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Abstract—As facial recognition technology proliferates, con-
cerns emerge regarding its application to medical imaging,
specifically Magnetic Resonance Imaging (MRI). This paper
investigates privacy risks associated with MRI data, including re-
identification through social network photographs and sensitive
attribute inference. The exponential growth in MRI quality coin-
cides with the increasing sophistication of facial recognition tools,
raising the potential for re-identification using medical images.
Our attack involves reconstructing faces and applying facial
recognition techniques to extract identifying features that can be
compared to photographs. Legal frameworks like GDPR mandate
the assessment and protection of personal data, necessitating
continuous risk evaluation. Beyond re-identification, we explore
the inference of individual attributes from MRI images, such
as age, gender, and ethnic group. This research assesses the
privacy risks associated with MRI data by taking into account
the evolution of facial recognition and reconstruction tools that
have become increasingly accessible. We also show that facial
hair removal technique on photographs increases the risk of
re-identification. Overall, our results highlight vulnerabilities in
sharing MRI data, emphasizing the need for enhanced privacy
safeguards.

Index Terms—Privacy, Risk Assessment, Re-Identification,
Medical Images

I. INTRODUCTION

Face recognition systems are increasingly deployed for
the authentication process as well as mass surveillance pro-
grams [1]. These systems are typically built by scraping
publicly available images from social media. Smart cameras
equipped with facial recognition are becoming a new threat to
privacy. However, this risk does not only concern images and
facial recognition tools can be used also on medical imaging.

In recent years, medical professionals have increasingly
relied on various imaging technologies for diagnosing patients.
Brain imaging, in particular, has seen remarkable advance-
ments, with Magnetic Resonance Imaging (MRI), Positron
Emission Tomography (PET), and Computed Tomography
(CT) being among the key imaging modalities. Moreover,
MRI, which continues to evolve in terms of both modali-
ties and contrast techniques, provide diverse capabilities for
visualizing brain tissues, ranging from highlighting fat (T1-
weighted), fluids (T2-weighted), and lesions (FLAIR, DWI)
to mapping functional activity (fMRI) and vascular structures
(SWI, MRA) and assessing macromolecular content (MTI).

However, this rapid enhancement in brain imaging quality,
along with the widespread sharing of tagged personal images

on social media, raises concerns regarding the potential for
re-identification using facial recognition software. Instances
of re-identification have been reported for anatomical MRI
images [2, 3, 4], PET images [5, 5], CT images [6], as well
as functional MRI (fMRI, dMRI, and ASF) images [7]. To
mitigate this risk, de-facing software has been developed to
obscure or replaces part of the human faces [8, 9]. Never-
theless, these mitigation measures often compromise image
utility and do not provide complete protection against re-
identification [10, 11].

In the pursuit of automating face recognition from medical
images, methods for face reconstruction typically involve
creating an isosurface and applying skin rendering [2, 3].
Recognition is then achieved through geometric structural
properties [12] or dedicated neural networks [13]. Commercial
face recognition software, such as Amazon Rekognition1,
Deep Vision AI2, Face++3 or Microsoft Azure Cognitive Ser-
vices Face API4 is increasingly integrated into face databases.

The rapid evolution of imaging technologies and the ac-
cessibility of certain tools gives rise to significant privacy
questions. Legal frameworks like the European General Data
Protection Regulation (GDPR), the Canadian Personal Infor-
mation Protection and Electronic Documents Act (PIPEDA),
and the California’s Consumer Privacy Act (CCPA) mandate
the quantification of privacy risks and the effective protection
and anonymization of personal data, particularly sensitive
health-related information. These laws take into account evolv-
ing practices, available tools, and adversaries’s capacities for
identification. For example, under GDPR Article 29 [14], there
is a strong emphasis on considering contextual factors and all
potential identification methods, especially in light of recent
technological advancements and increased computing power.
Therefore, the evolving landscape of face reconstruction and
recognition tools calls a reassessment of re-identification risk
and the implementation of appropriate protection measures.

