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Introduction

We consider n by n matrices A n with 1's in the strict upper triangle and 0's elsewhere. For n = 3, 4, 5, 6, we have numerically determined upper and lower bounds on the value ψ(A n ) := sup{ p(A n ) : p a polynomial with |p| ≤ 1 in W (A n )}, where W (A n ) denotes the numerical range of A n and • is the spectral norm in C n,n . (We refer to this quantity as the Crouzeix ratio although sometimes this term denotes the reciprocal, max z∈W (An) |p(z)|/ p(A n ) , for a given polynomial p [START_REF] Overton | Local minimizers of the Crouzeix ratio: a nonsmooth optimization case study[END_REF].) Crouzeix's conjecture is that for all square matrices A, ψ(A) ≤ 2. A way to determine ψ(A) is to introduce a Riemann mapping g from the interior of W (A) onto the open unit disk D and to consider the matrix M := g(A). In this case, we can write

ψ(A) = ψ D (M ) := max{ f (M ) : f holomorphic in D with |f | ≤ 1 in D}.
We know that the maximum is realized by a Blaschke product of order n -1 and each choice of such a Blaschke product b provides a lower bound: ψ(A) = ψ D (M ) ≥ b(M ) . From the von Neumann inequality, we easily deduce

ψ D (M ) ≤ ψ cb,D (M ) := min{cond(H) : H ∈ C n,n , H -1 M H ≤ 1}.
Thus, the exhibition of a matrix H satisfying H -1 M H ≤ 1 leads to an upper bound ψ(A) ≤ cond(H) := H • H -1 . This approach has been used to prove ψ(A) ≤ 2 for some classes of matrices [START_REF] Crouzeix | Bounds for analytic functions of matrices[END_REF][START_REF] Choi | A proof of Crouzeix's conjecture for a class of matrices[END_REF][START_REF] Choi | Roots of matrices in the study of GMRES convergence and Crouzeix's conjecture[END_REF][START_REF] Glader | Crouzeix's conjecture holds for tridiagonal 3 × 3 matrices with elliptic numerical range centered at an eigenvalue[END_REF], but this assumes that one knows the matrix M with sufficient accuracy. This is the case when W (A) is an ellipse since there is an analytic formula for g and also for [START_REF] Choi | A proof of Crouzeix's conjecture for a class of matrices[END_REF][START_REF] Choi | Roots of matrices in the study of GMRES convergence and Crouzeix's conjecture[END_REF] where g(A) = cA for a certain constant c. In general, however, there is no simple expression for the boundary of W (A) and for the Riemann mapping g. There are numerical methods for computing g and thus M with high precision, but to guarantee the accuracy would require a complete analysis of all discretization and rounding errors.

In section 2, we consider the matrix

A 3 =   0 1 1 0 0 1 0 0 0   .
Our numerical and analytical work suggests that 1.9956978 < ψ(A 3 ) < 1.9956979, and we are confident in this range, although it does not provide a proof that ψ(A 3 ) ≤ 2, since it relies on numerical computation of g(A).

Another approach is to identify a rational function f 1 such that the image Ω := f 1 (D) of the unit disk is a subset of (and close to) W (A 3 ). Let g 1 be the inverse of f 1 . Then with M 1 = g 1 (A 3 ), we can write

ψ Ω (A 3 ) := sup{ h(A 3 ) : |h| ≤ 1 in Ω} = ψ D (M 1 ) := sup{ f (M 1 ) : |f | ≤ 1 in D}.
Since Ω ⊂ W (A 3 ), we clearly have ψ(A 3 ) ≤ ψ Ω (A 3 ) ≤ ψ cb,D (M 1 ). We are now able to compute M 1 analytically and exhibit a matrix H 1 such that H -1

1 M 1 H 1 = 1 and cond(H 1 ) ≈ 1.9999514. However, we must verify numerically that Ω ⊂ W (A 3 ).

In section 3, we consider more generally the matrices A n for n > 3. They belong to the class of KMS matrices [START_REF] Kac | On the eigenvalues of certain Hermitian forms[END_REF] and they are the matrices in this class for which the boundary of the numerical range contains a line segment [START_REF] Gau | Numerical ranges of KMS matrices[END_REF]. We derive a simple description of their numerical ranges and determine numerically the following bounds:

1.993800 ≤ ψ(A 4 ) ≤ 1.993801, 1.992921 ≤ ψ(A 5 ) ≤ 1.992922, 1.992444 ≤ ψ(A 6 ) ≤ 1.992445.

