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The body images of social robots*

Bing Li1, Oumayma Ajjaji1, Robin Gigandet1 and Tatjana Nazir1

Abstract— The rapid development of social robots has
sparked a challenge for both robotics and cognitive sciences to
comprehend how humans perceive the appearance of robots.
This understanding is a crucial prerequisite for achieving
successful human-robot symbiosis. To uncover people’s per-
ceptions and attitudes towards robots, we analyzed image-
associated words generated spontaneously by humans for 30
robots developed in the past decades. These words delineated
a body image for each of the robots. We then used word
affective scales and embedding vectors to provide evidence
for links between human perception and the body images.
Our findings revealed that the valence and dominance of the
body images reflected human attitudes toward the general
concept of robots. The study further demonstrated that the
user-base and usage of robots significantly influenced people’s
impressions of individual robots. Moreover, we investigated the
psychological and cultural implications of the body images by
examining semantic distances between the robots and a human-
related word, as well as gender- and age-distinguished words.
This analysis revealed a relationship between the semantic
distances to the word “person” and the robots’ affects, as
well as gender and age stereotypes towards the robots. Our
study demonstrated that using words to build body images for
robots is an effective approach to understanding which features
are appreciated by people and what influences their feelings
towards robots.

I. INTRODUCTION

Body image refers to the subjective perception and eval-
uation of one’s own physical appearance, encompassing
attitudes, feelings and cultural implications. Given the fast
growth of robots in people’s life, revealing what is implied
in the body images of robots will help us improve the
relationship between us and our artificial companions. The
present study aims to understand how humans perceive
robots and how they form semantic representations of the
robots from purely visual characteristics. The term “body
image” will be used to refer to the semantic understanding
a person derives from viewing (images of) robots.

Neuroscientific research has shown that visual input to the
brain is transformed into semantic representations through a
default path [1]. Visual traits such as strokes, shapes, and
colors are processed in the occipital lobe and then trans-
mitted to the frontal and temporal lobes through pathways
for semantic interpretation of the object [2]. Importantly,
significant traits such as faces and word forms are processed
in dedicated regions close to occipital regions [3], [4], before
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awarded to TAN (n◦: R-Talent-20-006-Nazir).

1The authors are affiliated with SCALAB, UMR CNRS 9193,
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other semantic information is processed in the temporal
lobe [5]–[7]. Recently, a third pathway has been proposed
that is specialized in processing social cues [8]. These
pieces of evidence suggest that the human brain possesses a
default system [1] that interprets visual inputs and generates
semantic outputs. Therefore, the body image of a robot
encompasses not only the visual appearance of the robot but
also its semantic meaning and social significance.

Studies in semantics provided models about how concepts
are organized in the brain’s semantic system. In psycholin-
guistics, a commonly used model is the word embedding
model [9]. This neural network model extract the likelihood
of words appearing next to each other in large, naturally
occurring texts typically found on the internet, and represents
words using vectors. Research has shown that this model
accurately reflects real-world semantic information [10].
The spontaneous word association method can effectively
uncover individuals’ underlying perceptions and attitudes
towards robots by analyzing the words they associate with
them [13]. Therefore, rather than focusing on the visual
appearance of robots, which can often be difficult to quantify
and interpret, incorporating a person’s understanding of a
robot’s appearance into such a semantic framework could be
more transparent and easier to implement.

With the goal of understanding human’s mental represen-
tation of social robots, we propose to examine the character-
istic features of robots from a semantic perspective. A free
word-association task will be used to collect basic impres-
sions about various robots and to model the data within a
sematic space using word vectors. We will also quantify the
affective dimensions of the words using “valence”, “arousal”
and “dominance” measurements from an affective lexicon
[11]. Moreover, we will determine how the word-vector
that characterize a given robot relate to the word “person”
within the semantic space, to assess how closely participants
associate the robot with the human environment. Finally,
we will investigate potential human stereotypes using two
sets of opposing concepts (gender and age) to analyze the
positioning of social robots on these semantic dimensions.