While re-identification is a central concern, privacy viola-
tions encompass more than just this risk. GDPR and simi-
lar regulations emphasize safeguarding against three primary
risks: singling out, linkability, and inference. These risks

1https://aws.amazon.com/fr/rekognition/
2http://deepvisionai.in/
3https://www.faceplusplus.com/
4https://azure.microsoft.com/en-gb/products/cognitive-services/face



extend beyond mere identification, allowing data to be linked,
and potentially disclosing highly sensitive information. In this
paper, we also explore a less-studied aspect: the possibility of
inferring individual attributes from MRI images with a high
degree of confidence.

Imaging data, although not publicly available, resides in
health data warehouses. Yet, this data is increasingly shared
for research purposes or with private laboratories. Hospitals, in
particular, face cybersecurity attacks, leading to data breaches
in recent years 5. Therefore, safegaurding this medical data at
its source is crucial to prevent re-identification risks.

This paper aims to assess privacy violations related to brain
imaging, considering the evolving landscape of available tools
and data. Indeed, to establish the privacy risk assessment, we
take into account both the severity of the impacts (which
depends on the significance of the consequences and how
difficult it would be for subjects to overcome them) and
likelihood (which depends on the feasibility of the threat and
its motivation). With the evolution of facial recognition and
reconstruction tools, as well as their easier accessibility, we
discuss the need to consider a higher likelihood. Additionally,
we present a comprehensive evaluation campaign to illustrate
these risks. Specifically, the contributions of the papers can be
summarized as follows:

• We utilize a more robust setting to evaluate the privacy
risk compared to the state of the art. Taking inspiration
from research in other data modalities (for instance
VoicePrivacy Challenge [15]).

• We design two different attacks of MRI face recognition
and we compare them within the same dataset.

• We propose a hair-removing technique on the pho-
tographs to increase the effectiveness of the attack.

• We evaluate attribute inference on Age, Gender and
Ethnic group, and compare the effectiveness between the
attack on photographs or MRI.

Our results show that there are leakages in sharing MRI
images (both in terms of re-identification risk and sensitive
attribute inference). Also, our removing facial hair technique
is important when using deep-learning based face recognition
techniques.

II. RELATED WORK

In the literature, works have addressed the privacy concerns
associated with the sharing of brain MRI data in various
manners. However, a prevailing consensus has emerged, in-
dicating that the safeguarding of brain MRI images predom-
inantly relies on the application of defacing techniques. A
comprehensive examination of state-of-the-art techniques is
provided in the study of Schwarz et al. [9]. Starting with
this principle some works have tackled the reversing of such
defacing method. For instance, Abramian et al. [10] have used
a CycleGAN [16] in order to reverse the defacing methods.
Most specifically, they showed that the method that removes
the face (mri deface [17] for the FreeSurfer package [18])

5https://www.upguard.com/blog/biggest-data-breaches-in-healthcare

is harder to reverse compared to a blurring method Mask-
Face [19]. In addition some works have tried to compute
rapidly deface masks that are considered effective. Such as
the work of Khazane et al. [20], where a 3D U-net is used to
construct a faster version of pydeface [8] with high accuracy
(up-to 10 times faster).

As for the attack that illustrates the privacy risk of sharing
MRI images. Some have focuses on the inter-MRI linkability.
For instance, Ravindra et al. [21] aim at linking fMRIs from
two different datasets without face reconstruction. To do this,
they use matrix decomposition to reduce the dimension of each
data sample to a smaller vector (100 dimension only) from the
functional connectomes matrix. Authors assume that patients
are present in both datasets. Thus, the attacker can conduct
a full bipartite graph matching between two pseudonymized
datasets (a single permutation is found). They noticed that
the accuracy is high (> 94%) when both datasets correspond
to resting state fMRI compared to the accuracy for language
processing and relational processing tasks which is > 90%,
and for social processing task which is > 80%.

