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Numerical bounds on the Crouzeix ratio for a class of matrices

Michel Crouzeix∗, Anne Greenbaum†, Kenan Li

November 22, 2023

Abstract

We provide numerical bounds on the Crouzeix ratio for KLS matrices A which have a
line segment on the boundary of the numerical range. The Crouzeix ratio is the supremum
over all polynomials p of the spectral norm of p(A) divided by the maximum absolute value
of p on the numerical range of A. Our bounds confirm the conjecture that this ratio is less
than or equal to 2. We also give a precise description of these numerical ranges.

2000 Mathematical subject classifications : 15A60; 15A45; 47A25 ; 47A30
Keywords : numerical range, spectral set

1 Introduction

We consider n by n matrices An with 1’s in the strict upper triangle and 0’s elsewhere. For
n = 3, 4, 5, 6, we have numerically determined upper and lower bounds on the value

ψ(An) := sup{‖p(An)‖ : p a polynomial with |p| ≤ 1 in W (An)},

where W (An) denotes the numerical range of An and ‖ · ‖ is the spectral norm in Cn,n. (We
refer to this quantity as the Crouzeix ratio although sometimes this term denotes the reciprocal,
maxz∈W (An) |p(z)|/‖p(An)‖, for a given polynomial p [10].) Crouzeix’s conjecture is that for all
square matrices A, ψ(A) ≤ 2. A way to determine ψ(A) is to introduce a Riemann mapping g
from the interior of W (A) onto the open unit disk D and to consider the matrix M := g(A). In
this case, we can write

ψ(A) = ψD(M) := max{‖f(M)‖ : f holomorphic in D with |f | ≤ 1 in D}.

We know that the maximum is realized by a Blaschke product of order n − 1 and each choice
of such a Blaschke product b provides a lower bound: ψ(A) = ψD(M) ≥ ‖b(M)‖. From the von
Neumann inequality, we easily deduce

ψD(M) ≤ ψcb,D(M) := min{cond(H) : H ∈ Cn,n, ‖H−1MH‖ ≤ 1}.

Thus, the exhibition of a matrix H satisfying ‖H−1MH‖ ≤ 1 leads to an upper bound ψ(A) ≤
cond(H) := ‖H‖ · ‖H−1‖. This approach has been used to prove ψ(A) ≤ 2 for some classes of
matrices [4, 2, 3, 6], but this assumes that one knows the matrix M with sufficient accuracy.
This is the case when W (A) is an ellipse since there is an analytic formula for g and also for [2, 3]
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where g(A) = cA for a certain constant c. In general, however, there is no simple expression
for the boundary of W (A) and for the Riemann mapping g. There are numerical methods for
computing g and thus M with high precision, but to guarantee the accuracy would require a
complete analysis of all discretization and rounding errors.

In section 2, we consider the matrix

A3 =

 0 1 1
0 0 1
0 0 0

 .
Our numerical and analytical work suggests that 1.9956978 < ψ(A3) < 1.9956979, and we are
confident in this range, although it does not provide a proof that ψ(A3) ≤ 2, since it relies on
numerical computation of g(A).

Another approach is to identify a rational function f1 such that the image Ω := f1(D) of
the unit disk is a subset of (and close to) W (A3). Let g1 be the inverse of f1. Then with
M1 = g1(A3), we can write

ψΩ(A3) := sup{‖h(A3)‖ : |h| ≤ 1 in Ω} = ψD(M1) := sup{‖f(M1)‖ : |f | ≤ 1 in D}.

Since Ω ⊂ W (A3), we clearly have ψ(A3) ≤ ψΩ(A3) ≤ ψcb,D(M1). We are now able to compute
M1 analytically and exhibit a matrix H1 such that ‖H−1

1 M1H1‖ = 1 and cond(H1) ≈ 1.9999514.
However, we must verify numerically that Ω ⊂W (A3).

In section 3, we consider more generally the matrices An for n > 3. They belong to the
class of KLS matrices [8] and they are the matrices in this class for which the boundary of the
numerical range contains a line segment [7]. We derive a simple description of their numerical
ranges and determine numerically the following bounds:

1.993800 ≤ ψ(A4) ≤ 1.993801, 1.992921 ≤ ψ(A5) ≤ 1.992922, 1.992444 ≤ ψ(A6) ≤ 1.992445.

