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Abstract—With the rise of machine learning and data-driven
models especially in the field of Natural Language Processing
(NLP), a strong demand for sharing data between organisations
has emerged. However datasets are usually composed of personal
data and thus subject to numerous regulations which require
anonymization before disseminating the data. In the medical
domain for instance, patient records are extremely sensitive
and private, but the de-identification of medical documents is
a complex task. Recent advances in NLP models have shown
encouraging results in this field, but the question of whether
deploying such models is safe remains.

In this paper, we evaluate three privacy risks on NLP models
trained on sensitive data. Specifically, we evaluate counterfactual
memorization, which corresponds to rare and sensitive infor-
mation which has too much influence on the model. We also
evaluate membership inference as well as the ability to extract
verbatim training data from the model. With this evaluation, we
can cure data at risk from the training data and calibrate hyper
parameters to provide a supplementary utility and privacy trade-
off to the usual mitigation strategies such as using differential
privacy. We exhaustively illustrate the privacy leakage of NLP
models through a use-case using medical texts and discuss
the impact of both the proposed methodology and mitigation
schemes.

Index Terms—NLP models, Privacy, Membership Inference,
Counterfactual Memorisation, Data Extraction

I. INTRODUCTION

Healthcare generates massive amounts of data collected
from many different sources. The use of this valuable data has
many advantages and promises: improving the quality of care
and our knowledge of the health system, identifying disease
risk factors, assisting in diagnosis, making wiser choices
and monitoring of the effectiveness of treatments, delivering
personalized healthcare value, epidemiology, etc. A large part
of this data corresponds to text documents (e.g., medical
reports). With the rise of machine learning and the advent of
Natural Language Processing (NLP) models are increasingly
used to automate the processing of medical documents and
reports [1, 2, 3].

In recent years, a need to share medical data between vari-
ous healthcare centers has emerged. This need was all the more
felt during the SARS-Cov-2 pandemic for example, where the
objective was to propose epidemiological models taking into
account data from all over the world. However, patient medical
records are extremely sensitive and private data. Their use
and distribution is therefore subject to numerous regulations

such as HIPAA, for the USA, or GDPR for Europe. In these
regulations, one of the main prerequisites for the dissemination
of medical data is to remove any elements that can be used
to trace a patient directly (i.e., de-identification) or indirectly
(i.e., anonymization).

The de-identification of medical documents is a complex
task, costly in time and sometimes requiring several doctors
which can slow down research. However, recent advances in
NLP [4] based on neural networks have shown encouraging
results. Indeed, NLP has grown in popularity since the advent
of ChatGPT, yet NLP-models are not limited to text gener-
ation, and can include multiple tasks including classification,
named entity recognition, and thus the de-identification of free
texts. Johnson et al. for example proposed to use a neural
network based on a BERT architecture [5] to detect a certain
number of identifying elements in medical documents. More
recently, different hospitals have also explored the feasibility
of using NLP-models to pseudonymize (i.e., hiding specific
direct identifiers) text documents from their clinical data
warehouse [6, 7].

Although the use of language models to automate the
processing of medical documents and to remove personal
information (or pseudonymize them by replacing direct iden-
tifier to pseudonym) in order to facilitate their sharing is
appealing [8], the attack surface of these models trained
on personal and highly sensitive data is still poorly under-
stood [9, 10]. Thus, additionally to the evaluation of the
quality of the de-identification itself, using NLP-models to
process medical reports still poses a number of threats related
to the leakage of the sensitive information used during the
training of models. Specifically, there are a few known privacy
vulnerabilities involving the training data (i.e., a large corpus
of medical documents) associated with machine learning and
NLP-models [11] mostly considered individually such as coun-
terfactual memorization [12] (i.e., memorisation of rare data),
data extraction or reconstruction [13, 14], and membership
inference attacks [15, 16, 17] (i.e., identifying elements of
the training data). To reduce these risks, mitigation techniques
have been proposed such as Differential Drivacy [18] (DP) or
pruning strategy [17]. However, these mitigation techniques
drastically degrade the accuracy of the model making them
unusable in practice.



Fig. 1. Map of state-of-the-art Transformer-based models: since Transformers based on encoder-decoder neural network, BERT models focus on the encoder
and are efficient for classification tasks while GPT models use the decoder and are generative models. Both categories of models can be fine-tuned with local
data (e.g., medical reports).

We propose a training methodology to limit privacy leaks
of sensitive information directly during the training phase.
Specifically, sensitive information subject to counterfactual
memorisation is discarded of the training data and instead of
using cross validation to define the values of hyper-parameters
only according to the performance of the model, both model
accuracy and information leakage is evaluated. We argue that
a model calibrated to also take into account the potential
information leakage provides a better utility and privacy trade-
off than using a mitigation strategy based on DP which
degrades to much the utility of the model.