II. METHODS
A. The robot stimuli and human participants

We selected 30 robots from the robots available on the
market or as prototypes in the past decades. To ensure a
broad range of diverse features, the robots chosen for this
study exhibit a wide variety of characteristics, including
the presence or absence of a face, legs, arms, and re-
semblance to typical animal- or human-shapes. The robots
included into the study are: Buddy, Eilik, Musio, Pico, Sima,



TABLE I
THE ROBOT ATTITUDE QUESTIONNAIRE (RAQ) USED TO MEASURE

PARTICIPANTS’ ATTITUDES TOWARDS THE GENERAL CONCEPT OF

ROBOTS. IT PRECEDED THE FREE ASSOCIATION TASK.

INSTRUCTION Please select the option that best
describes your attitude at the moment:

STATEMENTS I want a robot to assist me . . .
(1) . . . at home
(2) . . . at school
(3) . . . in dangerous locations
(4) . . . in factories
(5) . . . in hospitals
(6) . . . in hotels
(7) . . . in museums
(8) . . . in offices
(9) . . . in police stations
(10) . . . in public transportations
(11) . . . in shopping centers
(12) . . . in sports facilities

RESPONSES □ Strongly disagree
□ Disagree
□ Neither agree or disagree
□ Agree
□ Strongly agree

Aibo, Ameca, Aquanaut1, Asimo, Astro, Atlas, Emiew,
Hexa, Hitchbot, iCub, Jibo, Lovot, Minicheetah, Moxie, Nao,
Neubie, Nicobo, Optimus, Parky, Pepper, Pyxel, Sawyer,
Spotmini, Talos, Vector.

It is pertinent to note that the concept of a robot is ambigu-
ous, and it can be challenging to determine which entities
should be included within this classification. A common

TABLE II
THE FREQUENCY OF THE TOP 30 WORDS IN THE FREE ASSOCIATION

TASK, BASED ON ALL THE 30 PARTICIPANTS AND 30 ROBOTS.

Word Frequency
1 toy 42
2 cute 39
3 friendly 33
4 small 30
5 robot 29
6 helpful 28
7 scary 25
8 future 23
9 dog 22

10 creepy 17
11 fun 16
12 human 16
13 technology 16
14 child 14
15 cool 14
16 weird 14
17 animal 12
18 simple 12
19 happy 11
20 smart 11
21 strong 11
22 artificial intelligence 10
23 assistant 10
24 automatic 10
25 color 10
26 helper 10
27 modern 10
28 useful 10
29 wheels 10
30 automated 9

example is quadrotor aircraft, or drones. While some may
consider drones as robots, as evidenced by their inclusion
in the IEEE Robotics & Automation Society’s robots list1,
others may perceive them simply as aircraft. However, the
present study focuses on investigating the robot body image
as a basis for human-robot interaction, a goal that does
not align with the typical applications of drones. Therefore,
drones were excluded from the current investigation.

The experiment was conducted on the Prolific platform2

and built with psychJS [12]. Before publishing the experi-
ment task, we set pre-screening filters to only include native
English speaker between 18 and 30 year old to maintain
the homogeneity of the age span, within which people are
very likely to grow up with internet, and more open to new
technologies.

Before the tasks, participants were informed that they can
quit the task at any moment during the task and will be
compensated for the time spent on the task 3. The task
averagely took 14 minutes per participant. Compensation was
of about C7.15/hour. Thirty participants were recruited into
the experiment.

B. Experimental procedure

The experiment consisted of two distinct sessions aimed
at 1) measuring attitudes towards robots and 2) constructing
their corresponding body images.