In section 4, we explain the numerical method used to compute the conformal mapping and
we provide the Matlab code used for the computation of M = g(A).

2 Numerical estimates for the matrix A3

Here we consider the matrix A3 =

0 1 1
0 0 1
0 0 0

. We will see in the next section that the boundary

of its numerical range is the union of a part of an algebraic curve
{

2 eiθ+e2iθ

3 : −2π
3 ≤ θ ≤ 2π

3

}
and of the vertical straight line [−1

2 − i
√

3
6 ,−

1
2 + i

√
3

6 ]. The algebraic curve is a cardioid ; its
Cartesian equation is 27(x2+y2)2 − 18(x2+y2)− 8x− 1 = 0.

We denote by g the Riemann mapping from W (A) onto the unit disk D that satisfies g(0) = 0
and g′(0) > 0. Then

M = g(A) =

0 a b
0 0 a
0 0 0

 , with a = g′(0), b = g′(0) + 1
2g
′′(0).

From the numerical computations it appears that a ' 1.360374515, b ' 0.710915425 with an
accuracy that we empirically estimate better than 10−8. Using the Blaschke product f(z) =

2



Figure 1: The boundary of the numerical range in black, the remaining part of the algebraic
curve in dashed blue

z + 0.5470208

1 + 0.5470208z

z − 0.1465739

1− 0.1465739z
, we obtain ‖f(M)‖ = 1.9956978, which (numerically) shows

that ψ(A) ≥ 1.9956978.
We now choose the matrix

H =

a b/2a −b2/8a3

0 1 −b/2a2

0 0 1/a

 , then H−1MH =

0 1 0
0 0 1
0 0 0

 .

Therefore ψcb,D(M) ≤ ‖H‖‖H−1‖ = cond(H) ' 1.995697855.
With the numerical values obtained previously, we believe that we have the two sided esti-

mates 1.9956978 < ψM (a, b) < 1.9956979. Therefore, it appears from the numerical simulation
that W (A) is a (complete) 1.9956979-spectral set for A, that the complete bound [11] is the
same as the ordinary bound, and that a function which realizes ψ(A) is a Blaschke product of
order 2 with 2 real roots. But we have only an empiric estimate of the accuracy that we justify
as follows. If we let a(n) be the numerical value of a computed with our program (described

further) using n points on the boundary, we have verified that 33 ≤ a(1447)−a(n)
n−4 ≤ 65 for val-

ues of n between 23 and 1205. This suggests that our method is of order n−4 and suggests
that |a(1205) − a| ≤ 2 · 10−11. Similarly, it appears that our computation of b is of order n−4,

130 ≤ b(n)−b(1447)
n−4 ≤ 350 and that |b(1205)− b| ≤ 10−10.

We turn now to the second attempt which is to consider the image Ω = f1(D) of the unit
disk by the rational function f1(z) = (c1z + c2z

2 + · · · + c7z
7)/(1 + d1z + · · · + d7z

7), with the
values

c = (0.734, 0.49736, 0.07268,−0.00521, 0.00013, 0.00061,−0.00251),

d = (0.32564,−0.03291, 0.01,−0.004, 0.00084,−0.00242, 0.00028).

We let g1 be the inverse function of f1 and we set M1 = g1(A). We will see that if Ω is included
in W (A), then

ψ(A) ≤ ψΩ(A) ≤ ψcb,D(M1) ≤ cond(H1), if ‖H−1
1 M1H1‖ ≤ 1.
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Figure 2: The boundary of Ω in red, of W (A) in
black.

Figure 3: Zoom close to the straight
line.