Similarly to our setup, some works aim at finding the
identity of the MRI owner from photographs. For instance,
Mikulan et al. [2] evaluate their defacing method with both
a Human-recognition and a Machine-recognition experiment.
The machine recognition is constructed using the Surf-Ice
Sofwtare [22] to generate 2D renders. The dlib package [23]
is then used with the pre-trained detector from [24]. The main
drawback of this work compared to ours is that their evaluation
of machine-recognition is flawed because the average number
of true identifications is defined as ”proportion of subjects
in which the correct subject was among the ones indicated
by the algorithm”. A subject would be indicated by their
algorithm only if its score was above a fixed threshold. This
is a typical error in Machine Learning (ML) model evaluation
where we can always artificially increase the true positive rate
by choosing a low threshold but we should also look at the
impact on the false positive rate. In other words, a detection
system could accept the correct subject by accepting way more
false subjects on the way (e.g., 1 correct subject accepted with
99 other false ones). To avoid such mistakes, in our work we
use a more robust setting with identity verification and AUC in
case of classification evaluation (see Section III). As for their
proposed method AnonMI, they use the watershed algorithm
from FreeSurfer [18] to reconstruct the skin and skull of the
subject. Then, they use a template constructed from the IXI
dataset to determine the location of ears and face to fill in
the voxels with new values. All the values outside of this skin
model are set to zero.

The attack described by Schwarz et al. [3] was used in
various state-of-art studies [5, 9] in order to compare various
defacing (or refacing) techniques. This attack was also used to
study the privacy risk of different type of imaging techniques
beyond classical MRI (dMRI, fmRI, ASL compared to clas-
sical T1-W, T2...) [7]. The base of the attack is to first apply
thresholding and remove artifacts disconnected from the head,
then create an isosurface using Matlab’s built-in function, and



Fig. 1. Threat model: an adversary having access to MRI data tries to identify the associated individual from photographs found on social networks.

render it to static 2D images using Surf-Ice [22]. Then, if
needed, the attacker conducts a refacing method using an aver-
age template. As for the face recognition itself, for each image,
the attacker generates a single 3D surface that they transform
into 10 renders (2D, png files) under a range of simulated
viewing and lighting angles. These renders are used as training
for the Microsoft Azure Face API PersonGroup classifier
which is tested using 5 real photographs of each participant.
The classifiers used Microsoft’s pre-trained models for face
detection (detection 03) and recognition (recognition 02). Un-
fortunately, these models are commercial Microsoft products,
and their underlying algorithms have not been published. This
why in our work we make use of deepface [25] to extract
face recognition features with open source programs. Another
differentiating aspect of our work is that to the best of our
knowledge, we are the only one to inspect the effect of
removing hair on photographs for the face recognition.

III. THREAT MODEL AND PRIVACY METRICS

We opted for privacy evaluation protocols used in state-
of-the-art competitions. Notably, the VoicePrivacy Chal-
lenge [15]. First, lets define the threat model depicted in Fig. 1.
We consider a setting where MRI data become available online
(honestly or dishonestly) after going through an anonymization
method. This data is shared to participate in a given down-
stream taks. We call it the utility task, which can be as simple
as a diagnostic by a physician or as advanced as the training
of large deep learning models.

We consider that an attacker obtains this data a ∈ A (e.g.,
through a data leak in a hospital) and compares it to known
data she has accumulated b ∈ B using a linkage function that
outputs a score s = LF (a, b). In our setting the known data
B is a list of social network photos that could include the real
photograph of the subject that produced a. For the metrics,
we consider an oracle evaluator that analyzes the list of scores
s ∈ S outputted by the attacker for given sets of A and B in
order to assess how much information the attacker could have
exploited to better link any given a with the correct element b.
The setting is often used to evaluate verification systems (e.g.,
for authentication) where we evaluate the atomic capacity of
an attack to differentiate if a pair of data (a, b) come from the
same identity (called a mated pair). Unlike, the metrics that

are based on finding a fixed correct match, our setting has the
advantage to generalize to an arbitrary number of identities in
both A and B. For instance, compared to the re-identification
rate which is highly sensitive to the number and the nature of
elements in B.

A. Equal-Error-Rate – EER

The EER is the most known metric in verification systems.
It assumes a threshold-based decision on the score s (i.e.,
comparing it to a fixed threshold t). In that case, two types of
error can be occur: (1) False alarms with rate Pfa(t) and (2)
Misses Pmiss(t). The EER corresponds to the error rate given
with the threshold te where both the error rates are equal.

EER = Pfa(te) = Pmiss(te) (1)

B. Area under the ROC curve – AUC

We could consider the attacker as a classifier that tries
to distinguish between mated and non-mated pairs. Then,
we use classical method to evaluate binary classifiers such
as the ROC-AUC which evaluates the quality of a binary
classification task with every threshold used.