In section 4, we explain the numerical method used to compute the conformal mapping and we provide the Matlab code used for the computation of M = g(A).

2 Numerical estimates for the matrix A 3

Here we consider the matrix A 3 =   0 1 1 0 0 1 0 0 0   . We will see in the next section that the boundary of its numerical range is the union of a part of an algebraic curve 2 e iθ +e 2iθ 3

: -2π 3 ≤ θ ≤ 2π 3 and of the vertical straight line [-1 2 -i √ 3 6 , -1 2 + i √ 3 
6 ]. The algebraic curve is a cardioid ; its Cartesian equation is 27(x 2 +y 2 ) 2 -18(x 2 +y 2 ) -8x -1 = 0.

We denote by g the Riemann mapping from W (A) onto the unit disk D that satisfies g(0) = 0 and g (0) > 0. Then

M = g(A) =   0 a b 0 0 a 0 0 0   , with a = g (0), b = g (0) + 1 2 g (0).
From the numerical computations it appears that a 1.360374515, b 0.710915425 with an accuracy that we empirically estimate better than 10 -8 . Using the Blaschke product f (z) = , we obtain f (M ) = 1.9956978, which (numerically) shows that ψ(A) ≥ 1.9956978. We now choose the matrix

H =   a b/2a -b 2 /8a 3 0 1 -b/2a 2 0 0 1/a   , then H -1 M H =   0 1 0 0 0 1 0 0 0   . Therefore ψ cb,D (M ) ≤ H H -1 = cond(H) 1.995697855.
With the numerical values obtained previously, we believe that we have the two sided estimates 1.9956978 < ψ M (a, b) < 1.9956979. Therefore, it appears from the numerical simulation that W (A) is a (complete) 1.9956979-spectral set for A, that the complete bound [START_REF] Paulsen | Completely bounded maps and operator algebras[END_REF] is the same as the ordinary bound, and that a function which realizes ψ(A) is a Blaschke product of order 2 with 2 real roots. But we have only an empiric estimate of the accuracy that we justify as follows. If we let a(n) be the numerical value of a computed with our program (described further) using n points on the boundary, we have verified that 33 ≤ a(1447)-a(n) n -4 ≤ 65 for values of n between 23 and 1205. This suggests that our method is of order n -4 and suggests that |a(1205) -a| ≤ 2 • 10 -11 . Similarly, it appears that our computation of b is of order n

-4 , 130 ≤ b(n)-b(1447) n -4
≤ 350 and that |b(1205) -b| ≤ 10 -10 .

We turn now to the second attempt which is to consider the image Ω = f 1 (D) of the unit disk by the rational function

f 1 (z) = (c 1 z + c 2 z 2 + • • • + c 7 z 7 )/(1 + d 1 z + • • • + d 7 z 7 )
, with the values c = (0.734, 0.49736, 0.07268, -0.00521, 0.00013, 0.00061, -0.00251), d = (0.32564, -0.03291, 0.01, -0.004, 0.00084, -0.00242, 0.00028).

We let g 1 be the inverse function of f 1 and we set M 1 = g 1 (A). We will see that if Ω is included in W (A), then We are now able to compute a 1 = g 1 (0), b 1 = g 1 (0) + 1 2 g 1 (0), and thus M 1 with an accuracy better than 10 -14 . We choose

ψ(A) ≤ ψ Ω (A) ≤ ψ cb,D (M 1 ) ≤ cond(H 1 ), if H -1 1 M 1 H 1 ≤ 1.
H 1 =   a 1 b 1 /2a 1 -b 2 1 /8a 3 1 0 1 -b 1 /2a 2 1 0 0 1/a 1   , then H -1 1 M 1 H 1 =   0 1 0 0 0 1 0 0 0   .
This gives an estimate ψ(A) ≤ ψ cb,D (M 1 ) ≤ 1.9996222 with an accuracy better than 10 -12 which ensures that W (A) is a 2-spectral set for A.