1) The robot attitude scale: To assess attitudes, we de-
signed a questionnaire, the Robot Attitude Questionnaire
(RAQ). The RAQ was adapted from a study by Lee and
Sabanović [15] that explored cross-cultural differences in
attitudes towards robots. The questionnaire comprised state-
ments pertaining to the willingness of participants to seek
assistance from robots in various situations and used a
Likert scale rating (see Tab. I). Participants were required
to select the option that best represented their attitude on a
5-point Likert scale ranging from 0 - “Strongly disagree”
to 4 - “Strongly agree”. To calculate the overall attitude
score of a participant, scores from all the statements were
averaged. Participants completed the Robot Attitude Ques-
tionnaire (RAQ) prior to engaging in the free association
task. Therefore, the term “robot” in the RAQ did not refer to
any specific robot model but instead represented the general
concept of robots.

2) Free association: To construct the robot’s body im-
ages we used a free association task [13], [14]. Following
completion of the questionnaire, participants were instructed
to provide 6 words that came to their minds in response to
each of 10 sequentially presented images. The images were
presented at the top of the screen, followed by 6 text boxes
for each image. The participants were required to enter the
words in a sequential manner, from the 1st to the 6th text
box, and click on the “Finished” button to proceed to the
next image. To expedite the process of moving to the next

1https://robots.ieee.org/robots/ (April 18, 2023).
2https://app.prolific.co
3The study was approved by the ethics committee at the University of

Lille with the reference number 2023-663-S113.



word after entering a word, participants used the “Enter”
key. For each image, participants were required to enter all
6 words, and skipping any text box was not permitted. The
“Auto fill-in” functionality of the psychJS program utilized
in the study was disabled.

To mitigate the potential for intra-correlation among par-
ticipants, whereby individuals might demonstrate similar
behaviors across the observed robots, a randomized robot
selection procedure was implemented. The randomization
approach is detailed in [16]. As a result of this method, each
participant viewed a distinct subset of 10 robots.

Tab. II displays the top 30 most commonly reported words.

C. Word vectors and affect measurements

To represent words as vectors, the Word2vec model pre-
trained on Wikipedia news by FastText was utilized 4. The
resulting vectors possessed 300 dimensions. Given that a
robot is associated with multiple words, the vectors for
the different words were averaged to create a single 300-
dimension vector for each robot, as illustrated in Fig. 2.
To quantify the affective dimensions of words, the valence,
arousal, and dominance (VAD) measurements from Moham-
mad’s [11] affective lexicon were used. This lexicon contains
VAD ratings for 20,000 English words based on best-worst
scaling [11], [16].

After data collection, the responses were pre-processed.
This involved converting plural words into their singular
forms and converting capitalized words to lowercase. For
compound words and phrases, the most representative word
was primarily extracted. For example, “canfly” was replaced
with “fly” and “car-like” was replaced with “car”. However,
in cases where representativeness was difficult to determine,
such as “artificial intelligence”, the entire compound was
omitted.

Due to the limited size of the VAD lexicon, some ad-
jectives were not present in the VAD lexicon, but their
synonyms were. For example, “gangly” was not in the
lexicon, but “awkward” was present and used instead. In such
cases, synonyms were obtained from the Merriam-Webster
thesaurus 5. After pre-processing, the VAD lexicon covered
92.33% of the responses. In the lexicon, the values of the
affective dimensions ranged between 0 to 1, with a higher
value indicating a higher affective rating.

III. RESULTS

A. Word affects predicts subjective attitude

At participant-level, we investigated whether the general
attitude towards robots can be predicted by affective mea-
sures of the associated words. Three linear mixed-effect
(LME) models were built with attitude scores as the de-
pendent variable and affective measures as the only fixed-
effect independent variable respectively. Robots with random
intercepts were included as the maximized random-effect
structure.

4https://fasttext.cc/docs/en/english-vectors.html
5https://www.merriam-webster.com/thesaurus/

The results showed that valence is a strong predictor
for attitude (likelihood ratio test, LRT χ2 = 15.577, p <
.000), and dominance is a strong predictor for attitude (LRT
χ2 = 19.529, p < .000). However, arousal did not predict
attitude (LRT χ2 = 2.101, p = .146). Figure 1 illustrates the
relationships between attitudes and affective measures. The
values of the affective measures for each of the three features
(valence, dominance, arousal) were averaged across words
for each participant. Each dot in the figure represents one
participant. The results show that the semantic associations
of a robot’s body image are reflective of the attitude of the
observer.

