Pithoviruses are invaded by repeats that contribute to their evolution and divergence from cedraviruses

Sofia Rigou¹, Alain Schmitt¹, Jean-Marie Alempic¹, Audrey Lartigue¹, Peter Vendloczki¹, Chantal Abergel¹, Jean-Michel Claverie¹, Matthieu Legendre^{1,*}

¹Aix–Marseille University, Centre National de la Recherche Scientifique, Information Génomique & Structurale, Unité Mixte de Recherche 7256 (Institut de Microbiologie de la Méditerranée, FR3479), IM2B, IOM, 13288 Marseille Cedex 9, France

*Correspondence: legendre@igs.cnrs-mrs.fr

Supplementary material

Figure S1. Negative staining microscopy of cedratvirus plubellavi Corks at each apex of the viral particle are shown with arrows.

Figure S2. Long reads coverage along Pithoviridae genomes linearized at 4 different positions

The assembled genome of *Pithovirus mammoth* (left), *Cedratvirus borely* (center) and *Cedratvirus plubellavi* (right) were linearized at four equidistant positions and reads were mapped on these references. The ONT read coverage along these genomes is shown.

Figure S3. Comparison of relative synonymous codon usages

(A) Codon usage bias for each amino acid represented by the RSCU value. (B) PCOA analysis of the RSCU values without the stop codons, the tryptophan and the methionine codons.

Α

Figure S4. Genome alignment of Pithoviridae

Shared nucleotide sequence blocks within clades were drawn based on the alignment by progressivemauve (Darling et al. 2010) of (A) the three pithoviruses and (B) seven cedratviruses. *Cedratvirus lena* and *Cedratvirus duvanny* have been excluded since the assembly was incomplete (multiple contigs). Syntenic regions are shown in gray and large inversions in red. ORFs are color-coded from yellow to blue according to their genomic positions. A scale bar of genome sizes is shown at the bottom.

Figure S5. Patterns of presence/absence of HOGs within viral family's sub-clades

Species were divided into clades ignoring the outgroup. The number of species from each clade that appeared in each HOG was then counted.

Figure S6. Horizontal Gene Transfer events in *Pithoviridae* and BLASTP control

For each HGT event, the likely origin as estimated from the visualization of phylogenetic trees (A) and best BLASTP results (*E*value $\leq 10^{-5}$) from the nr database free of *Pithoviridae* (B) are shown. From eukaryotes, "sister to" is short for "sister group of...". Bacterial and eukaryotic species with more than 1% of matches in their respective category are shown.

Figure S7. Workflow for repeat analysis

Steps one to five are represented within large boxes. Operations are in blue boxes while objects are shown as black text. Besides "Genome fasta" is schematized a portion of the genome containing repeats as colored boxes. The slightly grey boxed represent unclustered sequences.

(A) 40 bp around the beginning and end of repeat-rich regions in *Pithovirus sibericum* were aligned with MAFFT and visualized with UGENE. Upstream and downstream regions are in shaded colors while repeat regions are in plain colors. The center of each repeat region is truncated and indicated with "NN". Boxes indicate putative TSD. (B) M1 and (C) M2 reference sequences without the surrounding TA were aligned to the genome of *Pithovirus sibericum*. The matching sequences, extended by 15 bp were aligned. The mid-part of the alignments were truncated and indicated with "-". Black boxes indicate the proposed TSD sites.

Figure S9. Dotplot of consensus repeats sequences found in pithoviruses

The dotplot includes the repeat previously identified in *Pithovirus sibericum* (Legendre et al. 2014) coined "Original", as well repeats identified by our dedicated pipeline (M1 and M2) and the ones identified by RepeatModeler version 2.0.4 (R1, R2, R3 and R4).

(A) *Pithovirus LCPAC302* (Bäckström et al. 2019) presents numerous direct repeats. In some rare cases, these repeats are interspersed by a similar sequence as shown in the inset. X-axis and y-axis breaks correspond to the delimitation of contigs. (B) Regularly interspersed direct repeats from a permafrost *Pithoviridae*-like metagenome (K_bin2137_k1) (Rigou et al. 2022).