The rest of the paper is organized as follows. We start by
presenting a comprehensive background in NLP and related
works in Section II. We then present the proposed method-
ology to take into account the privacy assessment directly
during the training of the model in Section III. Our exhaustive
evaluation is reported Section IV before concluding Section V.

II. BACKGROUND

This section presents a comprehensive background on NLP
(Section II-A), how hospitals leverage them for de-identifying
clinical reports (Section II-B), the associated privacy leakages
(Section II-C), and mitigation strategies (Section II-D).

A. Natural language processing

Natural Language Processing (NLP) consists in understand-
ing and processing textual data using machine learning models.
The field underwent a breakthrough in 2017 with the advent of
the Transformer [19]. This novel architecture revolutionized
translation at the time. It consists of an encoder-decoder neural

network with a parallel computing scheme which uses posi-
tional encoding and various attention mechanisms (see [20]
for details). The objective of the encoder is to embed (i.e.,
turn into vectors) the input sentences. Each word is embedded
into a latent space, by taking the whole sentence as context.
For example, the word ”orange” in the sentences ”The orange
house” and ”I ate an orange” will be turned into two different
vectors. The encoder will have learnt to pay attention to the
word ”house” in the first sentence and ”ate” in the second.
The decoder then learns to translate these latent vectors into
new sentences, for example to French. Each tokens (words or
subwords) are predicted sequentially, by paying attention to
the input and the previously predicted words. Thanks to this,
the model knows to return ”maison” before ”orange” in the
French translation.

Two trends followed in 2018 with BERT models [21] which
focus on the encoder part of the Transformer and GPT models
which use the decoder. The first are very efficient for clas-
sification tasks. They are pretrained on enormous unlabeled
datasets to learn very complex embeddings of words. It is
then possible to fine-tune such models on specific data and
even to learn new tasks by adding just a few layers to the
model. For instance, a hospital could train a BERT model
to classify medical records according to different pathologies.
GPT models on the other hand are generative models. They
consist of a very large language model (LLM) which has
learnt to imitate human expression. The outputed sentences
are the most probable answers according to the model, based
on probabilities it learnt by observing sentences in its huge
training dataset.



They can be used to create chatbots such as chatGPT, which
derives from a GPT-3 base. OpenAI then extended its training
with supervised and reinforced phases to ensure answers are
non-toxic and do not include fake news [22, 23].

Since then, there have been a myriad of new models
inspired by the Transformer. For instance RoBERTa [24]
which is a much larger version of BERT, or distilBERT [25]
which uses knowledge distillation to produce a smaller size
model. Models in other languages have also appeared such as
CamemBERT [26] for French. Figure 1 maps the evolution
of the transformer-based models. The NLP Cookbook [4] also
surveys these different models and their specificities.

In our study, we will assess privacy leakages of NLP-
models trained on medical reports through two use-cases: text
classification and text generation. For this, we will use a BERT
model and a distilGPT2 model.

B. NLP for Privacy

In order to exploit or share their patients’ information for
research purposes while ensuring patient privacy, hospitals
have started exploiting language models for de-identifying
clinical reports [27, 6, 7, 28, 29]. De-identification of text-
based clinical reports consist of the removal or replacement
of personally identifying information from electronic health
reports. Although strict anonymization is considered a very
difficult task, this pseudonymization (e.g., identifying and
replacing the personally identifying information by a plausible
surrogate) makes it difficult to reestablish a link between the
patient and its data and is considered enough protection for
research purposes. Personal identification information is taken
from a list which may vary from one country to another and
includes for example address, date, birth date, hospital, patient
id, email, visit id, last name, first name, phone, city, zip code
and social security number.

The common pipeline of NLP models to achieve de-
identification of clinical reports is similar to the one reported
Figure 2 which depicted the workflow adopted by the Hos-
pices Civils de Lyon (HCL) [7]. The base model (A) is a
CamemBERT [26] which is a BERT model [21] specialized
on French texts. This model specialization to French is done
through a fill-mask task (i.e., random holes are added to the
sentences and the model learns how to fill them). Following
the same specialization process, the CamemBERT model is
then fine-tuned on medical texts (A’) to have a better statistical
understanding of the language used in medical reports. Lastly,
model A’ is fine-tuned into B’ to detect Personal identification
tokens, using a manually labeled dataset.

