi- 
nated to the motion task. A search algorithm provides 
an optimal path, that is analyzed afterwards to deduce 
the perceptions tasks to perform. The "optimality" cri- 
terion takes here a crucial importance: it is a linear 
combination of time and energy consumed, weighted 
by the terrain class to cross and the confidence of the 
terrain labeling. The introduction of the robot position 
uncertainty in the cost function allows to plan localisa- 
tion tasks along the path. 

5.3 Trajectory Planning 

Depending on tile label of the regions produced by 
the navigation planner, the adequate trajectory planner 
(2D or 3D) is selected to compute the actual trajectory 
within these regions. 

Flat Terrain. The trajectory is searched with a sim- 
plified and fast method, based on bitmap and potential 
fields techniques. In a natural environment, and given 
the uncertainties of motion, perception and modelling, 
we consider it sufficient to approximate the robot by 
a circle and its configuration space is hence two di- 
mensional, corresponding to the robot's position in the 
horizontal plane. Path planning is done according the 
following procedure: 

• a binary bitmapfree/obstacle is first extracted from 
the global bitmap model over the region to be 
crossed; 

• a classical wavefront expansion algorithm then pro- 
duces a distance map from which the skeleton of the 
free-space is computed (Fig. 13(a)); 

• the path reaching the sub-goal is obtained by propa- 
gating a potential through this skeleton. This path is 
finally transformed into a sequence of line segments 
and rotations (Fig. 13(b)). 

Search time only depends on the bitmap discretiza- 
tion, and not on the complexity of the environment. The 
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Fig. 13. The 2D planner: (a) distance to the obstacles and skeleton 
of the free space, (b) trajectories produced by the planner. 

final trajectory is obtained within less than 2 seconds 
(on a Sparc 10) for a 256 x 256 bitmap. 

Uneven Terrain. On uneven terrain, irregularities 
are important enough and the binary partition into 
free~obstacle areas is not anymore sufficient: the notion 
of obstacle clearly depends on the capacity of the lo- 
comotion system to overcome terrain irregularities and 
also on specific constraints acting on the placement of 
the robot over the terrain. The trajectory planner there- 
fore requires a 3D description of the terrain, based on 
the elevation map, and a precise model of the robot 
geometry in order to produce collision-free trajecto- 
ries that also guarantee vehicle stability and take into 
account its kinematic constraints. 

This planner, described in (Sim6on & Dacre Wright, 
1993), computes a motion verifying such constraints 
by exploring a three dimensional configuration space 
CS = (x, y, O) (the x-y  position of the robot frame 
and its heading 0). The obstacles are defined in CS as 
the set of configurations which do not verify some of 
the constraints imposed to the placement of the robot 
(Fig. 14). The ADAM robot is modelled by a rigid 
body and six wheels linked to the chassis by passive 
suspensions. For a given configuration, its placement 
results from the interaction between the wheels and the 
terrain, and from the balance of the suspensions. The 
remaining parameters of the placement vector (the z 
coordinate, the roll and pitch angles 4), ~p), are obtained 
by minimizing an energy function. 

S 
Fig. 14. The constraints considered by the 3D planner: (a) collision, 
(b) stability, (c) terrain irregularities, and (d) kinematic constraint. 

The planner builds incrementally a graph of discrete 
configurations that can be reached from the initial posi- 
tion by applying sequences of discrete controls during 
a short time interval. Typical controls consist in driv- 
ing forward or backwards with a null or a maximal 
angular velocity. Each arc of the graph corresponds 
to a trajectory portion computed for a given control. 
Only the arcs verifying the placement constraints men- 
tioned above are considered during the search. In order 
to limit the size of the graph, the configuration space 
is initially decomposed into an array of small cuboid 
cells. This array is used during the search to keep track 
of small CS-regions which have already been crossed 
by some trajectory. The configurations generated into 
a visited cell are discarded and therefore, one node is 
at most generated in each cell. 

In the case of incremental exploration of the envi- 
ronment, an additional constraint must be considered: 
the existence of unknown areas on the terrain elevation 
map. Indeed, any terrain irregularity may hide part 
of the ground. When it is possible (this caution con- 
straint can be more or less relaxed), the path must avoid 
such unknown areas. If not, it must search the best way 
through unknown areas, and provide the best percep- 
tion point of view on the way to the goal. The avoidance 
of such areas is obtained by an adapted weight of the arc 
cost and also by computing for the heuristic guidance of 
the search, a potential bitmap which includes the diffÉ- 
culty of the terrain and the proportion of unknown areas 
around the terrain patches (Nashashibi et al., 1994). 

The minimum-cost trajectory returned by the plan- 
ner realizes a compromise between the distance crossed 
by the vehicle, the security along the path and a 
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Fig. 15. A 3D trajectory planned on a real elevation map. 

small  number  o f  maneuvers .  Search t ime strongly 

depends  on the difficulty o f  the terrain. The  whole  

procedure  takes be tween  40 seconds to a few min-  

utes, on an Indigo  R4000  Si l icon Graphics  workstat ion.  

F igure  15 shows a t rajectory computed  on a real terrain, 

where  darker  areas correspond to interpolated unknown 

terrain. 

6 Conclusion 

The  presented approach is based on a gener ic  architec- 

ture for in tervent ion robots we are developing  for sev- 

eral h igh ly  demand ing  applicat ions,  including planet  

explorat ion.  It has been  part ial ly instanciated in the 

" E D E N "  exper iment  carried out at L A A S  with the mo-  

bile robot  A D A M ,  especia l ly  the funct ions necessary 

for au tonomous  navigat ion  in a natural environment ,  

inc luding  percept ion,  env i ronment  model ing,  local iza-  

tion, path and trajectory planning and execut ion on flat 

or uneven  terrain. The  integrat ion of  the full sys tem 

including the miss ion  planning and te leprogramming  

phases is be ing  current ly achieved.  

Notes 

L ADAM is property of Framatome and Matra Marconi Space, 
currently lent to LAAS. 
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