It remains to show that W (A) contains Ω. For that, we first remark that the set {z : p(z) < 0} with p(z) := 27|z| 4 -18|z| 2 -8 Re z -1 < 0 is the interior of the cardioid and that the rectangle {z :

-1 2 ≤ Re z ≤ 0 and | Im z| ≤ √ 3/6} is contained in W (A).
Taking into account the symmetry with respect to the real axis, in order to show that Ω is contained in W (A), it suffices to show that the set {z = f 1 (e iθ ) : 0 ≤ θ ≤ 3π 4 } is interior to the cardioid and that the set {z = f 1 (e iθ ) : Figure 5:

Curve d dθ p(f 1 (e iθ )), 0 ≤ θ ≤ 3π 4 .
θ ≤ π, an estimate of max d dθ p(f 1 (e iθ )) ≤ 0.015 and thus min Re(f 1 (e iθ )) ≥ -0.4998968 -0.015π/2000 > -0.499921. Note also that this part of the curve clearly satisfies Re(f 1 (e iθ )) ≤ 0 and Im f 1 (e iθ )) ≤ √ 3/6. This shows that the set {z = f 1 (e iθ ) : 3π 4 ≤ θ ≤ π} is interior to W (A). 3 Estimates for the class of matrices A k

Recall [START_REF] Kippenhahn | On the numerical range of a matrix, Translated from the German by Paul F. Zachlin and Michiel E. Hochstenbach[END_REF] that the boundary of the numerical range W (A) is the convex hull of the algebraic curve with tangential equation T (u, v, w) := det(uB+vC+wI) = 0 where we have written A = B+i C, with B and C self-adjoint. For the matrix A k , the corresponding tangential equation T k (u, v, w) = 0, can be obtained from the recursion

T 1 (u, v, w) = w, T k+1 (u, v, w) = w T k (u, v, w) + (w -u+iv 2 ) k -(w -u-iv 2 ) k i v u 2 + v 2 4 .
For instance,

T 3 (u, v, w) = w 3 - 3 4 w(u 2 +v 2 ) + 1 4 (u 2 +v 2 )u, T 4 (u, v, w) = w 4 - 3 2 w 2 (u 2 +v 2 ) + w(u 2 +v 2 )u - 1 16 (u 2 +v 2 )(3u 2 -v 2 ).
We can see, by recursion, that

T k (cos ϕ, sin ϕ, w) = (-1) k sin ϕ Im e -iϕ ( 1 2 e iϕ -w) k .
We now remark that, if ϕ = kθ 2 and w = -1 2 sin((k-1)θ/2) sin (θ/2) , then e -iϕ/k ( 1 2 e iϕ -w) = 1 2 sin(kθ/2) sin θ/2 ∈ R, whence T k (cos ϕ, sin ϕ, w) = 0. Now, we consider the algebraic curve {f k (e iθ ) : |θ| ≤ π} with

f k (z) = ( k-1 j=1 jz k-j )/k = z k+1 -z-k(z 2 -z) k(z-1) 2
. We remark that

k e iθ f k (e iθ ) = k-1 j=1 j(k-j)e i(k-j)θ = e ikθ/2 2 k-1 j=1 j(k-j) cos (k-2j)θ 2 ;
hence, the vector e ikθ/2 is the unit normal at the point f k (e iθ ) and the equation of the tangent at this point is Re (e -ikθ/2 (x+iy-f (e iθ ) = 0, i.e. ux+vy+w = 0, with

u = cos kθ 2 , v = sin kθ 2 , w = -Re e -ikθ/2 f (e iθ ) = -1 2 k-1 j=1 cos( k-2j 2 θ) = -1 2 sin((k-1)θ/2) sin(θ/2)
. Thus, this shows that the algebraic curve which satisfies the tangential equation T k (u, v, w) = 0 is the set:

1 {z : z = 1 k k-1
j=1 j e i(k-j)θ , -π ≤ θ ≤ π}. The points with horizontal tangent are given by θ j = (2j-1)π k , j = 1, . . . , n and are cuspid for j = 2, . . . , k-1; the k-1 points of the algebraic curve on the flat part are the points -1 2 + i 2 tan(jπ/k) , j = 1, . . . , k-1. Note that the matrix A k +A * k +I, whose entries are all 1's, has the simple eigenvalue k (eigenvector (1, 1, • • • , 1) T ), and the eigenvalue 0 of multiplicity k-1 (with orthonormal eigenvectors 1 √ k (e iθ j , e 2iθ j , . . . , e ikθ j ) T , θ j = 2jπ k , j = 1 . . . , k-1). This implies that the point k-1 2 = f k (1) is the extremal right point of W (A k ), and that the boundary has a flat part on the line Re z = -1 2 . The boundary of the numerical range is the union of a part of the algebraic curve and of a straight part:

∂W (A k ) = {z : z = 1 k k-1 j=1 j e i(k-j)θ , |θ| ≤ 2π k } ∪ {z : z = -1 2 (1+iy), -cot( π k ) ≤ y ≤ cot( π k )}.
We turn now to some estimates for the constant corresponding to the matrices A k , k ≤ 6. For We have obtained a lower bound ψ(A 4 ) ≥ 1.9938003 with the Blaschke product corresponding to the 3 coefficients -0.4560323±0.3891911i, 0.2474013. We have also an upper bound: with the values x = b/a 1.5 , y = az-bx/a+c/a 1.5 , z = -0.0735033, t = -0.0231366 and the matrix

H =     a 1.5 xa y t 0 a 0.5 0 z 0 0 a -0.5 -xa 0 0 0 a -1.5     , it holds H -1 g(A 4 )H =     0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0     .
Then, cond(H) 1.9938002 and H -1 g(A 4 )H = 1. We can consider that the estimate 1.993800 ≤ ψ(A 4 ) ≤ 1.993801 is correct.

For A 5 , we have computed

g(A 5 ) =       0 a b c d 0 0 a b c 0 0 0 a b 0 0 0 0 a 0 0 0 0 0       , with a = 1.1170233, b = 0.2325756, c = 0.2187502, d = 0.1895824.
We have obtained a lower bound ψ(A 5 ) ≥ 1.9929216 with the Blaschke product corresponding to the 4 coefficients -0.2583004±0.60451151i, -0.6247827, 0.3295365. We have also an upper bound: with the values u = -0.0194597, w = -0.0384976, g = -0.1091772, h = -0.2503045,

f = ah + ba -2 , v = ag+bh + ca -2 , z = af +ba -1 , t = aw+bg+ch+da -2 , y = av+bf +ca -1 , x = az+b and the matrix H =       a 2 x y t u 0 a z v w 0 0 1 f g 0 0 0 a -1 h 0 0 0 0 a -2       , it holds H -1 g(A 5 )H =       0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0       .
Then, cond(H) 1.9929216 and H -1 g(A 5 )H = 1.

We can consider that the estimate 1.992921 ≤ ψ(A 5 ) ≤ 1.992922 is correct.

For A 6 , we have computed We have obtained a lower bound ψ(A 6 ) ≥ 1.9924447 with the Blaschke product corresponding to the 5 coefficients -0.5859775±0.3199164i, -0.0604565±0.70030221i, 0.3972632, 0.3295365. We have also a upper bound: with the values y = (-0.0163999, -0.0248879, -0.0578414, -0.1294105, -0.243031), x 9 = a y 5 + b a -2.5 , x 8 = a y 4 + b y 5 + c a -2.5 , x 7 = a x 9 + b a -1.5 , x 6 = a y 3 + b y 4 + c y 5 + d a -2.5 , x 5 = a x 8 + b x 9 + c a -1.5 , x 4 = a x 7 + b a -0.5 , x 3 = a y 2 + b y 3 + c y 4 + d y 5 + e a -2.5 , x 2 = a x 6 + b x 8 + c x 9 + d a -1.5 , x 1 = a x 5 + b x 7 + c a -0.5 ; x 0 = a x 4 + b a 0.5 , and the matrix

g(A 6 ) =         0 
H =         a 2.5 x 0 x 1 x 2 x 3 y 1 0 a 1.5 x 4 x 5 x 6 y 2 0 0 a .5 x 7 x 8 y 3 0 0 0 a -.5 x 9 y 4 0 0 0 0 a -1.5 y 5 0 0 0 0 0 a -2.5         , it holds H -1 g(A 6 )H =        
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0