Literature shows that the resulting models are able to
outperform usual de-identification techniques which only use
regular expressions and manual rules to remove private tokens
(i.e., up to 0.99 of F1-Score with NLP models compared to
0.85 with manual rules only [6]). Although these models can
represent a very efficient clinical text de-identification tool,
only few of these studies evaluate the utility loss related to
the de-identification and none of them evaluate the potential
privacy leakage of the NLP models itself due to memorization

Fig. 2. Workflow by the Hospices Civils de Lyon (HCL) for de-identifying
clinical reports.

of training data [10]. This latter attack surface is detailed in
the next subsection.

C. Privacy for NLP

Large Language Models (LLM) are trained on very large
datasets. For instance, training chatGPT required scraping the
Internet for years. Consequently, numerous personal data such
as individuals’ addresses have been used during the training.
BERT models on the other hand are usually fine-tuned for spe-
cific tasks with domain-oriented data. In the medical domain,
datasets usually include sensitive patient records. In both of
these cases, the concern is that models may leak information
from the training data after their deployment which represent
an important privacy leakage.

In our study, we look into privacy leakages of NLP
models by firstly analyzing how models memorize specific
data (Section II-C1), then how textual information can be
extracted from these models (Section II-C2), and finally a
more common attack in privacy called Membership Inference
Attack (MIA, Section II-C3).

1) Data memorization: Machine learning models are ex-
pected to extract trends from the training data in order to
generalize to new data. Rare data or ”outliers” on the other
hand are usually not supposed to be memorized. A model
memorizing rare data does not only negatively impact the
utility but also privacy. Indeed, the more you learn on a small
subset of individuals, the higher the information leakage since
you can more easily pinpoint this information to its source. For
example, we expect chatGPT to know Harry Potter’s address
(which can be found on numerous pages online) but not the
reader’s address (which should be nonexistent or at least hard
to find online).

It turns out it is possible to measure this undesirable mem-
orization, coined counterfactual memorization in [12]. To do
so on any data, you must compare the performance of a model
trained on a dataset with that data, to a second model trained
without. This is computationally expensive to do for every
data, so counterfactual memorization is actually computed



with an empiric expectation: we create multiple copies of the
dataset and train many models on different subsets. Each data
will have models it was trained on and models it was not. We
can then compute the expected memorization:

mem(x) = Ex∈D(score(MD, x))− Ex/∈D′(score(MD′ , x)),

where score(MD, x) is the score for x of the model trained
with the dataset D. Both terms will cancel out for common
data (their removal has no impact) but may give a high
difference for rare data. Data points with memorization above
a certain threshold will be considered at risk.

2) Data extraction: Data extraction is a type of attack
which aims to use the model to reconstruct information from
the original data [11]. This attack mainly concerns text-
generation models, such as GPT. These models are trained to
output text based on what they saw during training. However,
we do not expect the model to be a basic parrot and repeat the
sentences it saw exactly. It is all the more a concern if the data
it repeats is sensitive. It turns out it was the case of GPT-2 for
instance from which individuals’ names and addresses could
be extracted [30].

In [31], the term k − extractibility is used to denote
sequences that can be extracted from the model when
prompted by an input sequence of length k. The lower k
is, the easier it is to extract the sequence. We thus expect a
model to have the highest k possible on private queries.

3) Membership inference: Membership Inference Attack
(MIA) is a more common inference attack in machine learning,
which aims to infer whether a specific data was used in the
training data of a target model. This can be a problem for
instance if a hospital has trained a model to detect cancer and
you learn your colleague’s data was used in the training. You
will have indirectly learned that he is probably suffering from
cancer.

Fig. 3. A Membership Inference Attack (MIA) leverages auxiliary dataset
D′ to build shadow models used to train a classifier to infer a piece of data’s
membership in the training information.

There are various techniques that can be used to achieve
an MIA. One of them consists in using shadow models [32].

Shadow models are trained to imitate the target model’s
behavior on an auxiliary dataset with a similar distribution
to the original. An adversary model (i.e., a classifier) is then
trained to infer membership from these shadow models. This
attack is depicted on Figure 3.

D. Mitigation strategies

The most popular approach which helps to mitigate privacy
risks is Differential Privacy (DP).

DP is a mathematical property that a model must verify in
order to leak as little information as possible. This property
imposes the model to learn a bounded amount of information
at each training step. More formally, the probability that a
model guesses the correct output for a given input must not
increase too much each time the model sees that data:

∀(x, y), logP (MD(x) = y) < ϵ logP (MD+x(x) = y),

where x, y represent data and its label, MD a model trained
on dataset D and ϵ the privacy budget. The lower ϵ is, the
more private the model is.