We are now able to compute a1 = g′1(0), b1 = g′1(0) + 1
2g
′′
1(0), and thus M1 with an accuracy

better than 10−14. We choose

H1 =

a1 b1/2a1 −b21/8a3
1

0 1 −b1/2a2
1

0 0 1/a1

 , then H−1
1 M1H1 =

0 1 0
0 0 1
0 0 0

 .

This gives an estimate ψ(A) ≤ ψcb,D(M1) ≤ 1.9996222 with an accuracy better than 10−12 which
ensures that W (A) is a 2-spectral set for A.

It remains to show that W (A) contains Ω. For that, we first remark that the set {z : p(z) <
0} with p(z) := 27|z|4 − 18|z|2 − 8 Re z − 1 < 0 is the interior of the cardioid and that the
rectangle {z : −1

2 ≤ Re z ≤ 0 and | Im z| ≤
√

3/6} is contained in W (A). Taking into account
the symmetry with respect to the real axis, in order to show that Ω is contained in W (A), it
suffices to show that the set {z = f1(eiθ) : 0 ≤ θ ≤ 3π

4 } is interior to the cardioid and that the
set {z = f1(eiθ) : 3π

4 ≤ θ ≤ π} is interior to the rectangle.

a) With θj = jπ
1000 , 0 ≤ j ≤ 750, we have computed max

0≤j≤750
p(f1(eiθj )) = −0.0008777 . . . and

max
0≤j≤749

∣∣∣p(f1(eiθj+1))− p(f1(eiθj ))

θj+1 − θj
∣∣ = 0.0174 . . . This gives us, for 0 ≤ θ ≤ 3π/4, an estimate of

max
∣∣ d
dθp(f1(eiθ))

∣∣ ≤ 0.018 and thus max p(f1(eiθ)) ≤ −0.0008777 + 0.018π/2000 < −0.000849.
This shows that the set {z = f1(eiθ) : 0 ≤ θ ≤ 3π

4 } is interior to the cardioid, thus interior to
W (A).

b) We turn now to the part 3π
4 ≤ θ ≤ π. We have computed min

750≤j≤1000
Re(f1(eiθj )) =

−0.4998968 and max
750≤j≤1000

∣∣∣Re(f1(eiθj+1))− Re(f1(eiθj ))

θj+1 − θj
∣∣ = 0.01485 . . . This gives us, for 3π/4 ≤
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Figure 4: Curve p(f1(eiθ)), 0 ≤ θ ≤
3π
4 .

Figure 5: Curve d
dθp(f1(eiθ)), 0 ≤ θ ≤ 3π

4 .

θ ≤ π, an estimate of max
∣∣ d
dθp(f1(eiθ))

∣∣ ≤ 0.015 and thus min Re(f1(eiθ)) ≥ −0.4998968 −
0.015π/2000 > −0.499921. Note also that this part of the curve clearly satisfies Re(f1(eiθ)) ≤ 0
and Im f1(eiθ)) ≤

√
3/6. This shows that the set {z = f1(eiθ) : 3π

4 ≤ θ ≤ π} is interior to W (A).

Figure 6: Curve Re(f1(eiθ)),3π
4 ≤

θ≤ π.
Figure 7: Curve d

dθ Re(f1(eiθ)), 3π
4 ≤ θ ≤ π.

3 Estimates for the class of matrices Ak

Recall [9] that the boundary of the numerical range W (A) is the convex hull of the algebraic
curve with tangential equation T (u, v, w) := det(uB+vC+wI) = 0 where we have written
A = B+i C, with B and C self-adjoint. For the matrix Ak, the corresponding tangential
equation Tk(u, v, w) = 0, can be obtained from the recursion

T1(u, v, w) = w, Tk+1(u, v, w) = wTk(u, v, w) +
(w − u+iv

2 )k − (w − u−iv
2 )k

i v

u2 + v2

4
.

For instance,

T3(u, v, w) = w3 − 3

4
w(u2+v2) +

1

4
(u2+v2)u,

T4(u, v, w) = w4 − 3

2
w2(u2+v2) + w(u2+v2)u− 1

16
(u2+v2)(3u2−v2).