B. The graph of body images

Robot classification methods generally vary and can in-
clude shape, function, and usage. However, the extent to
which these features influence human perception of robots
has not been extensively studied. Here, we created a graph of
the 30 robots based on the average word vectors associated
with each of the robots. We then used pair-wise cosine
similarity to connect each robot to its three most similar
robots (as shown in Fig. 2 and Fig. 3D). The graph identi-
fied the robot types commonly known as humanoids, robot
assistants, and robot pets. However, some robots were not
clearly classified into a category. For example, Aibo, often
referred to as a “robot dog”, was found to be more similar
to Eilik than to Spot. Similarly, Neubie, which is shaped
like a trolley or a locomotive, was more strongly connected
with humanoid robots than with similarly shaped robots (e.g.
Parky) or other wheel-based robots (e.g. Pico and Astro).

The most distinct categories of robots are identifiable by
cliques, which refer to fully connected components in the
graph. We have highlighted the 4-cliques (4 fully connected
robots) that exist in the graph, representing the categories of
(A) robot pets, (B) humanoids, and (C) robot kids (in Fig.
3). The robot Nao falls into the category of children-oriented
robots, which includes “robot pets” and “robot kids.” Thus,
individuals evaluating Nao immediately associate it with the
user-base and usage. In contrast, Neubie’s indefinite body
image makes it challenging to connect it to a particular user-
base or usage. Overall, the identified robot categories based
on their semantic relationships suggest that people tend to
form body images based on the anticipated user-base and
usage of the robot, rather than its shape.

Fig. 1. The relationships between the attitudes and dominance, valence,
arousal. The dashed line indicates the insignificance in the corresponding
LME analyses.



Fig. 2. Clustering of the robots based on their cosine similarities. The outermost circle is the robots in the present study. The intermediate circle indicates
the vector abstraction of the robots, colored with the three clusters identified by hierarchical clustering of the cosine similarities between robots. And the
innermost network is comprised of the connections between each robot and its 3 closest neighbors.

Fig. 3. The network of robots based on their body images. (A-C) Three 4-cliques in the network. (D) the whole network of all the 30 robots. The colors
of the cliques correspond to the colors in the network.



Fig. 4. The relationship between affects and human distance. (A) The diagram shows the distance between a robot and the target word “person”, simplified
in a 2-dimensional plaine for better illustration. The peripheral dots represents words in the original semantic space, the dots of the same color indicated
in the vicinity of the circles around the word. The outer circle is the distance proximity of the robot NAO and the inner circle is the distance proximity of
the robot Pico. Due to the bias towards the distance between words and human-related words, the words that are closer to the human-related words (the
red dots) are systematically different from the words that are further than the human-related words (the orange dots). Therefore the affect values of the
words on the proximity circles are used as baselines for the respective robots; (B-D) The x-axis is the distance between robot body images and the word
“person”; the y-axes are standardized valence, arousal and dominance.

C. The distance to human related words predicts affect of
robots’ body images

The distance between a robot’s body image (the words
that characterize the robot) and human-related words may
provide insight into how closely the robot is associated with
human life in a semantic sense. Here, we took the averaged
word vectors for each of the robots, and computed their
distance from the word “person” using the cosine distance.
Specifically, we used the formula 1 − similaritycos(v1,v2),
where v1 and v2 are the vectors abstracting a robot and the
target word “person”.

Noteworthy, there are several human-related words sharing
similar contexts from which we can choose, with a nu-
anced difference in their contexts though, including “adult”,
“child”, “woman”, “man”, “human”, “people” and “person”.

We selected the word “person” as the target word due to the
consideration that, primarily, this word has a context that is
more general to human life. Since the training objective of
Word2vec is to maximize the probability of the occurrence of
a word given its context, or the occurrence of a context given
its word, a word contains the information about the contexts
where the word is commonly used. The context of the word
“person” is also less discriminatory towards genders or age,
which makes it a more representative term for human life.