The most popular method to apply DP in machine learning
is DP- SGD: Differentially-Private Stochastic Gradient De-
scent [18]. The idea is to apply DP during the training phase by
clipping the gradient updates and adding centered noise at each
step. An illustration of the process is given on Figure 4. DP
is known to significantly decrease the accuracy of the model.

Fig. 4. Pipeline to learn a model with Differential Privacy (DP) in order
to make the participation of an individual indistinguishable to an observer
accessing the output of the model.

III. ASSESSING PRIVACY IN THE TRAINING PHASE

The process of training a model requires choosing hyper-
parameters (e.g, model layers, learning rate, number of epochs)
which will be used during the learning phase of the model.
Choosing optimal hyper-parameter requires running multiple
trials with different values for the parameters and evaluating
them with cross-validation. This evaluation is often only con-
trolled by the accuracy of the model. We argue that taking into
account the privacy assessment during this step is a required
methodology to provide a good utility and privacy trade-off.

Figure 5 depicts the pipeline including the proposed
methodology where the new building blocks are in red. Once
the raw data is processed, the hyper-parameter optimization
begins. Both the accuracy and the privacy leakages are evalu-
ated to judge the model.



Fig. 5. Taking into account both the accuracy of the model and the privacy leakage to cure sensitive information subject to counterfactual memorization and
to fix the hyper-parameters of the model provides a better utility and privacy trade-off than mitigation strategy such as using Differential Privacy.

Specifically, the privacy leakages are evaluated through
counterfactual memorisation, inference of membership and
data extraction. Identification of counterfactually memorized
data is useful to cure sensitive data that are at risk in the model.
Measuring the membership inference and the data extraction
as well as the accuracy of the model are then used to evaluate
the impact of the considered hyper-parameters. The training
of the model can be done through Differential Privacy (DP)
and also Federated Learning (not covered in this paper).

This optimization process once finished will return clean
data and the hyper-parameter values that are best suited for
the model to achieve the best accuracy-privacy tradeoff.

IV. EMPIRICAL EVALUATIONS OF PRIVACY RISK

This section reports an exhaustive evaluation of the privacy
risks related to NLP models trained on medical data and the
impact of DP to mitigate the risks. We consider a real use-case
and setup (Section IV-A) before quantifying both the different
privacy risks and the impact of mitigations (Section IV-B and
Section IV-C, respectively).

A. Experiment setups

To conduct the privacy risk assessment on sensitive data, we
considered the BLUE dataset [33]. This dataset includes the
Hallmarks of Cancer corpus of around 1,000 documents which
consists of medical texts in English labeled according to 10
types of cancer. By investigating the dataset, we can extract
meaningful information: labels are not equally represented, the
number of words and the number of characters are around 250
and 1,600 respectively, and the number of unique words is
around half of that number, which means half of the words
in a single text are unique on average. The classification task

(i.e., identification of the type of cancer from the reports) on
such a dataset is thus a very complex task.

For the models, we considered DistilGPT2, BERT and Dis-
tilBERT from Hugging Face [34]. DistilGPT2 is an English-
language generative model pre-trained with the supervision of
the smallest version of GPT-2. Like GPT-2. DistilBERT, in
turn, is a smaller, faster, cheaper and lighter version of BERT.

B. Exhaustive privacy evaluations

We started by evaluating the counterfactual memorization
of a BERT model fine-tuned with the Hallmarks of Cancer
corpus for the classification of types of cancer. The expected
memorization is reported Figure 6. The resulting distribution
is centered around 0 (which corresponds to no counterfactual
memorisation) but five texts have a memorization higher than
0.5 (which corresponds to high memorization). Among those
”counterfactuals memorization”, 60% have a larger size than
average (character length, number of words and number of
unique words). Particular attention must therefore be paid to
information with a larger than average size in the choice of
counterfactual information to evaluate.

We then evaluated data extraction. To achieve that we fine-
tuned a distilGPT2 model for text-generation on the medical
texts. For each text, we sampled random subsequences of 4
different lengths (from 10% to 75% of the minimal text size).
We then checked if part of the output of the model was present
verbatim in the original dataset. The result of the extraction is
depicted Figure 7.

The correlation between the number of extracted data and
the prompt size is not exactly what we expected : longer
prompts do indeed yield more extraction but there seems to
be a soft spot with a prompt size of 0.25%.



Fig. 6. Data at the far right of the distribution (far from 0) are counterfactual
memorized.

Fig. 7. Extracted count for each experiment

Moreover, we find after further analysis that the longer texts
in terms of number of words are the ones more extracted, as
illustrated Figure 8: the distributions of the number of words
are shifted to the right for extracted sentences.