We can see, by recursion, that

Tk(cosϕ, sinϕ,w) =
(−1)k

sinϕ
Im
(
e−iϕ(1

2e
iϕ−w)k

)
.
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We now remark that, if ϕ = kθ
2 and w = −1

2
sin((k−1)θ/2)

sin (θ/2) , then e−iϕ/k(1
2e
iϕ−w) = 1

2
sin(kθ/2)

sin θ/2 ∈ R,

whence Tk(cosϕ, sinϕ,w) = 0. Now, we consider the algebraic curve {fk(eiθ) : |θ| ≤ π} with

fk(z) = (
∑k−1

j=1 jz
k−j)/k = zk+1−z−k(z2−z)

k(z−1)2
. We remark that

k eiθ f ′k(e
iθ) =

k−1∑
j=1

j(k−j)ei(k−j)θ =
eikθ/2

2

k−1∑
j=1

j(k−j) cos (k−2j)θ
2 ;

hence, the vector eikθ/2 is the unit normal at the point fk(e
iθ) and the equation of the tangent

at this point is Re
(
(e−ikθ/2(x+iy−f(eiθ)

)
= 0, i.e. ux+vy+w = 0, with u = cos kθ2 , v = sin kθ

2 ,

w = −Re
(
e−ikθ/2f(eiθ)

)
= −1

2

∑k−1
j=1 cos(k−2j

2 θ) = −1
2

sin((k−1)θ/2)
sin(θ/2) . Thus, this shows that the

algebraic curve which satisfies the tangential equation Tk(u, v, w) = 0 is the set:1

{z : z = 1
k

∑k−1
j=1 j e

i(k−j)θ, −π ≤ θ ≤ π}.

Figure 8: W (A4). Figure 9: W (A5). Figure 10: W (A100).

The points with horizontal tangent are given by θj = (2j−1)π
k , j = 1, . . . , n and are cus-

pid for j = 2, . . . , k−1; the k−1 points of the algebraic curve on the flat part are the points
−1

2+ i
2 tan(jπ/k) , j = 1, . . . , k−1.

Note that the matrix Ak+A
∗
k+I, whose entries are all 1’s, has the simple eigenvalue k (eigen-

vector (1, 1, · · · , 1)T ), and the eigenvalue 0 of multiplicity k−1 (with orthonormal eigenvectors
1√
k
(eiθj , e2iθj , . . . , eikθj )T , θj = 2jπ

k , j = 1 . . . , k−1). This implies that the point k−1
2 = fk(1) is

the extremal right point of W (Ak), and that the boundary has a flat part on the line Re z = −1
2 .

The boundary of the numerical range is the union of a part of the algebraic curve and of a
straight part:

∂W (Ak) = {z : z = 1
k

k−1∑
j=1

j ei(k−j)θ, |θ| ≤ 2π
k } ∪ {z : z = −1

2(1+iy), − cot(πk ) ≤ y ≤ cot(πk )}.

We turn now to some estimates for the constant corresponding to the matrices Ak, k ≤ 6. For
A4, we have computed the values g′(0) = 1.1888506, g′′(0) = −1.6292742, g′′′(0) = 4.7085601,

which gives g(A4) =


0 a b c
0 0 a b
0 0 0 a
0 0 0 0

, with a = 1.1888506, b = 0.3742134, c = 0.3443362.

1Thanks to Bernd Beckermann for a useful remark.
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We have obtained a lower bound ψ(A4) ≥ 1.9938003 with the Blaschke product corresponding
to the 3 coefficients −0.4560323±0.3891911i, 0.2474013. We have also an upper bound: with
the values x = b/a1.5, y = az−bx/a+c/a1.5, z = −0.0735033, t = −0.0231366 and the matrix

H =


a1.5 xa y t
0 a0.5 0 z
0 0 a−0.5 −xa
0 0 0 a−1.5

, it holds H−1g(A4)H =


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

.