Another consideration was that “person” has a larger
number of words in proximity to the distance between it
and the word vector that characterize the robot (see the dots
of the same color indicated in the vicinity of the circles
around the word “Person” in Fig. 4A). This helps to control
for affective biases induced by the distance between human-



Fig. 5. The stereotypes about gender and age towards robots. (A) and (B) are the stereotype about gender; (C) and (D) are the stereotype about age; (A)
and (C) are the relationships between the robot scores and valence; (B) and (D) are the relationships between the robot scores and dominance. The inset
on the left side shows the positons of the robots around the sex equilibrium line, where the area below the equilibrium line is where male likeness score
¿ female likeness score. The blue lines are the equilibrium lines splitting the sides of the opposing concepts.

related words and other words. An example of such a bias
is the valence score of words, which is negatively correlated
with the distance to the word “person”. The other affective
scores of words (arousal and dominance) also tend to show
systemic relationships with their distance to the target word
“person”. To eliminate this bias, we subtracted a baseline
from its affective score. In our analysis, a baseline for a robot
was the mean affective level of all words at a similar distance
between the robot and the target word (see 4A). There were
fewer baseline words centered on the words “human” and
“people” than on the word “person”, making “person” the
most robust choice for the target word.

In Figure 4B-D, we analyzed the relationship between
the perceived affective level (in terms of valence, arousal,
and dominance) of robots’ body images and their distance
from the target word “person”. Our results indicate that
valence and dominance are both correlated with the distance
to the target word. Specifically, the valence scores of words

associated with the robots initially increase with distance,
then plateau with a slight drop at a level higher than the
baseline. Similarly, dominance scores increase monotonously
with distance to the target word. However, we did not find a
clear relationship between arousal scores and distance to the
target word.

Interestingly, we found that most of the humanoids were
located further away from the target word “person” than the
other robots. For example, Atlas, Optimus, Pepper, Musio,
Hitchbot, Talos, iCub, and Asimo were the most distant
robots, while Aquanaut, Jibo, Spot, Aibo, Pico, Pyxel, and
Buddy were the closest. These results could suggest that
being more human-like may not necessarily lead to better
integration of robots into human environments.

D. The stereotypes about gender and age towards robots

Aside from the literal meanings of individual words, such
as those related to humans, semantic space also incorporates



complex cultural and social associations that distinguish be-
tween opposing concepts. To investigate potential stereotypes
as perceived by human participants, we utilized two sets of
opposing concepts to analyze the body images of our robots.

The first set of opposing concepts examined the effect of
gender, using words such as “females”, “female”, “girls”,
“girl”, “women”, “woman”, “ladies”, “lady”, “actress”, and
“actresses” for one end of the dimension, and “males”,
“male”, “boys”, “boy”, “men”, “man”, “gentlemen”, “gen-
tleman”, “actors”, and “actor” for the other end. The word
vectors for each set were then averaged to respectively repre-
sent“female” and “male”, and this allowed for the positioning
of the robots on the gender dimension. The results are
presented in the left column of Fig. 5, where the upper plot
shows the relationship between“manliness” and valence, and
the lower plot shows the relationship between“manliness”
and dominance. Note, the manliness scores on the x-axis
were calculated by subtracting the distance between the
robots to the female concepts from that to the male concepts,
with greater values representing shorter distances to the male
concepts. We found that manliness was positively related to
dominance, and the humanoids were mostly on the more
manliness side of the dimension. Notably, as shown in the
inset, all robots were positioned on the male side of the
semantic space, suggesting a stereotype of robots as males.