C. Linkability

Linkability was also proposed in [26] for biometric template
protection systems. The goal of this metric is to estimate the
non-overlapping regions between the scores of mated pairs and
non-mated pairs (Equation 2). The intuition is to evaluate how
much an attacker could deduce the nature of a pair (i.e., mated)
depending on how non-confusing the scores are (Equation 3).

L(s) = max(0, p(H|s)− (H̄|s)), (2)

L(S) =
∫

p(H|s) · L(s)ds, (3)

where s represents a given score and p(H|s) represent
the probability that a pair is mated H (same subject) given
the score s (respectively, non-mated with H̄). Thus L(s)
measures the chances that a score describes a mated pair rather
than a non-mated pair. Finally L(S) is the global linkability
computed across all scores.



Fig. 2. Landmarks detected by GEO on both photographs and reconstruction.

IV. DESIGNED ATTACKS

A. Face Recognition

In this study, we employed a multi-faceted approach to
reconstruct facial images from MRI data and subsequently
compared these reconstructions with photographs of subjects’
identification images (id images) as well as facial pho-
tographs sourced from the LFW (Labelled Faces in the Wild)
database [27] (social network images). The reconstruction
process was accomplished using the 3D Slicer software [28],
which allowed us to generate 3D models of subjects’ faces
from the MRI data. To optimize the reconstruction process,
we employed various parameterizations within 3D Slicer:
Crop Volume with Isotropic Spacing for uniform voxel sizes,
Thresholding in Segment Editor to isolate the facial region,
and Smoothing Effect to refine the 3D model’s surface. These
parameterization steps were crucial in creating accurate and
visually appealing 3D models of subjects’ faces from the MRI
data, facilitating subsequent analyses and comparisons with
reference photographs. For face recognition, we employed two
distinct approaches: one based on geometrical features (named
GEO) and the other on deep learning features extracted using
the VGG neural network architecture (named Deepface).

1) GEO: For face recognition using geometrical features,
we utilized the face recognition library [24], which relies on
the powerful dlib package (a versatile Python library renowned
for its facial recognition capabilities [23]). It works by first
detecting facial landmarks on the input images, which are
critical points such as eyes, nose, mouth, and chin. These
landmarks are located using a deep learning-based facial
landmark detection model, typically a shape predictor trained
on a large dataset of annotated facial landmarks as depicted in
Fig. 2. Once the facial landmarks were detected using dlib, we
computed a set of geometrical features, such as the distances
between these landmarks, angles formed by specific points,
and ratios between different facial measurements.

2) Deepface: To extract deep learning features, we utilized
the deepface library [25], which incorporates the VGG-Face
model. The VGG-Face model is a deep convolutional neu-
ral network pretrained on a vast dataset of facial images.
It is specifically designed for face recognition and feature
extraction. The VGG-Face model operates by passing facial
images through its layers, extracting high-level features at
various abstraction levels, effectively encoding unique facial
characteristics into compact feature vectors.

To quantify the similarity between the reconstructed images
and the reference photograph or LFW database images, we

Fig. 3. Hair removal technique makes the reconstruction closer to the
photograph (i.e., a smaller L2 distance).

computed the Euclidean L2 distance between the feature
vectors. This distance metric allowed us to quantitatively
measure the dissimilarity between features extracted from the
reconstructed faces and those from the photographs. This
distance is converted to a similarity metric to it use as a linkage
function LF as described in Section III.

3) Baldness: The rationale behind this approach lies in
correcting the inherent inability of MRI reconstruction to
faithfully reproduce hair details. Instead of fabricating artificial
facial hair in these reconstructions, we opt to enhance the
similarity of the photographs by eliminating facial hair from
them. The method employed for hair removal in portrait
images while maintaining facial structure and identity, as
detailed in [29], consists of several steps. Initially, hair removal
is achieved by creating paired latent codes for portraits, one
with hair and one without hair. Subsequently, a HairMapper
network is trained using these pairs, and the results are
seamlessly blended with the original image through an image
blending process. To enhance the quality of the blending, the
hair mask is improved by dilation and blurring, ensuring a
smoother transition. This pre-trained model was then applied
to our dataset to generate ”bald” versions of photographs.