        .
Then, cond(H) 1.9924445 and H -1 g(A 6 )H = 1. We can consider that the estimate 1.992444 ≤ ψ(A 6 ) ≤ 1.992445 is correct. Remark. In each of these cases, the matrix M = g(A k ) satisfies the relation ψ D (M ) = ψ cb,D (M ). This property holds for all d × d matrices M if d ≤ 2, but may fail [START_REF] Crouzeix | Polynomial bounds for small matrices[END_REF] if d ≥ 3. Also here, for the matrix H which realizes ψ cb,D (M ), H -1 M H was a Jordan block, which is not generally the case.

Table 1 

A n ) = ψ cb,D (M n ).
4 About the computation of the conformal mapping g

We may write g(z) = z exp(u+iv), with u(z) and v(z) harmonic real-valued functions. Note that u(z) = -log |z| on ∂W (A), which determines u in W (A) in a unique way.

Let us consider a representation ∂W (A) = {σ(θ) ; θ ∈ [0, 2π]} of the boundary and choose λ > 0. If q is a 2π-periodic real-valued function such that,

2π 0 q(θ) log σ(θ)-σ(ϕ) λ dθ = -log |σ(ϕ)|, for all ϕ ∈ [0, 2π[, then it holds u(z) = 2π 0 q(θ) log σ(θ)-z λ
dθ since this integral is clearly harmonic and is equal to -log |z| on ∂W (A). It is known that such a q exists if and only if λ is different from the logarithmic capacity of W (A). Generally we will use this equation with λ = 1 and then rewrite it as

2π 0 q(θ) log σ(θ)-σ(ϕ) e iθ -e iϕ dθ + 2π 0 q(θ) log |e iθ -e iϕ | dθ = -log |σ(ϕ)|, ∀ ϕ ∈ [0, 2π[.
We discretized this equation using a representation σ(θ) of ∂W (A) and approximating q(•) by a trigonometric polynomial q n (•) of degree n, and employing a collocation method at the points θ j , j = 0, 1, . . . , 2n (it is known that an odd number of collocation points is necessary for such a method). So, we get an approximation q j = q n (θ j ) by solving the system 2π 2n + 1

2n j=0 q j log σ(θ j ) -σ(θ i ) e iθ j -e iθ i + 2π 0 q n (θ) log |e iθ -e iθ i | dθ = -log |σ(θ i )|,
for i = 0, 1, . . . , 2n.

We have approximated the first integral by the trapezoidal formula; of course, if j = i, we have to replace log σ(θ j )-σ(θ i ) e iθ j -e iθ i by log |σ (θ i )|. Recall that, for the remaining integral, there holds

2π 0 q n (θ) log |e iθ -e iθ i | dθ = - 2π 2n + 1 2n j=0 c(j -i) q j , with c(k) = c(-k) = n j=1 cos jθ k j .
Then, we obtain the approximation of u from u(z) 2π 2n + 1 2n j=0 q j log |σ(θ j ) -z| and the approximation of the derivatives of g at 0 (note that here v q j σ(θ j ) k ) .

(x) = 0 if x ∈ R) g (0) = exp(u(0)), g (0) = 2 g (0)u (0), g (3) (0) = 3 g (0)(u (0) 2 +u (0)), g (4) (0) = 4 g (0)(u (0) 3 +3u (0)u (0)+u (3) (0)), g (5) (0) = 5 g (0)(u (0) 4 +6u (0) 2 u (0)+4u (0)u (3) (0)+3u (0) 2 +u (4) (0)),
Remark. In order to get q, we have to solve a linear system of the form M q = b. But it could appear that the matrix M is not invertible, or badly conditioned, if the logarithmic capacity of W (A) is close to 1. In this case, we can replace this system by (M -E)q = b-e where E (resp. e) is a matrix (resp. a vector) with all entries equal to 1.