The second set of opposing concepts was about age, with
one end consisting of the words “young”, “child”, “children”,
and the other consisting of “old”, “elderly”, “adult”, “adults”.
The results are shown in the right column of Fig. 5. We found
that the humanoids were positioned closer to the “older” end
of the age dimension, while the robot pets and robot kids
were closer to the “younger” end. While this finding was in
line with our expectations, we found that the robot vectors
crossed the equilibrium line between young and old. This
was a notable difference from the gender dimension, where
no robot crossed the equilibrium line between female and
male. The relationship between “oldness” and valence on the
one hand, and “oldness” dominance on the other hand shows
that robots that are perceived as older have lower valence
scores and are perceived as more dominant.

IV. DISCUSSION

The field of psycholinguistics provides a wealth of knowl-
edge about the nature of words. In this study, we introduce
a paradigm that leverages this knowledge to investigate
human-robot interaction. Specifically, we analyzed the words
associated with the visual image of robots to gain insight
into human perception of them. We found that the affective
connotations of these words (valence and dominance) are
predictive of people’s attitudes towards robots. Additionally,
we were able to group robots based on their intended
user-base and appearance, using the associated words as a
guide. A third key finding underscored the importance of
a robot’s body image in shaping its potential integration
into the human environment. Specifically, we found that
humanoids were often positioned further away from the
target word “person” than other types of robots, suggesting

that being more human-like may not necessarily lead to
better integration into human environments. Lastly, we used
opposing concepts to characterize our robots on the gender-
and age-dimensions, with a notable finding that our robots
were associated more with words pertaining to masculinity,
which was correlated with dominance.

Our paradigm consists of two procedures. The first proce-
dure involves associating robots with a set of words, which
allows us to infer the perceived emotions of the robots based
on the degree of valence and the degree of dominance of the
words as determined in existing lexicons (e.g., Mohammad’s
2018 [11]). Fig. 1 demonstrates how word-related valence
and dominance can be utilized to predict human attitudes
towards robots obtained from Likert scale ratings. Note, a
recent study on social robots [17] also employed free asso-
ciation to investigate participants’ word associations with the
written word “robot” and used factor analysis to categorize
the mental representation of robots as social entities. Our
study shares a similar theoretical foundation with this prior
research, but with a more specific focus on individual robots
rather than a general robot concept or its social presence.

In the second procedure, the words associated with the
robots are transformed into 300-dimensional vectors, rep-
resenting the robots in a robust semantic space. Fig. 3
shows that although the grouping of robots is based on
their associated words, members of a group also exhibit
similarities in their physical appearance and derived fea-
tures. For example, humanoid robots are grouped around
the blue clique on the left side of the figure, next to the
quadrupedal robots, while child-oriented robots are clustered
in the green and light blue cliques. As the number of robots
increases, these patterns are likely to become even clearer.
These findings provide support for the idea that a robot’s
body image comprises interconnected visual, semantic, and
potentially social features, which are all inferred from the
robot’s morphology.

Our paradigm allows for a rich description of how humans
perceive robots, with the potential for exploring various
lexical and semantic features. This detailed understanding
can shed light on the ways in which robots relate to one
another and to other concepts within the semantic space. This
can be done by two approaches. Firstly, by computing the
distance between the robots to words that encompass a broad
context in semantic space, i.e. “person”, we exhibited how
valence and dominance are related to a robot’s proximity to
the concept of “person” (Fig. 4). Secondly, by computing
the distance between the robots and features such as gender
and age in semantic space, we exhibited how people anthro-
pomorphize, and even disambiguate, robots. This analysis
revealed that the set of robots used in our study was generally
perceived as more masculine, and robots that were perceived
as younger had a more positive valence (Fig. 5). These results
highlight the importance of a robot’s body image in shaping
its interactions with humans and its potential integration into
human environments.

Finally, our study provides valuable insights for com-
mercial robot development, as we discovered that human



attitudes towards robots can be predicted from the valence
and dominance of the words associated with them. For
example, robots such as Jibo and Buddy, which are low in
dominance and closer to the concept of “person”, may be
more appealing for consumers compared to humanoids. As
we continue to expand our dataset of robots, we anticipate
even greater insights into the complex dimensions of robots
and their impact on human behavior and response.
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