Fowlpox virus	Pithovirus
(PDB: 6P7B)	pv_445
DDE	site
D7	D57
E60	E115
D132	D200
N/D135	D203
DNA cle	avage
N12	К62
Q62	Q117
K129	K197
DNA bi	nding
K11	К60
К34	
К70	R126
DNA co	ontact
W41	F92
P67	P122
K70	R126
Y73	7Y134

Figure S11. Superposition of the *Fowlpox virus* Holliday Junction resolvase protein structure and the Alphafold model of the *Pithovirus sibericum* pv_445 homolog

Shown on the left is the superposition of the *Fowlpox virus* protein structure (PDB 6P7B) in blue and the Alphafold structure model of *Pithovirus sibericum* pv_445 in yellow. Important residues from the *Fowlpox virus* structure (Li et al. 2020) are color-coded and described in the table on the right. Corresponding residues in the *Pithovirus sibericum* structure model are shown in gray and described in the table as well.

Phylogenetic tree of the M1 (A) and M2 (B) units computed by IQtree with best-fit models TPM2+F+I+G4 and TVM+F+I+G4, respectively. The alignment of the units after correction of strand orientation was performed using Mafft with options "--maxiterate 1000 --localpair".

Table S1. Statistics for the genome assemblies of Pithoviridae

The genomes were assembled with a combination of long and short reads, and with short reads only for comparison. For all assemblies we counted the length of all types of repeats altogether, not only M1 and M2.

	Pitho mam	virus moth	Cedra	ntvirus relv	Cedratvirus plubellavi		
	Illumina Illumina +ONT		Illumina	Illumina +ONT	Illumina	Illumina +ONT	
# contigs > 1 kb	42	2	3	1	1	1	
# contigs > 2 kb	35	1	3	1	1	1	
# contigs > 5 kb	27	1	3	1	1	1	
# contigs > 10 kb	20	1	3	1	1	1	
# contigs > 25 kb	7	1	3	1	1	1	
# contigs > 100 kb	0	1	2	1	1	1	
Max contig length (kb)	42	610	305	570	566	568	
Total repeats (bp)	74224	150628	3056	15706	9825	11712	
Total repeats (%)	14.1	24.7	0.5	2.8	1.7	2.1	

Table S2. Assemblies used for comparative genome size analysis

A) Previously published	NCBI accessions	E) Ranaviruses	
Pithovirus sibericum	NC_023423.1	Ambystoma tigrinum virus	GC_000841005.1
Pithovirus massiliensis	SAMEA4074172	Bohle iridovirus	GCF_002826565.1
Cedratvirus A11	NC_032108.1	Common midwife toad virus	GCF_003033105.1
Cedratvirus lausannensis	LT907979.1	Epizootic haematopoietic necrosis virus	GCF_000897115.1
Cedratvirus zaza	LT994652.1	European catfish virus	GCF_000897115.1
Brazilian cedratvirus	LT994651.1	Frog virus 3	GCF_001717415.1
Cedratvirus kamchatka	MN873693.1	Infectious spleen and kidney necrosis virus	GCF_000848865.1
Orpheovirus (outgroup)	NC_036594.1	Lymphocystis disease virus 1	GCF_000839605.1
Hydrivirus (outgroup)	GCA_943296135.1	Lymphocystis disease virus-isolate China	GCF_000844885.1
Marseillevirus (outgroup)	NC_013756.1	Lymphocystis disease virus Sa	GCF_001974475.1
		Ranavirus maximus	GCF_001717415.1
B) New Pithoviridae		Largemouth bass virus	GCA_013122655.1
Cedratvirus borely	OQ413575	Scale drop disease virus	GCF_001274405.1
Cedratvirus plubellavi	OQ413576	Short-finned eel ranavirus	GCF_001678255.2
Cedratvirus lena	OQ413577 OQ413578 OQ413579 OQ413580	Singapore grouper iridovirus	GCF_000846905.1
Cedratvirus duvanny	OQ413581	Grouper iridovirus	GCA_006465545.1
Pithovirus mammoth	OQ413582	Red seabream iridovirus (outgroup)	GCA_011894875.1