Then, cond(H) ' 1.9938002 and ‖H−1g(A4)H‖ = 1.
We can consider that the estimate 1.993800 ≤ ψ(A4) ≤ 1.993801 is correct.

For A5, we have computed g(A5) =


0 a b c d
0 0 a b c
0 0 0 a b
0 0 0 0 a
0 0 0 0 0

, with a = 1.1170233, b = 0.2325756,

c = 0.2187502, d = 0.1895824.
We have obtained a lower bound ψ(A5) ≥ 1.9929216 with the Blaschke product corresponding

to the 4 coefficients −0.2583004±0.60451151i, −0.6247827, 0.3295365. We have also an upper
bound: with the values u = −0.0194597, w = −0.0384976, g = −0.1091772, h = −0.2503045,
f = ah + ba−2, v = ag+bh + ca−2, z = af+ba−1, t = aw+bg+ch+da−2 , y = av+bf+ca−1,
x = az+b and the matrix

H =


a2 x y t u
0 a z v w
0 0 1 f g
0 0 0 a−1 h
0 0 0 0 a−2

, it holds H−1g(A5)H =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0

.

Then, cond(H) ' 1.9929216 and ‖H−1g(A5)H‖ = 1.
We can consider that the estimate 1.992921 ≤ ψ(A5) ≤ 1.992922 is correct.

ForA6, we have computed g(A6) =



0 a b c d e
0 0 a b c d
0 0 0 a b c
0 0 0 0 a b
0 0 0 0 0 a
0 0 0 0 0 0

, with a = 1.0798634, b = 0.1590093,

c = 0.1519169, d = 0.1359021 et e = 0.1161184.
We have obtained a lower bound ψ(A6) ≥ 1.9924447 with the Blaschke product corresponding

to the 5 coefficients −0.5859775±0.3199164i, −0.0604565±0.70030221i, 0.3972632, 0.3295365.
We have also a upper bound: with the values
y = (−0.0163999,−0.0248879,−0.0578414,−0.1294105,−0.243031),
x9 = a y5 + b a−2.5, x8 = a y4 + b y5 + c a−2.5, x7 = a x9 + b a−1.5, x6 = a y3 + b y4 + c y5 + d a−2.5,
x5 = a x8 + b x9 + c a−1.5, x4 = a x7 + b a−0.5, x3 = a y2 + b y3 + c y4 + d y5 + e a−2.5,
x2 = a x6 + b x8 + c x9 + d a−1.5, x1 = a x5 + b x7 + c a−0.5; x0 = a x4 + b a0.5,
and the matrix
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H =



a2.5 x0 x1 x2 x3 y1

0 a1.5 x4 x5 x6 y2

0 0 a.5 x7 x8 y3

0 0 0 a−.5 x9 y4

0 0 0 0 a−1.5 y5

0 0 0 0 0 a−2.5

, it holds H−1g(A6)H =



0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

.

Then, cond(H) ' 1.9924445 and ‖H−1g(A6)H‖ = 1.
We can consider that the estimate 1.992444 ≤ ψ(A6) ≤ 1.992445 is correct.

Remark. In each of these cases, the matrix M = g(Ak) satisfies the relation ψD(M) =
ψcb,D(M). This property holds for all d × d matrices M if d ≤ 2, but may fail [5] if d ≥ 3.
Also here, for the matrix H which realizes ψcb,D(M), H−1MH was a Jordan block, which is not
generally the case.

Table 1 summarizes our results.

n lower bound upper bound difference

3 1.9956978 1.9956979 10−7

4 1.993800 1.993801 10−6

5 1.992921 1.992922 10−6

6 1.992444 1.992445 10−6

Table 1: Upper and Lower Bounds on ψ(An) = ψcb,D(Mn).

4 About the computation of the conformal mapping g

We may write g(z) = z exp(u+iv), with u(z) and v(z) harmonic real-valued functions. Note
that u(z) = − log |z| on ∂W (A), which determines u in W (A) in a unique way.