This method is very efficient for analytic boundary (exponential convergence with respect to n, see for instance [START_REF] Cheng | The delta-trigonometric method using the single layer potential representation[END_REF]), but here we have singularities at the transition points between the straight line and the algebraic part, which reduces the order of convergence to O(n -4 ) which is still good. With ϕ k (z) = 1 k k-1 j=1 j z i(k-j) , we have

∂W (A k ) = {z : z = ϕ k (θ), -2π k ≤ θ ≤ 2π k } ∪ {z : z = -1 2 (1+iy), -cot( π k ) ≤ y ≤ cot( π k )}.
We have used 2n+1 points on the algebraic part of ∂W (A k ): z j = ϕ k ( 2πj kn ) for j = -n, . . . , n and 2n 2 equidistant points on the straight part z n+j = z n -jh i, j = 1, . . . , 2n 2 where h = 2 cot( π k )/(2n 2 +1) and n 2 is chosen such that h is as close as possible to |z n -z n-1 |.

5 Program in Matlab for the computation of g(A)

function [gofA,gderivs,nn]= Akstudy(k,n); % For 3 <= k <= 6, forms the kxk matrix A with ones in the % strict upper triangle and zeros elsewhere, and computes % its image gofA under the Riemann mapping from W(A) to the % unit disk with g(0) = 0, g'(0) > 0. gderivs(j), j=1,...,5,

Figure 1 :

 1 Figure 1: The boundary of the numerical range in black, the remaining part of the algebraic curve in dashed blue

Figure 2 :

 2 Figure 2: The boundary of Ω in red, of W (A) in black.

Figure 3 :

 3 Figure 3: Zoom close to the straight line.

3π 4 ≤Figure 4 :

 44 Figure 4: Curve p(f 1 (e iθ )), 0 ≤ θ ≤ 3π 4 .

Figure 6 :

 6 Figure 6: Curve Re(f 1 (e iθ )), 3π 4 ≤ θ ≤ π.

Figure 7 :

 7 Figure 7: Curve d dθ Re(f 1 (e iθ )), 3π 4 ≤ θ ≤ π.

Figure 8 :

 8 Figure 8: W (A 4 ).Figure 9: W (A 5 ).Figure 10: W (A 100 ).

Figure 9 :

 9 Figure 8: W (A 4 ).Figure 9: W (A 5 ).Figure 10: W (A 100 ).

Figure 10 :

 10 Figure 8: W (A 4 ).Figure 9: W (A 5 ).Figure 10: W (A 100 ).

A 4 ,

 4 we have computed the values g (0) = 1.1888506, g (0) = -1.6292742, g (0) = 4.7085601, which gives g(A 4 ) = a = 1.1888506, b = 0.3742134, c = 0.3443362.

,

  with a = 1.0798634, b = 0.1590093, c = 0.1519169, d = 0.1359021 et e = 0.1161184.

q

  j log |σ(θ j )| , u (k) (0) -(k-1

Table 1 :

 1 summarizes our results. Upper and Lower Bounds on ψ(

	n lower bound upper bound difference
	3	1.9956978	1.9956979	10 -7
	4	1.993800	1.993801	10 -6
	5	1.992921	1.992922	10 -6
	6	1.992444	1.992445	10 -6

Thanks to Bernd Beckermann for a useful remark.
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% contains the value of the jth derivative of g at 0. % W(A) consists of a cardioid and a vertical line segment, % and 2n+1 points are used to represent the cardioid portion. % Output argument nn is then the total number of discretization % points used to represent the boundary of W(A). Note also % that n may be modified (to make things come out even). M(j,j) = log(zzprim(j)) -c0; for k=j+1:nn, M(k,j) = log(abs((zz(k)-zz(j))/(ee(k)-ee(j)))) -c(k-j); M(j,k) = M(k,j); end; end; % If t < 0, M is badly conditioned, so we translate M. t = 10∧4-cond(M); if t < 0, M = M -ones(M); t, pause, end; % Compute q. b0 = log(abs(zz)); q = -M\b0; % Take account of the translation. if t < 0, b0 = b0 -ones(b0); end; % Compute derivatives of g at 0. gp = exp(sum(q.*b0)); b = -real(sum(q./zz)); c = -real(sum(q./zz.∧2)); d = -2*real(sum(q./zz.∧3)); ed = -6*real(sum(q./zz.∧4));