C) Pandoraviridae		F) Megavirinae	
Pandoravirus braziliensis	LT972217.1	Acanthamoeba polyphaga lentillevirus	GCA_000320725.1
Pandoravirus celtis	MK174290.1	Mamavirus	GCA_002966335.1
Pandoravirus dulcis	GCA_000911655.1	Megavirus chilensis	GCF_000893915.1
Pandoravirus inopinatum	GCA_000928575.1	Megavirus courdo7	GCF_000893915.1
Pandoravirus macleodensis	GCA_003233935.1	Megavirus vitis	GCA_004156275.1
Pandoravirus massiliensis	MZ384240.1	Mimivirus	GCA_024266865.1
Pandoravirus neocaledonia	GCA_003233915.1	Moumouvirus australiensis	GCA_004156295.1
Pandoravirus pampulha	OFAJ00000000.1	Moumouvirus	GCF_000904035.1
Pandoravirus quercus	GCA_003233895.1	Tupanvirus deep ocean	GCA_002966475.2
Pandoravirus salinus	GCA_000911955.1	Tupanvirus soda lake	GCA_002966485.2
Mollivirus sibericum (outgroup)	NC_027867.1	Chrysochromulina ericina virus (outgroup)	GCF_001399245.1

D) Marseilleviridae as in (Blanca et al. 2020)							
Marseillevirus	GU071086						
Lausannevirus	HQ113105						
Cannes 8 virus	KF261120						
Insectomime virus	HG428764						
Tunisvirus	KF483846						
Brazilian marseillevirus	KT752522						
Melbournevirus	KM275475						
Port-miou virus	KT428292						
Tokyovirus	Reassembled in (Blanca et al. 2020)						
Noumeavirus	KX066233						
Golden marseillevirus	KT835053						
Kurlavirus	KY073338						
Marseillevirus shanghai	MG827395						
Ambystoma tigrinum virus (outgroup)	MK580533.2						

Table S3. Pithoviruses' MITEs occurrences

A region is defined as a genomic sequence with a high density of repeats within a sliding window of 500 bp. Within each region, the number of M1 and M2 repeats was counted. The clusters containing divergent M1 and M2 sequences were included in these results.

		Pithovirus sibericum		Pithovirus	mammoth	Pithovirus massiliensis		
		M1	M2	M1	M2	M1	M2	
Pagions	Total	110	100	109	100	115	79	
Regions	M1 or M2	10	0	9	0	36	0	
Per region	Min count	1	1	1	1	1	1	
	Max count	11	12	13	17	13	8	
	Mean	4.68	3.71	4.58	4	5.05	3.01	
	Sd	2.12	2.26	2.31	3.06	2.98	1.64	

Table S4. PebbleScout alignments of M1 or M2 against metagenomic reads

The 10 datasets (in bold) with the most reads matching M1 or M2 were assembled and checked for *Pithoviridae* using the divergent MCP (pv_460) as bait.

SRA ID	PebleScout	BioSample	Total #	M1 reads	M2 reads	M1+M2	Largest contig w/	Pithovirus	Environmental sample
	score		reads	(BLASTN	(BLASTN	reads per	M1 or M2	MCP	
				Evalue<10 -0)	Evalue<10 ¹⁰)	10° reads	¹⁰)	Fvalue	
SRR3989309	89,74	SAMN05421978	18336755	1211	270	80,7667442	903	5,64E-34	Terrestrial. Deep subsurface. Rock core/Sediment
SRR2090167	89,74	SAMN03842445	28636935	1725	368	73,0874306	1091	1,10E-66	Groundwater. Rifle well CD01 at 16ft depth; 0.1 micron filter at time point B
SRR11310430	84,61	SAMN14381997	6032418	317	79	65,6453183	526	5,81E-53	Sediment from asphalt lake
SRR2090164	89,74	SAMN03842442	19817017	1014	217	62,1183299	886	1,18E-23	Groundwater. Rifle well CD01 at 16ft depth; 0.1 micron filter at time point A
SRR3989312	89,74	SAMN05421984	19817017	1014	217	62,1183299	675	1,18E-23	Deep subsurface. Groundwater
SRR11310431	79,49	SAMN14381997	6170151	275	63	54,7798587	762	2,26E-43	Sediment from asphalt lake
SRR5381855	79,52	SAMN06546764	1684054	72	11	49,2858305	462	2,79E-24	Soil metagenome of an asparagus field
SRR6208705	89,74	SAMN07687476	17707616	505	102	34,2790356	701	1,32E-22	Terrestrial. Deep subsurface.
SRR5381897	74,38	SAMN06547013	3721304	90	14	27,9471927	527		Soil metagenome of an asparagus field
SRR6211583	79,49	SAMN07687567	21572737	361	61	19,5617274	496	6,22E-25	Terrestrial. Deep subsurface.
ERR2206798	74,38	SAMEA104408696	17005406	95	20	6,76255539			Brackish water. Baltic Sea
SRR2090165	79,49	SAMN03842443	22016389	114	25	6,31347856			Groundwater. Rifle well CD01 at 16ft depth; 0.1 micron filter at time point A
SRR3989308	79,49	SAMN05421983	22016389	114	25	6,31347856			Deep subsurface. Groundwater
SRR1955040	89,74	SAMN03460428	84084083	296	39	3,98410719			Soil and sludge samples from the vicinity of pesticide manufacturing unit
SRR6212587	79,53	SAMN07687597	22970382	73	11	3,65688302			Terrestrial. Deep subsurface.
SRR2090170	89,74	SAMN03842448	20939869	54	13	3,19963797			Groundwater. Rifle well CD01 at 16ft depth; 0.1 micron filter at time point C
SRR3989314	89,74	SAMN05422002	20939869	54	13	3,19963797			Terrestrial. Deep subsurface. Rock core/Sediment
SRR4388699	74,38	SAMN03842451	21838918	40	9	2,2437009			Groundwater. Rifle well CD01 at 16ft depth; 0.1 micron filter at time point D
SRR15669522	79,49	SAMN21040050	51610118	94	17	2,15074106			Groundwater.
SRR3546452	89,74	SAMN04999992	53343210	84	22	1,98713201			Deep subsurface groundwater filtered through 0.2 um and collected on 10 kDa filter
SRR10912807	74,39	SAMN13674977	52979393	82	11	1,7553995			Seawater. Antartica
SRR3724388	74,38	SAMN05224416	36371555	44	11	1,51217071			Marine. Intertidal zone
SRR8931195	74,4	SAMN11466655	30200907	23	22	1,49002148			Groundwater.
SRR3725730	79,49	SAMN05224444	52357685	64	13	1,47065326			Marine. Intertidal zone
SRR10912892	74,38	SAMN13674977	59432429	62	10	1,21145982			Seawater. Antartica
SRR8893624	74,38	SAMN11412375	41695761	19	9	0,67153109			Waste water
SRR10912798	79,54	SAMN13674978	56855335	25	6	0,54524347			Seawater
SRR636569	84,63	SAMN01828240	3,42E+08	77	21	0,28660667			Waste water