Let us consider a representation ∂W (A) = {σ(θ) ; θ ∈ [0, 2π]} of the boundary and choose
λ > 0. If q is a 2π-periodic real-valued function such that,∫ 2π

0
q(θ) log

∣∣σ(θ)−σ(ϕ)

λ

∣∣ dθ = − log |σ(ϕ)|, for all ϕ ∈ [0, 2π[,

then it holds u(z) =
∫ 2π

0 q(θ) log
∣∣σ(θ)−z

λ

∣∣ dθ since this integral is clearly harmonic and is equal
to − log |z| on ∂W (A). It is known that such a q exists if and only if λ is different from the
logarithmic capacity of W (A). Generally we will use this equation with λ = 1 and then rewrite
it as ∫ 2π

0
q(θ) log

∣∣∣σ(θ)−σ(ϕ)

eiθ−eiϕ
∣∣∣ dθ +

∫ 2π

0
q(θ) log |eiθ−eiϕ| dθ = − log |σ(ϕ)|, ∀ϕ ∈ [0, 2π[.

We discretized this equation using a representation σ(θ) of ∂W (A) and approximating q(·) by a
trigonometric polynomial qn(·) of degree n, and employing a collocation method at the points
θj , j = 0, 1, . . . , 2n (it is known that an odd number of collocation points is necessary for such
a method). So, we get an approximation qj = qn(θj) by solving the system

2π

2n+ 1

2n∑
j=0

qj log
∣∣∣σ(θj)− σ(θi)

eiθj − eiθi
∣∣∣+

∫ 2π

0
qn(θ) log |eiθ − eiθi | dθ = − log |σ(θi)|,

for i = 0, 1, . . . , 2n.
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We have approximated the first integral by the trapezoidal formula; of course, if j = i, we have

to replace log
∣∣∣σ(θj)−σ(θi)

eiθj−eiθi

∣∣∣ by log |σ′(θi)|. Recall that, for the remaining integral, there holds

∫ 2π

0
qn(θ) log |eiθ − eiθi | dθ = − 2π

2n+ 1

2n∑
j=0

c(j−i) qj ,

with c(k) = c(−k) =

n∑
j=1

cos jθk
j

.

Then, we obtain the approximation of u from

u(z) ' 2π

2n+ 1

2n∑
j=0

qj log |σ(θj)− z|

and the approximation of the derivatives of g at 0 (note that here v(x) = 0 if x ∈ R)

g′(0) = exp(u(0)), g′′(0) = 2 g′(0)u′(0), g(3)(0) = 3 g′(0)(u′(0)2+u′′(0)),

g(4)(0) = 4 g′(0)(u′(0)3+3u′(0)u′′(0)+u(3)(0)),

g(5)(0) = 5 g′(0)(u′(0)4+6u′(0)2u′′(0)+4u′(0)u(3)(0)+3u′′(0)2+u(4)(0)),

via the formulae

g′(0) ' exp
( 2π

2n+ 1

2n+1∑
j=1

qj log |σ(θj)|
)
, u(k)(0) ' −(k−1)!

2π

2n+ 1
Re
( 2n+1∑

j=1

qj
σ(θj)k

)
)
.

Remark. In order to get q, we have to solve a linear system of the form Mq = b. But it could
appear that the matrix M is not invertible, or badly conditioned, if the logarithmic capacity of
W (A) is close to 1. In this case, we can replace this system by (M−E)q = b−e where E (resp.
e) is a matrix (resp. a vector) with all entries equal to 1.

This method is very efficient for analytic boundary (exponential convergence with respect
to n, see for instance [1]), but here we have singularities at the transition points between the
straight line and the algebraic part, which reduces the order of convergence to O(n−4) which is
still good. With ϕk(z) = 1

k

∑k−1
j=1 j z

i(k−j), we have

∂W (Ak) = {z : z = ϕk(θ),−2π
k ≤ θ ≤

2π
k } ∪ {z : z = −1

2(1+iy), − cot(πk ) ≤ y ≤ cot(πk )}.