Finally, we evaluated the risk of membership inference on
a BERT model trained for classification. This classifier is
the target model under MIA. We trained a shadow model in
the same manner as the target model, but on a different and
controlled training set, integrating both data part of the training
of the target model (train data) and data which are not part of
the training of the target model (test data). Since a learning
model has a better confidence score on a data item which has
already been seen during its training, this confidence can be
leveraged to infer membership (Section II-C3). In practice,
the confidence score for train and test data will become
more separable as training advances. This evolution in the
confidence score of the model from 1 epoch to 5 and 9 epochs
is illustrated in Figure 9 and at convergence in Figure 10. After
a sufficient number of epoch, we can see part of the train data
are clearly distinguishable. We can therefore use an XGBoost

Fig. 8. Distributions of the number of words for original texts and prompts.
Different colors correspond to the different prompt sizes. Extracted distribu-
tions are shifted to the right.

classifier to find a threshold to easily infer membership for
these data points. However, passed above this threshold, it
becomes difficult to predict whether or not a data point belongs
to the training data.

In this first scenario, the attacker does not know the training
time of the target model. So the threshold it finds is not
optimal. Our attack yielded an MIA accuracy of 0.56. which
is quite low. Actually, the highest accuracy we can obtain
is training is 0.6 (highest training accuracy). We can see on
Figure 10 why that is the case: the attacker can easily identify
test data (0.95 precision), but is not as efficient on train data
(0.54 precision).

The attack can actually be improved by giving more in-
formation to the adversary, for example the true label of the
data. With this information, we can build a decision tree with
thresholds on each label.

More importantly, when applying the first MIA scenario
but only on counterfactual data, we obtain an accuracy of 0.8.
This shows counterfactuals are at higher risk of being exploited
by adversaries. This hints that removing these data is a good
privacy measure before training the final model.



Fig. 9. Distribution of model’s scores during training. The lines for training and test data become separable

Fig. 10. MIA attack: high prediction on ”out” data but lower on ”in”

C. Mitigations

We tried implementing mitigation strategies to reduce the
previously illustrated risks. Figure 11 shows the evolution of
accuracy with and without DP for the classification task on
BERT. Unfortunately, DP reduces drastically the accuracy of
the model. In that simulation, ϵ is at 600 which is already too
high for privacy concerns (we usually expect ϵ to be between
1 and 10). We decided to simplify the task by only looking
at the two most common labels. Then, we obtained a vanilla
accuracy of 0.97, a DP accuracy of 0.60 and an epsilon of 200,
which is slightly more acceptable. We attacked both models
with an MIA which returned 0.59 accuracy for the vanilla
model and 0.55 for the DP model. This shows DP can indeed
mitigate the risk to a certain extent, but it not an acceptable
measure for a relevent accuracy-privacy tradeoff.

On the other hand, we evaluated the counterfactual memo-
rization in order to cure the original training data.

We trained the BERT model for 9 epochs with and without
the counterfactuals, and found that the MIA accuracy dropped
from 0.57 to 0.51, without a drop of performance. We also
trained a distilBERT in the same manner and reduced the
MIA risk from 0.57 to 0.53. Both architectures returned a
similar number of counterfactuals (1 more for distilBERT).
We repeated the same procedure with 13 epochs of training
which increased the MIA risk as expected, with no significant
improvement of accuracy.

Altogether, this shows that removing counterfactually mem-
orized data, and carefully choosing parameters such as model

Fig. 11. DP-SGD: accuracy drops drastically (ϵ is at 600 which is high). The
number of epochs correspond to mini-batch epochs.

size and number of epochs can improve the privacy-utility
trade-off. There are of course other hyper-parameters to look
at such as dataset size, learning rate and other model-specific
parameters. which could also affect this trade-off between
utility and privacy. Therefore, it is important to perform these
assessments empirically on each dataset and model to be
deployed for real-world applications.

V. CONCLUSION

This paper presents a methodology to mitigate privacy
leakages from NLP models directly during the training phase
while maintaining its accuracy. By taking into account all
the risks of privacy leakage (i.e., counterfactual memorization,



membership inference, and data extraction), the training data
can be efficiently cured from sensitive information subject
to counterfactual memorization and hyper-parameters of the
model can be calibrated to provides a better utility and privacy
trade-off than mitigation strategy such as using DP.

Given the sensitive nature of the data used for training
many NLP models such as in the medical field, we believe
that it is necessary to change practices to better take into
consideration the risks linked to privacy. After having
exhaustively presented the different risks of privacy leakages,
we have illustrated these leakages through a use-case using
fine-tuned NLP models with medical documents.
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