Table S5. HOGs related to transposase or integrase

				In clust	er with	Best Foldseek match to a transposase or integrase (probability > 0.5)				
	HOG	Gene	Size (aa)	M1	M2	Annotation	Probability	E-value		
Pithovirus	HOG248	pmas_554	65	х	Х	AF-X8F9W3-F1 Mutator family transposase	0.887	2.46E-01		
massiliensis		pmas_124	51	х	х	AF-A0A133CJD6-F1 Site-specific integrase	0.692	1.87E+00		
		pmas_125	72	Х	х					
		pmas_355	54	х	х					
		pmas_397	56	x	x	AF-A0A1D6J6D6-F1 DUF659 domain-containing protein (Transposase-like protein with no known function)	0.992	4.09E-01		
		pmas_398	72	Х	Х					
		pmas_490	112	Х						
		pmas_491	54	х						
		pmas_552	65	х	х					
		pmas_67	56	х						
		pmas_83	60	х	х					
Pithovirus	HOG567	ps_41	52	х	х					
sibericum		pv_143	85	х	Х					
		ps_381	52	х	Х					
Pithovirus		pmam_133	52	х	х					
mammoth		pmam_241	50	х	х	AF-A0A133CJD6-F1 Site-specific integrase	0.663	1.97E+00		
Pithovirus	HOG272	pmas_168	68	х						
massiliensis		pmas_212	103	х	х	AF-E9Q492-F1 PiggyBac transposable element-derived 1	0.692	7.22E-01		
		pmas_352	74	х						
		pmas_425	52	х	Х					
Pithovirus sibericum		pv_335	90	x	x					
Pithovirus		pmam_295	56	х	х					
mammoth		pmam_395	55	х	х					
		pmam_445	90	х	х					

Table S6. Functional annotation of genes from *Pithovirus sibericum* based on Alphafold prediction and Foldseek alignments