We have used 2n+1 points on the algebraic part of ∂W (Ak): zj = ϕk(
2πj
kn ) for j = −n, . . . , n

and 2n2 equidistant points on the straight part zn+j = zn−jh i, j = 1, . . . , 2n2 where h =
2 cot(πk )/(2n2+1) and n2 is chosen such that h is as close as possible to |zn−zn−1|.

5 Program in Matlab for the computation of g(A)

function [gofA,gderivs,nn]= Akstudy(k,n);

% For 3 <= k <= 6, forms the kxk matrix A with ones in the

% strict upper triangle and zeros elsewhere, and computes

% its image gofA under the Riemann mapping from W(A) to the

% unit disk with g(0) = 0, g’(0) > 0. gderivs(j), j=1,...,5,
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% contains the value of the jth derivative of g at 0.

% W(A) consists of a cardioid and a vertical line segment,

% and 2n+1 points are used to represent the cardioid portion.

% Output argument nn is then the total number of discretization

% points used to represent the boundary of W(A). Note also

% that n may be modified (to make things come out even).

A = triu(ones(k),1); % Form the matrix.

% Discretize W(A). Use n+1 points on the upper part of the

% algebraic curve.
th = 2*[0:n]’*pi/n/k;

z = zeros(size(th));

for j=1:k-1, z = z + (k-j)*exp(1i*j*th)/k; end;

% Choose the same step size on the line segment.

h = abs(z(n+1)-z(n));

nn = fix(imag(z(n+1))/h - 0.5);

h = imag(z(n+1))/(nn+0.5);

for j=1:nn, z(n+1+j) = z(n+1) - 1i*j*h; end;

% Complete by symmetry.

nn = n+1+nn;

zz = conj(z);

z = [z(1:nn); zz(nn:-1:2)];

% Plot W(A).

plot([z; z(1)],’-k’,’LineWidth’,2), axis equal, shg

% Compute the conformal mapping.

nn = length(z); n = (nn-1)/2;

zz = z;

e = [1:n]’; ee = 2*pi/nn * [1:n]’;

c0 = sum(ones(size(e)) ./ e);

c = zeros(nn-1,1); d = zeros(nn-1,1);

for j=1:nn-1, c(j) = sum(cos(j*ee)./e); end;

for j=1:nn-1, d(j) = sum(2*sin(j*ee) .* e)/nn; end;

dd = [d; 0];

zzprim = zeros(nn,1);

for j=1:nn, dd = [dd(nn); dd(1:nn-1)]; zzprim(j) = sum(zz.*dd); end;

zzprim = abs(zzprim);

% Compute the matrix M such that Mq = -log |sigma|.

ee = exp(1i*2*pi/nn * [1:nn]’);

M = zeros(nn,nn);

for j=1:nn,

M(j,j) = log(zzprim(j)) - c0;

for k=j+1:nn,
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M(k,j) = log(abs((zz(k)-zz(j))/(ee(k)-ee(j)))) - c(k-j);

M(j,k) = M(k,j);

end;

end;

% If t < 0, M is badly conditioned, so we translate M.

t = 10∧4-cond(M);
if t < 0, M = M - ones(M); t, pause, end;

% Compute q.

b0 = log(abs(zz));

q = -M\b0;

% Take account of the translation.

if t < 0, b0 = b0 - ones(b0); end;

% Compute derivatives of g at 0.

gp = exp(sum(q.*b0));

b = -real(sum(q./zz));

c = -real(sum(q./zz.∧2));
d = -2*real(sum(q./zz.∧3));
ed = -6*real(sum(q./zz.∧4));
gs = 2*gp*b; gt = 3*gp*(b∧2 + c);

gq = 4*gp*(3*b*c + b∧3 + d);

gc = 5*gp*(b∧4 + 6*b∧2*c + 4*b*d + 3*c∧2 + ed);

gderivs = [gp, gs, gt, gq, gc];

gofA = gp*A + 0.5*gs*A∧2 + (1/6)*gt*A∧3 + (1/24)*gq*A∧4 + (1/120)*gc*A∧5;
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