B. Sensitive Attribute Inference

To investigate the inclusion of gender, age, and ethnicity
information within the feature vectors produced by Deepface,
we employed the pre-trained model to extract feature vectors
from each ID image and its corresponding MRI reconstruction.
We omitted the final classification layer during this process.
Next, we introduced a fully connected layer and conducted
training specifically for attribute classification. Our evaluation
involves a comprehensive assessment of the models’ perfor-
mance in attribute classification, based on ground truth data
available for each subject in our dataset.

V. EVALUATION

A. Dataset

This scientific paper reports on a study conducted at the
University Hospital of Lyon between February and April



TABLE I
SUMMARY OF PRIVACY RESULTS

Method Facial hair EER
Max 50%

AUC
Max 1

Linkability
Max 1

Deepface Raw 41 .54 .07
Deepface Bald 32 .71 .18

Geo Raw 36 .64 .11
Geo Bald 38 .64 .13
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Fig. 4. ROC-Curve of the classification between mated and non-mated pairs:
curves higher than the diagonal represent classifiers better than random (i.e.,
privacy leakage).

2022, involving 49 healthy volunteers. The study had stringent
inclusion criteria, which required participants to be between 18
and 50 years of age, have no previous neurological issues or a
history of neck surgery, and possess no contraindications for
undergoing an MRI scan. Additionally, individuals with dental
implants or braces were excluded from the study to reduce
potential artifacts during image acquisition. Each volunteer
provided their informed consent to participate in the study and
to be part of this work, with a T2-weighted sagittal imaging
using Turbo Spin Echo and their photograph collected for
documentation purposes.

B. Distinguishability of mated pairs

In Table I, we present the results of attacks conducted
with the metrics defined in Section III. The results show that
Deepface method is highly sensitive to the face hair of the
subjects. But removing them using our method make the attack
behave the best out of our 4 configurations. On the other hand,
we notice that removing hair has little impact on GEO as
expected since the face landmarks can be found even with
hair present. Notably without removing the hair, GEO behaves
better than deepface. This illustrates the sensitivity of deepface
to hair. This is probably due to how the model of [24] was
trained (similar hairstyle/facial hair in training).

The comparison is better illustrated in Fig. 4, where we
compare the different classification between pairs using the
Roc-curve. We notice that the Bald deep combination behaves
way better than random (diagonal line) showing that there
is leakage of information and distinguishability between data
pairs from same subjects compared to different subjects. To be
noted, all of the metric order the attack in the same manner.
EER also shows that there is still error in conducting the attack
by setting up a threshold-based decision with an EER of 32%.

TABLE II
ACCURACY OF AGE, GENDER, AND ETHNICITY INFERENCE IN ID IMAGES

AND MRI RECONSTRUCTIONS FOR THE SAME SUBJECTS

Type Age Gender Ethnicity
ID images 0.4 1.0 0.4

MRI reconstruction 0.6 0.4 0.8

C. Evaluation of sensitive attribute inference

In Table II, we present the results of our inference attacks
on both the social media photograph and MRI. We notice for
the Gender using the photograph was more effective compared
to MRI. But, for both age and ethnic origin the MRI was more
effective. Showing the high risk of sharing such type of data.

VI. DISCUSSION AND CONCLUSION

In this paper, we contribute to evaluating privacy risks
associated with MRI data. By designing attacks to do recog-
nition through social network photographs and through sensi-
tive attribute inference. Our results highlight vulnerabilities
in sharing MRI data, emphasizing the need for enhanced
privacy safeguards and continued vigilance. More precisely,
we evaluate the leakage with both the GEO method and
deepface, illustrating the impact of hair removal. We also
discovered discrepancies in the inference of attributes when
using an MRI or a photograph. However, there are some
limitations that include the lack of testing of defacing methods
and we did not evaluate the usage of commercial solutions for
face recognition. Nonetheless, we introduced a more robust
evaluation protocol in the context of MRI imaging that we
advocate for. Also, to the best of our knowledge, we are the
first work that compares different attacks and we also study
the effect of facial hair removal.

In future work, we want to explore attack capacity beyond
face recognition but rather find direct patterns on the brain tis-
sues (e.g., with fingerprinting) in order to evaluate if defacing
techniques are appropriate anonymization techniques.
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