Gene	Previous annotation	Alphafold/Foldseek annotation r	Vithin in epeat-rich egion	Is HGT	
pv_3	Uncharacterized protein	Ubiquitin thioesterase OTU1		0	0
pv_4	Uncharacterized protein	Proliferating cell nuclear antigen		0	0
pv_9	Uncharacterized protein	redox-related protein		0	0
pv_38	Conserved protein	Kinase		0	0
pv_39	Conserved protein, partial	Protein kinase		0	0
pv_50	Uncharacterized protein	Serine/threonine-protein kinase Chk1		0	0
pv_51	Uncharacterized protein	TATA box-binding protein-like		0	0
pv_66	PolyA pol reg subunit	Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase		1	0
pv_95	Uncharacterized protein	Ricin B-like lectin		0	0
pv_101	Uncharacterized protein	Kinase		0	0
pv_102	Uncharacterized protein	Protein kinase		1	0
pv_105	Uncharacterized protein	ELAV-like protein		0	0
pv_109	Uncharacterized protein	Metacaspase		0	0
pv_110	Uncharacterized protein	Ras-related protein Rab-6		0	0
pv_112	GTP binding protein	Ras-related GTP-binding protein		0	0
pv_115	Uncharacterized protein	ATP-dependent RNA helicase		0	0
pv_135	Uncharacterized protein	Phosphomevalonate kinase		0	0
pv_141	Uncharacterized protein	Acyltransferase		0	0
pv_144	Uncharacterized protein	Acetyltransferase		1	0
pv_145	Uncharacterized protein	Protein kinase		0	0
pv_159	DNA repair exonuclease	Nuclease SbcCD subunit D		0	0
pv_166	Uncharacterized protein	Putative NAD(+)arginine ADP-ribosyltransferase		0	0
pv_189	Uncharacterized protein	GTP-binding nuclear protein Ran		1	1
pv_288	Uncharacterized protein	GTP-binding protein		1	0
pv_290	Uncharacterized protein	Ras-related protein Rab		1	0
pv_324	Conserved protein	Exonuclease		0	1
pv_341	2OG-Fe(II) oxygenase	Alpha-ketoglutarate-dependent dioxygenase alkB homolog		0	0
pv_352	Conserved protein	RNA methyltransferase		0	0
pv_379	Conserved protein	fatty acid-binding protein		1	0
pv_403	Uncharacterized protein	Nudix hydrolase		0	0
pv_406	Glycosyltransferase family 2	Mannan polymerase complex subunit		0	0
pv_408	Uncharacterized protein	Protein kinase		0	0
pv_423	Uncharacterized protein	Regulatory subunit of aspartate kinase		0	0
pv_424	Uncharacterized protein	Protein kinase		0	0
pv_444	Poly A pol reg subunit	Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase		0	0
pv_445	Uncharacterized protein	Crossover junction endodeoxyribonuclease RuvC-like		1	0
pv_468	Uncharacterized protein	F-box containing-protein		1	0

	Rearrangem	ents types	Total	Conserved					
Repeats regions	Insertions/ deletions	Single nucleotide insertions/ deletion	Substitutions	Inversions	Duplications in Pithovirus sibericum	Duplication in Pithovirus mammoth	Complex events	orthologous pairs with rearrangeme nt events	orthologous pairs without rearrangemen t event
Within	9	5	2	5	1	4	2	228	109
Outside	5	2	1	1	1	3	0	13	41
				-				Chi ² <i>P</i> value = !	5.5 x 10 ⁻⁷

Table S7. Genomic rearrangements and mutations between *Pithovirus sibericum* and *Pithovirus mammoth*

References

- Bäckström D, Yutin N, Jørgensen SL, Dharamshi J, Homa F, Zaremba-Niedwiedzka K, Spang A, Wolf YI, Koonin EV, Ettema TJG. 2019. Virus Genomes from Deep Sea Sediments Expand the Ocean Megavirome and Support Independent Origins of Viral Gigantism. *mBio* [Internet] 10. Available from: https://mbio.asm.org/content/10/2/e02497-18
- Blanca L, Christo-Foroux E, Rigou S, Legendre M. 2020. Comparative Analysis of the Circular and Highly Asymmetrical Marseilleviridae Genomes. *Viruses* 12:1270.
- Darling AE, Mau B, Perna NT. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. *PloS One* 5:e11147.
- Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, et al. 2014. Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. *Proc. Natl. Acad. Sci. U. S. A.* 111:4274–4279.
- Li N, Shi K, Rao T, Banerjee S, Aihara H. 2020. Structural insights into the promiscuous DNA binding and broad substrate selectivity of fowlpox virus resolvase. *Sci. Rep.* 10:393.
- Rigou S, Santini S, Abergel C, Claverie J-M, Legendre M. 2022. Past and present giant viruses diversity explored through permafrost metagenomics. *Nat. Commun.* 13:5853.